Analysis of fatty acid metabolism using Click-Chemistry and HPLC-MS

Alexander J. Pérez and Helge B. Bode
-Supporting Information-

Contents

Experimental section Page S2
Supplementary figures Page S9
NMR spectra Page S13

Experimental section

General procedure for the synthesis of azido fatty acids (2a,b,c,d,e,f,h)

Scheme S1. Synthesis of azido fatty acids.

All azido fatty acids were synthesized in the same way with slightly differing starting amounts. The general procedure of the reaction of the corresponding bromide with 3 equivalents of sodium azide is exemplified for the synthesis of 16 -azidohexanoic acid (1h):

16-Azidohexadecanoic acid (2h)

To a solution of 16-bromohexadecanoic acid ($1.5 \mathrm{~g}, 4.47 \mathrm{mmol}$) in 10 mL dry DMF, sodium azide ($872 \mathrm{mg}, 13.4 \mathrm{mmol}, 3$ eq.) was added and stirred for 44 h at $60{ }^{\circ} \mathrm{C}$. Subsequently the solvent was evaporated and 50 mL of aqueous HCl were added. The raw product was extracted three times with 30 mL of EtOAc, the organic fractions were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification was conducted by column chromatography on silica, eluting with Hexane to Hexane/EtOAc (1:1), giving the product as a white solid ($1.06 \mathrm{~g}, 3.55 \mathrm{mmol}, 79 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 1.15-1.43 (m, 22H), 1.49-1.69 (m, 4H), 2.33 (t, J = 7.5 Hz, 2H), $3.23(t, J=6.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.7,26.7,28.1,29.0,29.1,29.2,29.4,29.5,29.5$, 29.6, 29.6, 29.6, 29.6, 34.0, 51.5, 180.0.

12-Azidododecanoic acid (2f)

Yield: $723 \mathrm{mg}, 3.0 \mathrm{mmol}, 84 \% .^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.15-1.41(\mathrm{~m}, 14 \mathrm{H})$, 1.49-1.69 (m, 4H), $2.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=24.6,26.7,28.8,29.0,29.1,29.2,29.3,29.4,29.4,34.0,51.5,180.2$.

11-Azidoundecanoic acid (2e)

Yield: $462 \mathrm{mg}, 2.03 \mathrm{mmol}, 54 \% .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.19-1.41(\mathrm{~m}, 12 \mathrm{H})$, 1.48-1.68 (m, 4H), $2.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 11.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=24.6,26.4,28.8,29.0,29.0,29.1,29.2,29.3,34.0,51.4$, 180.2.

10-Azidodecanoic acid (2d)

Yield: $608 \mathrm{mg}, 2.85 \mathrm{mmol}, 72 \% .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.15-1.38(\mathrm{~m}, 10 \mathrm{H})$, 1.45-1.64 (m, 4H), 2.28 (t, J = 7.5 Hz, 2H), $3.19(t, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} N \mathrm{NR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=24.4,26.5,28.6,28.8,28.9,28.9,29.0,33.9,51.4,180.2$.

6-Azidohexanoic acid (2c)

Yield: $856 \mathrm{mg}, 5.46 \mathrm{mmol}, 71 \% .^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.32-1.45(\mathrm{~m}, 2 \mathrm{H})$, 1.49-1.71 (m, 4H), $3.32(t, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=24.0,26.0,28.4,33.7,51.0,179.9$.

5-Azidopentanoic acid (2b)

Yield: $332 \mathrm{mg}, 3.1 \mathrm{mmol}, 37 \% .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.51-1.76(\mathrm{~m}, 4 \mathrm{H})$, $2.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=21.7,28.0,33.3,50.9,179.6$.

4-Azidobutanoic acid (2a)

Purification gave 34 mg of a mixture of γ-butyrolactone and 2a with a ${ }^{1} \mathrm{H}$ NMR integral ratio of 31% to 69%. The mixture was used directly for the formation of $\mathbf{3 a} / \mathbf{4 a}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.88$ (quin, $\mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.44(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.34(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=23.9,30.8,50.4,178.3$.
γ-Butyrolactone: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.15-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.52(\mathrm{~m}, 2 \mathrm{H})$, $4.32(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=22.1,27.8,68.6,178.0$.

Synthesis of the TDAC

Scheme S2. Three step synthesis of TDAC.

Three step synthesis of TDAC. (a) 1. MeOH, RT, 5h, 2. NaBH_{4} (1.7 eq.), $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (b) Succinic anhydride (2 eq.), $\mathrm{NEt}_{3}(1.5 \mathrm{eq}$.$) , DMAP (0.1 \mathrm{eq}$.), DCM, RT, 20h. (c) 1. Tetrachlorocyclopropene (1.01 eq.), AlCl_{3} (3.8 eq .), DCM, $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}, 2 \mathrm{hv}, \mathrm{MeCN}$, 24h.

3,4,5-Trimethoxy-N-(3-methoxybenzyl)aniline (6)

3,4,5-Trimethoxyaniline ($3.0 \mathrm{~g}, 16.4 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-methoxybenzaldehyde (2.0 $\mathrm{mL}, 16.4 \mathrm{mmol}, 1 \mathrm{eq}$) were stirred for 3.5 h in dry Methanol, before the solution was cooled to $0^{\circ} \mathrm{C}$ and sodium borohydride ($930 \mathrm{mg}, 24.6 \mathrm{mmol}, 1.3 \mathrm{eq}$) was added carefully. When gas formation ceased after 30 min of stirring at room temperature, the reaction was quenched by addition of 40 mL 1 M NaOH and extracted three times with 50 mL of $\mathrm{Et}_{2} \mathrm{O}$. The organic phases were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated, giving the product as a yellow solid (4.63 $\mathrm{g}, 15.3 \mathrm{mmol}, 93 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, 3H), 4.24 (s, 2H), 5.85 (s, 2H), 6.79 (ddd, J = $8.4 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (t, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=48.8,55.1,55.8,60.9,90.6,112.6,113.1$, 119.7, 129.6, 130.2 141.0, 144.9, 153.9, 159.9.

4-((3-Methoxybenzyl)(3,4,5-trimethoxyphenyl)amino)-4-oxobutanoic acid (7)

To a solution of $6(4.49 \mathrm{~g}, 14.8 \mathrm{mmol})$ and succinic anhydride ($2.96 \mathrm{~g}, 29.6 \mathrm{mmol}, 2$ eq) in dry DCM 4-(dimethylamino)-pyridine ($180 \mathrm{mg}, 1.5 \mathrm{mmol}, 0.1 \mathrm{eq}$) and triethylamine ($3.1 \mathrm{~mL}, 22.2 \mathrm{mmol}, 1.5 \mathrm{eq}$) were added and stirred at room temperature. The solution turned dark after 1 h and the reaction was quenched by the addition of 60 mL of 1 M NaOH after 24 h . After 15 fore minutes of stirring, the solution turned to a brownish color, after which the solution was acidified with 50 mL of 1.8 M HCl and extracted twice with 50 mL CHCl 3 . The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents the product was purified by column chromatography on silica, eluting with Hexane to Hexane/EtOAc (1:1), giving the product as a brown solid ($5.06 \mathrm{~g}, 12.6 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.43(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.68(m, 6H), 3.73 (s, 3H), 3.82 (s, 3H), 4.79 (s, 2H), 6.17 (s, 2H), 6.74-6.79 (m, 3H), $7.16(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=29.0,29.5,53.1,55.2,56.1$, $60.8,105.7,113.2,114.3,121.3,129.3,137.1,137.9,138.9,153.5,159.6,171.7$, 177.3.

Oxo(1,2,3,8-tetramethoxy-11,12-didehydrodibenzo[b,f]azocin-5(6H)-yl)butanoic acid (1)

$7(4.91 \mathrm{~g}, 12.2 \mathrm{mmol})$ was dissolved in 80 mL of dry DCM and cooled to $-80^{\circ} \mathrm{C}$ while a portion of aluminium chloride ($1.79 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.1 \mathrm{eq}$) was suspended in a separate flask in dry DCM and tetrachlorocyclopropane ($1.49 \mathrm{~mL}, 12.3 \mathrm{mmol}, 1.01$ eq) was added. The suspension was diluted with 20 mL of dry DCM and stirred for 10 minutes. Aluminium chloride ($4.41 \mathrm{~g}, 33.1 \mathrm{mmol}, 2.7 \mathrm{eq}$) was added at $-80^{\circ} \mathrm{C}$ to the solution of $\mathbf{2}$ before the activated tetrachlorocyclopropane suspension was added by syringe, leading to gas formation. After 3h the reaction mixture was allowed to slowly reach room temperature and stirring was continued for 12 h . The reaction was quenched carefully at $0^{\circ} \mathrm{C}$ by addition of 130 mL of 1 M HCl . The clear solution was extracted three times with $50 \mathrm{mLCHCl}{ }_{3}$ and the combined organic phases washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated. The raw product was purified by column chromatography on silica, eluting with CHCl_{3} to $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$,
giving the cyclopropenone precursor as 1.4 g of a green solid, consisting of a mixture of isomers. The precursor was subsequently dissolved in 31 mL ACN and irradiated with UV light for 24 h to give the desired cyclooctyne. The progress of the quantitative photoreaction was monitored by HPLC-MS. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): ~ \delta=2.27-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, 2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=29.8,30.1,56.2,56.5,57.1,61.5,61.5,105.4,109.1,111,0113.5$, $115.6,116.2,119.7,127.1,141.9,148.1,151.0,151.2,154.6,160.2,172.9,174.2$. ESI-MS: $m / z=426.1[\mathrm{M}+\mathrm{H}]^{+}, 448.1[\mathrm{M}+\mathrm{Na}]^{+}, 872.8[2 \mathrm{M}+\mathrm{Na}]^{+}$. MALDI-HR-MS: calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{7} 425.14690$, found 425.14674 as $[\mathrm{M}]^{+}$.

Scheme S3. Synthesis of 15-azidopentadecanoic acid by hydrolysis of pentadecanolide, subsequent bromination of the hydroxy fatty acid and final azidation.

1. $\mathrm{KOH} / \mathrm{MeOH}$
2. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{DCM}$
$\xrightarrow[\text { 3. } \mathrm{NaN}_{3}, \mathrm{DMF}]{\longrightarrow}$

15-Azidopentadecanoic acid (2g)

Pentadecanolide ($4.0 \mathrm{~g}, 16.6 \mathrm{mmol}$) was dissolved in a mixture of 200 mL MeOH and $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ to which potassium hydroxide ($3.7 \mathrm{~g}, 66.6 \mathrm{mmol}, 4 \mathrm{eq}$) were added. The solution was stirred for 72 h , after which it was acidified with 70 mL of 1 M HCl and extracted 5 times with 50 mL EtOAc. The organic fractions were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated, giving 4.14 g of a white solid which consisted almost entirely of the hydrolysis product as confirmed by TLC. A part of the raw product ($1.0 \mathrm{~g}, 3.87 \mathrm{mmol}$) and triphenylphosphine ($1.05 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.05 \mathrm{eq}$) were then dissolved in 20 mL dry DCM before tetrabromomethane ($1.33 \mathrm{~g}, 4.0 \mathrm{mmol}$, $1.05 \mathrm{eq})$ was added. The reaction mixture was stirred at room temperature for 46 h before the mixture was diluted with $10 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and 20 mL of citric acid solution (20\%) were added. The bromination product was extracted three times with 30 mL EtOAc and once with 30 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated, giving the bromination product as a white solid ($977 \mathrm{mg}, 3.04 \mathrm{mmol}, 1 \mathrm{eq}$). NMR analysis showed sufficient product purity for direct use in the following substitution step. The bromide was dissolved in 10 mL dry DMF, then sodium azide ($593 \mathrm{mg}, 9.1 \mathrm{mmol}$) was added and stirred for 6 h at $60{ }^{\circ} \mathrm{C}$. Subsequently the solvent was evaporated and 30 mL of aqueous HCl were added. The raw final product was extracted from the aqueous phase three times with 30 mL of EtOAc, the organic fractions were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification was conducted by column chromatography on silica, eluting with Hexane to Hexane/EtOAc (1:1), giving the product as a white solid (295 mg, $0.92 \mathrm{mmol}, 6 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)^{2} \delta=1.17-1.39(\mathrm{~m}, 20 \mathrm{H}), 1.53-1.65(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 2 H), $3.23(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=24.7,26.7,28.8$, 29.0, 29.1, 29.2, 29.4, 29.5, 29.5, 29.5, 29.6, 29.6, 34.0, 51.5, 180.0 .

General procedure for the synthesis of azido fatty acid SNAC esters

The two azidoacyl-SNACs were synthesized in the same way with equal molar quantities. The general procedure of the reaction of the corresponding AFA with NAC is exemplified for the synthesis of S-(5-Azidopentanoyl)- N-acetylcysteamine (5a):

S-(5-Azidopentanoyl)-N-acetylcysteamine (5a)

To a solution of $\mathbf{2 b}$ ($200 \mathrm{mg}, 1.27 \mathrm{mmol}, 1$ eq.) in 10 mL of dry DCM 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride ($280 \mathrm{mg}, 1.46 \mathrm{mmol}, 1.15 \mathrm{eq}$.) and hydroxybenzotriazole ($172 \mathrm{mg}, 1.27 \mathrm{mmol}$, 1 eq.) were added at $0{ }^{\circ} \mathrm{C}$, before N acetylcysteamine ($212 \mathrm{mg}, 1.78 \mathrm{mmol}, 1.4$ eq.) was added by syringe. After stirring for 1 h the reaction mixture was allowed to reach room temperature and was stirred for another 3 h . The reaction was quenched by addition of 20 mL of 1 M HCl and the product was extracted three times with DCM. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated and the raw product was purifiedby
column chromatography on silica, eluting with Hexane to Hexane/EtOAc (1:1), giving 5a as colorless liquid ($102 \mathrm{mg}, 0.42 \mathrm{mmol}, 42 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.53(\mathrm{tt}, \mathrm{J}=8.2 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{tt}, \mathrm{J}=7.8 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.10(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=22.6,23.0,27.9,28.4,39.4,43.2$, 50.8, 170.3, 199.1.

S-(6-Azidohexanoyl)- N -acetylcysteamine (5b)

Yield: $127 \mathrm{mg}, 0.49 \mathrm{mmol}, 39 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30-1.38(\mathrm{~m}, 2 \mathrm{H})$, 1.53 (quin. $J=7.0,2 H$), 1.62 (quin., $J=7.6 \mathrm{~Hz}, 2 H$), $1.90(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 2 H), $2.95(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.24$ (br, 1H); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=22.9,24.9,25.8,28.3,28.3,39.4,43.6,51.0$, 170.4, 199.4.

Supplementary figures

Figure S1. (A) EIC of reactants 1 (as $[\mathrm{M}+\mathrm{H}]^{+}$) and $\mathbf{2 e}$ (as $[\mathrm{M}-\mathrm{H}]^{-}$, peak amplified 1000 -fold for better visibility) in comparison with the EIC of the clicked product (3e/4e) after the reaction, showing a significant increase in signal strength. (B) MS^{2} Fragmentation pattern of click products $\mathbf{3 h}$ and $\mathbf{4 h}: m / z[M+H]^{+}=723.3$.

Figure S2. Central steps of fatty acid elongation and degradation in E. coli.

3/4d,f,i,I

8a-d

9a-d

n			
5	$3 / 4 i$	$8 a$	9 a
7	$3 / 4 \mathrm{~d}$	8 b	9 b
9	$3 / 4 \mathrm{f}$	8 c	9 c
11	$3 / 41$	$8 d$	9 d

Figure S3. EICs of various clicked degradation products of 2h. 3-Keto-AFAs (detected as 8a-d, red) and to a lesser degree 3-hydroxy-AFAs (detected as 9a-d, blue) can be detected at high concentration of the corresponding AFAs 2i, 2d, 2f and $\mathbf{2 1}$. Either of the two regioisomers is assumed to attribute to the detected masses.

Figure S4. Relative abundance of $\mathbf{2 h}$ degradation products when fed to fadE-mutant. All degradation products remain below detectable levels due to inhibition of FA degradation.

Figure S5. EICs of various clicked degradation products of $\mathbf{2 g}$ (blue) 2 h after feeding it to E. coli DH 10 B wildtype, indicating the formation of $\mathrm{C}_{13^{-}}$(green), $\mathrm{C}_{11^{-}}$(orange) and C_{9}-AFA (red).

NMR Spectra

