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Abstract

Large extra dimensions could lower the Planck scale to experimentally accessible values. Not only is the Planck scale the energy sca
effects of modified gravity become important. The Planck length also acts as a minimal length in nature, providing a natural ultraviolet c
a limit to the possible resolution of spacetime.

In this Letter we examine the influence of the minimal length on the Casimir energy between two plates.
 2005 Published by Elsevier B.V.
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1. Extra dimensions

The study of models with large extra dimensions (LXD
has recently received a great deal of attention. These mo
which are motivated by string theory[1–3], provide us with an
extension to the standard model (SM) in which observables
be computed and predictions for tests beyond the SM can b
dressed. This in turn might help us to extract knowledge ab
the underlying theory. The models of LXDs successfully
the gap between theoretical conclusions and experimental
sibilities as the extra hidden dimensions may have radii la
enough to make them accessible to experiments. The ne
look beyond the SM infected many experimental groups
search for such SM violating processes, for a summary
e.g., [4]. In this Letter we will work within an extension o
the LXD-model[5–8] (for recent constraints see[9]) that self-
consistently includes a minimal length scale. Since the LX
result in a lowered fundamental scale, also the minimal len
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might get observable soon and we should clearly take into
count the arising effect.

2. The minimal length

In perturbative string theory[10,11], the feature of a fun
damental minimal length scale arises from the fact that str
cannot probe distances smaller than the string scale. If the
ergy of a string reaches this scaleMs = √

α′, excitations of the
string can occur and increase its extension[12]. In particular,
an examination of the spacetime picture of high-energy st
scattering shows that the extension of the string grows pro
tional to its energy[10] in every order of perturbation theor
Due to this, uncertainty in position measurement can neve
come arbitrarily small.

Motivations for the occurrence of a minimal length are m
ifold. A minimal length cannot only be found in string theo
[10–12]but also in loop quantum gravity and non-commutat
geometries. It can be derived from various studies of thou
experiments, from investigations of the Heisenberg–Poin
algebra[13], from black hole physics, the holographic princip
and further more. Perhaps the most convincing argument, h
ever, is that there seems to be no self-consistent way to a
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the occurrence of a minimal length scale. The minimal len
acts as a regulator in the ultra violet and seems to be ne
sary for our understanding of physics near the Planck scale
reviews on this topic see, e.g.,[14].

Instead of finding evidence for the minimal scale as has b
done in numerous studies, on can use its existence as a pos
and derive extensions to quantum theories[15] with the purpose
to examine the arising properties in an effective model.

In [16,17] a model for the minimal length has been work
out, which includes the new effects by modifying the relat
between the wave vectork and the momentump. It is assumed
that, no matter how much the momentump of a particle is
increased, its wavelength can never be decreased below
minimal lengthLf or, equivalently, its wave-vectork can never
be increased aboveMf = 1/Lf [18]. Thus, the relation betwee
the momentump and the wave vectork is no longer linear
p = k but a function1 k = k(p).

This functionk(p) has to fulfill the following properties:

(a) For energies much smaller than the new scale we repro
the linear relation: forp � Mf we havep ≈ k.

(b) It is an uneven function (because of parity) andk ‖ p.
(c) The function asymptotically approaches the upper bo

Mf .

The quantization in this scenario is straightforward and
lows the usual procedure. The commutators between the
responding operatorŝk and x̂ remain in the standard form
whereas the functional relation between the wave vector an
momentum then yields the modified commutator for the m
mentum

(1)[x̂i , p̂j ] = +i
∂p̂i

∂k̂j

,

where the derivative is the quantized version of∂pi/∂kj , most
easily to be interpreted in the polynomial series expansi2

This then results in the generalized uncertainty relation (GU

(2)�pi�xj � 1

2

∣∣∣∣
〈
∂pi

∂kj

〉∣∣∣∣,
which reflects the fact that by construction it is not possible a
more to resolve space–time distances arbitrarily good. S
k(p) gets asymptotically constant, its derivative∂k/∂p drops
to zero and the uncertainty in Eq.(2) increases for high ene
gies. Thus, the introduction of the minimal length reprodu
the limiting high energy behavior found in string theory[10].

The arising physical modifications—as investigated in[16,
17,19]—can be traced back to an effective replacement of
usual momentum measure by a measure which is suppres
high momenta:

(3)
d3p

(2π)3
→ d3p

(2π)3

∣∣∣∣ ∂k

∂p

∣∣∣∣,
1 Note, that this is similar to introducing an energy dependence of Plan

constant̄h.
2 There is no arbitrariness in the quantization sincep is not a function ofx

by assumption.
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where the absolute value of the partial derivative denotes
Jacobian determinant ofk(p). Here, the left side of the replac
ment Eq.(3) is the standard expression, whereas the right
is the modified version as arises from the inclusion of the m
imal length scale. Ink-space, the modification translates into
finiteness of the integration bounds.

The exact form of the functional relationk(p) is unknown
but it is strongly constrained by the above listed requirem
(a)–(c); in the literature various choices have been used.
exact form of the functional relation will make a quantitat
difference in the range where the first deviations from the lin
behavior become important. These can, e.g., be parame
in a polynomial expansion. However, in the largep-limit, the
requirement (c) will lead to a convergence of all functio
Though the intermediate region would be important for
quantitative examination, we will here be interested in mak
a qualitative statement, dominated by the assumed asymp
behavior.

In the following, we will use the specific relation from[17]
for k(p) by choosing

(4)kµ(p) = êµ

p∫
0

e−εp′2
dp′,

whereêµ is the unit vector inµ-direction,p2 = �p · �p andε =
L2

f π/4 (the factorπ/4 is included to assure, that the limitin
value is indeed 1/Lf ). It is easily verified that this expressio
fulfills the requirements (a)–(c).

The Jacobian determinant of the functionk(p) is best com-
puted by adopting spherical coordinates and can be app
mated forp ∼ Mf with

(5)

∣∣∣∣ ∂k

∂p

∣∣∣∣ ≈ e−εp2
.

With this parametrization of the minimal length effects, t
modifications read

(6)�pi�xi � 1

2
e+εp2

,

(7)
d3p

(2π)3
→ d3p

(2π)3
e−εp2

.

In field theory,3 one imposes the commutation relation Eq.(1)
on the fieldφ and its conjugate momentumΠ . Its Fourier ex-
pansion leads to the annihilation and creation operators w
must obey

(8)
[
âk, â

†
k′
] = −i

[
φ̂k, Π̂

†
k′
]
,

(9)
[
âk, â

†
k′
] = δ(k − k′),

(10)
[
âp, â

†
p′

] = e−εp2
δ(p − p′)

(see also Ref.[16]).
Note, that it is not necessary for our field to propagate

the extra dimensions to experience the consequences o
minimal length scale. In particular, we will assume that the fi

3 For simplicity, we consider a massless scalar field.
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is bound on our submanifold to exclude the additional p
ence of KK-excitations. The existence of the extra dimens
is important for the case under discussion only by lowering
Planck scale and thereby raising the minimal length.

3. The Casimir effect

Zero-point fluctuations of any quantum field give rise
observable Casimir forces if boundaries are present[20]. The
Casimir effect is our experimental grip to the elusive manife
tions of vacuum energy. Its importance for the understandin
the fundamental laws of quantum field theory lies in the dir
connection to the problem of renormalization. Vacuum ener
in quantum field theories are divergent. The presence of in
ties in physics always signals that we have missed some cr
point in our mathematical treatment.

The Casimir effect has received great attention also in
context of extra dimensions and has been extensively studi
a wide variety of topics in those and related scenarios:

• The question how vacuum fluctuations affect the stab
of extra dimensions has been explored in[21–29]. Especially
the detailed studies in the Randall–Sundrum model have sh
the major contribution of the Casimir effect to stabilize the
dion [30–33].

• Cosmological aspects like the cosmological constant
manifestation of the Casimir energy or effects of Casimir
ergy during the primordial cosmic inflation have been analy
[34–43].

• The Casimir effect in the context of string theory has b
investigated in[44–47].

• The Casimir effect in a model with minimal length bas
on the assumption of path integral duality[48,49]has been stud
ied in [50].

• It has been shown[51,52]that the Casimir effect provide
an analogy to the Hawking radiation of a black hole. The p
ence of large extra dimensions allows black hole creatio
colliders[53] and the understanding of the evaporation prop
ties is crucial for the interpretation of the signatures.

As one might expect, the introduction of a minimal leng
scale yields an ultraviolet regularization for the quantum the
which renders the occurring infinities finite.

Using the above framework, in the presence of a mini
length the operator for the field energy density is now given

(11)Ĥ = 1

2

∫∑
d3p

(
â†
pâp + âpâ†

p

)
E,

whereE is the energy of a mode with momentump. The modi-
fications of this standard expression enter through the algeb
the annihilation and creation operators Eq.(10). Inserting this
relation and usinĝa†

p|0〉 = 0 yields the expectation value for th
vacuum energy density

(12)〈0|Ĥ |0〉 = 1

2

∫∑
d3p e−εp2

E.

For Minkowski space in 3+ 1 dimensions without boundarie
this energy density now is finite due to the squeezed momen
-
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space at high energies. Solving the integral in Eq.(12) for the
Minkowski space without boundaries yields

(13)εMink = 〈0|Ĥ |0〉 = 16

π

Mf

L3
f

.

We will now consider the case of two conducting parallel pla
in a distancea in direction z. We will neglect effects arising
from surface corrections and finite plate width. We will furth
assume that the plates are perfect conductors and infinitel
tended in the longitudinal directionsx andy, such that in these
directions no boundaries effects are present.

The quantization of the wavelengths between the plate
the z-direction yields the conditionkl = l/a. Since the wave
lengths can no longer get arbitrarily small, the smallest wa
length possible belongs to a finite number of nodeslmax =
�a/Lf, where the brackets denote the next smaller integer.
sulting from this, momenta come in stepspl = p(kl) which are
no longer equidistant�pl = pl − pl−1. Then

(14)εPlates= π

lmax∑
l=−lmax

�pl

∞∫
0

dp‖ e
−εp2‖e−εp2

l Ep‖,

wherep2‖ = p2
x + p2

y andE2 = p2‖ + p2
l .

Experiments do not measure absolute energy values but
differences. Therefore, the difference between the inside
the outside region has to be taken, i.e., Eq.(13) has to be sub
tracted from Eq.(14):

(15)ε = π

lmax∑
l=−lmax

�pl

∞∫
0

dp‖ e
−εp2‖e−εp2

l Ep‖ − 16

π

Mf

L3
f

with p(k) given by Eq.(4). This then yields the Casimir energ
accessible by experiment through the induced pressure w
results in a force acting on the plates. For the case of two
allel plates, the pressure is negative in the inside, or the for
attractive, respectively.

Let us first examine the limit of a very small minimal leng
In this limit of small Lf , i.e., of largeMf , the renormalized
standard result is obtained. This can be seen directly from
ing the difference between the outside and inside region, th
Eqs.(14) and (12), and applying the Abel–Plana formula[54].
In this expression, the integral over the directions parallel to
plates is the same in both terms and may thus be taken
joined:

lim
Lf→0

∞∫
0

dp‖

(
lmax∑

l=−lmax

�ple
−εp2

l Ep‖
∞∫

∞
dp e−εp2

Ep‖

)
e
−εp2‖

= lim
Lf→0

∞∫
0

dp‖

( ∞∑
l=−∞

�ple
−εp2

l Ep‖ −
∞∫

−∞
dp e−εp2

Ep‖

(16)− 2
∞∑

l=lmax

�ple
−εp2

l Ep‖

)
e
−εp2‖ .

Taking the limit Lf → ∞ we have �pl → 1/a and
lmax→ ∞. Then, the last term vanishes, while the first terms
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Fig. 1. Casimir energy density between two plates of distancea in units of the
minimal length. Dotted line: fixing the plate separation yields a change of s
each time another node fits between the plates. Solid line: adding a po
uncertainty to the plates smooths the curve.

the same that appear in the classical calculation of the Ca
energy. Since the exponential, which acts as a dampening
tion, is holomorphic,4 the Abel–Plana formula can be used
evaluate the difference. The obtained integral is uniformly c
vergent, and one can perform the limit before integration. T
then yields the classical expression:

(17)
1

a

∞∫
0

dp‖
∞∑

l=−∞
Ep‖ −

∞∫
0

dp‖
∞∫

−∞
dpEp‖.

These computations show very nicely, how the minimal len
acts as a natural regulator in calculating the Casimir energy

The evaluation of Eq.(15) for the Casimir effect with a min
imal length by use of a numerical analysis is shown inFig. 1
(dotted line). There are two main observations: first, if the
tance of the plates eventually drops below the minimal len
the energy density, and thus the pressure acting on the p
becomes constant. This is to be contrasted with the stan
result in which the curve diverges towards minus infinity
small distances. Second, the slope of the curve changes
time another mode fits between the plates. This unphysica
havior is due to the assumption of two strictly localized pla
which is inconsequent when using a model with a minimum
certainty in position measurement. Instead, the positions o
two plates carry an uncertainty with variance∼ Lf , according
to the initial setup of an uncertainty bounded from below.

Averaging over such smeared localizations of the pla
(using a Gaussian distribution with varianceLf ) the curve is
smoothened, as depicted inFig. 1(solid line). The so found be
havior is little sensitive (less than 5% in the depicted range
the choice of the functionk(p) among the common function
that fulfill the requirements (a)–(c), which is in agreement w

4 We takep2 to bep · p, notp∗ · p.
e
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our expectations. The Casimir energy with a minimal len
scale is free of a singularity at zero distance.

Though the here discussed minimal length is some or
of magnitude out of range for experimentally measuring
modifications of the Casimir pressure, this result is interes
not only from a theoretical point of view: as mentioned befo
the analogy to the black hole’s temperature is an importan
plication. We can state that towards small black hole sizes
temperature does not increase according to the Hawking e
oration but is severely modified close to the new fundame
scale and eventually gets constant. Since the time evolutio
the temperature is mostly ignored for the event generatio
black hole decays (see, e.g.,[55]), the here presented result ju
tifies this treatment.

4. Conclusion

We have discussed the existence of a minimal length s
and used an effective model to include it into todays quan
theory. Such a minimal scale would affect experimental m
surements in the presence of large extra dimensions and
to interesting phenomenological implications. The introdu
minimal length acts as a natural ultraviolet regulator of the
ory. We applied our model to the calculation of the Casi
energy and gave a numerical evaluation of the resulting exp
sion. Furthermore, we showed how the minimal scale prov
a physical motivation for the dampening function method u
in the classical calculation of the Casimir energy via the Ab
Plana formula. Using the analogy to the black hole evapora
characteristics we showed that the time evolution of the sys
can be ignored close to the new fundamental scale.
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