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The width of the ω meson in cold nuclear matter is computed in a hadronic many-body approach, fo-
cusing on a detailed treatment of the medium modifications of intermediate πρ states. The π and ρ
propagators are dressed by their self-energies in nuclear matter taken from previously constrained many-
body calculations. The pion self-energy includes Nh and �h excitations with short-range correlations,
while the ρ self-energy incorporates the same dressing of its 2π cloud with a full 3-momentum de-
pendence and vertex corrections, as well as direct resonance-hole excitations; both contributions were
quantitatively fit to total photo-absorption spectra and π N → ρN scattering. Our calculations account for
in-medium decays of type ωN → π N(∗),ππ N(�), and 2-body absorptions ωN N → N N(∗),π N N . This
causes deviations of the in-medium ω width from a linear behavior in density, with important contribu-
tions from spacelike ρ propagators. The ω width from the ρπ cloud may reach up to 200 MeV at normal
nuclear matter density, with a moderate 3-momentum dependence. This largely resolves the discrepancy
of linear T –� approximations with the values deduced from nuclear photoproduction measurements.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The low-mass vector mesons ρ , ω and φ play a special role in
the study of hot and dense nuclear matter, as their dilepton de-
cay channel (l+l−) provides a pristine window on their in-medium
properties. This feature has been extensively and successfully ex-
ploited in the measurement of dilepton spectra in heavy-ion colli-
sions [1–3]. In these reactions, the thermal emission of low-mass
dileptons is dominated by the ρ meson, due to its much larger
dilepton width compared to the ω, Γρ→ll � 10Γω→ll . Dilepton data
from the SPS and RHIC can now be consistently understood by a
strong broadening (“melting”) of the ρ meson, as computed from
hadronic many-body theory in the hot and dense system [4,5]. This
approach also yields a good description [6,7] of the ρ broadening
observed in nuclear photoproduction, if the data are corrected with
absolute background determination [8,9]. As a further test of the
validity and generality of the hadronic in-medium approach, the ω
meson, as the isospin zero pendant of the ρ , is a natural candidate.

The small dilepton decay width of the ω led the CB-TAPS Col-
laboration to pursue the π0γ decay channel in photon-induced
production off nuclei. Early results for invariant-mass spectra re-
ported significant downward mass shifts [10], seemingly in line
with proton-induced dilepton production off nuclei [11]. However,
with improved background determination these results were not
http://dx.doi.org/10.1016/j.physletb.2013.12.056
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
confirmed [12,13], leaving no evidence for a mass drop. As an al-
ternative method, absorption measurements have been performed
for φ and ω mesons in e+e− [14,15] and π0γ [16] channels.
These data are not directly sensitive to possible mass shifts, but
they can be used to assess the in-medium (absorptive) widths. For
both φ and ω, large in-medium widths have been deduced, e.g.,
Γ med

ω � 130–150 MeV [16], or even above 200 MeV [15], for the ω
at normal nuclear matter density. These values exceed the free ω
width by a factor of ∼20, posing a challenge for theoretical models
[17–25].

Most of the calculations thus far are based on the so-called
T –� approximation, where the in-medium ω self-energy is com-
puted from the vacuum scattering amplitude and therefore de-
pends linearly on nuclear density, �N (see, however, Refs. [26,27]).
In the present work we go beyond this approximation by simulta-
neously dressing the π and ρ propagators in the πρ loop of the
ω self-energy. In the vacuum, the ω decay into πρ has a nominal
threshold of mπ + mρ � 910 MeV and only proceeds through the
low-mass tail of the ρ resonance, which is suppressed and possibly
responsible for the small width of Γω→3π � 7.5 MeV. A broaden-
ing of the ρ in the medium enhances this decay channel, further
augmented if the pion is dressed as well. This is a key point we
aim to convey and elaborate quantitatively in this Letter by utiliz-
ing realistic in-medium π and ρ propagators.
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by

http://dx.doi.org/10.1016/j.physletb.2013.12.056
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.physletb.2013.12.056
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2013.12.056&domain=pdf


68 D. Cabrera, R. Rapp / Physics Letters B 729 (2014) 67–71
Our Letter is organized as follows. In Section 2 we set up the
ω → πρ self-energy in vacuum (Section 2.1) and discuss the im-
plementation of the π and ρ propagators in nuclear matter (Sec-
tion 2.2). In Section 3 we quantitatively evaluate the consequences
of the in-medium propagators on the density and 3-momentum
dependence of the ω width. We summarize and give an outlook in
Section 4.

2. ω self-energy

2.1. ω width in vacuum

In vacuum we describe the coupling of the ω to a pion and a
ρ meson with the chiral anomalous interaction Lagrangian intro-
duced, e.g., in the work by Jain et al. [28],

Lint
ωρπ = gωρπεμνστ ∂μων∂σ �ρτ · �π. (1)

The value of the coupling constant, gωρπ , determines the partial
decay width Γω→ρπ and will be discussed below. A straightfor-
ward application of Feynman rules for the πρ loop yields the
polarization-averaged self-energy of an ω of 4-momentum P =
(P 0, �P ) as

−iΠω(P ) = IF
1

3

∑
λ,δ

εν
λ (P )εν ′

δ (P )igωρπ igωρπεμναβεμ′ν ′α′β ′

×
∫

d4q

(2π)4
Pμqα Pμ′

qα′
iDββ ′

ρ (q)iDπ (P − q), (2)

where the isospin factor IF = 3 accounts for the different πρ
charge states. Using standard representations of the polarization

sum and of the spin-1 ρ propagator, Dββ ′
ρ , which we decompose

in transverse (T ) and longitudinal (L) modes [29], one finds

−iΠω(P ) = −4

3
IF g2

ωρπ

∫
d4q

(2π)4
Dπ (P − q)

{
v1(q, P )DT

ρ(q)

+ v2(q, P )
[

DT
ρ(q) − D L

ρ(q)
]}

(3)

where Dπ (P −q) = 1/[(P −q)2 −m2
π −Ππ ] and DT ,L

ρ (q) = 1/[q2 −
M2

ρ − Π
T ,L
ρ ] are the scalar parts of the meson propagators with

complex self-energies. The two vertex functions arise from the
Lorentz contractions with the T and L projectors of the ρ prop-
agator, v1(q, P ) = P 2q2 − (Pq)2 and v2(q, P ) = q2(�P 2 − �P · �q/�q2)/2.
The above expression is valid both in vacuum and in medium and
incorporates the ω 3-momentum dependence. Using the Lehmann
representation for the propagators one finds

Πω(P ) = −2
4

3
IF g2

ωρπ

∞∫

0

dω

∞∫

0

dω′ ω + ω′

(P 0)2 − (ω + ω′)2 + iη

×
∫

d3q

(2π)3
Sπ

(
ω′, �P − �q){

v1(q, P )S T
ρ(q)

+ v2(q, P )
[

S T
ρ(q) − S L

ρ(q)
]}

q0=ω
(4)

with S T ,L
ρ = − 1

π Im DT ,L
ρ , Sπ = − 1

π Im Dπ denoting the ρ and π
spectral functions, respectively. The ω width follows from the
imaginary part of the self-energy as Γω→ρπ (P ) = − Im Πω(P )/P 0.
In vacuum, free spectral functions for the pion and the ρ meson
are utilized,

Svac
π

(
ω′, �q) = δ

(
ω′ 2 − �q2 − m2

π

)
,

Svac
ρ (ω, �q) = − 1

π

Im Πvac
ρππ (q2)

|ω2 − �q2 − M2 − Πvac (q2)|2 . (5)

ρ ρππ
The ρ → ππ self-energy is often approximated by reabsorbing the
real part into the physical ρ mass, m2

ρ ≡ M2
ρ − ReΠvac

ρππ , and an
imaginary part

Im Πvac
ρππ

(
q2) = − g2

ρππ

48π
√

q2

(
q2 − 4m2

π

) 3
2 Θ

(
q2 − 4m2

π

)
(6)

with gρππ � 6 to obtain Γρ→ππ = − ImΠvac
ρππ (q2 = m2

ρ)/mρ �
150 MeV. Here, we use the microscopic vacuum spectral func-
tion underlying our in-medium model [29], which describes the
low-mass tail of the ρ resonance more accurately, incorporating
an energy dependence of ReΠvac

ρππ . With gωρπ = 1.9/ fπ ( fπ =
92 MeV) [28,30], one obtains Γω→ρπ = 3.6 MeV, i.e., about 1/2 of
the total 3π width (2/3 when including interference effects [31]).
Using a schematic Breit–Wigner ρ spectral function, Γω→ρπ (mω)

is reduced by approximately 30%. In Ref. [31] the partial πρ width
was found to be 2.8 MeV. Rescaling our gωρπ to obtain that value
would entail an according 22% reduction of our in-medium widths
reported below. Some of this would be recovered by medium ef-
fects of the accompanying increase in the direct 3π channel.

2.2. ρ and π propagators in nuclear matter

Before proceeding to calculate the ω meson width in nuclear
matter caused by the dressing of the propagators in the πρ loop,
Γ med

ω→πρ , two comments are in order.
We first note that the unnatural-parity coupling in the ωρπ

Lagrangian (1) implies transversality of any contribution to the
ω self-energy with at least one ωρπ vertex with an external ω
[26]. Thus, in-medium vertex corrections, as required to ensure
transversality for the pion cloud of the ρ meson [29,32,33] (or
chiral symmetry in the σ channel [34]), are not dictated here, but
correspond to contributions to ωN → π N,ππ N scattering unre-
lated to the anomalous decay process. We will not include these
in the present work.

Second, at finite 3-momentum relative to the nuclear medium,
the ρ propagator splits into transverse and longitudinal modes. At
�P = �0, the ω self-energy only depends on the transverse modes of
the ρ , since the vertex function v2 in Eq. (3) vanishes. However,
for �P 
= �0, v2 becomes finite and proportional to S T

ρ − S L
ρ . This

contribution turns out to be appreciable due to the splitting of the
in-medium T and L modes of the ρ [29] within the kinematics of
the ω → ρπ decay.

Let us turn to briefly reviewing the main ingredients to the
evaluation of Γ med

ω→πρ from Eq. (4), which are the microscopic cal-
culations of the in-medium pion and ρ propagators.

The pion spectral function is evaluated with standard P -wave
nucleon–hole (N N−1) and Delta–hole (�N−1) excitations [35,36].
The corresponding irreducible P -wave pion self-energy,

Ππ

(
q0, �q;�)

= (
f N

mπ
)2 Fπ (�q2)�q2[U N N + U�N − (g′

11 − 2g′
12 + g′

22)U N N U�N ]
1 − (

f N
mπ

)2[g′
11U N N + g′

22U�N − (g′
11 g′

22 − g′ 2
12)U N N U�N ] ,

(7)

is given by the Lindhard functions Uα for the loop diagrams [37];
they include transitions between the two channels through short-
range correlations represented by Migdal parameters g′ . The π N N
and π N� coupling constants, f N � 1 and f�/ f N � 2.13 (absorbed
in the definition of U�N ), are determined from pion–nucleon and
pion–nucleus reactions. Finite-size effects on the π N N and π N�

vertices are simulated via hadronic monopole form factors,

Fπ

(�q2) = Λ2
π/

(
Λ2

π + �q2). (8)
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Fig. 1. Left: differential decay momentum distribution of the ω → ρπ width (for mω = 782 MeV) in vacuum (dotted line) and at saturation density when dressing either the
pion (short-dashed line) or the ρ (long-dashed line), or both (dash-dotted line), without spacelike ρ modes. The solid line includes spacelike ρ ’s, where the two maxima
beyond q � 0.4 GeV correspond to �N−1 and N N−1 excitations (ΛρN N = 0.3 GeV). Right: Energy dependence of Γω→ρπ at saturation density for different contributions as
in the left panel.
Consistency with our model for the in-medium ρ discussed below
dictates a soft cutoff, Λπ = 0.3 GeV, following from constraints
of π N → ρN scattering data and the non-resonant continuum in
nuclear photo-absorption [38] (e.g., with Λπ = 0.5 GeV one over-
estimates the measured π N → ρN cross section by a factor of ∼2).
Especially the former probe similar kinematics of the virtual π N N
vertex as figuring into ωN → ρN processes. The Migdal parame-
ters are g′

11 = 0.6 and g′
12 = g′

22 = 0.2.
The in-medium ρ spectral function is taken from Refs. [29,

39], which start from a realistic description of the ρ in free
space (reproducing P -wave ππ scattering and the pion electro-
magnetic form factor). The self-energy in nuclear matter contains
two components: pisobars (N N−1, �N−1) in the two-pion cloud,
Πρππ , and direct baryon resonance excitations in ρN scatter-
ing, ΠρBN−1 (“ρ-sobars”). The latter have been evaluated using
effective Lagrangians in hadronic many-body theory (in analogy
to the pion) [29,40,41], including ca. 10 baryonic resonances. In
Πρππ , the in-medium pion propagator described above is supple-
mented with vertex corrections to preserve the Ward–Takahashi
identities of the ρ propagator; it extends to finite 3-momentum
of the ρ which is essential for the πρ loop in Πω . The to-
tal ρ self-energy is quantitatively constrained by nuclear photo-
absorption and π N → ρN scattering, dictating the soft π N N(�)

form factor quoted above [38]. The resulting ρ spectral function
in nuclear matter is substantially broadened, with a (non-Breit–
Wigner) shoulder around M � 0.5 GeV; this is precisely the region
where most of the free ω → ρπ decays occur. Note that space-
like parts of the π and ρ spectral functions (i.e., with negative
4-momenta squared, q2 < 0) contribute to Γ med

ω→πρ ; they corre-
spond to t-channel exchanges in ωN scattering (e.g., ρ exchange
in ωN → π N∗). For the pion these are encoded in the Lindhard
functions in the self-energy, Eq. (7). For the ρ they also turn out
to be dominated by the low-lying P -wave ρ-sobars, ρN N−1 and
ρ�N−1. The latter is well constrained by nuclear photo-absorption
( f 2

ρ�N/4π = 16.2, Λρ�N = 0.7 GeV), but the purely spacelike

N N−1 mode (generating Landau damping of the exchanged ρ) is
not. An analysis of ρ photo-production cross sections, γ p → ρp
[42], gave indications for a rather soft form factor, ΛρN N � 0.6 GeV
( f 2

ρN N/4π = 6.0), but it might be as soft as the π N N form factor
in the pion cloud of the ρ . This needs to be investigated in future
analysis of ωN scattering data. Here, we bracket the uncertainty by
varying ΛρN N = 0.3–0.6 GeV and g′

N N = 0–0.6. We find that the ω

coupling to spacelike S-wave rhosobars (e.g., N∗(1520)N−1, corre-
sponding to ωN → π N∗(1520)) is already much less important.

In addition to modifications of the πρ cloud, pion dressing
in the direct ω → πππ channel and ωN∗N−1 excitations occur.
The direct 3π decay has considerable phase space in vacuum,
and thus we expect its in-medium modification to be smaller
than for the πρ channel, especially if the latter dominates in
vacuum and with our soft form factors for the pion dressing;
for Λπ N N(�) = 0.3 GeV we estimate Γ med

ω→3π (�0) < 20 MeV based
on recent work in Ref. [43]. For the ω-sobars, e.g., N∗(1535),
N∗(1520) or N∗(1650) [19,21], we cannot simply adopt the cou-
plings from the literature, since they were adjusted to fit ωN
scattering data without the inclusion of πρ cloud effects. If the
latter are present, the direct-resonance contributions need to be
suppressed to still describe ωN scattering, and thus their contri-
bution to the in-medium width will be (much) smaller than in
Refs. [19,21].

3. ω width in nuclear matter

Let us first examine the differential distribution of the ω width,
dΓω/dq, over the center-of-mass decay momentum, |�q|, of the π
and ρ spectral functions, recall Eq. (4). In vacuum, the fixed pion
mass uniquely determines the (off-shell) ρ mass (M) at given q.
The maximum of the distribution occurs at qmax � 0.2 GeV, cor-
responding to M � 0.5 GeV (see Fig. 1 left). Consequently, the
enhancement of the in-medium ρ spectral function around this
mass strongly increases the phase space and thus Γ med

ω→πρ . A sim-
ilar, albeit less pronounced effect is caused by the in-medium
pion. A further remarkable increase in decay width is generated
by spacelike ρ-sobars above q � 0.4 GeV, which, for a free pion
(m = mπ ), marks the M = 0 boundary. The low-lying collective ex-
citations are sensitive to the ρN N form factor. For a conservative
choice of ΛρN N = 0.3 GeV, about 40% of the in-medium ω width
is generated by the spacelike ρ modes.

The energy dependence of Γ med
ω→πρ is rather pronounced (Fig. 1

right), a remnant of the (nominal) vacuum πρ threshold together
with the �q2 dependence of the ωπρ vertex. The density depen-
dence of Γ med

ω→πρ (Fig. 2 left) exhibits significant nonlinearities. At
normal nuclear matter density, the dominant uncertainty is due
the ρN N form factor, quantified as Γ med

ω→πρ = 130–200 MeV.
The 3-momentum dependence of the on-shell ω width (i.e., for

P 2 = (P 0)2 − �P 2 = m2
ω), relative to the nuclear rest frame, turns out

to be moderate (Fig. 2 right), as generally expected from cloud ef-
fects with soft form factors counter-acting the momentum depen-
dence of the vertices. A fair agreement with CBELSA/TAPS data [16]
is found, apparently preferring the lower values of ΛρN N , leaving
room for (smaller) contributions from direct 3π and interference
terms, as well as from ω-sobars which are expected to come in at
higher 3-momenta [21]. However, we recall the somewhat larger
in-medium width of ∼200 MeV found by CLAS [15].
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Fig. 2. Left: Density dependence of the ω → ρπ width at P 0 = mω , �P = �0, and for different ρN N form factors and short-range correlations. Right: Three-momentum
dependence of Γω→ρπ at saturation density for on-shell ω mesons (P 2 = m2

ω , i.e., E2
ω = m2

ω + P 2
ω ), compared to CBELSA/TAPS data [16].
In the very recent work of Ref. [43], the total ω width in nu-
clear matter is computed with similar methods. At �N = �0 and
�P = �0, Γ med

ω = 129±10 MeV is reported, predominantly due to the
ρπ cloud modification and with a more pronounced momentum
dependence. The ρ spectral function employed in there exhibits
a factor of ∼2 less broadening than in our input, while the pion
modifications are stronger due to a harder π N N form factor. We
recall that the latter is fixed in our approach as part of the quan-
titatively constrained ρ spectral function. It was also argued in
Ref. [43] that medium effects in interference terms of 3π final
states from direct 3π and ρπ decays, which we neglected here,
are small. Thus both our work and Ref. [43] identify the πρ cloud
as the main agent for the ω’s in-medium broadening, albeit with
some differences in the partitioning into π and ρ modifications,
and in the 3-momentum dependence.

4. Summary

We have studied the width of the ω meson in cold nuclear
matter focusing on the role of its πρ cloud. We have employed
hadronic many-body theory utilizing pion and ρ propagators eval-
uated with the same techniques, constrained and applied previ-
ously in both elementary and heavy-ion reactions. The low-mass
shoulder in the in-medium ρ spectral function, together with
spacelike contributions in the πρ intermediate states, induce large
effects, along with non-linear density dependencies, not captured
in previous calculations based on T –� approximations. For an ω at
rest at saturation density, we find Γ med

ω = 130–200 MeV, where
the uncertainty is largely due to the ρN N vertex form factor
which could not be accurately constrained before from ρ prop-
erties alone. Together with a rather weak 3-momentum depen-
dence of the on-shell ω width, our calculations compare favorably
with data from recent absorption experiments. The present un-
certainties can be reduced by systematic analyses of vacuum ω
scattering data (similar to the π N N form factor in the ρ cloud),
where also contributions from direct 3π couplings and ωN res-
onances (ω-sobars) need to be included. Work in this direction
is in progress. The emergence of a large ω width from ρ and
pion propagators in nuclear matter is encouraging, and corrobo-
rates the quantum many-body approach as a suitable tool to assess
the properties of hadrons in medium.

Acknowledgements

This work has been supported by the US National Science
Foundation under grant No. PHY-1306359, the Humboldt Foun-
dation, the BMBF (Germany) under project No. 05P12RFFCQ, the
Ministerio de Economía y Competitividad (Spain) under grant
FPA2011-27853-C02, the Centro Nacional de Física de Partículas,
Astropartículas y Nuclear (Consolider-Ingenio 2010) and the EU
Integrated Infrastructure Initiative Hadron Physics Project under
Grant Agreement No. 227431.

References

[1] I. Tserruya, in: R. Stock (Ed.), Relativistic Heavy-Ion Physics, in: Landolt Börn-
stein (Springer), New Series, vol. I/23A, 2010, 4-2, arXiv:0903.0415 [nucl-ex].

[2] H.J. Specht, for the NA60 Collaboration, AIP Conf. Proc. 1322 (2010) 1.
[3] F. Geurts, et al., STAR Collaboration, Nucl. Phys. A 904–905 (2013) 217c.
[4] R. Rapp, J. Wambach, H. van Hees, in: R. Stock (Ed.), Relativistic Heavy-Ion

Physics, in: Landolt Börnstein (Springer), New Series, vol. I/23A, 2010, 4-1,
arXiv:0901.3289 [hep-ph].

[5] R. Rapp, PoS CPOD 2013 (2013) 008.
[6] S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. E 19 (2010) 147.
[7] F. Riek, R. Rapp, Y. Oh, T.-S.H. Lee, Phys. Rev. C 82 (2010) 015202.
[8] G.M. Huber, et al., TAGX Collaboration, Phys. Rev. C 68 (2003) 065202.
[9] M.H. Wood, et al., CLAS Collaboration, Phys. Rev. C 78 (2008) 015201.

[10] D. Trnka, et al., CBELSA/TAPS Collaboration, Phys. Rev. Lett. 94 (2005) 192303.
[11] M. Naruki, et al., E325 Collaboration, Phys. Rev. Lett. 96 (2006) 092301.
[12] M. Nanova, et al., CBELSA/TAPS Collaboration, Phys. Rev. C 82 (2010) 035209.
[13] M. Kaskulov, E. Hernandez, E. Oset, Eur. Phys. J. A 31 (2007) 245.
[14] T. Ishikawa, et al., LEPS Collaboration, Phys. Lett. B 608 (2005) 215.
[15] M.H. Wood, et al., CLAS Collaboration, Phys. Rev. Lett. 105 (2010) 112301.
[16] M. Kotulla, et al., CBELSA/TAPS Collaboration, Phys. Rev. Lett. 100 (2008)

192302.
[17] F. Klingl, N. Kaiser, W. Weise, Nucl. Phys. A 624 (1997) 527.
[18] M. Post, U. Mosel, Nucl. Phys. A 688 (2001) 808.
[19] M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706 (2002) 431;

M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 765 (2006) 431 (Erratum).
[20] S. Zschocke, O.P. Pavlenko, B. Kämpfer, Phys. Lett. B 562 (2003) 57.
[21] P. Muehlich, V. Shklyar, S. Leupold, U. Mosel, M. Post, Nucl. Phys. A 780 (2006)

187.
[22] A.T. Martell, P.J. Ellis, Phys. Rev. C 69 (2004) 065206.
[23] F. Eichstaedt, S. Leupold, U. Mosel, P. Muehlich, Prog. Theor. Phys. Suppl. 168

(2007) 495.
[24] T.E. Rodrigues, J.D.T. Arruda-Neto, Phys. Rev. C 84 (2011) 021601.
[25] S. Ghosh, S. Sarkar, Eur. Phys. J. A 49 (2013) 97.
[26] M. Wachs, PhD thesis, TU Darmstadt, 2000, http://tuprints.ulb.tu-darmstadt.de/

epda/000050/.
[27] F. Riek, J. Knoll, Nucl. Phys. A 740 (2004) 287.
[28] P. Jain, R. Johnson, U.G. Meissner, N.W. Park, J. Schechter, Phys. Rev. D 37 (1988)

3252.
[29] M. Urban, M. Buballa, R. Rapp, J. Wambach, Nucl. Phys. A 641 (1998) 433.
[30] F. Klingl, N. Kaiser, W. Weise, Z. Phys. A 356 (1996) 193.
[31] D.G. Gudino, G.T. Sanchez, Int. J. Mod. Phys. A 27 (2012) 1250101.
[32] G. Chanfray, P. Schuck, Nucl. Phys. A 555 (1993) 329.
[33] M. Herrmann, B.L. Friman, W. Nörenberg, Nucl. Phys. A 560 (1993) 411.
[34] H.C. Chiang, E. Oset, M.J. Vicente-Vacas, Nucl. Phys. A 644 (1998) 77.
[35] E. Oset, H. Toki, W. Weise, Phys. Rep. 83 (1982) 281.
[36] A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192

(1990) 179.

http://refhub.elsevier.com/S0370-2693(13)01031-9/bib54736572727579613A323030397A74s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib54736572727579613A323030397A74s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib5370656368743A323031307875s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4765757274733A323031327276s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A323030397975s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A323030397975s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A323030397975s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A32303133656D61s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4C6575706F6C643A323030396B7As1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib5269656B3A32303130677As1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib48756265723A323030337075s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib576F6F643A323030386565s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib54726E6B613A323030356579s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4E6172756B693A323030356B64s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4E616E6F76613A323031307379s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4B61736B756C6F763A323030367A63s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib497368696B6177613A323030346964s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib576F6F643A323031306569s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4B6F74756C6C613A323030386161s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4B6F74756C6C613A323030386161s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4B6C696E676C3A313939376B66s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib506F73743A323030307266s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4C75747A3A323030316D69s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4C75747A3A323030316D69s2
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib5A7363686F636B653A323030326D70s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4D7565686C6963683A323030366E6Es1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4D7565686C6963683A323030366E6Es1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4D617274656C6C3A323030346774s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib456963687374616564743A323030377A70s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib456963687374616564743A323030377A70s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526F647269677565733A323031317A7A62s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib47686F73683A323031327361s1
http://tuprints.ulb.tu-darmstadt.de/epda/000050/
http://tuprints.ulb.tu-darmstadt.de/epda/000050/
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib5269656B3A323030346B78s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4A61696E3A31393837737As1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4A61696E3A31393837737As1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib557262616E3A313939386567s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4B6C696E676C3A313939366279s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib477564696E6F3A323031317269s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4368616E667261793A313939337565s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib486572726D616E6E3A313939337A61s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib436869616E673A313939376469s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4F7365743A313938316968s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4D696764616C3A31393930766Ds1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4D696764616C3A31393930766Ds1


D. Cabrera, R. Rapp / Physics Letters B 729 (2014) 67–71 71
[37] E. Oset, P. Fernandez de Cordoba, L.L. Salcedo, R. Brockmann, Phys. Rep. 188
(1990) 79.

[38] R. Rapp, J. Wambach, Adv. Nucl. Phys. 25 (2000) 1.
[39] R. Rapp, M. Urban, M. Buballa, J. Wambach, Phys. Lett. B 417 (1998) 1.
[40] M. Urban, M. Buballa, R. Rapp, J. Wambach, Nucl. Phys. A 673 (2000) 357.
[41] R. Rapp, J. Wambach, Eur. Phys. J. A 6 (1999) 415.
[42] F. Riek, R. Rapp, T.-S.H. Lee, Y. Oh, Phys. Lett. B 677 (2009) 116.
[43] A. Ramos, L. Tolos, R. Molina, E. Oset, arXiv:1306.5921v3 [nucl-th].

http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4F7365743A313938396579s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib4F7365743A313938396579s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A31393939656As1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A313939376569s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib557262616E3A31393939696Ds1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib526170703A313939397573s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib5269656B3A323030386374s1
http://refhub.elsevier.com/S0370-2693(13)01031-9/bib52616D6F733A323031336D6461s1

	The πρ cloud contribution to the ω width in nuclear matter
	1 Introduction
	2 ω self-energy
	2.1 ω width in vacuum
	2.2 ρ and π propagators in nuclear matter

	3 ω width in nuclear matter
	4 Summary
	Acknowledgements
	References


