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Abstract

This document is divided into eight sections. Section S.1 outlines the nonlinear location scale
model. Specifically, Subsection S.1.1 provides the details and assumptions of the nonlinear location
scale model, while Subsection S.1.2 outlines the estimation. Section S.2 contains two auxiliary
Lemmas and the proofs of all results from the main paper. In particular, Subsection S.2.1 contains
two Lemmas that establish an asymptotic linear representation for the quantile regression and the
location scale model (see Lemma Q.1 and L.1), Subsection S.2.2 gathers the proofs of all Theorems
from the paper, while Subsection S.2.3 contains the proofs of the auxiliary Lemma Q.1 and L.1.
Sections S.3 and S.4 on the other hand outline the differences in the construction of the bootstrap
statistic in the case of a two-sided interval [τL, τU ] and of nonlinear location scale models (together
with differences in the proof of Theorem 2), respectively. Section S.5 contains an outline of the
bootstrap statistic in the case of the recursive estimation scheme. Section S.6 outlines the possibility
to accommodate predictions from Conditional Autoregressive Value-at-Risk (CAViaR) models in
our test. Finally, Section S.7 displays the results of some additional Monte Carlo simulations, while
Section S.8 introduces an additional Monte Carlo design for the case of equally mis-specified and
overlapping models and Section S.9 provides an additional empirical application to VaR forecasting.
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S.1 Nonlinear Location Scale Model

S.1.1 Model Set-up

Recall the nonlinear location scale model given by:

yt+1 = m
(
Xj,t,θ

†
j,m

)
+ σ(Xj,t,θ

†
j,σ)ϵj,t+1,

where ϵj,t+1 =
(
yt+1 −m(Xj,t,θ

†
j,m)

)
/σ(Xj,t,θ

†
j,σ), and m(·,θ†j,m) as well as σ(·,θ†j,σ) are some non-

linear functions indexed by some finite dimensional parameter vectors θ†j,m and θ†j,σ. In this case, we

have that the conditional quantile function qτ (θ
†
j ;Xj,t) with θ

†
j = (θ†′j,m,θ†′j,σ)

′ is given by:

qτ (θ
†
j ;Xj,t) = m

(
Xj,t,θ

†
j,m

)
+ σ(Xj,t,θ

†
j,σ)β

†
j,ϵ(τ). (S.1)

where β†
j,ϵ(τ) is the τ quantile of ϵj,t+1. The following condition is a high-level condition for the case

where one or more nonlinear location scale model(s) are used in the comparison. Thus, let ∥ · ∥ denote

the Euclidean norm and ∇(k)
α g(·;α) denote the k-th order partial derivative of the function g(·;α)

with respect to the vector α.1 Then, for every model j ∈ {1, . . . , J}, which can be written as in (S.1),
the following holds:

Assumption A.6:
(i) For every j ∈ {1, . . . , J}, the estimators θ̂j,m,R and θ̂j,σ,R are

√
R-consistent for some unique

population vectors θ†j,m and θ†j,σ, which lay in the interior of the compact parameter spaces Θm and
Θσ, respectively.

(ii) Let ∇(1)
θl

ζ(ys+1, Xs,θj,m,θj,σ) and ∇(2)
θl

ζ(yt+1, Xs,θj,m,θj,σ) with l ∈ {m,σ} and j = 1, . . . , J
denote the first and second order partial derivatives of some objective function ζ(ys+1, Xs,θj,m,θj,σ)
with respect to θj,l. For every j ∈ {1, . . . , J}, both estimators satisfy the following asymptotic linear
representation:

√
R
(
θ̂j,m,R − θ†j,m

)
= M−1

j,m

1√
R

R−1∑
s=1

∇(1)
θm

ζ(ys+1, Xj,s,θ
†
j,m,θ†j,σ) + op(1)

and:
√
R
(
θ̂j,σ,R − θ†j,σ

)
= M−1

j,σ

1√
R

R−1∑
s=1

∇(1)
θσ

ζ(ys+1, Xj,s,θ
†
j,m,θ†j,σ) + op(1)

where Mj,m = E
(
∇(2)
θm

ζ(yt+1, Xj,t,θ
†
j,m,θ†j,σ)

)
and Mj,σ = E

(
∇(2)
θσ

ζ(yt+1, Xj,t,θ
†
j,m,θ†j,σ)

)
are posi-

tive definite while E
(
∇(1)
θm

ζ(ys+1, Xj,s,θ
†
j,m,θ†j,σ) |Xj,s

)
= 0 and E

(
∇(1)
θσ

ζ(ys+1, Xj,s,θ
†
j,m,θ†j,σ) | Xj,s

)
= 0 almost surely. Finally, assume that:

E
(
∥∇(1)

θm
ζ(ys+1, Xj,s,θ

†
j,m,θ†j,σ)∥

2
)
< ∞ and E

(
∥∇(1)

θσ
ζ(ys+1, Xj,s,θ

†
j,m,θ†j,σ)∥

2
)
< ∞.

(iii) For every j ∈ {1, . . . , J}, it holds that:

0 < sup
X∈X

|σ(X,θ†j,σ)| < ∞ and sup
X∈X

|m(X,θ†j,σ)| < ∞.

In addition, for j = 1, . . . , J and every θj,m ∈ Θm and θj,σ ∈ Θσ, the functions m(·,θj,m) and
σ(·,θj,σ) are continuously differentiable in the parameter vectors θj,m and θj,σ (a.s.), respectively,
with uniformly bounded derivatives.

1More generally, if the derivative is taken with respect to the whole argument of the function, we omit the subscript
in this document.
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(iv) For every j = 1, . . . , J , it holds that E
(
ϵ2j,t+1

)
< ∞, and that the Lebesgue density of ϵj,t+1, say

fϵj (·), is strictly positive and continuously differentiable with bounded derivatives.

As mentioned before, Assumption A.6 is a high-level condition, which requires that the estimators of
the parameter vectors θ†j,m and θ†j,σ of the nonlinear location scale model admit an asymptotic linear
representation, which is satisfied for several commonly-used extremum estimators.

S.1.2 Estimation

For nonlinear parametric location scale models, we first estimate the conditional mean and variance
parameters, say θ̂j,m and θ̂j,σ, via quasi-maximum likelihood to get m(Xj,t, θ̂j,m) and σ(Xt, θ̂j,σ). In
a second step, we then estimate the unconditional quantile of the error term ϵt+1, using the residuals:

β̂j,ϵ,R(τ) = arg min
βϵ∈Bϵ

1

R

R−1∑
s=1

ρτ

ys+1 −m
(
Xj,s, θ̂j,m,R

)
σ(Xj,s, θ̂j,σ,R)

− βϵ

 , (S.2)

where β̂j,ϵ,R(τ) is an estimator of the τ -level quantile of ϵj+1.
2 In this case, the conditional quantile

of the model is constructed as:

qτ (ψ̂j,R;Xj,t) = m(Xj,t, θ̂j,m,R) + σ(Xj,t, θ̂j,σ,R)β̂j,ϵ,R(τ) (S.3)

with ψ̂j,R = (θ̂
′
j,m,R, θ̂

′
j,σ,R, β̂j,ϵ,R(τ))

′.

S.2 Proofs

S.2.1 Auxiliary Lemmas

The proofs of the Theorems stated in the main text rely on the the following Lemmas for linear
quantile regression and nonlinear location scale models.

Lemma Q.1: Let qτ (ψ
†;Xj,t) = X ′

j,tβ
†
j(τ). Under Assumptions A.1 and A.3, it holds that:

(i) For each τ ∈ T and all j = 1, . . . , J :∥∥∥β̂j,R(τ)− β
†
j(τ)

∥∥∥ = op(1),

where β†
j(τ) is defined in Equation (3) and β̂j,R(τ) in Equation (4).

(ii) For any j = 1, . . . , J , the empirical process:

1√
R

R−1∑
t=1

(
Xj,t

(
1
{
yt+1 ≤ X ′

j,tβ
}
− τ
)
− E

(
Xj,t

(
1
{
yt+1 ≤ X ′

j,tβ
}
− τ
)))

is stochastically equicontinuous in β ∈ B and τ ∈ T w.r.t. the L2 pseudo-metric:

ρB×T ((τ,β), (τ
′,β′))2 = max

l∈dj
E
((

Xlj,t

(
1
{
yt+1 ≤ X ′

j,tβ
}
− τ
)
−Xlj,t

(
1
{
yt+1 ≤ X ′

j,tβ
′}− τ ′

))2)
where Xlj,t denotes the l-th element of Xj,t and dj is the dimension of Xj,t.

(iii) For each j = 1, . . . , J and τ ∈ T :

√
R
(
β̂j,R(τ)− β

†
j(τ)

)
2Throughout, we assume that Bϵ ⊂ B.
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= Hj (τ)
−1

(
1√
R

R−1∑
t=1

Xj,t

(
1
{
yt+1 ≤ X ′

j,tβ
†
j (τ)

}
− τ
))

+ op(1),

where Hj (τ) is defined in Assumption A.3.

For the sake of notational brevity, we drop the model subscript j = 1, . . . , J in the following
statement as well as in the corresponding proof in Subsection S.2.3.

Lemma L.1: Let ψ̂R(τ) =
(
θ̂
′
m,R, θ̂

′
σ,R, β̂ϵ,R(τ)

)′
and ψ†(τ) =

(
θ†′m,θ†′σ , β

†
ϵ (τ)

)′
. Also, with slight

abuse of notation, let X denote a compact subset of RX , the support of Xt. Under Assumptions A.1,
A.3, and A.6, it holds that:

(i) For each τ ∈ T : ∥∥∥ψ̂R(τ)−ψ†(τ)
∥∥∥ = op(1).

(ii) For each τ ∈ T and uniformly in X ∈ X :

√
R
(
qτ (ψ̂R;X)− qτ (ψ

†;X)
)

=
√
R
((

m(X, θ̂m,R) + σ(X, θ̂σ,R)β̂ϵ,R(τ)
)
−
(
m(X,θ†m) + σ(X,θ†σ)β

†
ϵ (τ)

))
= ∇θmm(X,θ†m)

(
M−1

m

1√
R

R−1∑
s=1

∇θmζ(ys+1, Xs,θ
†
m,θ†σ)

)

+∇θσσ
(
X,θ†σ

)
β†
ϵ (τ)

(
M−1

σ

1√
R

R−1∑
s=1

∇θσζ(ys+1, Xs,θ
†
m,θ†σ)

)

+σ
(
X,θ†σ

)(
H (τ)−1 1√

R

R−1∑
t=1

(
1
{
ϵt+1 ≤ β†

ϵ (τ)
}
− τ
)

−H (τ)−1 E

(
fϵ(β

†
ϵ (τ))

∇θmm(Xt,θ
†
m)

σ
(
Xt,θ

†
σ

) )(
M−1

m

1√
R

R−1∑
s=1

∇θmζ(ys+1, Xs,θ
†
m,θ†σ)

)

−H (τ)−1 E

(
fϵ(β

†
ϵ (τ))ϵt+1

∇θσσ
(
Xt,θ

†
σ

)
σ2
(
Xt,θ

†
σ

) )(
M−1

σ

1√
R

R−1∑
s=1

∇θσζ(ys+1, Xs,θ
†
m,θ†σ)

))
+ op(1)

with:

ϵt+1 =
yt+1 −m(Xt,θ

†
m)

σ(Xt,θ
†
σ)

and ϵ̂t+1 =
yt+1 −m(Xt, θ̂m,R)

σ(Xt, θ̂σ,R)
,

while H (τ), Mm, Mσ, and ζ(yt+1, Xt,θ
†
σ,θ

†
σ) are defined in Assumptions A.3 and A.6, respectively.

S.2.2 Proofs of Theorems

Without loss of generality, we will examine the one-sided case with Ej ((0, τ ];Xt), j = 1, 2, only
since the two-sided case follows by analogous arguments. In addition, as we will apply linearisation
arguments around population parameters ψ†

j(τ), we adopt a slightly different notation w.r.t. the
main text to make the parameter dependence also in the conditional coverage explicit. We write the
empirical coverage as:

Ĉj,P

(
ψ̂j,R(τ);Xt

)
=

∑T−1
s=R 1

{
ys+1 ≤ qτ (ψ̂j,R;Xj,t)

}
K
(
Xs−Xt

h

)
∑T−1

s=R K
(
Xs−Xt

h

) ,
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while the population counterpart evaluated at the estimated conditional quantile qτ (ψ̂j,R;Xj,t) be-
comes:

Cj

(
ψ̂j,R(τ);Xt

)
= Ft+1(qτ (ψ̂j,R;Xj,t)|Xt).

Proof of Theorem 1:
(i) This part of the proof deals with CASE I under H0. First, note that by a second order Taylor
expansion:

1√
P

T−1∑
j=R

1{Xj ∈ X}
(
L
(
Ĉ1,P

(
ψ̂1,R(τ);Xj

)
− τ
)
− L

(
Ĉ2,P

(
ψ̂2,R(τ);Xj

)
− τ
))

=
1√
P

T−1∑
j=R

1{Xj ∈ X}
(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
))

+

 1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ†

1(τ);Xj

))

− 1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C2

(
ψ†

2(τ);Xj

)
− τ
)(

Ĉ2,P

(
ψ̂2,R(τ);Xj

)
− C2

(
ψ†

2(τ);Xj

))
+

 1

2
√
P

T−1∑
j=R

1{Xj ∈ X}∇(2)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ†

1(τ);Xj

))2

− 1

2
√
P

T−1∑
j=R

1{Xj ∈ X}∇(2)L
(
C2

(
ψ†

2(τ);Xj

)
− τ
)(

Ĉ2,P

(
ψ̂2,R(τ);Xj

)
− C2

(
ψ†

2(τ);Xj

))2
+

 1

3!
√
P

T−1∑
j=R

1{Xj ∈ X}∇(3)L
(
C1,P (τ ;Xj)− τ

) (
Ĉ1,P

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ†

1(τ);Xj

))3

− 1

3!
√
P

T−1∑
j=R

1{Xj ∈ X}∇(3)L
(
C2,P (τ ;Xj)− τ

) (
Ĉ2,P

(
ψ̂2,R(τ);Xj

)
− C2

(
ψ†

2(τ);Xj

))3
= T1,P + T2,R,P + T3,R,P + T4,R,P ,

where ∇(1)L (·), ∇(2)L (·), and ∇(3)L (·) denote the first, second, and third order derivative of L (·),
respectively, while C l,P (τ ;Xj), l = 1, 2, lie between Ĉl,P

(
ψ̂l,R(τ);Xj

)
and Cl

(
ψ†

l (τ);Xj

)
. We

organise the proof of part (i) into three steps, each of which deals with one of the terms from the
above expansion in isolation. In particular, we will show that:

Step 1: Pointwise in τ :

T1,P + T2,R,P

=
1√
P

T−1∑
t=R

1{Xt ∈ X}
(
L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xt

)
− τ
))

+
1√
P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)(

1{yt+1 ≤ qτ (ψ
†
1(τ);X1,t)} − Ft+1(qτ (ψ

†
1(τ);X1,t)|X1,t)

)
− 1√

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C2

(
ψ†

2(τ);Xt

)
− τ
)(

1{yt+1 ≤ qτ (ψ
†
2(τ);X2,t)} − Ft+1(qτ (ψ

†
2(τ);X2,t)|X2,t)

)
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+

√
P

R

R−1∑
t=1

φ(ψ†
1(τ); yt+1, X1,t)−

√
P

R

R−1∑
t=1

φ(ψ†
2(τ); yt+1, X2,t) + op(1)

≡ 1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) +
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ)) +

√
P

R

R−1∑
t=1

(D1,t(τ)−D2,t(τ))

d→ N(0,Ω(τ))

where:

Ω (τ) = ΩAA(τ) + ΩBB(τ) + ΩDD(τ) + 2ΩAB(τ)

= Avar

(
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ))

)
+Avar

(
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ))

)

+Avar

(√
P

R

R−1∑
t=1

(D1,t(τ)−D2,t(τ))

)
(S.4)

+2Acov

(
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) ,
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ))

)
.

Here, for the linear quantile regression model:

φ(ψ†
j(τ); yt+1, Xj,t) = Λj (τ)

(
Hj (τ)

−1Xj,t

(
1
{
yt+1 −Xj,tβ

†
j (τ) ≤ 0

}
− τ
))

(S.5)

and Λj(τ) = E
(
1{Xt ∈ X}

(
∇L (Cj ((0, τ ];Xt)− τ) ft+1

(
X ′

j,tβ
†
j(τ)|Xt

)
X ′

j,t

))
. On the other hand,

in the location scale case we have for j = 1, 2:

φ(ψ†
j(τ); yt+1, Xj,t) (S.6)

= Λ̃j,1(τ)
(
M−1

j,m∇θmζ(yt+1, Xj,t,θ
†
mj

,θ†σj
)
)
+ Λ̃j,2(τ)

(
M−1

j,σ∇θσζ(yt+1, Xj,t,θ
†
mj

,θ†σj
)
)

+Λ̃j,3(τ)
(
Hj (τ)

−1 (1 {ϵj,t+1 ≤ qτ (ϵj,t+1)} − τ)

−Hj (τ)
−1 E

fϵj (qτ (ϵj,t+1))
∇θmm(Xt,θ

†
mj

)

σ
(
Xt,θ

†
σj

)
(M−1

j,m∇θmζ(yt+1, Xj,t,θ
†
mj

,θ†σj
)
)

−Hj (τ)
−1 E

fϵj (qτ (ϵj,t+1))ϵj,t+1

∇θσσ
(
Xj,t,θ

†
σj

)
σ
(
Xj,t,θ

†
σj

)
(M−1

j,σ∇θσζ(yt+1, Xj,t,θ
†
mj

,θ†σj
)
)

with terms Λ̃j,1(τ) = E
(
1{Xt ∈ X}∇(1)L

(
Cj

(
ψ†

j(τ);Xt

)
− τ
)
ft+1(qτ (ψ

†
j(τ);Xj,t)|Xt)∇θmm(Xj,t,θ

†
mj

)
)
,

Λ̃j,2(τ) = E
(
1{Xt ∈ X}∇(1)L

(
Cj

(
ψ†

j(τ);Xt

)
− τ
)
ft+1(qτ (ψ

†
j(τ);Xj,t)|Xt)∇θσσ

(
Xj,t,θ

†
σj

)
qτ (ϵj,t+1)

)
and Λ̃j,3(τ) = E

(
1{Xt ∈ X}∇(1)L

(
Cj

(
ψ†

j(τ);Xt

)
− τ
)
ft+1(qτ (ψ

†
j(τ);Xj,t)|Xt)σ

(
Xj,t,θ

†
σj

))
.

Step 2: Pointwise in τ :

T3,R,P =Op

(√
P

R

)
= op(1).

Step 3: Pointwise in τ :

T4,R,P =op

(√
P

R

)
= op(1).
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Thus, in CASE I under H0, we have that:

T1,P + T2,R,P + T3,R,P + T4,R,P

=
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) +
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ)) +

√
P

R

R−1∑
t=1

(D1,t(τ)−D2,t(τ))(S.7)

+op(1),

where the RHS of (S.7) converges to a mean zero Gaussian distribution with variance-covariance kernel
Ω(τ). We now proceed by proving each step in turn.

Proof of Step 1: We decompose T1,P as follows:

T1,P =
1√
P

T−1∑
j=R

1{Xj ∈ X}
(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
))

=
1√
P

T−1∑
j=R

(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
))

−E
(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
))))

+
1√
P

T−1∑
j=R

E
(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
)))

In CASE I, under both hypotheses, we have that:

1√
P

T−1∑
j=R

(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
))

−E
(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
))))

converges weakly to a zero mean Gaussian process by a CLT for strong mixing, bounded observations,
see e.g. Corollary 5.1 in Hall and Heyde (1980). Moreover, under the null hypothesis:

1√
P

T−1∑
j=R

E
(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
)))

= 0,

and so:

T1,P =
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) .

Turning to T2,R,P , note that we can write this term as: 1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ̂1,R(τ);Xj

))

− 1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C2

(
ψ†

2(τ);Xj

)
− τ
)(

Ĉ2,P

(
ψ̂2,R(τ);Xj

)
− C2

(
ψ̂2,R(τ);Xj

))
+

 1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

C1

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ†

1(τ);Xj

))
(S.8)

− 1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C2

(
ψ†

2(τ);Xj

)
− τ
)(

C2

(
ψ̂2,R(τ);Xj

)
− C2

(
ψ†

2(τ);Xj

))
7



= T2,R,P (A) + T2,R,P (B).

We start with T2,R,P (A) and focus exclusively on the part involving model 1 (the arguments for model

2 will be analogous). Next, define Nψ1,R =
{
ψ1 : ∥ψ1 −ψ

†
1(τ)∥ ≤ CR− 1

2 , ψ1 ∈ Ψ
}
for some constant

C > 0, and note that ψ̂1,R(τ) ∈ Nψ1,R with probability approaching one as P → ∞ by either Lemma
Q.1 or Lemma L.1. Then, the part of T2,R,P (A) that involves model 1 reads as:

1√
P

T−1∑
j=R

(
1{Xj ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P (ψ1;Xj)− C1 (ψ1;Xj)
)

−ET

(
1{Xj ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P (ψ1;Xj)− C1 (ψ1;Xj)
)))

(S.9)

+
√
PET

(
1{Xj ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P (ψ1;Xj)− C1 (ψ1;Xj)
))

,

where ET denotes the expectation conditional on the original sample {yt+1,Xt}T−1
t=1 . To show that

the first term of (S.9) is op(1) we need to verify that this term is (i) stochastically equicontinuous
for the metric space C equipped with pseudo-metric ρC(·), and that for all X ∈ X and ψ1 ∈ Nψ1,R,

(ii) Pr
(
Ĉ1,P (ψ1;X) ∈ C

)
→ 1 as well as (iii) ρC

(
Ĉ1,P (ψ1;X) , C1 (ψ1;X)

)
p→ 1 (cf. Andrews, 1994,

p.2265), where we use the L2 pseudo-metric:

ρC

(
Ĉ1,P (ψ1;X) , C1 (ψ1;X)

)2
= sup
ψ1∈Nψ1,R

,X∈X
E

((
Ĉ1,P (ψ1;X)− C1 (ψ1;X)

)2 ∣∣{yt+1,X
′
t}Tt=1

)
,

where E
(
·
∣∣{yt+1,X

′
t}Tt=1

)
denotes the expectation conditional on the sample, while Var

(
·
∣∣{yt+1,X

′
t}Tt=1

)
denotes the corresponding variance. Starting with (ii), this follows from Theorem 1 of Andrews (1995)
using A.1, A.4, A.5. Moreover, the results of Theorem 1 of Andrews (1995) also imply convergence
w.r.t. the L2 pseudo-metric since:

ρC

(
Ĉ1,P (ψ1;X) , C1 (ψ1;X)

)2
≤ sup

ψ1∈Nψ1,R
,X∈X

Var
(
Ĉ1,P (ψ1;X)

∣∣{yt+1,X
′
t}Tt=1

)
+ sup
ψ1∈Nψ1,R

,X∈X

{(
E
(
Ĉ1,P

(
ψ1;X

∣∣{yt+1,X
′
t}Tt=1

))
− C1 (ψ1;X)

)2}
= op(1).

Finally, to verify (i), note that the function class:

F =
{
∇(1)L

(
C1

(
ψ†

1(τ);x
)
− τ
)
C1 (ψ1;x) : τ ∈ T , ψ1 ∈ Nψ1,R, x ∈ X

}
is uniformly bounded by A.2 and A.4, and satisfies an L2 continuity condition with bound:

C sup
τ ′∈T ,|τ ′−τ |≤r1

|τ ′ − τ |2 + C̃ sup
ψ′

1∈Nψ1,R
,∥ψ′

1−ψ1∥≤r2

∥ψ′
1 −ψ1∥2 +

˜̃
C sup

x∈X ,∥x′−x∥≤r3

∥x′ − x∥2

for some generic positive constants C, C̃,
˜̃
C such that

√
r21 + r22 + r23 ≤ r. It follows that the bracketing

condition of Theorem 2.2 in Andrews and Pollard (1994) holds because the L2 continuity condition
implies that the bracketing number satisfies:

N(η,F) ≤ C

(
1

η

)2d+1

,

see Andrews and Pollard (1994, p.121). Moreover, setting Q = 2 and γ = ε = 1, we have that the
mixing condition of Theorem 2.2 therein is satisfied, and hence the first term of (S.9) satisfies the
stochastic equicontinuity condition. On the other hand, for the second term of (S.9), note that:

√
PET

(
1{Xj ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

Ĉ1,P (ψ1;Xj)− C1 (ψ1;Xj)
))

8



=
1√
P

T−1∑
s=R

∫ 1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)

hdfX(Xj)
(1 {ys+1 ≤ qτ (ψ1;X1,j)}

−Fj+1(qτ (ψ1;X1,j)|Xj))K

(
Xs −Xj

h

)
fX(Xj)dXj (S.10)

+
1√
P

T−1∑
s=R

∫ (
1

f̂X(Xj)
− 1

fX(Xj)

)
1{Xj ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xj

)
− τ
)

hd

(1 {ys+1 ≤ qτ (ψ1;X1,j)} − Fj+1(qτ (ψ1;X1,j)|Xj))K

(
Xs −Xj

h

)
fX(Xj)dXj ,

where we use the fact that E[1{yj+1 < qτ (ψj ;X1,j)}|Xj ] = Fj+1(qτ (ψj ;X1,j)|Xj). Since supx∈X |f̂X(x)−
fX(x)| = op(1) by the bandwidth conditions as well as A.1, A.4, and A.5 (Andrews, 1995, Theorem
1), the second term in (S.10) is of smaller probability order than the first one, and hence we will
focus on the first one in what follows. That is, by change of variables with u = (Xs − Xj)/h (let
u1 = (X1,s −X1,j)/h denote its first element), the first term on the RHS of (S.10) equals:

1√
P

T−1∑
s=R

∫
1 {(Xs + hu) ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xs + hu
)
− τ
)
(1 {ys+1 ≤ qτ (ψ1;X1,s + hu1)}

−Fs+1(qτ (ψ1;X1,s + hu1)|Xs + hu))K (u) du

= A1,P (ψ1) +A2,P (ψ1) +A3,P (ψ1) +A4,P (ψ1) +A5,P (ψ1),

where:

A1,P (ψ1) =
1√
P

T−1∑
s=R

1{Xs ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xs

)
− τ
)

(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)) ,

A2,P (ψ1) =
1√
P

T−1∑
s=R

∫
1{Xs ∈ X}

(
∇(1)L

(
C1

(
ψ†

1(τ);Xs + hu
)
− τ
)
−∇L

(
C1

(
ψ†

1(τ);Xs

)
− τ
))

(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs))K (u) du, (S.11)

A3,P (ψ1) =
1√
P

T−1∑
s=R

∫
(1{(Xs + hu) ∈ X} − 1{Xs ∈ X})∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)

(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs))K (u) du, (S.12)

A4,P (ψ1) =
1√
P

T−1∑
s=R

∫
1{Xs ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)
((1 {ys+1 ≤ qτ (ψ1;X1,s + hu1)}

(S.13)

−Fs+1(qτ (ψ1;X1,s + hu1)|Xs + hu))− (1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)))K (u) du,

A5,P (ψ1) =
1√
P

T−1∑
s=R

∫
(1{(Xs + hu) ∈ X} − 1{Xs ∈ X})

×
(
∇(1)L

(
C1

(
ψ†

1(τ);Xs + hu
)
− τ
)
−∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
))

× ((1 {ys+1 ≤ qτ (ψ1;X1,s + hu1)} − Fs+1(qτ (ψ1;X1,s + hu1)|Xs + hu)

−(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)))K (u) du. (S.14)

As for A1,P (ψ1), note that for every ψ1 ∈ Nψ1,R, this term is mean zero by iterated expectations.
Therefore, by a CLT for strong mixing, bounded observations (see Hall and Heyde, 1980, Corollary

9



5.1), we have again that A1,P (ψ1) converges pointwise in Nψ1,R to a zero mean Gaussian random
variable. Moreover, similar to before, note that the function class:

F =
{
1{Xs ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)
(1 {ys+1 ≤ qτ (ψ1;X1,s)}

−Fs+1(qτ (ψ1;X1,s)|Xs)) : ψ1 ∈ Nψ1,R

}
is uniformly bounded by A.2 and A.4, and can be shown to satisfy the L2 continuity condition with
bound:

C sup
ψ′

1∈Nψ1,R
,∥ψ′

1−ψ1∥≤r2

∥ψ′
1 −ψ1∥2.

It follows again that the bracketing condition of Theorem 2.2 in Andrews and Pollard (1994) holds.
Thus, setting again Q = 2 and γ = ϵ = 1 for A.1, we obtain that the empirical process A1,P (ψ1) is also
stochastically equicontinuous in ψ1. Since we also show below that supψ1∈Nψ1,R

|Aj,P (ψ1)| = op(1),
j = 2, . . . , 5, it follows that uniformly in ψ1:

T2,R,P (A) =
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ)) + op(1).

Next, we analyse A2,P (ψ1) and A3,P (ψ1) from (S.11) and (S.12), respectively. Note that, by Fubini’s
Theorem and iterated expectations, both terms are mean zero. As for the variance, note that:

Var

(
sup

ψ1∈Nψ1,R

|A2,P (ψ1)|

)

≤ 1

P

T−1∑
s=R

Var

(
sup

ψ1∈Nψ1,R

∣∣∣∣(∫ 1{Xs ∈ X}
(
∇(1)L

(
C1

(
ψ†

1(τ);Xs + hu
)
− τ
)
−∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
))

K (u) du

)

×(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)

)∣∣∣∣∣
+

2

P

T−1∑
s=R

∑
t>s

Cov

(
sup

ψ1∈Nψ1,R

∣∣∣∣(∫ (∇(1)L
(
C1

(
ψ†

1(τ);Xs + hu
)
− τ
)
−∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
))

K (u) du

)
×1{Xs ∈ X}(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)

×
(∫ (

∇(1)L
(
C1

(
ψ†

1(τ);Xt + hu
)
− τ
)
−∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
))

K (u) du

)
×1{Xt ∈ X}(1 {yt+1 ≤ qτ (ψ1;X1,t)} − Ft+1(qτ (ψ1;X1,t)|Xt)

)∣∣∣∣∣
= A2,P (A) +A2,P (B)

We start with A2,P (A), which can be bounded by:

E

((∫
∇(2)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)
∇XFs+1(qτ (ψ

†
1;X1,s)|Xs)uhK (u) du

)2

× sup
ψ1∈Nψ1,R

|1{Xs ∈ X}(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs))|2
)

= E

((∫
∇(2)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)
∇XFs+1(qτ (ψ

†
1;X1,s)|Xs)1{Xs ∈ X}uhK (u) du

)2

× sup
ψ1∈Nψ1,R

|1{Xs ∈ X}(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs))|2
)
(1 + o(1))

Using Jensen’s inequality, the lead term can be bounded by:

Ch2

(∫
u2K (u)

2
du

)
E

(
sup

ψ1∈Nψ1,R

|1{Xs ∈ X}(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs))|2
)

= O(h2),
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which holds for all ψ1 ∈ Nψ1,R. For A2,P (B) on the other hand, since β−mixing processes are also strong
mixing of the same size, note that for some κ > 2 satisfying (κ− 2)/κ > ε/(2+ ε) and positive constants C, C ′:

|A2,P (B)|

≤ C

P

T−1∑
s=R

∑
t>s

β(t− s)1−
2
κ

(
E

((∫ (
∇(1)L

(
C1

(
ψ†

1(τ);Xs + hu
)
− τ
)

−∇(1)L
(
C1

(
ψ†

1(τ);Xs

)
− τ
))

K (u) du

)
sup

ψ1∈Nψ1,R

|1{Xs ∈ X}(1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs))|

)κ) 1
κ

≤ C′h2
∞∑
j=1

β(j)
ε

2+ε

where the first inequality follows from Corollary A.2 in Hall and Heyde (1980) and the last bound is again
independent of ψ1. Thus, by A.1, we have that this term is of order O(h2). Turning to A3,P (ψ1), since this
term is also mean zero, we may again bound the lead term of the variance using Cauchy-Schwarz’s and Jensen’s
inequality:

E

((∫
(1{(Xs + hu) ∈ X} − 1{Xs ∈ X})K (u) du

)2

∇(1)L
(
C1

(
ψ†

1(τ);Xs

)
− τ
)2

× sup
ψ1∈Nψ1,R

|1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)|2
)

≤
(
E

(∫
(1{(Xs + hu) ∈ X} − 1{Xs ∈ X})4 K (u)

4
du

)) 1
2
(
E

((
∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
))4

× sup
ψ1∈Nψ1,R

|1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)|4
)) 1

2

The second expectation on the RHS is of order O(1) by A.2 and the boundedness of the indicator and the
conditional distribution function, and thus holds for all ψ1 ∈ Nψ1,R. For the first expectation on the other
hand, observe that 1{(Xs + hu) ∈ X}− 1{Xs ∈ X} = 1{(Xs + hu) ∈ X ,Xs ̸∈ X}+1{Xs ∈ X , (Xs + hu) ̸∈ X}
a.s.. Thus, by Fubini’s Theorem we have for this expression that:∫

(Pr ((Xs + hu) ∈ X ,Xs ̸∈ X ) + Pr (Xs ∈ X , (Xs + hu) ̸∈ X ))K (u)
4
du

≤

(
sup

u∈[−1,1]

Pr ((x+ hu) ∈ X , x ̸∈ X ) + sup
u∈[−1,1]

Pr ((x+ hu) ∈ X , x ̸∈ X )

)∫
K (u)

4
du → 0

by A.4, A.5, since h → 0 as P → ∞. Finally, for A4,P (ψ1) in (S.13), we may decompose the term as follows:

A4,P (ψ1) =
1√
P

T−1∑
s=R

∫
1{Xs ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)
((1 {ys+1 ≤ qτ (ψ1;X1,s + hu1)} (S.15)

−Fs+1(qτ (ψ1;X1,s + hu1)|Xs))− (1 {ys+1 ≤ qτ (ψ1;X1,s)} − Fs+1(qτ (ψ1;X1,s)|Xs)))K (u) du

+
1√
P

T−1∑
s=R

∫
1{Xs ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xs

)
− τ
)
(Fs+1(qτ (ψ1;X1,s + hu1)|Xs)

−Fs+1(qτ (ψ1;X1,s + hu1)|Xs + hu))K (u) du

= A4,P (A;ψ1) +A4,P (B,ψ1)

Since A4,P (A;ψ1) is mean zero by iterated expectations, we can address A4,P (A;ψ1) by similar arguments
to before to show that the lead term of the variance is of order O(h) uniformly in ψ1 ∈ Nψ1,R. For the
bias term A4,P (B;ψ1) on the other hand, using A.5 and standard Taylor expansion arguments first around

X1,s and subsequently around Xs yield that supψ1∈Nψ1,R
|A4,P (B;ψ1)| = O(

√
Phr) = o(1) since Ph2r → 0.

Finally, similar arguments to the ones above may also be used to show that supψ1∈Nψ1,R
|A5,P (ψ1)| is of order

o(h) = o(1).
We next move to T2,R,P (B) from (S.8), where we focus again on model 1 exclusively. More specifically:

1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

C1

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ†

1(τ);Xj

))

11



=
1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
fj+1(qτ (ψ1,R(τ);X1,j)|Xj)

×
(
qτ (ψ̂1,R(τ);X1,j)− qτ (ψ

†
1(τ);X1,j)

)
,

where qτ (ψ1,R(τ);X1,j) denotes an intermediate value. Focusing on the case of quantile regression and inserting

the linear representation from Lemma Q.1 (as well as substituting β†
1(τ) for ψ

†
1(τ)), one can show that:

√
PE

(
1{Xj ∈ X}∇(1)L

(
C1

(
β†
1(τ);Xj

)
− τ
)
fj+1(X

′
1,jβ

†
1(τ)|Xj)X

′
1,j

)(
H1 (τ)

−1

× 1

R

R−1∑
s=1

X1,s

(
1
{
ys+1 −X ′

1,sβ
†
1 (τ) ≤ 0

}
− τ
))

(1 + op(1))

=

√
P

R

R−1∑
s=1

Λ1 (τ)
(
H1 (τ)

−1
X1,s

(
1
{
ys+1 −X1,sβ

†
1 (τ) ≤ 0

}
− τ
))

(1 + op(1))

where:
Λ1 (τ) ≡ E

(
1{Xj ∈ X}∇(1)L

(
C1

(
β†
1(τ);Xj

)
− τ
)
fj+1(X

′
1,jβ

†
1(τ)|Xj)X

′
1,j

)
. (S.16)

On the other hand, using the representation from Lemma L.1 yields the expression for the location scale model.
We therefore have that:

T2,R,P (B) =

√
P

R

R−1∑
t=1

(D1,t(τ)−D2,t(τ)) + op(1).

Summarizing the above, we obtain the statement from Step 1, where Ω(τ) follows since

Acov

(
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) ,

√
P

R

R−1∑
t=1

(D1,t(τ)−D2,t(τ))

)

= Acov

(
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ)) ,

√
P

R

R−1∑
t=1

(D1,t(τ)−D2,t(τ))

)
= 0

due to the use of a fixed estimation scheme.

Proof of Step 2: We now turn to T3,R,P and show that provided Ph2d → ∞, T3,R,P = op(1). For brevity, we

only consider the squared estimation error component for model 1, say T (1)
3,R,P .

Letting ω1 (τ ;Xj) = 1 {Xj ∈ X}∇(2)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
, we write:

T (1)
3,R,P =

1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
Ĉ1,P

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ†

1 (τ) ;Xj

))2
=

1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
C1

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ†

1 (τ) ;Xj

))2
+

1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
Ĉ1,P

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ̂1,R (τ) ;Xj

))2
(S.17)

− 1√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
C1

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ†

1 (τ) ;Xj

))
×
(
Ĉ1,P

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ̂1,R (τ) ;Xj

))
= T (1),A

3,R,P + T (1),B
3,R,P + T (1),C

3,R,P

For notational simplicity and ease of reading, we focus again on the case of quantile regression, i.e. ψ̂1,R (τ) =

β̂1,R (τ), and q̂τ

(
ψ̂1,R (τ) ;X1,t

)
= X ′

1,tβ̂1,R (τ), and divide this part of the proof into further sub-steps.
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We start with T (1),A
3,R,P from Equation (S.17). Thus:

T (1),A
3,R,P =

1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
C1,P

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ†

1 (τ) ;Xj

))2
(S.18)

=
1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
Fj+1

(
X ′

1,jβ̂1,R (τ) |Xj

)
− Fj+1

(
X ′

1,jβ
†
1,R (τ) |Xj

))2
=

1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
fj+1

(
X ′

1jβ
†
1 (τ) |Xj

)
X ′

1j

(
β̂1 (τ)− β

†
1 (τ)

))2
=

1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj) fj+1

(
X ′

1jβ
†
1 (τ) |Xj

)2
X ′

1j︸ ︷︷ ︸
A

(
β̂1 (τ)− β

†
1 (τ)

)(
β̂1 (τ)− β

†
1 (τ)

)′
︸ ︷︷ ︸

B

X1j︸︷︷︸
C

Now:

vec
(
T (1),A
3,R,P

)
= vec (ABC) = (C ′ ⊗A)vec (B) (S.19)

=
1

2P

T−1∑
j=R

(
X ′

1j ⊗
(
ω1 (Xj , τ) f

(
X ′

1jβ
†
1 (τ) |Xj

)2
X ′

1j

))

×
√
Pvec

((
β̂1 (τ)− β

†
1 (τ)

)(
β̂1 (τ)− β

†
1 (τ)

)′)
= Op(1)×Op

(√
P

R

)
= op(1),

where the first term follows from Assumptions A.1, A.2, A.4, and a law of large numbers for β-mixing observa-

tions, and the second part by Lemma Q(iii) as
(
β̂1,R (τ)− β†

1 (τ)
)
= Op

(
R−1/2

)
.

Next we turn to T (1),B
3,R,P from Eq. (S.17), which we can decompose as follows:

T (1),B
3,R,P

=
2√
P

T−1∑
j=R

ω1 (τ ;Xj)

f̂X(Xj)2(
1

Phd

T−1∑
s=R

(
1
{
ys+1 ≤ X ′

1,jβ̂1,R (τ)
}
− Fj+1

(
X ′

1,jβ̂1,R (τ) |Xj

))
K

(
Xj −Xs

h

))2

=
2√
P

T−1∑
j=R

ω1 (τ ;Xj)

f̂X(Xj)2

(
1

Phd

T−1∑
s=R

(
1
{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

}
− Fj+1

(
X ′

1,jβ̂1,R (τ) |Xj

))
K

(
Xj −Xs

h

))2

+
2√
P

T−1∑
j=R

ω1 (τ ;Xj)

f̂X(Xj)2

(
1

Phd

T−1∑
s=R

(
1
{
ys+1 ≤ X ′

1,jβ̂1,R (τ)
}
− 1

{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

})
K

(
Xj −Xs

h

))2

+
4√
P

T−1∑
j=R

ω1 (τ ;Xj)

f̂X(Xj)2

(
1

Phd

T−1∑
s=R

(
1
{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

}
− Fj+1

(
X ′

1,jβ̂1,R (τ) |Xj

))
K

(
Xj −Xs

h

)
1

Phd

T−1∑
s=R

(
1
{
ys+1 ≤ X ′

1,jβ̂1,R (τ)
}
− 1

{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

})
K

(
Xj −Xs

h

))
= T (1),B1

3,R,P + T (1),B2
3,R,P + T (1),B3

3,R,P (S.20)

Starting with T (1),B1
3,R,P from (S.20), note that by Lemma Q.1(iii) and A.4 we have that:

T (1),B1
3,R,P

=
1

2
√
P

T−1∑
j=R

ω1 (τ ;Xj)

f̂X(Xj)2

(
1

Phd

T−1∑
s=R

(
1
{
ys+1 −X ′

1,jβ
†
1(τ) ≤ 0

}
− Fj+1

(
X ′

1jβ
†
1 (τ) |Xj

))
K

(
Xs −Xj

h

))2
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×
(
1 +Op

(
1

R

))
.

Note that the above expression is the sum over the conditioning variable of the squared difference between the
estimated and the ‘true’ conditional cumulative distribution function. Given Assumption A.1, A.3, A.4, and
Ph

3d
2 / logP → ∞ as well as Ph

d
2+2r → 0 (implied by A.5), similar arguments to the ones used in the proof of

Lemma 1A-(i), part (a), in Corradi et al. (2020) yield that:

√
PhdT (1),B1

3,R,P − h−d/2B1
d→ N

(
0, Vβ1

)
where Vβ1

is a positive variance, and the bias is B1 = C(K)
∫
X 1{X ∈ X}dX > 0 for some kernel dependent

constant C(K).3 Thus:

T (1),B1
3,R,P − P−1/2h−dB1 = op(1)

Next, we turn to T (1),B2
3,R,P from (S.20). Since ∥β̂1,R(τ)−β

†
1(τ)∥ = Op(R

−1/2) by Lemma Q.1, we consider again a

set Nβ1,R defined in analogy to Nψ1,R. We now proceed by approximating T (1),B2
3,R,P with a third order U-process

indexed by β1 ∈ Nβ1,R noting that, on X , f̂X(Xj)
2 in the denominator can be replaced by fX(Xj)

2 using A.5.
That is, introducing some notation, let:

Υjls,P (β1) ≡ ω1 (τ ;Xj)

fX(Xj)2

(
1
{
ys+1 ≤ X ′

1,jβ1

}
− 1

{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

})
K

(
Xj −Xs

h

)
×
(
1
{
yl+1 ≤ X ′

1,jβ1

}
− 1

{
yl+1 ≤ X ′

1,jβ
†
1 (τ)

})
K

(
Xj −Xl

h

)
.

Also, define the symmetric ‘kernel function’:

Υjls,P (β1) =
1

3
(Υjls,P (β1) +Υsjl,P (β1) +Υljs,P (β1)) ,

where we used the fact that Υjls,P is already symmetric in the last two arguments. Thus:

2
√
P

P 3h2d

T−1∑
j=R

∑
s̸=j

∑
l ̸=j,l ̸=s

Υjls,P (β1) =

√
P

h2d

(
P

3

)−1 T−3∑
j=R

∑
s>j

∑
l>s

Υjls,P (β1).

Now, writing T (1),B2
3,R,P as T (1),B2

3,R,P (β1), first observe that:

sup
β1∈Nβ1,R

∣∣∣∣∣∣T (1),B2
3,R,P (β1)−

√
P

(
P

3

)−1 T−3∑
j=R

∑
s>j

∑
l>s

1

h2d

(
Υjls,P (β1)− E

(
Υjls,P (β1)

))∣∣∣∣∣∣
= sup

β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

∑
j ̸=s

Υjss,P (β1) +
2
√
P

P 3h2d

T−1∑
j=R

∑
s̸=j

Υjjs,P (β1) +
2
√
P

P 3h2d

T−1∑
j=R

∑
l ̸=j

Υjsj,P (β1)

+
2
√
P

P 3h2d

T−1∑
j=R

Υjjj,P (β1) +
6
√
P

h2d
E
(
Υjls,P (β1)

)∣∣∣∣∣∣ (S.21)

≤ sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

∑
j ̸=s

Υjss,P (β1)

∣∣∣∣∣∣+ sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

∑
s̸=j

Υjjs,P (β1)

∣∣∣∣∣∣
+ sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

∑
l ̸=j

Υjsj,P (β1)

∣∣∣∣∣∣+ sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

Υjjj,P (β1)

∣∣∣∣∣∣
+ sup
β1∈Nβ1,R

∣∣∣∣∣6
√
P

h2d
E
(
Υjls,P (β1)

)∣∣∣∣∣
3Corradi et al. (2020) assume a second order kernel in Lemma 1A. Notice, however, that by replacing “2” with “r”

in their proof, it is immediate to see that, provided Ph(2r+d/2) → 0, the non vanishing bias component depends on the
dimension of the covariate set, but not on the order of the kernel. Given A.5(i), the condition Ph(2r+d/2) → 0 is indeed
satisfied.
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We will postpone the treatment of the first four terms on the RHS of the inequality in (S.21) to the end as they
can be analysed by similar arguments to the ones used subsequently, and just note that given A.5 with π > 0

their probability order is of order smaller than
√
P
R . We next proceed by analysing the last term on the RHS of

(S.21) focusing on the first element Υjls,P (β1) for simplicity. Firstly note that by iterated expectations:

sup
β1∈Nβ1,R

∣∣∣∣E( 1

h2d
Υjls,P (β1)

)∣∣∣∣
= sup

β1∈Nβ1,R

∣∣∣∣∫ ∫ ∫ 1

h2d

ω1 (τ ;Xj)

fX(Xj)2

(
Fs+1(X

′
1,jβ1|Xs)− Fs+1(X

′
1,jβ

†
1 (τ) |Xs)

)
K

(
Xj −Xs

h

)
×
(
Fl+1(X

′
1,jβ1|Xl)− Fl+1(X

′
1,jβ

†
1 (τ) |Xl)

)
K

(
Xj −Xl

h

)
fX(Xl)fX(Xs)fX(Xj)dXsdXldXj

∣∣∣∣
By standard change of variables and Taylor expansion arguments around Xj , we obtain that:

sup
β1∈Nβ1,R

∣∣∣∣∫ ω1 (τ ;Xj)
(
Fj+1(X

′
1,jβ1|Xj)− Fj+1(X

′
1,jβ

†
1 (τ) |Xj)

)2
fX(Xj)dXj

∣∣∣∣+O(h2r)

≤ C sup
β1∈Nβ1,R

∥∥∥β1 − β
†
1 (τ)

∥∥∥2 ∫ ω1 (τ ;Xj) ∥X1,j∥2fX(Xj)dXj +O(h2r) = O(R−1) +O(h2r),

where the O(h2r) holds uniformly in β1 by A.3 and A.4, and the inequality follows from A.2, A.3(i), A.4. Thus,
since Ph2r → 0 as P → ∞ and π > 0 by A.5, we have that:

sup
β1∈Nβ1,R

∣∣∣∣∣∣T (1),B2
3,R,P (β1)−

√
P

(
P

3

)−1 T−1∑
j=R

∑
s>j

∑
l>s

1

h2d

(
Υjls,P (β1)− E

(
Υjls,P (β1)

))∣∣∣∣∣∣
= Op

(√
P

R
+
√
Ph2r

)
= Op

(√
P

R

)
,

which implies:

sup
β1∈Nβ1,R

∣∣∣T (1),B2
3,R,P (β1)

∣∣∣− sup
β1∈Nβ1,R

∣∣∣∣∣∣√P

(
P

3

)−1 T−3∑
j=R

∑
s>j

∑
l>s

1

h2d

(
Υjls,P (β1)− E

(
Υjls,P (β1)

))∣∣∣∣∣∣
= Op

(√
P

R

)
. (S.22)

We are now ready to analyse the second term on the LHS of (S.22) as a third order U-process indexed by β1,
where we will follow the notation in Arcones and Yu (1994). That is, set fβ1

= Υjls,P (β1) and fβ1
= Υjls,P (β1),

and define the class of functions:
F =

{
fβ1

: β1 ∈ Nβ1,R

}
.

We may write:

U3
P (fβ1

) ≡
√
P

(
P

3

)−1 T−3∑
j=R

∑
s>j

∑
l>s

1

h2d

(
Υjls,P (β1)− E

(
Υjls,P (β1)

))
.

Also, denote by πk,3fβ1
, k = 1, 2, 3, the Pr canonical version (i.e., completely centered, see Arcones and Yu

(1994, p.60)) of fβ1
, and note that by the Hoeffding projection:

U3
P (fβ1

) =

3∑
k=1

Uk
P (πk,3fβ1

)

We start with the first order term U1
P (π1,3fβ1

) and establish its pointwise convergence. Focusing on the first
element Υjls,P (β1) of the symmetric kernel for illustration, lengthy, but standard calculations show that for
each β1 ∈ Nβ1,R, the lead term of the variance is of order:

E

(
E

(
1

h2d
Υjls,P (β1)

∣∣(yj+1,X
′
j)

)2
)

= O

(
1

R2
+ h4r

)
,

15



while:

E

(
E

(
1

h2d
Υjls,P (β1) |(ys+1,X

′
s)

)2
)

= E

(
E

(
1

h2d
Υjls,P (β1) |(yl+1,X

′
l)

)2
)

= O

(
h−d+1

(
1

R
3
2

+
1

R
1
2

h2r

))
Thus, let δP = min{hd−1R3/2, R1/2h−2r+d−1}. From Theorem 1 of Yoshihara (1976), it follows that the term√
PδPU

1
P (π1,3fβ1

) converges pointwise in β1 to a zero mean Gaussian r.v. provided that:

• There are constants M0 and p > 2 such that:

E
(∣∣Υjls,P (β1)

∣∣p) < M0,

• the β-mixing coefficients satisfy, for some t > 1:

β(k) = O
(
k−tp/(p−2)

)
.

as k → ∞.

The first condition is indeed satisfied by A.2 and A.4, while the second condition holds by A.1 if for instance
β(k) = O

(
k−(2+ε+η)/ε

)
for choices such as ε = 0.1, η = 0.1 setting p = 4 and t = 2. In addition, note that from

Yoshihara (1976) it also follows that pointwise in β1:√
PδP

3∑
k=2

Uk
P (πk,3fβ1

)) = op(1),

We now establish that the previous pointwise results also hold uniformly in β1 ∈ Nβ1,R. Thus, in a first step,
we therefore need to show that the weak convergence of the first order term of the Hoeffding projection, i.e.
U1
P (π1,3fβ1

)), holds in l∞(F), the space of bounded functions F 7→ R (see below) equipped with the uniform
norm, i.e. for all functionals ν∞ on F such that:

∥ν∞∥F ≡ sup
f∈F

|ν∞(f)| < ∞.

This however follows from Corollary 2.1 in Arcones and Yu (1994) if we can show that some finite constants a
and b, F satisfies:

N(ϵ,F , L2(Q)) ≤ a

(∥F∥L2(Q)

ϵ

)b

(S.23)

for any ϵ > 0, where N(ϵ,F , L2(Q)) denotes the covering number, F the envelope function of F , and
(
QF 2

) 1
2

for some probability measure Q with QF 2 < ∞. This in turn will follow if we show that F belongs to a VC
subgraph class of function. Thus, note that fβ1

, an element from the symmetrized fβ1
, is contained in the

product of the classes:

F1 =

{
K

(
Xj −Xl

h

)}
F2 =

{
K

(
Xj −Xs

h

)}
F3 =

{
∇(2)L(C1(β

†
1(τ);Xj)− τ)1{Xj ∈ X}
fX(Xj)2

1

h2d
1{∥Xj −Xl∥ ≤ 2h}1{∥Xj −Xs∥ ≤ 2h}

}
F4 =

{
1
{
yl+1 ≤ X ′

1,jβ1

}
− 1

{
yl+1 ≤ X ′

1,jβ
†
1 (τ)

}
, β1 ∈ Nβ1,R

}
F5 =

{
1
{
ys+1 ≤ X ′

1,jβ1

}
− 1

{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

}
, β1 ∈ Nβ1,R

}
with envelope function F = C

h2d 1{∥Xj−Xl∥ ≤ 2h}1{∥Xj−Xs∥ ≤ 2h}∥K∥2∞, where C is some positive constant
that follows from assumption A.2, A.4, and the fact that τ ∈ T is a compact subset of (0, 1). Now, let t, γ1,
and γ2 be real numbers, and let δ ∈ Rd1 , so that:

g(yl+1, X1,j ; γ1, γ2, δ) = tγ1 + yl+1γ2 +X ′
1,jδ

and define:
G =

{
g(yl+1, X1,j ; γ1, γ2, δ) : γ1, γ2 ∈ R, δ ∈ Rd1

}
.
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Note that G is a d1 + 2 dimensional vector space. By Lemma 2.4 in Pakes and Pollard (1989), the class of sets
of the form 1{g ≥ r} or 1{g > r} for some g ∈ G and r ∈ R is a VC class. Now, let:

f4 (yl+1, X1,j ;β1) = 1
{
yl+1 ≤ X ′

1,jβ1

}
,

and note that for each β1 ∈ Nβ1,R:

subgraph (f4 (yl+1, X1,j ;β1)) = {(yl+1, X1,j , t) : 0 < t < f3 (yl+1, X1,j ;β1)}
= 1{(X ′

1,jβ1 − yl+1) ≥ 0}1{t > 0}1{t ≥ 1}c

= 1{g1 ≥ 0}1{g2 > 0}1{g3 ≥ 1}c

for gi ∈ G, i = 1, 2, 3. The subgraph is therefore the intersection of three sets, two of which belong to a VC
class, and one is a complement of a set belonging to a VC class. Deduce from Lemma 2.6.17 in Van der Vaart
and Wellner (1996) that subgraph (f4 (yl+1, X1,j ;β1)) forms a VC subgraph class. Then, deduce from Lemma
2.6.18 in Van der Vaart and Wellner (1996) that F4 is a VC class whose covering numbers satisfy (S.23) (the
same applies to F5). We therefore have by Lemma A.1 in Ghosal et al. (2000):

N

(
ϵ
C

h2d
∥1{∥Xj −Xl∥ ≤ 2h}1{∥Xj −Xs∥ ≤ 2h}∥L2(Q)∥K∥2∞,F1F2F3F4F5, L2(Q)

)
≤ a

(
1

ϵ

)b

.

In addition, note that the arguments in Arcones and Yu (1994) together with Lemma 3.1 therein also imply
that:

∥
√
PδPU

k
P (πk,3fβ1

)∥F
p→ 0

for k = 2, 3. Finally, note that in the case of a nonlinear location scale model, the same uniformity results can
be obtained by using the results in Sancetta (2009), in particular Corollary 2.1 therein.

It remains to analyse the convergence rate of the first three terms on the RHS of the inequality in (S.21).
Now note that for the first term with jss we have that:

2
√
P

P 3h2d

T−1∑
j=R

∑
s̸=j

Υjss,P (β1)

=
1√
Phd

2

P 2hd

T−1∑
j=R

∑
s ̸=j

ω1 (τ ;Xj)

fX(Xj)2

(
1
{
ys+1 ≤ X ′

1,jβ1

}
− 1

{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

})2
K

(
Xj −Xs

h

)2

,

while for the second term after the inequality in (S.21) with jjs (the second term with jsj can be treated
identically) is:

2
√
P

P 3h2d

T−1∑
j=R

∑
s̸=j

Υjjs,P (β1)

=
1√
Phd

2

P 2hd

T−1∑
j=R

∑
s̸=j

ω1 (τ ;Xj)

fX(Xj)2

(
1
{
ys+1 ≤ X ′

1,jβ1

}
− 1

{
ys+1 ≤ X ′

1,jβ
†
1 (τ)

})
K

(
Xj −Xs

h

)
×
(
1
{
yj+1 ≤ X ′

1,jβ1

}
− 1

{
yj+1 ≤ X ′

1,jβ
†
1 (τ)

})
K (0) .

We start with the term with jss, and define Υjs,P (β1) ≡ Υjss,P (β1) as well as the ‘symmetric kernel’:

Υjs,P (β1) =
1

2
(Υjs,P (β1) +Υsj,P (β1)) .

Now, similar to before this term can be bounded by:

sup
β1∈Nβ1,R

∣∣∣∣ 4√
Ph2d

E
(
Υjs,P (β1)

)∣∣∣∣+ sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2√
Phd

(
P

2

)−1 T−1∑
j=R

∑
s>j

1

hd

(
Υjs,P (β1)− E

(
Υjs,P (β1)

))∣∣∣∣∣∣ (S.24)

We start with the bias term focusing on the element Υjs,P (β1), and note that similar calculations to before
yield that:

sup
β1∈Nβ1,R

∣∣∣∣E( 1√
Phd

Υjs,P (β1)

)∣∣∣∣
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= sup
β1∈Nβ1,R

∣∣∣∣(∫ K(u)2du

)∫
ω1 (τ ;Xj)√

Phd

(
Fj+1(X

′
1,jβ1|Xj) + Fj+1(X

′
1,jβ

†
1 (τ) |Xj)

−2Fj+1(min{X ′
1,jβ

†
1 (τ) , X

′
1,jβ1}|Xj)

)
dXj(1 +O(h))

∣∣∣
We start with the case min{X ′

1,jβ
†
1 (τ) , X

′
1,jβ1} = X ′

1,jβ1. By A.4, mean value expansions around β†
1 (τ) yield:

sup
β1∈Nβ1,R

∣∣∣∣(∫ K(u)2du

)∫
ω1 (τ ;Xj)√

Phd

(
fj+1(X

′
1,jβ1|Xj)X

′
1,j

(
β1 − β

†
1(τ)

)
− 2fj+1(X

′
1,jβ1|Xj)

×X ′
1,j

(
β1 − β

†
1(τ)

))
dXj

∣∣∣
≤ C√

Phd
sup

β1∈Nβ1,R

∥∥∥β1 − β
†
1 (τ)

∥∥∥∫ ω1 (τ ;Xj) ∥X1,j∥dXj = O

(
1√

PRhd

)
,

where the inequality follows from A.2 and A.4, while in the case min{X ′
1,jβ

†
1 (τ) , X

′
1,jβ1} = X ′

1,jβ
†
1 (τ) we

obtain by similar arguments:

sup
β1∈Nβ1,R

∣∣∣∣(∫ K(u)2du

)∫
ω1 (τ ;Xj)√

Phd

(
fj+1(X

′
1,jβ1|Xj)X

′
1,j

(
β1 − β

†
1(τ)

))
dXj

∣∣∣∣
≤ C√

Phd
sup

β1∈Nβ1,R

∥∥∥β1 − β
†
1 (τ)

∥∥∥∫ ω1 (τ ;Xj) ∥X1,j∥dXj = O

(
1√

PRhd

)
.

Turning to the second term of (S.24), one can show that for the lead terms of the variance it holds that:

E

(
E

(
1

hd
Υjs,P (β1) |(ys+1,X

′
s)

)2
)

= E

(
E

(
1

hd
Υjs,P (β1)

∣∣(yj+1,X
′
j)

)2
)

= O
(
R− 1

2

)
.

Therefore, using arguments similar to before, we obtain that:

sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2√
Phd

(
P

2

)−1 T−1∑
j=R

∑
s>j

1

hd

(
Υjs,P (β1)− E

(
Υjs,P (β1)

))∣∣∣∣∣∣ = Op

(
1

PhdR1/4

)

and so for all β1 ∈ Nβ1,R given Ph2d → ∞ and π > 0:

2
√
P

P 3h2d

T−1∑
j=R

∑
s̸=j

Υjs,P (β1) = op

(√
P

R

)

Turning to the third term with jsj after the inequality in (S.21):

sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

∑
l ̸=j

Υjsj,P (β1)

∣∣∣∣∣∣ ,
and using the fact that K (0) is of bounded variation, note that identical arguments to the ones used above can

be applied to show that this expression is of probability order op

(√
P/R

)
for all β1 ∈ Nβ1,R. Finally, using

A.1, A.2, A.3, A.4 and A.5, we also have that:

sup
β1∈Nβ1,R

∣∣∣∣∣∣ 2
√
P

P 3h2d

T−1∑
j=R

Υjjj,P (β1)

∣∣∣∣∣∣ = op

(√
P

R

)
.

Thus, summarizing the previous steps, since β̂1,R(τ) ∈ Nβ1,R with probability going to one as P → ∞, we
therefore obtain that:

T (1),B2
3,R,P = op

(√
P

R

)
+O

(√
P

R

)
+O(

√
Ph2r) +Op

(
1√
PδP

)

= Op

(√
P

R

)
,
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where the last equality follows from A.5. Finally, using the Cauchy-Schwarz inequality and arguments from

above, we also obtain that T (1),B3
3,R,P from Eq. (S.20) is Op(

√
T (1),B1
3,R,P T (1),B2

3,R,P ).

Similarly, T (1),C
3,R,P from Eq. (S.17) can also be shown to be of order Op(

√
T (1),A
3,R,P T

(1),B
3,R,P ) through another

application of Cauchy-Schwarz, which establishes that T3,R,P = op (1).

Proof of Step 3: We now examine T4,R,P . As above, we consider only the contribution of model 1 to T4,R,P .
It follows that

T4,R,P ≤ sup
X∈X

1 {X ∈ X}∇(2)L
(
C1

(
ψ†

1;X
)
− τ
)

× sup
X∈X

∣∣∣Ĉ1,R,P

(
ψ̂1,R (τ) ;X

)
− C1

(
ψ†

1 (τ) ;X
)∣∣∣

× 1

3!
√
P

T−1∑
j=R

ω1 (τ ;Xj)
(
Ĉ1,R,P

(
ψ̂1,R (τ) ;Xj

)
− C1

(
ψ†

1 (τ) ;Xj

))2
= op (T3,R,P ) .

(ii)-(a) We consider the scenario where C1

(
ψ†

1(τ);Xt

)
= C2

(
ψ†

2(τ);Xt

)
= τ almost surely. To begin with,

note that T1,P = 0 with probability one. In addition, given Assumption A.2(ii)-(iii), it follows that T2,R,P = 0

almost surely because C1

(
ψ†

1(τ);Xt

)
= C2

(
ψ†

2(τ);Xt

)
= τ a.s..4 Hence, given Assumption A.2(iv), we obtain:

ŜP,R (τ) = T3,R,P (1) + op (T3,R,P ) ,

since as shown in part (i), T4,R,P = op (T3,R,P ).

Next, observe that T3,R,P = T (1)
3,R,P − T (2)

3,R,P , where T (1)
3,R,P is defined above in Eq. (S.17), and T (2)

3,R,P is

the analogous term for model 2. Also, as above we can decompose, T (1)
3,R,P = T (1),A

3,R,P + T (1),B
3,R,P + T (1),C

3,R,P and an

identical decomposition holds for model 2. Note that T (1),A
3,R,P − T (2),A

3,R,P = vec
(
T (1),A
3,R,P

)
− vec

(
T (2),A
3,R,P

)
, so that

Var
(
T (1),A
3,R,P − T (2),A

3,R,P

)
= Var

(
vec
(
T (1),A
3,R,P

))
+Var

(
vec
(
T (2),A
3,R,P

))
− 2Cov

(
vec
(
T (1),A
3,R,P

)
, vec

(
T (2),A
3,R,P

))
.

From (S.19), it can be seen that:

c
P

R2
≤ Var

(
T (1),A
3,R,P − T (2),A

3,R,P

)
≤ c

P

R2
,

for some constants 0 < c ≤ c < ∞, since for each variance term, i = 1, 2, R×vec
(
β̂i,R (τ)− β†

i (τ)
)(
β̂i,R (τ)− β†

i (τ)
)′

has a non-degenerate limiting distribution with finite variance, and

1

2P

T−1∑
j=R

(
X ′

ij ⊗
(
ω1 (Xj , τ) f

(
X ′

ijβ
†
1 (τ) |Xj

)2
X ′

ij

))

has a well defined, finite probability limit, while the covariance term is of order Op(P/R
2).

Thus, we turn to T (1),B
3,R,P − T (2),B

3,R,P directly. Formally, we can expand T (1),B
3,R,P and T (2),B

3,R,P as in the non-
overlapping case (i) in Eq. (S.20):

T (1),B
3,R,P − T (2),B

3,R,P =
(
T (1),B1
3,R,P − T (2),B1

3,R,P

)
+
(
T (1),B2
3,R,P − T (2),B2

3,R,P

)
+
(
T (1),B3
3,R,P3 − T (2),B

3,R,P

)
,

Starting with the first term on the RHS, firstly note that now:

(
T (1),B1
3,R,P − T (2),B1

3,R,P

)
= Op

(√
P

R

)
4The same also happens in the two-sided case, when both models are misspecified, but the coverage probability just

happens to equal to the difference of the nominal levels τU − τL.
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since Fj+1

(
X ′

1,jβ̂1,R (τ) |Xj

)
and Fj+1

(
X ′

1,jβ̂2,R (τ) |Xj

)
can be expanded around β†

1(τ) and β
†
2(τ), respec-

tively, but the remaining expression is zero almost surely. On the contrary, the same arguments from CASE I
yield that: (

T (1),B2
3,R,P − T (2),B2

3,R,P

)
= Op

(√
P

R

)
,

and: (
T (1),B3
3,R,P − T (2),B3

3,R,P

)
= op

(√
P

R

)
.

Thus, T (1),B
3,R,P −T (2),B

3,R,P = Op

(√
P
R

)
. Finally, by the Cauchy-Schwarz inequality, it follows that T (1),C

3,R,P −T (2),C
3,R,P is

at most of probability order
√
P
R . The statement for CASE II with C1

(
ψ†

1(τ);Xt

)
= C2

(
ψ†

2(τ);Xt

)
= τ a.s.

then follows.

(ii)-(b): We next outline the differences when (conditional) coverage is the same almost surely, but both models

are misspecified. For simplicity, we focus again on the one sided case with Pr
(
C1

(
ψ†

1(τ);Xt

)
= τ

)
< 1, which

arises when qτ (ψ
†
1(τ);X1,t) = qτ (ψ

†
2(τ);X1,t) almost surely, but the models are actually misspecified and so

conditional coverage is not equal to the nominal level with probability one.
Thus, when models are misspecified and overlapping such that qτ (ψ

†
1(τ);X1,t) = qτ (ψ

†
2(τ);X1,t) almost

surely, observe that the arguments remain the same as in part (ii)-(a), but for the terms defined in (S.8):

T2,R,P = T2,R,P (A) + T2,R,P (B).

Now, as for T2,R,P (B), when Xt only contains irrelevant predictors that do not feature into the DGP, observe
that:

T2,R,P (B) = 0 + op(1)

since:
∇(1)L

(
C1

(
ψ†

1(τ);Xj

)
− τ
)
= ∇(1)L

(
C2

(
ψ†

2(τ);Xj

)
− τ
)
= ∇(1)L (C − τ) = 0

almost surely, for some constant 0 ≤ C ≤ 1. More generally, when qτ (ψ
†
1(τ);X1,t) = qτ (ψ

†
2(τ);X1,t) almost

surely, but the conditional coverage errors are not constant with probability one, we obtain that:

T2,R,P (B)

=
1√
P

T−1∑
j=R

1{Xj ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)(

C1

(
ψ̂1,R(τ);Xj

)
− C2

(
ψ̂2,R(τ);Xj

))

=

[
1√
P

T−1∑
t=R

{
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
C1

(
ψ̂1,R(τ);Xt

)
−E

(
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
C1

(
ψ̂1,R(τ);Xt

))}
− 1√

P

T−1∑
t=R

{
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
C2

(
ψ̂2,R(τ);Xt

)
−E

(
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
C2

(
ψ̂2,R(τ);Xt

))}]
+

[
√
PE

(
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
C1

(
ψ̂1,R(τ);Xt

))

−
√
PE

(
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
C2

(
ψ̂2,R(τ);Xt

))]
=T2,R,P (B1) + T2,R,P (B2),

where we used the fact that ∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
= ∇(1)L

(
C2

(
ψ†

2(τ);Xt

)
− τ
)
with probability one.

Defining Nψ,R as in part (i), and noting that ψ†
1(τ) = ψ†

2(τ) element-wise as well as ψ̂1,R(τ), ψ̂2,R(τ) ∈ Nψ,R
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with probability approaching one as P → ∞, similar arguments to the proof of part (i) using again Theorem
2.2 in Andrews and Pollard (1994) together with Assumptions A.1 to A.4 yield that the empirical process:

1√
P

T−1∑
t=R

{
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
Cj

(
ψj ;Xt

)
−E

(
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
Cj

(
ψj ;Xt

))}
, j = 1, 2

is stochastically equicontinuous in ψ1,ψ2 ∈ Nψ,R. As a result, since ∥ψ̂1,R(τ) − ψ̂2,R(τ)∥ = op (1), we have
that:

T2,R,P (B1) = op(1).

As for T2,R,P (B2), note that by the same mean value expansion as in part (i):

T2,R,P (B2) =
√
PE

(
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(X

′
1,tβ

†
1(τ)|Xt)

×
((

X ′
1,tβ̂1,R(τ)−X ′

1,tβ
†
1(τ)

)
−
(
X ′

2,tβ̂2,R(τ)−X ′
2,tβ

†
2(τ)

)))
(1 + o(1)),

where we used the fact that X ′
1,tβ

†
1(τ) = X ′

2,tβ
†
2(τ) almost surely. Focusing on the part involving model 1 and

recalling the definition of Λ1(τ) in Equation (S.16), note that:

√
PE

(
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(X

′
1,tβ

†
1(τ)|Xt)

(
X ′

1,tβ̂1,R(τ)−X ′
1,tβ

†
1(τ)

))

=E

((
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(X

′
1,tβ

†
1(τ)|Xt)X

′
1,t − Λ1(τ)

)
×

√
P
(
β̂1,R(τ)− β

†
1(τ)

))
+ Λ1(τ)× E

(√
P
(
β̂1,R(τ)− β

†
1(τ)

))
As for the first term note that by Cauchy-Schwarz’s inequality:∥∥∥∥∥E

((
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(X

′
1,tβ

†
1(τ)|Xt)X

′
1,t − Λ1(τ)

)
√
P
(
β̂1,R(τ)− β

†
1(τ)

))∥∥∥∥∥
≤E

∥∥∥∥∥ 1P
T−1∑
t=R

(
1{Xt ∈ X}∇(1)L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(X

′
1,tβ

†
1(τ)|Xt)X

′
1,t − Λ1(τ)

)∥∥∥∥∥
2
 1

2

× E

(
P
∥∥∥β̂1,R(τ)− β

†
1(τ)

∥∥∥2) 1
2

=O

(
1√
P

)
O(1) = o(1).

where the last line follows from A.1, A.2, A.3, and A.5 as well as Lemma Q.1(iii). For the first term on the
other hand we have that:

Λ1(τ)× E
(√

P
(
β̂1,R(τ)− β

†
1(τ)

))
= o(1),

which follows as an implication of Lemma Q.3(iii) since
√
R
(
β̂1,R(τ)− β

†
1(τ)

)
converges weakly to a standard

normal random vector with mean zero and since P/R → π with 0 < π < ∞ by A.5.5

(iii): This follows from the arguments of part (i) noting that under the alternative hypothesis:

1√
P

T−1∑
j=R

E
(
1{Xj ∈ X}

(
L
(
C1

(
ψ†

1(τ);Xj

)
− τ
)
− L

(
C2

(
ψ†

2(τ);Xj

)
− τ
)))

5In fact, in the i.i.d. case, the rate of E
(√

P
(
β̂1,R(τ)− β

†
1(τ)

))
is given by O(

√
P ln(R)/R− 3

4 ), see Bahadur (1966)

or more recently Lee et al. (2018) and Franguridi et al. (2022).
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diverges to plus or minus infinity. ■

Proof of Theorem 2:
(i) We start with CASE I. Moreover, we will discuss the linear quantile regression model case only. From
Theorem 1 (i), recall that under H0:

1√
P

T−1∑
t=R

(
L
(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− τ
)
− L

(
Ĉ2,P

(
β̂2,R(τ);Xt

)
− τ
))

(S.25)

=
1√
P

T−1∑
t=R

1{Xt ∈ X}L
(
C1

(
β†

1(τ);Xt

)
− τ
)
− 1√

P

T−1∑
t=R

1{Xt ∈ X}L
(
C2

(
β†

2(τ);Xt

)
− τ
)

+
1√
P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
β†

1(τ);Xt

)
− τ
)(

1{yt+1 ≤ qτ (β
†
1(τ);X1,t)} − Ft+1(qτ (β

†
1(τ);X1,t)|X1,t)

)
− 1√

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C2

(
β†

2(τ);Xt

)
− τ
)(

1{yt+1 ≤ qτ (β
†
2(τ);X2,t)} − Ft+1(qτ (β

†
2(τ);X2,t)|X2,t)

)
+

√
P

R

R−1∑
t=1

φ(β†
1(τ); yt+1, X1,t)−

√
P

R

R−1∑
t=1

φ(β†
2(τ); yt+1, X2,t) + op(1)

=
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) +
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ)) +

√
P

R

R−1∑
t=1

(D1,t(τ)−D1,t(τ)) + op(1),

where Aj,t(τ), Bj,t(τ), and Dj,t(τ), j = 1, 2, have been defined in the proof of Theorem 1. In what follows, let
E
(
· | {yt+1,X

′
t}Tt=1

)
and Var

(
· | {yt+1,X

′
t}Tt=1

)
denote the expectation and variance, respectively, conditional

on the original sample {yt+1,X
′
t}Tt=1. Thus, by noting that, conditional on {yt+1,X

′
t}Tt=1, Ŝ

∗
P,R(τ) is distributed

as:
N
(
E
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
,Var

(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

))
for all samples but a subset with probability measure approaching zero, it suffices to show that

p lim
R,P→∞

E
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
= 0

and:

p lim
R,P→∞

Var
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
= p lim

P,R→∞
Var

(
1√
P

T−1∑
t=R

(A1,t(τ)−A2,t(τ)) +
1√
P

T−1∑
t=R

(B1,t(τ)−B2,t(τ)) +

√
P

R

R−1∑
t=1

(D1,t(τ)−D1,t(τ))

)
= Ω(τ)

with Ω(τ) defined as in Eq.(S.4). Now, by the definition of εt and ηt:

E
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
= 0

for almost all samples. On the other hand, setting lP = lR = l for notational simplicity, we obtain:

Var
(
Ŝ∗
P,R(τ)|{yt+1,X

′
i}Tt=1

)
= E∗

(
Ŝ∗2
P,R(τ)|{yt+1,X

′
i}Tt=1

)
=

1

P

T−l−1∑
t=R

1

l

(
t+l∑
i=t

(
Â1,P,R,i(τ)− Â2,P,R,i(τ)

))2

+
1

P

T−l−1∑
t=R

1

l

(
t+l∑
i=t

(
B̂1,P,R,i(τ)− B̂2,P,R,i(τ)

))2

+
2

P

T−l−1∑
t=R

1

l

(
t+l∑
i=t

(
Â1,P,R,i(τ)− Â2,P,R,i(τ)

))( t+l∑
i=t

(
B̂1,P,R,i(τ)− B̂2,P,R,i(τ)

))

+
P

R2

R−l−1∑
t=1

1

l

(
t+l∑
i=t

(
D̂1,P,R,i(τ)− D̂2,P,R,i(τ)

))2

Simple arithmetic shows that:

1

P

T−l−1∑
t=R

1

l

(
t+l∑
i=t

(
Â1,P,R,i(τ)− Â2,P,R,i(τ)

))2
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=
1

P

T−l−1∑
t=R

(
Â1,P,R,t(τ)− Â2,P,R,t(τ)

)2(
1 +Op

(
l

P

))

+
1

P

T−l−1∑
t=R

l∑
j=1

(
1− j

l

)(
Â1,P,R,t(τ)− Â2,P,R,t(τ)

)(
Â1,P,R,t+j(τ)− Â2,P,R,t+j(τ)

)(
1 +Op

(
l

P

))
where Op

(
l
P

)
term is due to the fact the the first and last l observations have a smaller contribution (as in the

block bootstrap). Thus, letting ϖj,l =
(
1− j

l

)
:

Var
(
Ŝ∗
P,R(τ)|{yt+1,X

′
i}Tt=1

)
=

(
1

P

T−l−1∑
t=R

((
Â1,P,R,t(τ)− Â2,P,R,t(τ)

)2
+ 2

l∑
j=1

ϖj,l

(
Â1,P,R,t(τ)− Â2,P,R,t(τ)

)(
Â1,P,R,t+j(τ)− Â2,P,R,t+j(τ)

))

+
1

P

T−l−1∑
t=R

((
B̂1,P,R,t(τ)− B̂2,P,R,t(τ)

)2
+ 2

l∑
j=1

ϖj,l

(
B̂1,P,R,t(τ)− B̂2,P,R,t(τ)

)(
B̂1,P,R,t+j(τ)− B̂2,P,R,t+j(τ)

))

+
2

P

T−l−1∑
t=R

((
Â1,P,R,t(τ)− Â2,P,R,t(τ)

)(
B̂1,P,R,t(τ)− B̂2,P,R,t(τ)

)
+ 2

l∑
j=1

ϖj,l

(
Â1,P,R,t(τ)− Â2,P,R,t(τ)

)(
B̂1,P,R,t+j(τ)− B̂2,P,R,t+j(τ)

))

+
P

R2

R−l−1∑
t=1

((
D̂1,P,R,t(τ)− D̂2,P,R,t(τ)

)2
+ 2

l∑
j=1

ϖj,l

(
D̂1,P,R,t(τ)− D̂2,P,R,t(τ)

)(
D̂1,P,R,t+j(τ)− D̂2,P,R,t+j(τ)

)))

×
(
1 +Op

(
l

P

))
=
(
V̂11,P,R + V̂22,P,R + V̂33,P,R + V̂12,P,R

)(
1 +Op

(
l

P

))
,

where, for j = 1, 2, Âj,P,R,i(τ), B̂j,P,R,i(τ), and D̂j,P,R,i(τ) have been defined in (29), (30), and (31) of the

main text, respectively. Let Ṽ11,P,R(τ), Ṽ22,P,R(τ), Ṽ12,P,R(τ), Ṽ33,P,R(τ) be defined as V̂11,P,R(τ), V̂22,P,R(τ),

V̂12,P,R(τ), V̂33,P,R(τ) with Âj,P,R,t(τ), B̂j,P,R,t(τ), D̂j,P,R,t(τ) replaced by Aj,t(τ), Bj,t(τ), Dj,t(τ) for j = 1, 2.
By similar arguments as in the proof of Theorem 1(i), for all l, k = {(1, 1), (2, 2), (1, 2), (3, 3)}, pointwise in τ

we have that V̂lk,P,R(τ) = Ṽlk(τ) + op(1), and by Theorem 1 (a) in Andrews (1991):(
Ṽ11,P,R(τ) + Ṽ22,P,R(τ) + Ṽ12,P,R(τ) + Ṽ33,P,R(τ)

)
= Ω(τ) + op(1).

Thus:

Var
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
=

(
Ṽ11,P,R(τ) + Ṽ22,P,R(τ) + Ṽ12,P,R(τ) + Ṽ33,P,R(τ)

)
+ op(1) = Ω(τ) + op(1).

This establishes the statement in (i) for CASE I.

(ii) We start with the case where both models are correctly specified, i.e. C1

(
β†
1(τ);Xt

)
= C2

(
β†
2(τ);Xt

)
= τ

with probability one. As in proof of Theorem 1 (ii), recall that when C1

(
β†
1(τ);Xt

)
= C2

(
β†
2(τ);Xt

)
= τ

a.s., it holds that L(0) = ∇(1)L (0) = 0. Moreover, by Assumption A.2(iii) note that:

1

P

T−l−1∑
t=R

(Â1,P,R,t(τ)− Â2,P,R,t(τ))
2 =

1

P

T−l−1∑
t=R

(
Â1,P,R,t(τ)

2 + Â2,P,R,t(τ)
2 − 2Â1,P,R,t(τ)Â2,P,R,t(τ)

)
.

We will only focus on the term involving Â1,P,R,t(τ)
2, the other term will follow from identical arguments and

the cross-term can be handled via the Cauchy-Schwarz by analogous arguments. By a second order Taylor

expansion around C1

(
β†
1(τ);Xt

)
:

1

P

T−l−1∑
t=R

Â1,P,R,t(τ)
2
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=
1

2P

T−l−1∑
t=R

1{Xt ∈ X}
(
∇(2)L (0)

)2 (
Ĉ1,P

(
β̂1,R(τ);Xt

)
− C1

(
β†
1(τ);Xt

))4
+ op

(
1

R2

)
= Op

(
1

R2

)
(1 + op(1)) ,

where the last line follow from the arguments in Theorem 1(i), noting that this time the term involving(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− C1

(
β̂1,R(τ);Xt

))
will give rise to a fifth order U-process instead. Also, a similar ex-

pansion yields that:

1

P

T−l−1∑
t=R

l∑
j=1

ϖj,lÂ1,P,R,t(τ)Â1,P,R,t+j(τ)

=
1

4!P

T−l−1∑
t=R

l∑
j=1

(
1{Xt ∈ X}

(
∇(2)L (0)

)(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− C1

(
β†
1(τ);Xt

))2
×1{Xt+j ∈ X}

(
∇(2)L (0)

)(
Ĉ1,P

(
β̂1,R(τ);Xt+j

)
− C1

(
β†
1(τ);Xt+j

))2)
+ op

(
l

R2

)
= Op

(
l

R2

)
(1 + op(1))

Thus, pointwise in τ :

1

P

T−l−1∑
t=R

(
t+l∑
i=t

(
Â1,P,R,i(τ)− Â2,P,R,i(τ)

))2

= Op

(
l

R2

)
(1 + op(1))

Now, recall that:

B̂1,P,R,t (τ) = 1{Xt ∈ X}∇(1)L
(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− τ
)(

1
{
yt+1 ≤ X ′

1tβ̂1,R (τ)
}
− F̂t+1

(
X ′

1tβ̂1,R (τ) |Xt

))
Via another Taylor expansion around C1

(
β†
1(τ);Xt

)
, we have again that:

1

P

T−l−1∑
t=R

B̂1,P,R,t (τ)
2

=
2

P

T−l−1∑
t=R

(
1{Xt ∈ X}∇(2)L (0)

2
(
1
{
yt+1 ≤ X ′

1,tβ̂1,R (τ)
}
− F̂t+1,P

(
X ′

1,tβ̂1,R (τ) |Xt

))2
×
(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− C1

(
β†
1(τ);Xt

))2)
+ op

(
1

R

)
≤ 2C

P

T−l−1∑
t=R

(
1{Xt ∈ X}

(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− C1

(
β†
1(τ);Xt

))2)
= Op

(
1

R

)
(1 + op(1)) ,

for some constant C > 0, where the inequality follows from A.2 and the boundedness of the indicator as well as

the nonparametric estimator of Ft+1

(
X ′

1,tβ
†
1 (τ) |Xt

)
, while the last line follows from the arguments in Theorem

1. In addition, applying the same Taylor expansion from before also yields that:

1

P

T−l−1∑
t=R

l∑
j=1

ϖj,lB̂1,P,R,t (τ) B̂1,P,R,t+j (τ)

= Op

(
l

R

)
(1 + op(1))
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and thus:

1

P

T−l−1∑
t=R

(
t+l∑
i=t

(
B̂1,P,R,i(τ)− B̂2,P,R,i(τ)

))2

= Op

(
l

R

)
(1 + op(1))

pointwise in τ . Finally, note that:

1

R

R−l−1∑
t=1

D̂1,P,R,t (τ)
2

= Λ̂1,P,R(τ)Ĥ
−1
1,R(τ)

1

R

R−l−1∑
t=1

(
X1,tX

′
1,t

(
1{yt+1 ≤ X ′

1,tβ̂1,R(τ)} − τ
)2)

Ĥ−1
1,R(τ)Λ̂1,P,R(τ)

′,

where Λ̂1,P,R(τ) was defined as:

Λ̂1,P,R(τ) =
1

P

T−1∑
t=R

1{Xt ∈ X}∇(1)L
(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− τ
)
f̂t+1,P

(
X ′

1,tβ̂1,R (τ) |Xt

)
X ′

1,t

Now, Ĥ1,R(τ) and 1/R
∑R−l−1

t=1

(
X1,tX

′
1,t

(
1{yt+1 ≤ X ′

1,tβ̂1,R(τ)} − τ
)2)

converge in probability to strictly

positive definite matrices. On the other hand, another Taylor expansion around C1

(
β†
1(τ);Xt

)
and arguments

as before therefore yield that:

Λ̂1,P,R(τ) = ∇(2)L (0)

(
1

P

T−1∑
t=R

1{Xt ∈ X}f̂t+1,P

(
X ′

1,tβ̂1,R (τ) |Xt

)
X ′

1,t

(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− τ
))

+ op

(
1√
P

)

= ∇(2)L (0)

(
1

P

T−1∑
t=R

1{Xt ∈ X}ft+1,P

(
X ′

1,tβ
†
1 (τ) |Xt

)
X ′

1,t

(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− τ
))

+ op

(
1√
P

)
= Op

(
1√
P

)
= Op

(
1√
R

)
,

where the last line follows since by A.2(iii), A.3(i) and Theorem 1,
√
P Λ̂1,P,R(τ) converges weakly, and by A.5,

P and R grow at the same rate. Hence:

1

R

R−l−1∑
t=1

D̂1,P,R,t (τ)
2
= Op

(
1

R

)
.

A similar argument shows that:

1

R

R−l−1∑
t=1

l∑
j=1

ϖj,lD̂1,P,R,t (τ) D̂1,P,R,t+j (τ) = Op

(
1

R

)
since by A.1 and A.3:

1

R

R−l−1∑
t=1

l∑
j=1

ϖj,l

(
X1,tX

′
1,t

(
1{yt+1 ≤ X ′

1,tβ̂1,R(τ)} − τ
)

×X1,t+jX
′
1,t+j

(
1{yt+j+1 ≤ X ′

1,t+jβ̂1,R(τ)} − τ
))

= Op(1).

Putting together the three components, it follows that:

Var
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
= Op

(
l

R2

)
+Op

(
l

R

)
+Op

(
1

R

)
= Op

(
l

R

)
.

Thus, Ŝ∗
P,R(τ) is of probability order

√
l
R , while ŜP,R(τ) is of probability order 1√

R
and so, for l → ∞, Ŝ∗

P,R(τ)

is of a larger probability order than ŜP,R(τ), and the statement in (ii) follows.
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Next, we move to the one-sided case where C1

(
β†
1(τ);Xt

)
= C2

(
β†
2(τ);Xt

)
almost surely, but:

Pr
(
Cj

(
β†
j(τ);Xt

)
= τ

)
< 1,

for j = 1, 2. In this case, A1,t(τ) − A2,t(τ) = 0 a.s.. Thus, given the definition of Âj,P,R,i(τ), omitting the
recentering term for notational simplicity (it follows by similar arguments) and using A.5, we have that:

1

P

T−l−1∑
t=R

1

l

(
t+l∑
i=t

(
Â1,P,R,i(τ)− Â2,P,R,i(τ)

))2

=
1

P

T−l−1∑
t=R

1{Xt ∈ X}∇(1)L
(
C1

(
β†
1(τ);Xt

)
− τ
)2 (

Ĉ1,P

(
β̂1,R(τ);Xt

)
− Ĉ2,P

(
β̂2,R(τ);Xt

))2
(1 + op(1))

+
1

P

T−l−1∑
t=R

l∑
j=1

(
1− j

l

)
1{Xt ∈ X}1{Xt+j ∈ X}∇(1)L

(
C1

(
β†
1(τ);Xt

)
− τ
)2

∇(1)L
(
C1

(
β†
1(τ);Xt+j

)
− τ
)2

×
(
Ĉ1,P

(
β̂1,R(τ);Xt

)
− Ĉ2,P

(
β̂2,R(τ);Xt

))(
Ĉ1,P

(
β̂1,R(τ);Xt+j

)
− Ĉ2,P

(
β̂2,R(τ);Xt+j

))
× (1 + op(1))

= Op

(√
l

R

)
.

Similarly, since X ′
1,tβ

†
1(τ) = X ′

1,tβ
†
2(τ) almost surely, we have by similar arguments that:

1

P

T−l−1∑
t=R

1

l

(
t+l∑
i=t

(
B̂1,P,R,i(τ)− B̂2,P,R,i(τ)

))2

= Op

(√
l

R

)
.

On the other hand, observe that for:

Λ̂j,P,R(τ) =
1

P

T−1∑
t=R

1{Xt ∈ X}
(
∇(1)L

(
Ĉj,P,R ((0, τ ];Xt)− τ

)
f̂t+1,P

(
X ′

j,tβ̂j,R(τ)|Xt

)
X ′

j,t

)
,

with j = 1, 2, it holds that Λ̂j,P,R (τ)
p→ Λj (τ) ̸= 0 in general by A.3 and A.4. Consequently, D̂j,P,R,t (τ) is no

longer op(1) for all t. Thus, for the bootstrap statistic, it holds that:

Ŝ∗
P,R(τ) =

√
P

R

R−l−1∑
t=1

ηt

l∑
i=t

(
D̂1,P,R,i (τ)− D̂2,P,R,i (τ)

)
+ o∗p(1),

in probability.6 Now, while the bootstrap mean is zero for almost all samples, the variance is given by:

Var

(√
P

R

R−l−1∑
t=1

ηt

t+l∑
i=t

(
D̂1,P,R,i (τ)− D̂2,P,R,i (τ)

) ∣∣{yt+1,X
′
t}Tt=1

)

= π
1

R

R−l−1∑
t=1

(
t+l∑
i=t

(
D̂1,P,R,i (τ)− D̂2,P,R,i (τ)

))2

= π

(
Λ1 (τ)H1(τ)

−1Avar

(
1√
R

R∑
t=1

X1,t1
{
yt+1 ≤ X ′

1,tβ
†
1 (τ)

})
H1(τ)

−1Λ′
1 (τ)

+Λ2 (τ)H2(τ)
−1Avar

(
1√
R

R∑
t=1

X2,t1
{
yt+1 ≤ X ′

2,tβ
†
2 (τ)

})
H2(τ)

−1Λ′
2 (τ)

−2Λ1 (τ)H1(τ)
−1Acov

(
1√
R

R∑
t=1

X1,t1
{
yt+1 ≤ X ′

1,tβ
†
1 (τ)

}
,

1√
R

R∑
t=1

X2,t1
{
yt+1 ≤ X ′

2,tβ
†
2 (τ)

})
H2(τ)

−1Λ′
2 (τ)

)
6For any bootstrap statistic T̂ ∗

P,R, we write T̂ ∗
P,R = o∗p(1), in probability, if for any ∆ > 0 it holds that

Pr
(
T̂ ∗
P,R | {yt+1,X

′
t}Tt=1

)
= op(1), where Pr

(
· | {yt+1,X

′
t}Tt=1

)
denotes the probability conditional on the original sample.
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+op(1)

≡ πΩ̃(τ) + op(1),

where Ω̃(τ) is positive definite by A.3 and A.4. Thus:

Ŝ∗
P,R(τ)

d∗

→ N
(
0, πΩ̃(τ)

)
in probability.7 Hence, ŜP,R(τ) = op(1), while Ŝ∗

P,R(τ) has a non degenerate limiting standard normal distri-
bution. The statement then follows.

(iii) Under both hypotheses, we have that E
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
= 0 for almost all samples and that

p limR,P→∞ Var
(
Ŝ∗
P,R(τ)|{yt+1,X

′
t}Tt=1

)
mimics the asymptotic variance under H0 in CASE I while, on the

other hand, the term limR,P→∞ E
(
ŜP,R(τ)

)
will diverge to plus or minus infinity at rate

√
P under the alter-

native. ■

Proof of Theorem 3:
We focus on the one-sided interval case first, and comment at the end on the two-sided case.
Similar to the decomposition in the proof of Theorem 1, a second order Taylor expansion around E1 ((0, τ ];Xt)
and E2 ((0, τ ];Xt) yields:

1√
P

T∑
t=R+1

1{Xt ∈ X}
(
L
(
Ê1,P,R ((0, τ ];Xt)

)
− L

(
Ê2,P,R ((0, τ ];Xt)

))

=
1√
P

T∑
t=R+1

1{Xt ∈ X}
(
L (E1 ((0, τ ];Xt))− L (E2 ((0, τ ];Xt)) +

δ1((0, τ ];Xt)√
P

− δ2((0, τ ];Xt)√
P

)

+
1√
P

T∑
t=R+1

1{Xt ∈ X}∇(1)L (E1 ((0, τ ];Xt))
(
Ê1,P,R ((0, τ ];Xt)− E1 ((0, τ ];Xt)

)

− 1√
P

T∑
t=R+1

1{Xt ∈ X}∇(1)L (E2 ((0, τ ];Xt))
(
Ê2,P,R ((0, τ ];Xt)− E2 ((0, τ ];Xt)

)

+
1√
P

T∑
t=R+1

1{Xt ∈ X}∇(2)L (E1 ((0, τ ];Xt))
(
Ê1,P,R ((0, τ ];Xt)− E1 ((0, τ ];Xt)

)2
− 1√

P

T∑
t=R+1

1{Xt ∈ X}∇(2)L (E2 ((0, τ ];Xt))
(
Ê2,P,R ((0, τ ];Xt)− E2 ((0, τ ];Xt)

)2
+

1√
P

T∑
t=R+1

1{Xt ∈ X}∇(3)L
(
E1 ((0, τ ];Xt)

) (
Ê1,P,R ((0, τ ];Xt)− E1 ((0, τ ];Xt)

)3
− 1√

P

T∑
t=R+1

1{Xt ∈ X}∇(3)L
(
E2 ((0, τ ];Xt)

) (
Ê2,P,R ((0, τ ];Xt)− E2 ((0, τ ];Xt)

)3
= T P

1,P + T P
2,R,P + T P

3,R,P + T P
4,R,P ,

where ∇(1)L(·), ∇(2)L(·), and ∇(3)L(·) denote again the first, second, and third order derivative of L(·), while
E1 ((0, τ ];Xt) and E2 ((0, τ ];Xt) denote intermediate values. Now while the arguments for T P

2,R,P , T P
3,R,P , and

T P
4,R,P are identical to the proof of Theorem 1, for T P

1,P , we obtain:

T P
1,P =

1√
P

T∑
t=R+1

(
1{Xt ∈ X}

(
L (E1 ((0, τ ];Xt)) +

δ1((0, τ ];Xt)√
P

)
−E

(
1{Xt ∈ X}

(
L (E1 ((0, τ ];Xt)) +

δ1((0, τ ];Xt)√
P

))
7For any bootstrap statistic T̂ ∗

P,R, we write T̂ ∗
P,R

d∗→ D, in probability, if conditional on the sample with probability

that converges to one, T̂ ∗
P,R weakly converges to the distribution D under Pr

(
· | {yt+1,X

′
t}Tt=1

)
.
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−1{Xt ∈ X}
(
L (E2 ((0, τ ];Xt)) +

δ2((0, τ ];Xt)√
P

)
−E

(
1{Xt ∈ X}

(
L (E2 ((0, τ ];Xt)) +

δ2((0, τ ];Xt)√
P

)))

+
1√
P

T∑
t=R+1

(
E

(
1{Xt ∈ X}

(
L (E1 ((0, τ ];Xt)) +

δ1((0, τ ];Xt)√
P

− L (E2 ((0, τ ];Xt))−
δ2((0, τ ];Xt)√

P

)))

=
1√
P

T∑
t=R+1

(
1{Xt ∈ X}

(
L (E1 ((0, τ ];Xt)) +

δ1((0, τ ];Xt)√
P

)
−E

(
1{Xt ∈ X}

(
L (E1 ((0, τ ];Xt)) +

δ1((0, τ ];Xt)√
P

))
−1{Xt ∈ X}

(
L (E2 ((0, τ ];Xt)) +

δ2((0, τ ];Xt)√
P

)
−E

(
1{Xt ∈ X}

(
L (E2 ((0, τ ];Xt)) +

δ2((0, τ ];Xt)√
P

)))
+ζ (τ) .

Now, since ζ (τ) ̸= 0, and by A.1, A.2, A.4 as well as a CLT for strong mixing observations pointwise in τ :

T P
1,P

d→ N
(
ζ (τ) , VT1,T

)
,

where VT1,T
is the same as under H0. Hence, under HA,P the statistic will converge to a Gaussian distribution

with mean ζ (τ) and the same variance as under H0 in CASE I. Finally, for a single interval of the form [τL, τU ],

the same arguments as above apply, but with the drifting sequence ζ(τ)√
P

replaced by:(
ζ (τU )√

P
− ζ (τL)√

P

)
.

■

Proof of Theorem 4:
(i) In line with the change in notation for Section 4 of the paper, recall that P denotes the set of probability
measures, P (= Pr), defined on the support of Xt such that Assumptions A.1, A.3, and A.4 hold. Also, denote

PI−RC
0 =

{
P ∈ P : HRC

0,P and CASE I-RC holds
}
,

and recall that:

ςk = lim
P→∞

√
PEP

((
L
(
E1
(
[τi,L, τi,U ] ;X

k
t

))
− L

(
Ek
(
[τi,L, τi,U ] ;X

k
t

)))
1
{
Xk

t ∈ X
})︸ ︷︷ ︸

=µk,P

.

Given Assumptions A.1-A.5, by the same argument used in the proof of Theorem 1(i),

ŜP,R,1 − ς1
...

ŜP,R,k − ςk
...

ŜP,R,M(J−1) − ςM(J−1)


d→ N (0,V)

where V is a M(J − 1) × M(J − 1) positive semidefinite matrix as defined in (32)-(33). Now, Ŝmax
P,R satisfies

the Assumptions 1-6 of Andrews and Soares (2010) by Lemma 1 therein. Thus, since ŜP,R,k = ŜP,R,k − ςk + ςk
for every k = (j − 2)M + i, j = 2, ..., J , i = 1, ...,M , the statement then follows from the result in Eq.(4.2) of
Andrews and Soares (2010), noting that the assumptions of Theorem 4 satisfy conditions (A.2) and (A.3) of
Andrews and Soares (2010) for dependent data (see Section A.2 therein), and that A.1, A.3, and A.4 hold for
a given P ∈ PI−RC

0 .
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(ii) We treat subcases (a) and (b) together. By the same argument used in the proof of Theorem 1(ii), we
know that, in the case of correct specification, for k = 1, ...,M(J − 1) and every P ∈ PIIa−RC

0

lim
R,P→∞

P

(
|ŜP,R,k| ≤ ∆

√
P

R

)
= 1

for any ∆ > 0, so that, recalling that M(J − 1) is a finite number:

lim
R,P→∞

P

(
Ŝmax
P,R ≤ ∆′ P

R2

)
= 1

for any ∆′ > 0, where

Ŝmax
P,R =

M(J−1)∑
k=1

Ŝ2
P,R,k1

{
ŜP,R,k > 0

}
.

Similarly, in the case of misspecification with conditional coverage not equal to the nominal level almost surely,
we know from Theorem 1(ii) that ŜP,R,k = op(1) for k = 1, ...,M(J − 1) and every P ∈ PIIb−RC

0 . As a result,
it also holds that:

Ŝmax
P,R = op(1)

since M(J − 1) is a finite number.

(iii) Under HRC
A , for at least one k,

µk,P√
P

→ µk > 0, with µk bounded away above zero. Thus, for at least one

k, and a given P ∈ PRC
A

lim
P,R→∞

P

(
1√
P
ŜP,R,k > ϵ

)
= 1

for any ϵ > 0. As a result, it follows that with probability converging to one:

Ŝmax
P,R = Ŝ2

P,R,k +

M(J−1)∑
l ̸=k

Ŝ2
P,R,l1

{
ŜP,R,l > 0

}
.

Finally, since

Ŝ2
P,R,k =

(
ŜP,R,k − µk,P

)2
+ µ2

k,P + 2
(
ŜP,R,k − µk,P

)
µk,P ,

the statement follows. ■

Proof of Theorem 5:
(i) We use again the same notation as in the proof of Theorem 4 and Section 4. By the same argument used in

the proof of Theorem 2(i)-(ii), for each k = (j− 2)M + i, i = 1, . . . ,M , j = 2, . . . J , Ŝ∗
P,R,k has, conditionally on

the sample and for all samples but a set of probability measure approaching zero, the same limiting distribution:

Ŝ
µk,P

P,R,k = ŜP,R,k −
√
PEP

((
L
(
E1
(
[τi,L, τi,U ] ;X

j
t

))
− L

(
Ej
(
[τi,L, τi,U ] ;X

j
t

)))
1
{
Xj

t ∈ X
})

.

Since M(J − 1) is finite, as an immediate consequence of the Cramer Wold device,
Ŝ∗
P,R,1
...

Ŝ∗
P,R,M(J−1)

 d∗

→ N (0,V) (S.26)

in probability, with V defined in (32)-(33). Given Assumption A.1-A.5, and the definition of the lag truncation

parameter πs in the main text, for all k = 1, . . . ,M(J − 1), v̂kk,P,R − vkk = op(1), with vkk = Avar
(
ŜP,R,k

)
.

Thus:

Ŝ∗max
P,R

=

M(J−1)∑
k=1

(
max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
vkkκP

}})2
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+

M(J−1)∑
k=1

(
max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
v̂kk,P,RκP

}})2
−
(
max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
vkkκP

}})2
=

M(J−1)∑
k=1

(
max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
vkkκP

}})2
(1 + op(1)) .

To establish the op(1) term from the last line note that for each k and some ϵ1 > 0 and a given P ∈ PI−RC
0 :

P

(∣∣∣∣(max
{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
v̂kk,P,RκP

}})2
−
(
max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
vkkκP

}})2∣∣∣∣ > ϵ1
∣∣{yt+1,X

′
t}Tt=1

)
= P

((
Ŝ∗
P,R,k

)2
> ϵ1

∣∣{yt+1,X
′
t}Tt=1

)
×
(
1
{
|
√
vkkκP | ≤ |ŜP,R,k| ≤ |

√
v̂kk,P,RκP |

}
+1
{
|
√
v̂kk,P,RκP | ≤ |ŜP,R,k| ≤ |

√
vkkκP |

})
,

for almost all samples, where P
(
· | {yt+1,X

′
t}Tt=1

)
denotes the probability conditional on the original sample.

Thus, by Markov’s inequality, we have that:

P

(∣∣∣∣(max
{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
v̂kk,P,RκP

}})2
−
(
max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
vkkκP

}})2∣∣∣∣ > ϵ1
∣∣{yt+1,X

′
t}Tt=1

)
≤

(
EP

((
Ŝ∗
P,R,k

)2
|{yt+1,X

′
t}Tt=1

)
×
(
1
{√

vkkκP ≤ |ŜP,R,k| ≤
√
v̂kk,P,RκP

}
+1
{√

v̂kk,P,RκP ≤ |ŜP,R,k| ≤
√
vkkκP

}))
/ϵ1,

We will only examine the first term in what follows. Now let δP denote a deterministic sequence such that
δP → 0 as P → 0 and that δ−1

P (
√

v̂kk,P,R −√
vkk) = op(1). Then, for sufficiently large P and some ϵ2 > 0:

P

((
EP

((
Ŝ∗
P,R,k

)2
|{yt+1,X

′
t}Tt=1

)
1
{√

vkkκP ≤ |ŜP,R,k| ≤
√
v̂kk,P,RκP

})
> ϵ2

)
≤ P

((
EP

((
Ŝ∗
P,R,k

)2
|{yt+1,X

′
t}Tt=1

)
1
{√

vkkκP ≤ |ŜP,R,k| ≤ (
√
vkk,P,R + δP )κP

})
> ϵ2

)

≤ CEP

(
EP

((
Ŝ∗
P,R,k

)2
|{yt+1,X

′
t}Tt=1

)2
) 1

2

EP

(
1
{√

vkkκP ≤ |ŜP,R,k| ≤ (
√
vkk,P,R + δP )κP

}) 1
2

= O(1)o(1),

where C denotes some positive constant and the O(1) term follows from similar arguments to the ones used in
Theorem 2(i).

Now, let c∗B,R,P,1−α be the (1−α) critical value of Ŝ∗max
P,R based on B bootstrap replications. Also, consider

a sequence {γP }∞P=1 with γP =
(
γ1,P , ..., γ(J−1)M,P

)
and each γP ∈ PI−RC

0 such that
√
PγP → h and

κ−1
P

√
PγP → ξ where h, ξ ∈ R(J−1)M

−,∞ with R− = {x ∈ R : x ≤ 0} and R−,∞ = R− ∪ {−∞}. Then,
let cR,P,1−α be the (1 − α) critical values of Smax

R,P under the drifting sequence γP . By Lemma 2(a) in the
supplement of Andrews and Soares (2010), c∗P,1−α ≤ cR,P,1−α almost surely for all P for a sequence such

that c∗P,1−α

p→ c∗1−α = limB,R,P→∞ c∗B,R,P,1−α noting that the assumptions of Theorem 5 together with the
HAC estimator v̂kk,P,R satisfy conditions (A.2) and (A.3) of Andrews and Soares (2010) for dependent data,
and that A.1, A.3, and A.4 hold for every γP ∈ PI−RC

0 . Also, under the drifting sequence {γP , P ≥ 1},
limP,R→∞ cR,P,1−α = c†1−α which is the (1 − α) critical value of the limiting distribution of Ŝmax

P,R in Theorem
4. The first part of Theorem 5-(i) then follows from subsequence arguments analogous to the ones used in the
proof of Theorem 1(i) in Andrews and Soares (2010). The results for the second part of Theorem 5-(i) on the
other hand follows analogously by Lemma 3(a) and Theorem 1(ii) in the supplement of Andrews and Soares
(2010).
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(ii)-(a) From Theorem 1(ii)-(a), for each k = 1, . . . , (J − 1)M , ŜP,R,k = Op

(√
P
R

)
. On the other hand,

v̂kk,P,R = Op

(√
P ·lP
R

)
, and κP → ∞ as P → ∞. Thus, since lP → ∞ as P → ∞, from Theorem 2(ii) for all k

and all P ∈ PIIa−RC
0 :

lim
P,R,B→∞

P
((

max
{
0, ŜP,R,k

}
−max

{
0, Ŝ∗

P,R,k1
{
ŜP,R,k ≥ −

√
v̂kk,P,RκP

}})
> 0
)
= 0.

The result then follows from a standard subsequence argument for sequences {P P }∞P=1 with P P ∈ PIIa−RC
0

for all P , which has been omitted for brevity.

(ii)-(b) This follows by the same argument as in (ii)-(a) noting that here ŜP,R,k = op (1) for each k = 1, . . . , (J−
1)M from Theorem 1(ii)-(b), while:

Ŝ∗
P,R,k(τ)

d∗

→ N
(
0, πΩ̃k(τ)

)
in probability.

(iii) As in (ii), assume again without loss of generality that the null is violated for the first K models with
K +K ′ = (J − 1)M and K > 0. For k ∈ {1, . . . ,K}, µk,P√

P
> 0 and so as P → ∞, µk,P → ∞ at rate

√
P . Now,

for sufficiently large P , it holds that:

Ŝmax
P,R =

∑
k∈{1,...,K}

(
max

{
0, ŜP,R,k

})2
+

∑
k∈{K+1,...,(J−1)M}

(
max

{
0, ŜP,R,k

})2
=

∑
k∈{1,...,K}

Ŝ2
P,R,k +

∑
k∈{K+1,...,(J−1)M}

(
max

{
0, ŜP,R,k

})2
.

Since, ∑
k∈{1,...,K}

Ŝ2
P,R,k =

∑
k∈{1,...,K}

(
ŜP,R,k − µk,P

)2
+

∑
k∈{1,...,K}

µ2
k,P + 2

∑
k∈{1,...,K}

(
ŜP,R,k − µk,P

)
µk,P

and diverges to +∞ as P → ∞, while Ŝ∗max
P,R converges, conditional on the sample, in distribution also under

HRC
A . The statement then follows. ■

S.2.3 Proofs of Lemmas

Proof of Lemma Q.1:8

(i) In analogy to the notation of Angrist et al. (2006), let

QR(τ,β) ≡
1

R

R−1∑
j=1

(
ρτ (yj+1 −X ′

jβ)− ρτ (yj+1 −X ′
jβ

†(τ))
)

and
Q∞(τ,β) ≡ E

(
ρτ (yj+1 −X ′

jβ)− ρτ (yj+1 −X ′
jβ

†(τ))
)
.

Then, pointwise in β and τ , QR(τ,β)
p→ Q∞(τ,β) by A.1, A.3, and McLeish’s law of large numbers for strong

mixing processes. Consistency of β̂R(τ) for β
†(τ) pointwise in τ then follows by the same arguments as in the

proof of Theorem 3 of Angrist et al. (2006).

(ii) To establish stochastic equicontinuity w.r.t. the pseudo-metric ρB×T (·, ·), first note that the function class
F1 =

{
1{yj+1 ≤ X ′

jβ} : β ∈ B
}
is a VC subgraph class by the arguments in the proof of Theorem 1 (see pp.16-

17) and thus belongs to a bounded Donsker class. Moreover, note that the function class F2 = {τ 7→ τ : τ ∈ T }
also belongs to a bounded Donsker class. As a result, the functional class F1 − F2 is the difference of Donsker
classes with envelope 2 whose covering numbers satisfy (S.23). Thus, letting F3 = {Xj}, by Assumption A.1
and Lemma A.1 in Ghosal et al. (2000):

N
(
ϵ∥Xj∥L2(Q)∥,F1F2F3, L2(Q)

)
≤ a

(
1

ϵ

)b

,

8For notational simplicity, we drop again the model subscript j.
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with square integrable envelope 2maxk∈{1,...,d} |Xjk|. Stochastic equicontinuity follows thus again from Corol-
lary 2.1 in Arcones and Yu (1994).

(iii) By Equation (4) and A.3 (see e.g. Gregory et al., 2018), it holds that:∥∥∥∥∥∥ 1√
R

R−1∑
j=1

Xj

(
1
{
yj+1 ≤ X ′

jβ̂R (τ)
}
− τ
)∥∥∥∥∥∥

≤ d max
1≤j≤R

∥Xj∥
1√
R

R−1∑
j=1

1
{
yj+1 = X ′

jβ̂R (τ)
}
= op(1),

where the last equality follows again from the fact that max1≤j≤R ∥Xj∥ = op(R
1
2 ). Moreover, by parts (i) and

(ii), conditional on the sample, we have that:

1√
R

R−1∑
j=1

(
Xj

(
1
{
yj+1 ≤ X ′

jβ̂R (τ)
}
− τ
)
− ET

(
Xj

(
1
{
yj+1 ≤ X ′

jβ̂R (τ)
}
− τ
)))

=
1√
R

R−1∑
j=1

Xj

(
1
{
yj+1 ≤ X ′

jβ
† (τ)

}
− τ
)
− ET

(
Xj

(
1
{
yj+1 ≤ X ′

jβ
† (τ)

}
− τ
))

︸ ︷︷ ︸
=0

+ op(1).

Thus:

1√
R

R−1∑
j=1

ET

(
Xj

(
1
{
yj+1 ≤ X ′

jβ̂R (τ)
}
− τ
))

=
1√
R

R−1∑
j=1

Xj

((
1
{
yj+1 ≤ X ′

jβ
† (τ)

}
− τ
))

+ op(1).

Via a mean value expansion of the left hand side around β† (τ), we have that

1√
R

R−1∑
j=1

Xj

(
1
{
yj+1 ≤ X ′

jβ
† (τ)

}
− τ
)
= H (τ)

√
R
(
β̂R (τ)− β† (τ)

)
+ op(1)

Using A.3(ii) establishes the Bahadur representation for
√
R
(
β̂R (τ)− β† (τ)

)
. ■

Proof of Lemma L.1:

(i) Recall that:

yt+1 = m(Xt,θ
†
m) + σ

(
Xt,θ

†
σ

)
ϵt+1.

Consistency of θ̂m,R and θ̂σ,R follows from Assumption A.6(i). To show consistency of β̂R(τ) for β
†(τ), let:

ϵt+1 =
yt+1 −m(Xt,θ

†
m)

σ
(
Xt,θ

†
σ

) and ϵ̂t+1 =
yt+1 −m(Xt, θ̂m,R)

σ
(
Xt, θ̂σ,R

)
Then, after some algebra:

ϵ̂t+1 − ϵt+1 =
m(Xt,θ

†
m)−m(Xt, θ̂m,R)

σ
(
Xt, θ̂σ,R

) +

σ
(
Xt,θ

†
σ

)
− σ

(
Xt, θ̂σ,R

)
σ
(
Xt, θ̂σ,R

)
σ
(
Xt,θ

†
2

)
(yt+1 −m(Xt,θ

†
m)
)
.

Next, recall that β̂R(τ) is defined as:

β̂R(τ) = argmin
β∈B

1

R

R−1∑
t=1

(ϵ̂t+1 − β) (τ − 1 {ϵ̂t+1 − β ≤ 0})

From Lemma Q.1(iii), we have that:(
β̂R(τ)− β†(τ)

)
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= H (τ)
−1 1

R

R−1∑
t=1

(
1
{
ϵ̂t+1 ≤ β† (τ)

}
− τ
)
+ op(1)

= −H (τ)
−1 1

R

R−1∑
t=1

(
1
{
ϵt+1 ≤ β† (τ)

}
− τ
)

(S.27)

−H (τ)
−1 1

R

R−1∑
t=1

1
{
ϵ̂t+1 ≤ β† (τ)

}
− 1

{
ϵt+1 ≤ β† (τ)

}
+ op(1)

Now, using A.6(iv):

H (τ)
−1 1

R

R−1∑
t=1

1
{
ϵ̂t+1 ≤ β† (τ)

}
− 1

{
ϵt+1 ≤ β† (τ)

}
= H (τ)

−1 1

R

R−1∑
t=1

1
{
ϵt+1 ≤ β† (τ)− (ϵ̂t+1 − ϵt+1)

}
− 1

{
ϵt+1 ≤ β† (τ)

}
= H (τ)

−1 1

R

R−1∑
t=1

((
1
{
ϵt+1 ≤ β† (τ)− (ϵ̂t+1 − ϵt+1)

}
− Fϵ

(
β† (τ)− (ϵ̂t+1 − ϵt+1)

))
−
(
1
{
ϵt+1 ≤ β† (τ)

}
− Fϵ

(
β† (τ)

))
+H (τ)

−1 1

R

R−1∑
t=1

(
Fϵ

(
β† (τ)− (ϵ̂t+1 − ϵt+1)

)
− Fϵ

(
β† (τ)

))
= H (τ)

−1 1

R

R−1∑
t=1

(
Fϵ

(
β† (τ)− (ϵ̂t+1 − ϵt+1)

)
− Fϵ

(
β† (τ)

))
+ op(R

− 1
2 ),

where the last line follows again from Corollary 5.1 in Hall and Heyde (1980) and the fact that:

H (τ)
−1 1√

R

R−1∑
t=1

(1 {ϵt+1 ≤ β} − Fϵ (β))

with H (τ) = E (ft+1(q(ψ(τ);Xt)|Xt)) is stochastically equicontinuous in β ∈ B using similar arguments as for
A1,P in the proof of Theorem 1 and the fact that H (τ) is bounded by A.3. Thus, by mean value expansions

around θ†m and θ†σ:

H (τ)
−1 1

R

R−1∑
t=1

fϵ(β
† (τ)) (ϵ̂t+1 − ϵt+1)

= −H (τ)
−1 1

R

R−1∑
t=1

fϵ(β
† (τ))

σ
(
Xt,θ

†
σ

)∇θm
m(Xt,θ

†
m)
(
θ̂m,R − θ†m

)

−H (τ)
−1 1

R

R−1∑
t=1

fϵ(β
† (τ))

σ
(
Xt,θ

†
σ

)∇θσ
σ(Xt+1,θ

†
σ)

σ
(
Xt,θ

†
σ

) ϵt+1

(
θ̂σ,R − θ†σ

)
+ op(1)

Consistency then follows from Assumption A.6(i) as
(
θ̂m,R − θ†m

)
= op(1) and

(
θ̂σ,R − θ†σ

)
= op(1), and from

the fact that:

H (τ)
−1 1

R

R−1∑
t=1

(
1
{
ϵt+1 ≤ β† (τ)

}
− τ
)
= op(1)

by Lemma Q.1(iii).

(ii) Using the expansion from part (i), note that by Assumption A.6(ii) uniformly X ∈ X :

√
R
(
qτ

(
ψ̂R;X

)
− qτ

(
ψ†;X

))
= ∇θmm(X,θ†m)

√
R
(
θ̂m,R − θ†m

)
+∇θσσ

(
X,θ†σ

)
qτ (ϵt+1)

√
R
(
θ̂σ,R − θ†σ

)
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+σ
(
X,θ†σ

)(
H (τ)

−1 1√
R

R−1∑
t=1

(1 {ϵt+1 ≤ qτ (ϵt+1)} − τ)

−H (τ)
−1 1

R

R−1∑
t=1

fϵ(qτ (ϵt+1))
∇θmm(X,θ†m)

σ
(
X,θ†σ

) √
R
(
θ̂m,R − θ†m

)

−H (τ)
−1 1

R

R−1∑
t=1

fϵ(qτ (ϵt+1))ϵt+1

∇θσσ
(
X,θ†σ

)
σ2
(
X,θ†σ

) √
R
(
θ̂σ,R − θ†σ

)+ op(1),

where the op(1) term holds uniformly in X ∈ X by A.3(iii). Now, using the expansions from Assumption A.6(ii),
we obtain:

√
R
(
qτ

(
ψ̂R;X

)
− q

(
ψ†;X

))
= ∇θmm(X,θ†m)

(
M−1

m

1√
R

R−1∑
s=1

∇θmζ(ys+1, Xs,θ
†
m,θ†σ)

)

+∇θσ
σ
(
X,θ†σ

)
qτ (ϵt+1)

(
M−1

σ

1√
R

R−1∑
s=1

∇θσ
ζ(ys+1, Xs,θ

†
m,θ†σ)

)

+σ
(
X,θ†σ

)(
H (τ)

−1 1√
R

R−1∑
t=1

(1 {ϵt+1 ≤ qτ (ϵt+1)} − τ)

−H (τ)
−1 1

R

R−1∑
t=1

fϵ(qτ (ϵt+1))
∇θmm(X,θ†m)

σ
(
X,θ†σ

) (
M−1

m

1√
R

R−1∑
s=1

∇θm
ζ(ys+1, Xs,θ

†
m,θ†σ)

)

−H (τ)
−1 1

R

R−1∑
t=1

fϵ(qτ (ϵt+1))ϵt+1

∇θσσ
(
X,θ†σ

)
σ2
(
X,θ†σ

) (
M−1

σ

1√
R

R−1∑
s=1

∇θσζ(ys+1, Xs,θ
†
m,θ†σ)

)+ op(1).

Given A.6(iii)-(iv), we have by a uniform law of large numbers for strong mixing observations uniformly in
X ∈ X :

1

R

R−1∑
t=1

fϵ(qτ (ϵt+1))
∇θm

m
(
X,θ†m

)
σ2
(
X,θ†σ

) p→ E

fϵ(qτ (ϵt+1))
∇θσ

σ
(
X,θ†σ

)
σ2
(
X,θ†σ

)


and

1

R

R−1∑
t=1

fϵ(qτ (ϵt+1))ϵt+1

∇θσσ
(
X,θ†σ

)
σ2
(
X,θ†σ

) p→ E

fϵ(qτ (ϵt+1))ϵt+1

∇θσσ
(
X,θ†σ

)
σ2
(
X,θ†σ

)
 .

■

S.3 Bootstrap Two-Sided Case

In this section, we extend the bootstrap statistic from Section 3.3 of the main text to two-sided intervals [τL, τU ]
and then briefly comment on the two-sided extension of the multiple models and intervals test in Section 4 of
the paper.

Now, in the two-sided, single interval case [τL, τU ] we have that:

Ŝ∗
P,R([τL, τU ])

=
1√
P

T−lP−1∑
t=R

εt

(
t+lP∑
s=t

(
Â1,P,R,s([τL, τU ])− Â2,P,R,s([τL, τU ])

)
+
(
B̂1,P,R,s([τL, τU ])− B̂2,P,R,s([τL, τU ])

))

+

√
P

R

R−lR−1∑
t=1

ηt

t+lR∑
s=t

(
D̂1,P,R,s([τL, τU ])− D̂2,P,R,s([τL, τU ])

)
, (S.28)

where for j = 1, 2:

Âj,P,R,t([τL, τU ])
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= 1{Xt ∈ X}
(
L
(
Ĉj,P,R ([τL, τU ];Xt)− (τU − τL)

)
− 1

P

T−1∑
s=R

L
(
Ĉj,P,R ([τL, τU ];Xs)− (τU − τL)

))

B̂j,P,R,t([τL, τU ])

= 1{Xt ∈ X}∇L
(
Ĉj,P,R ([τL, τU ];Xt)− (τU − τL)

)(
1
{
X ′

j,tβ̂j,R (τL) ≤ yt+1 ≤ X ′
j,tβ̂j,R (τU )

}
−
(
F̂t+1,P

(
X ′

j,tβ̂j,R (τU ) |Xt

))
− F̂t+1,P

(
X ′

j,tβ̂j,R (τL) |Xt

))
and:

D̂j,P,R,t([τL, τU ]) = Λ̂j,R (τU )
(
Ĥ−1

j,P,R (τU )Xj,t1
({

yt+1 ≤ X ′
j,tβ̂j,R (τU )

})
− τU

)
−Λ̂j,P,R (τR)

(
Ĥ−1

j,R (τR)Xj,t1
({

yt+1 ≤ X ′
j,tβ̂j,R (τR)

})
− τR

)
,

and the terms Λ̂j,P,R (·), Ĥ−1
j,R (·), and F̂t+1,P (·|Xt) are as defined in the main text.

Similarly, for the multiple models and intervals case we may compare the relative conditional coverage error
of models 1 and 2 over M two-sided intervals, [τiL, τiU ], i = 1, ...,M . These intervals could potentially be
overlapping in the sense that one could potentially compare models over, say, intervals [0.1, 0.3], [0.2, 0.4] and
so on. The null hypothesis is:

HRC
0 : max

j=2,...,J
max

i=1,...,M
E
((

L
(
E1
(
[τi,L, τi,U ] ;X

j
t

))
− L

(
Ej
(
[τi,L, τi,U ] ;X

j
t

)))
1
{
Xj

t ∈ X
})

≤ 0

versus:

HRC
A : max

j=2,...,J
max

i=1,...,M
E
((

L
(
E1
(
[τi,L, τi,U ] ;X

j
t

))
− L

(
Ej
(
[τi,L, τi,U ] ;X

j
t

)))
1
{
Xj

t ∈ X
})

> 0.

In analogy to before, for each competitor model, j, and interval, i, let (suppressing again the P,R dependence):

Âj,t

(
[τi,U , τi,L] ,X

j
t

)
=

(
L
(
Êj,P,R

(
[τi,U , τi,L] ,X

j
t

))
− 1

P

T−1∑
s=R

L
(
Êj,P,R

(
[τi,U , τi,L] ,X

j
s

)))
1
{
Xj

t ∈ X j
}

while B̂j,t

(
[τi,U , τi,L] ,X

j
t

)
is the term associated to nonparametric estimation error:

B̂j,t

(
[τi,U , τi,L] ,X

j
t

)
= ∇L

(
Êj,P,R

(
Xj

t , [τi,U , τi,L]
))(

1
{
X ′

j,tβ̂j,R (τi,L) ≤ yt+1 ≤ X ′
j,tβ̂j,R (τi,U )

}
−
(
F̂t+1,P

(
X ′

j,tβ̂j,R (τi,U ) |Xj
t

)
− F̂t+1,P

(
X ′

j,tβ̂j,R (τi,L) |Xj
t

)))
1
{
Xj

t ∈ X j
}
.

In addition, for t = 1, ..., R − 1, we let D̂j,t ([τi,U , τi,L]) denote the parametric quantile estimation error for
model j and interval [τi,U , τi,L]. That is:

D̂j,t ([τi,U , τi,L]) = Λ̂j,P,R (τi,U )
(
Ĥ−1

j,R (τi,U )Xj,t

(
1
{
yt+1 ≤ X ′

j,tβ̂j,R (τi,U )
}
− τi,U

))
−Λ̂j,P,R (τi,L)

(
Ĥ−1

j,R (τi,L)Xj,t

(
1
{
yi+1 ≤ X ′

j,iβ̂j,R (τi,L)
}
− τi,L

))
.

S.4 Bootstrap Location Scale Model

In this section, we provide the formula of the bootstrap statistic in the case of the location scale model and
outline the differences in the proof of Theorem 2 for the case of the nonlinear location scale model. Focusing
on model 1 and one-sided intervals (0, τ ], recall that in the location scale case:

Λ̃1,1(τ) = E
(
1{Xt ∈ X}∇L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(qτ (ψ

†
1(τ);Xj,t)|Xt)∇θmm(X1,t,θ

†
m1

)
)
,
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Λ̃1,2(τ) = E
(
1{Xt ∈ X}∇L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(qτ (ψ

†
1(τ);X1,t)|Xt)∇θσσ

(
X1,t,θ

†
σ1

)
qτ (ϵ1,t+1)

)
,

Λ̃1,3(τ) = E
(
1{Xt ∈ X}∇L

(
C1

(
ψ†

1(τ);Xt

)
− τ
)
ft+1(qτ (ψ

†
1(τ);X1,t)|Xt)σ

(
X1,t,θ

†
σ1

))
,

as well as:

ϵ1,t+1 =
yt+1 −m(X1,t,θ

†
m1

)

σ(X1,t,θ
†
σ1
)

.

Thus:
√
P

R

R−1∑
t=1

φ(ψ†
1(τ); yt+1, X1,t)

=

√
P

R

R−1∑
t=1

(
Λ̃1,1(τ)M

−1
1,m∇θm

ζ(yt+1, X1,t,θ
†
m1

,θ†σ1
) + Λ̃1,2(τ)M

−1
1,σ∇θσ

ζ(yt+1, X1,t,θ
†
m1

,θ†σ1
)

+Λ̃1,3(τ)

((
H1 (τ)

−1
(1 {ϵ1,t+1 ≤ qτ (ϵ1,t+1)} − τ)

)
−

H1 (τ)
−1

E

fϵ1(qτ (ϵ1,t+1))
∇θm

m(Xt,θ
†
m1

)

σ
(
Xt,θ

†
σ1

)


×M−1
1,m∇θm

ζ(yt+1, X1,t,θ
†
m1

,θ†σ1
)
)

−H1 (τ)
−1

E

fϵ1(qτ (ϵ1,t+1))ϵ1,t+1

∇θσ
σ
(
X1,t,θ

†
σ1

)
σ
(
X1,t,θ

†
σ1

)
M−1

1,σ∇θσ
ζ(yt+1, X1,t,θ

†
m1

,θ†σ1
)

))

with H1 (τ) as defined in A.3 of the main text and:

M1,m = E
(
∇(2)
θm

ζ(yt+1, X1,t,θ
†
m1

,θ†σ1
)
)

M1,σ = E
(
∇(2)
θσ

ζ(yt+1, X1,t,θ
†
m1

,θ†σ1
)
)
.

Now, define:

ω̂1,t (τ) = 1{Xt ∈ X}∇L
(
Ĉ1,P

(
ψ̂1,R(τ);Xt

)
− τ
)
f̂t+1(qτ (ψ̂1,R(τ);Xj,t)|Xt)

where Ĉ1,P

(
ψ̂1,R(τ);Xt

)
is again constructed as in the main text, while:

f̂t+1(qτ (ψ̂1,R(τ);Xj,t)|Xt) =
Ĉ1,P

(
ψ̂1,R(τk);Xt

)
− Ĉ1,P

(
ψ̂1,R(τk−1);Xt

)
qτ (ψ̂1,R(τk);Xj,t)− qτ (ψ̂1,R(τk−1);Xj,t)

for some τk−1 < τ < τk. In addition, let:

̂̃
Λ1,1,P (τ) =

1

P

T−1∑
t=R

ω̂1,t(τ)∇θm
m(X1,t,θ

†
m1

)

̂̃
Λ1,2,P (τ) =

1

P

T−1∑
t=R

ω̂1,t(τ)∇θσσ
(
X1,t,θ

†
σ1

)
qτ (ϵ̂1,t+1)

̂̃
Λ1,3,P (τ) =

1

P

T−1∑
t=R

ω̂1,t(τ)σ
(
X1,t,θ

†
σ1

)
∇θσσ

(
X1,t,θ

†
σ1

)
where qτ (ϵ̂1,t+1) = β̂1,R(τ). Finally, let:

M̂1,m,R =
1

R

R−1∑
t=1

∇(2)
θm

ζ(yt+1, X1,t,θ
†
m1

,θ†σ1
)

with M̂1,σ,R defined analogously, and:

ϵ̂1,t+1 =
yt+1 −m(X1,t, θ̂1,m,R)

σ(X1,t, θ̂1,σ,R)
,

36



so that:

V̂1,m,P =
1

P

T−l∑
t=R

f̂ϵ1 (qτ (ϵ̂1,t+1))
∇θm

m
(
X1,t, θ̂1,R,m

)
σ
(
X1,t, θ̂1,R,σ

)
V̂1,σ,P =

1

P

T−l∑
t=R

f̂ϵ1 (qτ (ϵ̂1,t+1))
∇θσ

σ
(
X1,t, θ̂1,R,σ

)
σ
(
X1,t, θ̂1,R,σ

) ϵ̂1,t+1.

Here:

f̂ϵ1 (qτ (ϵ̂1,t+1)) =
1

Rhϵ

R−1∑
i=1

K((qτ (ϵ̂1,t+1)− qτ (ϵ̂1,i+1))/hϵ)

for some bandwidth sequence hϵ satisfying hϵ → 0 and Rhϵ → ∞. Then, letting the corresponding quantities
for model 2 be defined accordingly, we have that:

S∗LS
P,R (τ) = S∗LS,1

P,R (τ) + S∗LS,2
P,R (τ)

where, setting again lP = lR = l for notational simplicity, we have that:

S∗LS,1
P,R (τ)

=
1√
P

T−l−1∑
t=R

εt

(
t+l∑
i=t

1{Xi ∈ X}

((
L
(
Ĉ1

(
ψ̂1,R(τ);Xi

)
− τ
)
− L

(
Ĉ2

(
ψ̂2,R(τ);Xi

)
− τ
))

+
(
∇L

(
Ĉ1

(
ψ̂1,R(τ);Xi

)
− τ
)(

1
{
yi+1 ≤ qτ

(
ψ̂1,R;X1,i

)}
− F̂t+1,P

(
qτ

(
ψ̂1,R;X1,i

)
|Xi

))
−∇L

(
Ĉ2

(
ψ̂2,R(τ);Xi

)
− τ
)(

1
{
yi+1 ≤ qτ

(
ψ̂2,R;X2,i

)}
− F̂t+1,P

(
qτ

(
ψ̂2,R (τ) ;X2,i

)
|Xi

)))))

and

S∗LS,2
P,R (τ)

=

√
P

R

R−l−1∑
t=1

ηt

(
t+l∑
i=t

(̂̃
Λ1,1,P (τ)M̂

−1
1,m,R∇θmζ

(
yi+1, X1,i, θ̂1,R,m, θ̂1,R,σ

)
+
̂̃
Λ1,2,P (τ)M̂

−1
1,σ,Rζ

(
yi+1, X1,i, θ̂1,R,m, θ̂1,R,σ

)
+
̂̃
Λ1,3,P

(
Ĥ−1

1 (τ) (1 {ϵ̂1,i+1 ≤ qτ (ϵ̂1,i+1)} − τ)

−Ĥ−1
1 (τ) V̂1,m,PM̂

−1
1,m,R∇θmζ

(
yi+1, X1,i, θ̂1,R,m, θ̂1,R,σ

)
−Ĥ−1

1 (τ) V̂1,σ,PM̂
−1
1,σ,R∇θσζ

(
yi+1, X1,i, θ̂1,R,m, θ̂1,R,σ

)))

−

(̂̃
Λ2,1,P (τ)M̂

−1
2,m,R∇θmζ

(
yi+1, X2,i, θ̂2,R,m, θ̂2,R,σ

)
+
̂̃
Λ2,2,P (τ)M̂

−1
2,σ,Rζ

(
yi+1, X2,i, θ̂2,R,m, θ̂2,R,σ

)
+
̂̃
Λ2,3,P

(
Ĥ−1

1 (τ) (1 {ϵ̂2,i+1 ≤ qτ (ϵ̂2,i+1)} − τ)

−Ĥ−1
2 (τ) V̂2,m,PM̂

−1

2,m,R∇θmζ
(
yi+1, X2,i, θ̂2,R,m, θ̂2,R,σ

)
−Ĥ−1

2 (τ) V̂2,σ,PM̂
−1
2,σ,R∇θσζ

(
yi+1, X2,i, θ̂2,R,m, θ̂2,R,σ

))))

where εt and ηt are again i.i.d. random variables independent of the data and drawn from distributionsN(0, 1/l).
Under hϵ satisfying hϵ → 0 and Rhϵ → ∞ and the assumptions A.1, A.2, A.4, A.5 and A.6, the results from
Theorem 2 then follow using similar arguments to the proof of Theorem 2.

S.5 Recursive Estimation Scheme

For notational simplicity, consider again the case of quantile regression. Also, for brevity, we outline only the
test statistic for the pairwise comparison and one-sided interval case. The key difference between the fixed and
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the recursive estimation scheme is that for the latter, at each time t ≥ R, we re-estimate the quantile models,
using the newly available data. That is, for t ≥ R, we define:

β̂j,t(τ) = argmin
β∈B

1

t

t∑
s=1

ρτ
(
ys+1 −X ′

j,sβ
)
,

qτ (β̂j,t;Xj,t) = X ′
j,tβ̂j,t(τ). For t ≥ R, the associated conditional coverage is defined as

Ĉr
j,P,t (τ ;Xt)

=
1

Phd

T−1∑
s=R

1

f̂X (Xt)
1
{
ys+1 ≤ qτ (β̂j,t;Xj,t)

}
K

(
Xs −Xt

h

)
.

Letting Êr
j,P,t (τ ;Xt) = Ĉr

j,P,t (τ ;Xt)− τ, define also

Ŝr
P,R (τ) =

1√
P

T−1∑
t=R

L
(
Êr
1,P,t (τ ;Xt)

)
− L

(
Êr
2,P,t (τ ;Xt)

)
, (S.29)

with Xt = X1,t ∪X2,t. Heuristically, in order to obtain the “recursive scheme counterpart” of Theorem 1, we
need to strengthen the statements Lemma Q.1 so that for all τ ∈ T and j = 1, ..., J :

(i∗) supt≥R

∥∥∥β̂j,t(τ)− β
†
j(τ)

∥∥∥ = op(1)

(ii∗) For all t ≥ R, the following linear expansion holds:

1√
P

T−1∑
t=R

(
β̂j,t(τ)− β

†
j(τ)

)
= H−1

j (τ)
1√
P

T−1∑
t=R

1

t

t∑
s=1

X ′
s

(
1
{
ys+1 ≤ X ′

sβ
†
j(τ)

}
− τ
)
+ op(1).

Using the asymptotic linear representation from Theorem 1 in CASE I, we have that

Ŝr
P,R (τ)

=
1√
P

T−1∑
t=R

1{Xt ∈ X}L (C1 (τ ;Xt)− τ)︸ ︷︷ ︸
A1,t(τ)

− 1{Xt ∈ X}L (C2 (τ ;Xt)− τ)︸ ︷︷ ︸
A2,t(τ)



+

 1√
P

T−1∑
t=R

1{Xt ∈ X}∇L (C1 (τ ;Xt)− τ)
(
1{yt+1 ≤ qτ (β

†
1;X1,t)} − Ft+1(qτ (β

†
1;X1,t)|Xt)

)
︸ ︷︷ ︸

B1,t(τ)

− 1√
P

T−1∑
t=R

1{Xt ∈ X}∇L (C2 (τ ;Xt)− τ)
(
1{yt+1 ≤ qτ (β

†
2;X2,t)} − Ft+1(qτ (β

†
2;X2,t)|Xt)

)
︸ ︷︷ ︸

B2,t(τ)



+

Λ1 (τ)H
−1
1 (τ)

1√
P

T−1∑
t=R

1

t

t∑
s=1

X ′
1,s

(
1
{
ys+1 ≤ X ′

1,sβ
†
1,t(τ)

}
− τ
)

︸ ︷︷ ︸
D1,s(τ)

−Λ2 (τ)H
−1
2 (τ)

1√
P

T−1∑
t=R

1

t

t∑
s=1

X ′
2,s

(
1
{
ys+1 ≤ X ′

2,sβ
†
2,t(τ)

}
− τ
)

︸ ︷︷ ︸
D2,s(τ)

+ op(1) (S.30)

with Λj (τ) and Hj(τ), j = 1, 2, defined as the main text. The asymptotic variances of the first two terms on
the RHS of (S.30) are as in the fixed estimation scheme. As for the asymptotic variance of the third term, by
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Lemma A5 in West (1996),

Avar

(
Λ1 (τ)H

−1
1 (τ)

1√
P

T−1∑
t=R

1

t

t∑
s=1

D1,s (τ)− Λ2 (τ)H
−1
2 (τ)

1√
P

T−1∑
t=R

1

t

t∑
s=1

D2,s (τ)

)
= 2ΠΛ1 (τ)H

−1
1 (τ)ΣD1,τD1,τ

H−1
1 (τ)Λ1 (τ) + 2ΠΛ2 (τ)H

−1
2 (τ)ΣD2,τD2,τ

H−1
2 (τ)Λ2 (τ)

−4ΠΛ1 (τ)H
−1
1 (τ)ΣD1,τD2,τ

H−1
2 (τ)Λ2 (τ)

with Π =
(
1− π−1 ln(1 + π)

)
, π = limP,R→∞

P
R , and ΣD1,τD1,τ =

∑∞
i=−∞ E (D1,t(τ)D1,t+i(τ)

′). Also, using
model 1 as an example, by Lemma A6 in West (1996):

Acov

(
Λ1 (τ)H

−1
1 (τ)

1√
P

T−1∑
t=R

(
1

t

t∑
s=1

D1,s (τ)×At (τ)

))
= ΠΛ1 (τ)H

−1
1 (τ)ΣD1,τAτ

with At(τ) = (A1,t(τ)−A2,t(τ)) and ΣD1,τ ,Aτ (τ) =
∑∞

i=−∞ E (D1,t(τ)At+i (τ)) , and

Acov

(
Λ1 (τ)H

−1
1 (τ)

1√
P

T−1∑
t=R

(
1

t

t∑
s=1

D1,s (τ)×Bt(τ)

))
= ΠΛ1 (τ)H

−1
1 (τ)ΣD1,τBτ

with Bt(τ) = (B1,t(τ)−B2,t(τ)) and ΣD1,τBτ =
∑∞

i=−∞ E (D1,t(τ)Bt+i(τ)). Following the proof of Theorem 2
in Corradi and Swanson (2002), we can then modify the wild bootstrap statistic in such a way that it properly
mimics quantile recursive estimation error. That is, let:

Ŝ∗,r
P,R(τ)

=
1√
P

T−lP−1∑
t=R

εt

(
t+lP∑
i=t

((
Â1,P,R,i(τ)− Â2,P,R,i(τ)

)
+
(
B̂1,P,R,i(τ)− B̂2,P,R,i(τ)

)
(S.31)

+
(
ΠΛ̂1,P,R (τ) Ĥ−1

1,P,R(τ)D̂1,P,R,i (τ)−ΠΛ̂2,P,R (τ) Ĥ−1
2,P,R(τ)D̂2,P,R,i (τ)

)))

+(2Π−Π)
1/2 1√

P

T−lP−1∑
t=R

ηt

(
t+lP∑
i=t

(
Λ̂1,P,R (τ) Ĥ−1

1,R(τ)D̂1,P,R,i (τ)− Λ̂2,P,R (τ) Ĥ−1
2,R(τ)D̂2,P,R,i (τ)

))
,

where, for j = 1, 2, the quantities Âj,P,R,i(τ), B̂j,P,R,i(τ), Ĥj,R(τ) and Λ̂j,P,R (τ) are defined as in the main
text, while:

D̂j,P,R,t (τ) = X ′
j,t

(
1
{
yt+1 ≤ X ′

j,tβ̂j,R(τ)
}
− τ
)
.

Importantly, note that in the construction of Âj,P,R,i(τ), B̂j,P,R,i(τ), and D̂j,P,R,t (τ) we just need a consistent

estimator for β†
j(τ), and hence can just use an estimator based only on the first R observations as in the fixed

estimation scheme.
As explained in detail in Corradi and Swanson (2002), the logic underlying Ŝ∗,r

P,R(τ) is the following: The
first three terms on the RHS of (S.31) properly mimic, conditionally on the sample, the limiting behaviour of

Ŝr
P,R(τ) but for the fact that the contribution to the variance of quantile recursive estimation error is multiplied

by Π rather than by 2Π. This is why a correction term is applied to the statistic, namely:

(2Π−Π)
1/2 1√

P

T−lP−1∑
t=R

ηt

(
t+lP∑
i=t

(
Λ̂1,P,R (τ) Ĥ−1

1,R(τ)D̂1,P,R,i (τ)− Λ̂2,P,R (τ) Ĥ−1
2,R(τ)D̂2,P,R,i (τ)

)
.

In addition, note that εt does no longer exclusively multiply the expressions involving Âj,P,R,i(τ) and B̂j,P,R,i(τ),

j = 1, 2, but also the term involving D̂1,P,R,i(τ) and D̂2,P,R,i(τ) to capture the dependence of the parametric
estimation error and the remaining components.
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S.6 Extension to CAViaR Models

Conditional Autoregressive Value-at-Risk (CAViaR) models (Engle and Manganelli, 2004) are a popular choice
to model dynamics in financial data. In this section, we outline how this model type can be accommodated
in our set-up and used for our test(s). In particular, we will exploit the CAViaR representation of the linear
GARCH model and the two-step quantile regression procedure proposed by Koenker and Xiao (2009). To this
end, we focus on a linear GARCH(1,1) for notational simplicity, and drop again the model subscript j. That
is, let:

yt+1 = σt+1ϵt+1,

where ϵt+1 is i.i.d. with mean zero, unknown distribution, and strictly positive density everywhere. The variance
parameter on the other hand is given by:

σt+1 = β0 + β1σt + γ1|yt|. (S.32)

Then, denoting Xt = (1, σt, |yt|), the τ -level quantile of yt conditional on Xt is given by:

qτ (ψ
†;Xt) = σt+1F

−1
ϵ (τ) = (β0 + β1σt + γ1|yt|)F−1

ϵ (τ) = X ′
tθ

† (τ) , (S.33)

with θ†(τ) =
(
(β0, β1, γ1)F

−1
ϵ (τ)

)′
, where Fϵ(·) denotes the marginal cumulative distribution function of ϵt,

and so F−1
ϵ (τ) denotes the τ unconditional quantile of ϵt. Given (S.32) and (S.33), we can now obtain a CAViaR

representation for qτ (ψ
†;Xt) as:

qτ (ψ
†;Xt) = β∗

0(τ) + β1qτ (θ
†;Xt−1) + γ∗

1(τ)|yt| (S.34)

with β∗
0(τ) = β0F

−1
ϵ (τ) and γ∗(τ) = γ0F

−1
ϵ (τ). Note that (S.34) corresponds to the symmetric absolute

value CAViaR representation in Engle and Manganelli (2004, p.369). Also, note that β∗
0(τ) and γ∗(τ) are

quantile-level dependent, while β1 is instead a global parameter, independent of τ . Since qτ (θ
†;Xt) depends

on unknown parameters, we cannot directly estimate β∗
0 , β1, γ

∗ via nonlinear quantile regression. Koenker and
Xiao (2009) suggest a two-step estimating procedure and establish the asymptotic properties of both parameters
and conditional quantiles, respectively. In what follows, we outline the case in which the estimation steps use
only the first R− 1 observations.

Given (S.33) and a set of regularity conditions (see Koenker and Xiao, 2009), σt has an ARCH(∞) repre-
sentation, and

qτ (ψ
†;Xt) = α0 (τ) +

∞∑
j=1

αj (τ) |yt−j | (S.35)

where αj (τ) = αjF
−1
ϵ (τ) and α0 set equal to 1, and with the αj , j = 1, . . ., satisfying certain summability

conditions. In particular, since αj (τ) decays at a geometric rate in j, we can approximate qτ (θ
†;Xt) in Equation

(S.35) with m lags (where m → ∞ at a logarithmic rate). Estimation can then proceed by taking a grid of
quantile ranks τ1, τ2, ..., τK , and by running K separate quantile autoregressions of order m using the truncated
version of Equation (S.35), to get:α̂1,R (τ1) , ..., α̂m,R (τ1)︸ ︷︷ ︸

π̂1,R

, ..., α̂1,R (τK) , ..., α̂m,R (τK)︸ ︷︷ ︸
π̂K,R

 .

Then, letting a = (α1, ..., αm, q1, ..., qK) and φ (a) = (q1, a1q1, . . . , amq1, . . . , qK , a1qK , . . . , amqK), with qj =
F−1
ϵ (τj), compute:

âR = argmin
a

(π̂R − φ (a))
′
AR (π̂ − φ (a)) (S.36)

with AR is a K (m+ 1) ×K(m + 1) weighting matrix, with K and m denoting the number of quantile levels
and the truncation lag, respectively.

Given âR, we can then obtain an estimate for σt, t = R, ..., T as:

σ̂t,R = â0,R (τ) +

m∑
j=1

âj,R (τ) |yt−j |, t = R, ..., T

so that X̂t,R = (1, σ̂t,R, |yt|)′. In the last step, we perform a quantile regression of yt+1 onto X̂t,R to obtain an

estimator of the conditional quantile parameters θ† (τ) as defined in Eq. (S.33):

θ̂R (τ) = argmin
θ

1

R

R−1∑
t=1

ρτ

(
yt+1 − X̂ ′

t,Rθ
)
.
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This in turn provides an estimator of the τ conditional quantile:

q̂τ,R(ψ̂R; X̂t,R) = X̂ ′
t,Rθ̂R (τ) .

For the test and the wild bootstrap statistic, the key difference with respect to “standard” quantile regression
is that we need to take into account also the generated regressor X̂t,R, due to the fact that X̂t,R is an estimator
of Xt since σ̂t+1,R is an estimator of σt.

From the proof of Theorem 1, in CASE I, the first order term of the contribution of parametric quantile
estimation error (in the one sided case) due to one of the models is given by:

1√
P

T−1∑
t=R

1{Xt ∈ X}∇L
(
C
(
ψ†;Xt

)
− τ
)
ft+1

(
qτ

(
ψ†;Xt

)
|Xt

)(
X̂ ′

t,Rθ̂R (τ)−X ′
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† (τ)
)
+ op(1)

=
1√
P

T−1∑
t=R
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(
C
(
ψ†;Xt

)
− τ
)
ft+1

(
qτ

(
ψ†;Xt

)
|Xt

)
X ′

t

(
θ̂R (τ)− θ† (τ)

)
+

1√
P

T−1∑
t=R

1{Xt ∈ X}∇L
(
C
(
ψ†;Xt

)
− τ
)
ft+1

(
qτ

(
ψ†;Xt

)
|Xt

)(
X̂t,R −Xt

)′
θ† (τ)

+Op(smaller order)

Now, under the regularity conditions of Koenker and Xiao (2009), we have from their Theorem 3 that:

√
R
(
θ̂R (τ)− θ† (τ)

)
=

1

fϵ
(
F−1
ϵ (τ)

)H−1 (τ)
1√
R

R−1∑
s=1

Xt1
{
ys+1 ≤ X ′

sθ
† (τ)

}
+H−1 (τ)Ψ

√
R
(
α̂R −α†)+ op(1) (S.37)

where the second component captures the contribution of generated regressors to the asymptotic distribution
with α̂R being a vector of the first m components of âR as defined in (S.36) (α† denotes its population
counterpart), and Ψ an m×m matrix (see Theorem 3 of Koenker and Xiao (2009) for details). Also, from the
proof of Corollary 1 in Koenker and Xiao (2009),

1√
P

T−1∑
t=R

1{Xt ∈ X}∇L
(
C
(
ψ†;Xt

)
− τ
)
ft+1

(
qτ

(
ψ†;Xt

)
|Xt

)(
X̂t,R −Xt

)′
θ† (τ)

=
1√

P
√
R

T−1∑
t=R

1{Xt ∈ X}∇L
(
C
(
ψ†;Xt

)
− τ
)
ft+1

(
qτ

(
ψ†;Xt

)
|Xt

)
(S.38)

×

 0(
|yt| , . . . , |yt−m|

)√
R
(
α̂R −α†)

0

′

θ† (τ) + op(1).

It is immediate from (S.37) and (S.38) that when constructing the wild bootstrap statistic, we would need an
extra term capturing the contribution of (α̂R − αR) .

Given that estimation of CAViaR models is typically implemented using daily observations, and so the
available sample consists of several thousands of observations, it may be more convenient in practice to rely
on subsample based critical values. On the other hand, in the GaR applications we only use few hundreds
observations and so subsampling is not a viable option.
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S.7 Additional Monte Carlo Results

S.7.1 Small Sample Size (T = 120), otherwise same set-up as Main Results

Table S1: Rejection Rates: Pairwise - Single Quantile Level - Small Sample Size (T = 120)

T = 120 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0655 0.0220 0.0520
τ = 0.2 0.0460 0.0105 0.0880
τ = 0.3 0.0435 0.0130 0.1256

l = 2 τ = 0.1 0.0530 0.0235 0.0515
τ = 0.2 0.0480 0.0125 0.1111
τ = 0.3 0.0415 0.0125 0.1326

l = 5 τ = 0.1 0.0430 0.0220 0.0455
τ = 0.2 0.0415 0.0135 0.0900
τ = 0.3 0.0400 0.0105 0.1231

Table S2: Rejection Rates: Pairwise - Multiple Quantile Levels - Small Sample Size (T = 120)

T = 120 DGP1 DGP2 DGP3

l = 1 0.0600 0.0185 0.1721
l = 2 0.0565 0.0185 0.1896
l = 5 0.0475 0.0160 0.1761

Table S3: Rejection Rates: Multiple Models - Multiple Quantile Levels - Small Sample Size (T = 120)

T = 120 DGP1 DGP2 DGP3

l = 1 0.0800 0.0055 0.1676
l = 2 0.0655 0.0060 0.1726
l = 5 0.0575 0.0065 0.1446
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S.7.2 High Time Series Dependence (ρ = 0.7)

Table S4: Rejection Rates: Pairwise - Single Quantile Level - High Time Series Dependence (ρ = 0.7)

T = 240 DGP1 DGP2 DGP3

l = 5 τ = 0.1 0.0645 0.0220 0.1251
τ = 0.2 0.0730 0.0175 0.2051
τ = 0.3 0.0725 0.0170 0.4932

l = 10 τ = 0.1 0.0570 0.0205 0.1071
τ = 0.2 0.0730 0.0175 0.2081
τ = 0.3 0.0595 0.0175 0.4527

l = 20 τ = 0.1 0.0595 0.0170 0.1081
τ = 0.2 0.0555 0.0165 0.2071
τ = 0.3 0.0555 0.0165 0.4187

T = 480 DGP1 DGP2 DGP3

l = 5 τ = 0.1 0.0900 0.0145 0.2576
τ = 0.2 0.0990 0.0220 0.6123
τ = 0.3 0.0900 0.0140 0.9585

l = 10 τ = 0.1 0.0635 0.0135 0.2101
τ = 0.2 0.0795 0.0230 0.6033
τ = 0.3 0.0805 0.0140 0.9390

l = 20 τ = 0.1 0.0710 0.0145 0.1971
τ = 0.2 0.0730 0.0210 0.5013
τ = 0.3 0.0625 0.0115 0.9260

T = 960 DGP1 DGP2 DGP3

l = 5 τ = 0.1 0.1021 0.0085 0.5883
τ = 0.2 0.1281 0.0160 0.9865
τ = 0.3 0.1116 0.0155 1.0000

l = 10 τ = 0.1 0.0840 0.0085 0.5448
τ = 0.2 0.1056 0.0120 0.9850
τ = 0.3 0.0950 0.0145 1.0000

l = 20 τ = 0.1 0.0830 0.0095 0.5273
τ = 0.2 0.0795 0.0135 0.9665
τ = 0.3 0.0780 0.0120 1.0000
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S.7.3 High Time Series Dependence (ρ = 0.9)

Table S5: Rejection Rates: Pairwise - Single Quantile Level - High Time Series Dependence (ρ = 0.9)

T = 240 DGP1 DGP2 DGP3

l = 5 τ = 0.1 0.1436 0.0320 0.1676
τ = 0.2 0.1576 0.0305 0.2391
τ = 0.3 0.1516 0.0260 0.4122

l = 10 τ = 0.1 0.1101 0.0305 0.1471
τ = 0.2 0.1221 0.0320 0.2216
τ = 0.3 0.1306 0.0290 0.3007

l = 20 τ = 0.1 0.1026 0.0340 0.1541
τ = 0.2 0.1026 0.0295 0.2131
τ = 0.3 0.1096 0.0240 0.2166

T = 480 DGP1 DGP2 DGP3

l = 5 τ = 0.1 0.1736 0.0200 0.2591
τ = 0.2 0.1911 0.0265 0.4487
τ = 0.3 0.1826 0.0205 0.8324

l = 10 τ = 0.1 0.1331 0.0170 0.1996
τ = 0.2 0.1441 0.0250 0.4577
τ = 0.3 0.1256 0.0185 0.8229

l = 20 τ = 0.1 0.1146 0.0225 0.1816
τ = 0.2 0.1176 0.0270 0.3607
τ = 0.3 0.1136 0.0175 0.6363

T = 960 DGP1 DGP2 DGP3

l = 5 τ = 0.1 0.1861 0.0150 0.4812
τ = 0.2 0.2161 0.0155 0.8844
τ = 0.3 0.2171 0.0220 0.9985

l = 10 τ = 0.1 0.1476 0.0165 0.3992
τ = 0.2 0.1636 0.0160 0.8379
τ = 0.3 0.1596 0.0210 0.9950

l = 20 τ = 0.1 0.1086 0.0165 0.3247
τ = 0.2 0.1221 0.0150 0.7374
τ = 0.3 0.1211 0.0230 0.9920
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S.7.4 Correlation in Xj,t (ϕ = 0.25)

Table S6: Rejection Rates: Pairwise - Single Quantile Level - Correlation in Xj,t

T = 240 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0685 0.0180 0.1036
τ = 0.2 0.0715 0.0210 0.2351
τ = 0.3 0.0555 0.0125 0.5163

l = 2 τ = 0.1 0.0610 0.0180 0.0840
τ = 0.2 0.0645 0.0125 0.2731
τ = 0.3 0.0565 0.0125 0.4802

l = 5 τ = 0.1 0.0485 0.0165 0.1016
τ = 0.2 0.0475 0.0140 0.2361
τ = 0.3 0.0430 0.0135 0.4877

T = 480 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0625 0.0090 0.2656
τ = 0.2 0.0720 0.0160 0.6823
τ = 0.3 0.0825 0.0145 0.9685

l = 2 τ = 0.1 0.0655 0.0115 0.2341
τ = 0.2 0.0725 0.0150 0.6978
τ = 0.3 0.0790 0.0165 0.9710

l = 5 τ = 0.1 0.0475 0.0095 0.2246
τ = 0.2 0.0610 0.0155 0.7194
τ = 0.3 0.0600 0.0160 0.9680

T = 960 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0770 0.0080 0.6018
τ = 0.2 0.0980 0.0100 0.9915
τ = 0.3 0.0835 0.0175 1.0000

l = 2 τ = 0.1 0.0670 0.0100 0.5773
τ = 0.2 0.0860 0.0165 0.9915
τ = 0.3 0.0780 0.0170 1.0000

l = 5 τ = 0.1 0.0560 0.0095 0.6193
τ = 0.2 0.0770 0.0125 0.9865
τ = 0.3 0.0745 0.0190 1.0000
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S.7.5 No Trimming

Table S7: Rejection Rates: Pairwise - Single Quantile Level - No Trimming

T = 240 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0515 0.0120 0.1196
τ = 0.2 0.0670 0.0130 0.2831
τ = 0.3 0.0480 0.0120 0.5918

l = 2 τ = 0.1 0.0515 0.0115 0.1096
τ = 0.2 0.0570 0.0110 0.3312
τ = 0.3 0.0480 0.0115 0.5343

l = 5 τ = 0.1 0.0445 0.0100 0.1051
τ = 0.2 0.0465 0.0095 0.2731
τ = 0.3 0.0415 0.0115 0.5073

T = 480 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0720 0.0090 0.3327
τ = 0.2 0.0700 0.0100 0.8014
τ = 0.3 0.0730 0.0075 0.9815

l = 2 τ = 0.1 0.0610 0.0100 0.3052
τ = 0.2 0.0720 0.0070 0.7679
τ = 0.3 0.0785 0.0090 0.9705

l = 5 τ = 0.1 0.0415 0.0120 0.3192
τ = 0.2 0.0605 0.0105 0.7734
τ = 0.3 0.0640 0.0075 0.9715

T = 960 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0680 0.0080 0.7489
τ = 0.2 0.0940 0.0115 0.9945
τ = 0.3 0.0915 0.0085 1.0000

l = 2 τ = 0.1 0.0510 0.0080 0.7089
τ = 0.2 0.0785 0.0100 0.9940
τ = 0.3 0.0910 0.0115 1.0000

l = 5 τ = 0.1 0.0470 0.0100 0.6978
τ = 0.2 0.0725 0.0130 0.9925
τ = 0.3 0.0755 0.0130 1.0000
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S.7.6 Fourth-Order Kernel

Table S8: Rejection Rates: Pairwise - Single Quantile Level - Fourth Order Kernel

T = 240 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0595 0.0085 0.1161
τ = 0.2 0.0845 0.0130 0.3132
τ = 0.3 0.0565 0.0095 0.5663

l = 2 τ = 0.1 0.0625 0.0075 0.0970
τ = 0.2 0.0645 0.0115 0.3302
τ = 0.3 0.0620 0.0090 0.5353

l = 5 τ = 0.1 0.0570 0.0100 0.0935
τ = 0.2 0.0585 0.0120 0.2651
τ = 0.3 0.0495 0.0100 0.4962

T = 480 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0880 0.0090 0.3112
τ = 0.2 0.0925 0.0095 0.7889
τ = 0.3 0.0895 0.0155 0.9790

l = 2 τ = 0.1 0.0710 0.0075 0.2901
τ = 0.2 0.0995 0.0105 0.7499
τ = 0.3 0.0990 0.0135 0.9765

l = 5 τ = 0.1 0.0655 0.0090 0.2971
τ = 0.2 0.0705 0.0110 0.7934
τ = 0.3 0.0780 0.0125 0.9765

T = 960 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0750 0.0090 0.7344
τ = 0.2 0.1126 0.0115 0.9960
τ = 0.3 0.0975 0.0165 1.0000

l = 2 τ = 0.1 0.0665 0.0120 0.6233
τ = 0.2 0.0985 0.0150 0.9945
τ = 0.3 0.0915 0.0165 1.0000

l = 5 τ = 0.1 0.0710 0.0135 0.6513
τ = 0.2 0.0830 0.0180 0.9920
τ = 0.3 0.0790 0.0180 1.0000
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S.7.7 Student’s-t Distributed Errors

Table S9: Rejection Rates: Pairwise - Single Quantile Level - Student’s-t Errors

T = 240 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0615 0.0150 0.1031
τ = 0.2 0.0945 0.0145 0.3297
τ = 0.3 0.0915 0.0125 0.6813

l = 2 τ = 0.1 0.0675 0.0150 0.0780
τ = 0.2 0.0870 0.0150 0.2966
τ = 0.3 0.0755 0.0125 0.7044

l = 5 τ = 0.1 0.0500 0.0155 0.0880
τ = 0.2 0.0665 0.0155 0.2996
τ = 0.3 0.0620 0.0145 0.6323

T = 480 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0685 0.0155 0.2736
τ = 0.2 0.0965 0.0145 0.7894
τ = 0.3 0.1006 0.0165 0.9950

l = 2 τ = 0.1 0.0725 0.0135 0.2726
τ = 0.2 0.0895 0.0155 0.7799
τ = 0.3 0.0810 0.0185 0.9915

l = 5 τ = 0.1 0.0610 0.0135 0.2716
τ = 0.2 0.0620 0.0160 0.7659
τ = 0.3 0.0715 0.0200 0.9920

T = 960 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0990 0.0125 0.6413
τ = 0.2 0.1451 0.0055 0.9970
τ = 0.3 0.1436 0.0160 1.0000

l = 2 τ = 0.1 0.1001 0.0105 0.5703
τ = 0.2 0.1311 0.0100 0.9970
τ = 0.3 0.1331 0.0160 1.0000

l = 5 τ = 0.1 0.0805 0.0095 0.5713
τ = 0.2 0.1076 0.0075 0.9950
τ = 0.3 0.1011 0.0165 1.0000
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S.8 Additional Monte Carlo Set-Up

In this section we slightly modify the set-up of the main text so that the DGP for yt+1 only depends on the
variable X1,t and its square:

yt+1 = β1X1,t + β2X
2
1,t + et+1 (S.39)

We also have two other variables, X2,t and X3,t. We generate forecasts using two different linear quantile
models, the first of which uses the set of regressors [X1,t, X2,t]

′ and the second uses [X1,t, X3,t]
′. The models

are overlapping as they both use an irrelevant regressor and only X1,t from both models actually features in the
DGP. They are also mis-specified as the linear quantile model does not capture the non-linearity in the DGP
in (20). This corresponds to the overlapping case discussed in Theorem 1(ii) subcase (b). We will use values of
the parameters in the DGP given by (β1, β2) = (1, 1).

The remainder of the set-up is the basically same as that in the main paper. The predictors are generated as
Xj,t = ρXj,t−1 + vj,t for j = 1, 2, 3 and we set ρ = 0.5. The errors vj,t follow independent normal distributions
with variance equal to 1− ρ2. The error term et+1 in (20) is drawn from a standard normal distribution. The
sample sizes, bootstrap parameters, quantile levels etc. are all exactly as in the main paper.

Table S10 presents the rejection rates for the pairwise single quantile version of the test as in Table 1 of
the main paper. This confirms that the rejection rate approaches zero with the sample size, as predicted by
the results in Theorem 2 of the main paper, for this subcase of Case II where models are overlapping but have
equally incorrect coverage.

Table S10: Rejection Rates: Pairwise - Single Quantile Level

T = 240

l = 1 τ = 0.1 0.0215
τ = 0.2 0.0170
τ = 0.3 0.0120

l = 2 τ = 0.1 0.0195
τ = 0.2 0.0165
τ = 0.3 0.0110

l = 5 τ = 0.1 0.0170
τ = 0.2 0.0185
τ = 0.3 0.0115

T = 480

l = 1 τ = 0.1 0.0165
τ = 0.2 0.0175
τ = 0.3 0.0105

l = 2 τ = 0.1 0.0150
τ = 0.2 0.0185
τ = 0.3 0.0095

l = 5 τ = 0.1 0.0135
τ = 0.2 0.0150
τ = 0.3 0.0095

T = 960

l = 1 τ = 0.1 0.0145
τ = 0.2 0.0155
τ = 0.3 0.0090

l = 2 τ = 0.1 0.0175
τ = 0.2 0.0135
τ = 0.3 0.0085

l = 5 τ = 0.1 0.0165
τ = 0.2 0.0150
τ = 0.3 0.0085
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S.9 Additional Empirical Illustration

In this section we perform a brief additional empirical illustration of our methods in the financial context of
VaR prediction. This allows us to apply our test in a high-frequency data environment and also to use the test
with location-scale type models, the theory for which is developed earlier in this supplementary material. We
focus on the daily returns on the S&P500 index, which was the base series used for the SV variable used in the
GaR application in the main text (see that section for details of the data source). We use daily observations of
the series from 3rd January 2000 to 11th April 2023 which gives a total of T = 5855 observations. The series is
displayed below in Figure 1 which clearly shows the pronounced volatility around the Great Recession and the
shorter period of volatility around the beginning of the Covid-19 period.

Figure 1: S&P500 Daily Returns
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We perform backtests of one day ahead VaR predictions from two classic volatility models, the GARCH(1,1)
model (Bollerslev, 1986) and the exponential GARCH(1,1) model (eGARCH, Nelson, 1991). These models are
very widely used in practice, as well as in similar empirical illustrations of VaR backtesting methods such as in
Escanciano and Olmo (2010). We start making VaR forecasts in 2020 which gives an out-of-sample window of
P = 824, with a large in-sample window of R = 5031 used for estimation. Since R is substantially larger than
P in our application, we ignore the presence of parameter estimation error (PEE) from the parametric GARCH
models which greatly simplifies the bootstrap implementation. Specifically, we construct the bootstrap statistic
using only Âj,R,P,t(τ) and B̂j,R,P,t(τ), j = 1, 2, to capture the contribution of the population coverage error
and the estimation error of conditional coverage, respectively. Indeed, we believe that PEE from the parametric
quantile models is a much more pressing issue in the smaller samples encountered in GaR applications, which we
illustrate in the main text. Since we ignore PEE, the out-of-sample estimation scheme (fixed, rolling, recursive)
is also irrelevant. We therefore use recursive estimation to obtain the VaR predictions which is simple to
implement using the rugarch package in R.

We will implement the test using quantile levels of τ ∈ {0.01, 0.025, 0.05} which are commonly used in the
VaR literature. As in the main paper, we will assess the results of the single-quantile test for these different
quantiles and then look at the multiple quantile test. We will consider lag truncation parameters l ∈ {10, 20, 30},
and otherwise the remainder of the set-up (bootstrap draws, trimming fraction, kernel and bandwidth rules) is
the same as described in the main text.

The results of the pairwise test for a single quantile level are given in Table S11 below, reported for the
three different quantile levels. The GARCH(1,1) model is set to be Model 1 and the eGARCH(1,1) model
is Model 2. The results suggest that, in fact, the standard GARCH(1,1) model has lower coverage error loss
than the eGARCH(1,1) model across all of the three individual quantile levels considered, as evidenced by the
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negative values of the test statistics. In terms of the significance, however, there is no evidence to reject the null
even at the 10% significance level, with the lowest p-value just above 0.3 for the τ = 0.025 quantile level which
has the test statistic furthest from zero. The p-values are very stable across all values of the lag truncation
parameter l. This indicates that there is no statistical evidence that the GARCH(1,1) significantly improves
over the eGARCH(1,1) model. This makes sense when looking at the VaR forecasts themselves (see Figure
2). With the exception of the periods of high volatility, the models produce very similar predictions, like in
the overlapping case, and clearly the small periods of deviation are not enough to drive a rejection of the null
hypothesis. Since the test statistics are all negative at every quantile, the multiple quantile version of the test
with the GARCH(1,1) model as the benchmark has a statistic of 0 as it is given by:

Ŝmax
P,R =

M∑
k=1

(
0,max

{
0, ŜP,R,k

})2
,

and so we are obviously unable to reject the null that the GARCH(1,1) model has equal or superior coverage
error loss than the eGARCH(1,1) across quantiles.

Table S11: GARCH(1,1) vs. eGARCH(1,1) - Pairwise Comparison - Single Quantile Level

Stat p-value

l = 10 τ = 0.01 -0.0074 0.6703
τ = 0.025 -0.0155 0.3482
τ = 0.05 -0.0110 0.4762

l = 20 τ = 0.01 - 0.6793
τ = 0.025 - 0.3382
τ = 0.05 - 0.4512

l = 30 τ = 0.01 - 0.6993
τ = 0.025 - 0.3102
τ = 0.05 - 0.4292

Figure 2: 5% VaR Forecasts - GARCH(1,1) versus eGARCH(1,1) - S&P500 Daily Returns
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