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a b s t r a c t

Ubiquitin-binding modules are constituents of cellular proteins that mediate the effects of ubiqui-
tylation by making transient, non-covalent interactions with ubiquitin molecules. While some ubiq-
uitin-binding modules bind single ubiquitin moieties, others are selective for specific ubiquitin
chains of different linkage types and lengths. In recent years, functions of ubiquitin chains that
are polymerized through their Lys or N-terminal Met (i.e. linear chains) residues have been linked
to a variety of cellular processes. Selectivity of ubiquitin-binding modules for different ubiquitin
chain types appears as a key to the distinct regulatory consequences during protein quality control
pathways, receptor endocytosis, gene transcription, signaling via the NF-jB pathway, and
autophagy.

� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.

1. Introduction

Although, ubiquitin was initially identified in 1978 to be re-
quired for the breakdown of proteins in the proteasome, it is
now widely accepted that this 76-amino-acid residue protein is
implicated in a myriad of biological pathways [1]. Ubiquitin serves
as a post-translational modifier and is involved in the regulation of
a vast array of cellular processes such as cell cycle, endocytosis,
and DNA repair [2–4]. Ubiquitin signals are generated through
covalent attachment of ubiquitin molecules to the target proteins
in a process known as ubiquitylation. The signals are then trans-
mitted by means of the ubiquitin-binding modules that specifically
recognize and transiently bind the ubiquitylated proteins [5]. Ver-
satility of biological functions of ubiquitin is rendered by its ability
to interact non-covalently with a variety of proteins not only as a
single moiety but also as polyubiquitin chains with different types
of linkages and lengths [5,6]. How ubiquitin-binding modules
achieve their specificity toward different ubiquitin species and re-
sult in distinct signaling outcomes are the focuses of this review.

2. Ubiquitylation as a post-translational modification

Ubiquitin is covalently attached to other ubiquitin molecules or
substrate proteins through a sequential enzymatic process known
as ubiquitylation [1]. In this process, ubiquitin is first activated at
the expense of ATP and transferred to the active site Cys residue of

an ubiquitin-activating enzyme (E1) [1]. The activated ubiquitin is
then further transferred to the active site of a family of ubiquitin-
carrier or ubiquitin-conjugating enzymes (E2s) [1]. The final step
is catalyzed by ubiquitin-ligases (E3s) in a way that carboxyl group
of the C-terminal Gly residue of ubiquitin is ligated to the e-amino
group of an internal Lys or a-amino group of the N-terminal Met res-
idue in the target protein [1,7]. Containing seven Lys residues, ubiq-
uitin can form different chains that are linked via its Lys6, 11, 27, 29,
33, 48, and 63 [8]. Alternatively, linear or Met1-linked chains are
polymerized through the N-terminal Met residue of ubiquitin [9,10].

In the same manner as other post-translational modifications
such as phosphorylation and acetylation, ubiquitylation is a revers-
ible process. Ubiquitylation is counter-regulated by the activity of a
superfamily of isopeptidases known as deubiquitylating enzymes
(DUBs) [11]. Different DUBs are classified into five groups among
which are ubiquitin C-terminal hydrolases (UCHs), ubiquitin-spe-
cific proteases (USPs), ovarian tumor proteases (OTUs), Josephin
and JAB1/MPN/MOV34 metalloenzymes (JAMMs) [11]. Coordi-
nated activity of the E3 ubiquitin ligases and DUBs enables tight
regulation of the ubiquitin signaling events.

3. Ubiquitin-binding modules

Ubiquitin-binding modules are specialized domains in larger
proteins in the ubiquitin-signaling network that recognize ubiqui-
tin molecules. These domains are structurally and functionally
diverse reflecting the variety of ubiquitin signals. To date, almost
20 different families of ubiquitin-binding domains (UBDs) are
characterized and the number is expected to grow as greater
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aspects of ubiquitin signaling are discovered. Characteristics of the
UBDs are described in detail elsewhere [5,6].

Based on their structural folds, UBDs are categorized into four
main groups. The largest group includes UBDs that fold into
a-helical structures including UBA (ubiquitin-associated), UIM
(ubiquitin-interacting motif), GAT (GGA and TOM), VHS (Vps27/
Hrs/STAM), CUE (coupling ubiquitin conjugation to ER degrada-
tion), UBM (ubiquitin-binding motif) and UBAN (ubiquitin-binding
domain in ABINs and NEMO). The second largest group of UBDs is
composed of the ones that contain zinc fingers (ZnFs) in their
structures such as NZF (Npl4 ZnF), A20 ZnF domains, ZnF UBP
(ubiquitin-specific processing protease), and UBZ (ubiquitin-bind-
ing ZnF). The other two groups include PH (Plekstrin homology),
and Ubc (ubiquitin-conjugating)-like domains. It has to be noted
that some members of the above mentioned UBD families appear
not to bind ubiquitin [12,13]. This emphasizes the importance of
experimental verification of the modules that are being identified
by motif searching.

4. Specificity of ubiquitin-binding modules for ubiquitin

An important challenge in the field of ubiquitin signaling is to
unravel the mechanisms underlying the specificity of ubiquitin-
binding modules for different ubiquitin species. Thus, great efforts
have been put into understanding the determinants of such speci-
ficity provided by either the ubiquitin-binding modules or ubiqui-
tin species.

Among various polyubiquitin chains, Lys48- and Lys63-linked
types have been the focuses of initial ubiquitin-signaling investiga-
tions [14,15]. However, extensive functional and structural studies
in recent years have manifested larger variety of ubiquitin chains
such as Lys11- and Met1-linked polyubiquitins to be synthesized
in vivo and participate in the biological processes [10,16–19].

So far, there are several factors proposed to determine the spec-
ificity of ubiquitin-binding modules for different ubiquitin species.
From ubiquitin side, overall conformation of the chains including
relative orientation of the ubiquitin moieties in the chain and
extension of the linker regions, as well as the length of ubiquitin
chains are proposed to contribute to their specific recognition by
ubiquitin-binding modules. From UBDs side, multiplicity of the
binding sites, their structural folds and interactions with the resi-
dues forming the linker regions in the ubiquitin chains are defined
as the key determinants for their ubiquitin-binding specificity.

5. Specificity determinants provided by the ubiquitin species

5.1. Structural variability of the ubiquitin chains

Structural studies of ubiquitin chains in the free form or in com-
plex with UBDs have greatly contributed to our understanding of
the specificity of ubiquitin signaling. Solution structure of some
of the ubiquitin chains including Lys63-, Lys48-, Lys11-, Lys6-,
and Met1-linked ubiquitin chains indicate that while diubiquitin
chains that are linked via residues Lys48, Lys11, and Lys6 adopt
compact or closed conformations, Lys63-, and Met1-linked chains
form relatively extended structures [20–24]. It has been also
shown by molecular modeling that overall structure of Lys27-
linked chains is likely to be compact compared to rather elongated
Lys29- or Lys33-linked ubiquitin chains [25]. However, it has to be
taken into account that in spite of the overall rigidity of the ubiq-
uitin structure its C-terminal tail is quite flexible, resulting in the
conformational variability of ubiquitin chains. This feature might
be more pronounced in the case of polyubiquitins, which form less
compact structures such as Met1- or Lys63-linked chains. Solution
structure of Met1-linked diubiquitins indicate both elongated and

compact conformations suggesting that the available crystal struc-
tures are only snapshots of many conformations that this type of
chain may adopt in the free form in solution [21,23,24,26].

Importantly, structural malleability of ubiquitin chains allows a
specific chain type to form distinct conformations upon binding to
ubiquitin-binding modules. For instance, structural study of Lys63-
linked diubiquitins in complex with different UBDs indicates
marked divergence in the overall conformation of this type of
chains (reviewed in [6], Fig. 1). Therefore, it is expected for the
ubiquitin chains with any linkage type to exert some extent of flex-
ibility and adaptation to their binding partners, thus providing
specificity for each individual ubiquitin chain–UBD interaction.

5.2. Length of the ubiquitin chains

To date, the actual length of ubiquitin chains that are involved
in the biological processes is not known and the use of diubiquitins
as the shortest ubiquitin chains with less complexity in production
and interpretation of the results has been more popular for the
purpose of the structural studies. Diubiquitins appear to be the
fundamental units recognized by ubiquitin-binding modules [27]
and they can be purified directly from biological samples [28]
suggesting their activity in vivo. In spite of that, it is likely that
the extracted diubiquitins would be the building blocks of longer
chains or generated by trimming of the chains in cells [28]. More-
over, there are several examples where stronger binding of ubiqui-
tin-binding modules to longer ubiquitin chains is detected [29–32].
It is in general speculated that longer chain length increases the
binding avidity, which in turn compensates for the low affinity
ubiquitin–UBD interactions and might also give rise to the non-
specific UBD–ubiquitin interactions [27]. Nonetheless, higher
affinity for specific chain length could indicate optimal number
of ubiquitins in a chain required for efficient signaling outcomes.
Lys63-linked chains with minimum of three ubiquitins are shown

Distal Ub

TAB2 NZF

Free

AMSH-LP

Rap80

Fig. 1. Structural variability of ubiquitin chains. Superposition of the distal
ubiquitin of Lys63-linked diubiquitin chains in the free form (PDB 2JF5) and in
complex with the TAB2-NZF (PDB 3A9J), Rap80-UIMs (PDB 3A1Q), and AMSH-LP
DUB (PDB 2ZNV). (Distal ubiquitin is indicated as a molecule in a diubiquitin chain
with its C-terminal Gly residue being attached to the next ubiquitin moiety, as
opposed to the proximal ubiquitin with an exposed C-terminal tail.)
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to be potent activators of RIG-I (retinoic-acid-inducible gene-I)
[33]. It is also reported that Lys48-linked tetraubiquitins are re-
quired to achieve efficient proteasomal targeting [14]. Although,
more recent studies reveal that the ubiquitin-based signals for pro-
teasomal degradation are more diverse ranging from monoubiqui-
tins to different ubiquitin chain types, in particular Lys11-linked
chains (reviewed in [18]).

6. Specificity determinants provided by ubiquitin-binding
modules

6.1. Cooperative ubiquitin-binding of multiple UBDs

An important feature of ubiquitin binding modules is that they
often harbor two or more ubiquitin-binding domains. There can be

NZF

K63

NZF core
NZF tail

M1

(a) (b)

(c) (d)

(e) (f)

UIM2 UIM1

UIM2 UIM1

AMSH-LP

UBAN

K63

K48

K63

M1

M1

Fig. 2. Specificity determinants of the UBD–ubiquitin chain interactions. (a and b) Cooperative ubiquitin-binding by the (a) UIMs of Rap80 to Lys63-linked (PDB 3A1Q) and (b)
UIMs of S5a to Lys48-linked diubiquitin chains (PDB 2KDE). (c and d) Multiple ubiquitin-binding by the (c) NZF domain of TAB2 to Lys63-linked (PDB 3A9J) and (d) NZF
domain of HOIL-1L to Met1-linked (PDB 3B08) diubiquitins. (e and f) Recognition of the linker between the two ubiquitins in a (e) Lys63-linked diubiquitins by the AMSH-LP
DUB (PDB 2ZNV) and (f) Met1-linked ubiquitin chains by the UBAN motif of NEMO (PDB 2ZVO). Distal and proximal ubiquitins are shown in blue and pink, respectively.
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included UBDs of the same type such as a few copies of UIM
[34,35], UBA [29,36], or A20 ZF domains [37], or combination of
different domains like UBM-UBZ [38], UIM-VHS [31,39] or UBAN-
ZF domains [32]. Indeed, these UBDs are capable of recognizing
ubiquitin, individually. However, cooperative ubiquitin-binding
of these domains can render selectivity of the adaptor proteins
for specific ubiquitin species. Thus, ubiquitin-binding specificity
of an individual, isolated ubiquitin-binding module may not be
representative of the entire intact binding protein and results of
such investigations should be tested in the context of the full-
length protein. For instance, the tandem UIMs of the Rap80 protein
that is involved in the DNA repair mechanisms are shown to obtain
specificity toward Lys63-linked diubiquitin [34] (Fig. 2a). The two
UIMs of S5a/Rpn10, a proteasomal ubiquitin receptor, bind specif-
ically to Lys48-linked ubiquitin chains [40] (Fig. 2b). Ataxin-3 pro-
tein can recognize both Lys63- and Lys48-linked ubiquitin chains
triggered by the cooperative activity of its two UIMs that are con-
nected by a short and flexible linker [41]. Cooperative binding to
ubiquitin is not confined to the UBDs of a same protein; rather
UBDs from different proteins are shown to simultaneously interact
with distinct surfaces on an ubiquitin molecule. A20-like ZnF (A20
ZnF) of the ubiquitin receptor ZNF216 and UBA domain of the p62
protein, which function in a same biological pathway bind to two
different faces on a monoubiquitin [42]. Although, ubiquitin
appears to have multiple potential binding surfaces, the most
prevalently used surface for interaction with UBDs is a hydropho-
bic patch centered on Ile44 residue [6]. In this example, A20 ZnF
binding site on ubiquitin is centered on Asp58, leaving the Ile44
patch free to interact with p62 UBA domain, thereby making the
system compatible for cooperative binding to a single ubiquitin
without causing steric hindrance [42].

It is likely that in some cases cooperation of UBDs increases affin-
ity of proteins for more variety of ubiquitin chains rather than pro-
viding selectivity toward a specific ubiquitin chain type. All of these
interactions might be relevant in vivo but vary in the sense that they
occur in distinct cell types and are driven by different source of
stimuli. One example would be NEMO protein that is the key regu-
lator of the canonical NF-jB signaling pathway and is proposed to
act as the high affinity receptor for Met1-linked ubiquitin chains
[43]. In addition, the full size NEMO protein including the C-termi-
nal zinc finger domain can also bind Lys11- or Lys63-linked ubiqui-
tin chains [44–46]. These could indicate the contribution of these
ubiquitin chains in the NEMO-related activation of NF-jB signaling
pathway following stimulation in different cell types [43].

6.2. Multiple ubiquitin-binding by a single UBD

Recognition of multiple ubiquitin moieties by an individual
module has also been shown to work as a specificity determinant
for some ubiquitin–UBD interactions. Structural fold and binding
surfaces on these UBDs require unique orientation of the ubiquitins
resulting in selectivity toward a specific ubiquitin chain type. For
instance, the NZF domains of both TAB2 and TAB3 (proteins that
are implicated in activation of the NF-jB pathway) bind preferen-
tially to Lys63-linked ubiquitin chains [47,48]. Although, from both
ubiquitins the Ile44-centered hydrophobic patch is involved in the
interactions with NZF domains, it is shown that such conformation
is uniquely possible only for the Lys63-linked chains [47] (Fig. 2c).
As shown by a recent study, methylation of a Cys residue in NZF
domain of either TAB2 or TAB3 disrupts polyubiquitin recognition
and blocks NF-jB signaling pathway [49]. Another example is
HOIL-1L protein, which is a component of the linear ubiquitin
chain assembly complex (LUBAC) [9]. HOIL-1L recognizes Met1-
linked ubiquitin chains through its NZF domain. Crystal structure
of the NZF domain in complex with Met1-linked diubiquitins

reveals that a helical region that follows NZF domain (indicated
as NZF tail) assists binding of HOIL-1L to the ubiquitin chains
[26] (Fig. 2d). TRABID, the human ovarian tumor (OTU) domain
deubiquitinase (DUB), also acquires selectivity for both Lys29-
and Lys33-linkd diubiquitins through an ankyrin repeat domain
that precedes its A20-like ZF domain [50].

6.3. Recognition of the linker region of ubiquitin chains

As discussed above, ubiquitin chain linkage type determines the
overall conformation of chains and contributes to their specific rec-
ognition by UBDs. Direct interaction of ubiquitin-binding modules
with the linker itself can be the most convincing observation to ex-
plain the ubiquitin chain linkage specificity [21,51]. Structure of
the Zn-dependent AMSH-LP deubiquitinating enzyme (DUB) in
complex with Lys63-linked diubiquitins provided the first evi-
dence for recognition of an isopeptide bond-linked ubiquitin chain
[51] (Fig. 2e). UBAN motif of NEMO (see above) also tightly inter-
acts with the linker region of Met1-linked diubiquitins in a way
that mutation of a single residue from UBAN that contacts the
diubiquitin linker can abolish its binding to the ubiquitin chains
[21] (Fig. 2f).

7. Affinity of ubiquitin-binding modules for ubiquitin

Affinity of ubiquitin-binding modules for ubiquitin is generally
low [5]. In fact, weak and transient interaction of ubiquitin with
proteins is the basis for rapid and timely regulation of cellular
pathways by the ubiquitin signaling. Nonetheless, in order to pro-
duce specific signals biological system employs several strategies
to amplify the ubiquitin-binding effects including increased avid-
ity, contribution of UBD-independent sequences, posttranslational
modifications like phosphorylation and conformational changes
following the UBDs–ubiquitin interactions. These factors create
environments in which the effective affinity and selectivity of
ubiquitin–UBD interactions are functionally relevant in the context
of a living cell.

Regardless of interacting with ubiquitin as a single molecule or
chains, some UBDs bind more than one copy of these ubiquitin spe-
cies. The binding mode for such multiple interactions is usually
identical since UBDs employ essentially similar surfaces for bind-
ing to ubiquitin. The double-sided ubiquitin-binding of Hrs UIM
[52] and dimerization of NEMO UBAN [21] are examples of this
mechanism. Hrs protein is implicated in the endocytic sorting of
the monoubiquitinated membrane proteins [53]. It binds two
mono-ubiquitins on either sides of the a-helix and the key inter-
acting residues are repeated along the UIM but shifted by two res-
idues [52]. Dimerization of UBAN motif also allows NEMO (see
above) to accommodate two Met1-linked diubiquitins on either
side of the coiled-coil structure [21]. In both examples, the two-
sided ubiquitin-binding is required for efficient activity of the pro-
teins [21,52].

Modification of ubiquitin-binding modules by phosphorylation
has been recently identified to increase their affinity for ubiquitin.
For instance, phosphorylation of Ser403 in the UBA domain of p62/
SQSTM1 that regulates selective autophagy of ubiquitylated pro-
teins results in a significant increase in its affinity for polyubiquitin
chains [54]. Conversely, binding to ubiquitin by Syntenin-1 that is
involved in the trafficking of trans-membrane proteins is inhibited
by phosphorylation [55]. Altogether, since phosphorylation as a
reversible post-translational modification takes part in the
regulation of various biological pathways; it is also expected to
be involved in regulation of the wider range of the UBD–ubiquitin
interactions.
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8. Conclusions and future perspectives

Major challenges in ubiquitin-signaling field deal with the
understanding of multimeric interactions between ubiquitin sig-
nals and their binding partners under physiological conditions.
There are clearly many factors that determine specificity of inter-
actions between ubiquitin-binding modules and ubiquitin species
in the cells and their so-called ‘‘in vivo affinity’’ remains elusive.
Often we extrapolate on more complex interactions by relying on
the knowledge based on in vitro biophysical affinity measure-
ments, with the use of isolated ubiquitin-binding domains and
ligands. These parameters, even though very valuable, do not
always reflect the biological conditions. Therefore, the major input
in the field will come from development of methods that help to
monitor dynamics and interactions between ubiquitinated sub-
strates and effectors mediating signaling pathways, in vivo. Recent
advances in mass spectroscopy technique [56], use of ubiquitin
chain-specific antibodies, and development of ubiquitin sensors
[57] provide promising avenues for future research in the complex
networks of ubiquitin signaling pathways [20].
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