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We investigate the modification of the pion self-energy at finite temperature due to its interaction with
a low-density, isospin-symmetric nuclear medium embedded in a constant magnetic background. To one
loop, for fixed temperature and density, we find that the pion effective mass increases with the magnetic
field. For the π−, interestingly, this happens solely due to the trivial Landau quantization shift ∼ |eB|,
since the real part of the self-energy is negative in this case. In a scenario in which other charged particle
species are present and undergo an analogous trivial shift, the relevant behavior of the effective mass
might be determined essentially by the real part of the self-energy. In this case, we find that the pion
mass decreases by ∼ 10% for a magnetic field |eB| ∼ m2

π , which favors pion condensation at high density
and low temperatures.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The behavior of hadronic matter in a medium under the in-
fluence of a strong external magnetic field can be very rich and
subtle, and has been the subject of intense investigation in the last
few years. In fact, in-medium strong interactions under extreme
magnetic fields are of experimental relevance in heavy ion colli-
sions and in astrophysics, exhibit a rich new phenomenology and
are amenable to lattice simulations. (For comprehensive reviews,
see Ref. [1].)

Even if every model calculation has predicted that large enough
magnetic fields, typically of the order of a few times m2

π , could
bring remarkable new features to the thermodynamics of strong
interactions, from shifting the chiral and the deconfinement
crossover lines in the phase diagram [2–15] to transforming the
vacuum into a superconducting medium via ρ-meson condensa-
tion [16,17], essentially all models fail to describe coherently the
available lattice data [18–21]. The reasons for that are still unclear,
although there are some indications that confinement plays a rel-
evant role [15,22], which is not captured in the usual low-energy
effective chiral models of QCD [23]. In any case, the situation calls
for theoretical investigations in more controlled setups, with less
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freedom and parameters to adjust. This approach has proved to be
fruitful in the large-Nc [22] and perturbative [24] limits of QCD: in
the former, the behavior of the critical temperature for deconfine-
ment was found to be in qualitative agreement with lattice data;
in the latter, a trivial chiral limit for the two-loop contribution to
the QCD pressure in a strong magnetic background was revealed.

Following this line of action, a natural extension is the study of
hadronic matter in the complementary, low-energy sector, in the
presence of a strong magnetic field, in a controlled setup. Thus,
since we are interested in the low-density, low-temperature sector
of the phase diagram of nuclear matter, we adopt the framework
of chiral perturbation theory, which represents a powerful tool to
study the low-energy regime of the pion–nucleon physics [25].

It is the purpose of this work to investigate some properties
of isospin-symmetric nuclear matter in the limit of low density
and temperature, embedded in a strong magnetic background. In
particular, we study the modifications of the spectrum of the low-
est energy degree of freedom, the pion, due to the interaction
with nucleons and the constant magnetic field. More specifically,
we compute the pion effective mass in the presence of a constant
magnetic field to one loop. (Even if we do not address the phase
diagram here, it should be mentioned that the inclusion of nucle-
ons, and pion–nucleon interactions, proved to be necessary for a
satisfactory description of the behavior of the deconfinement crit-
ical temperature as a function of the pion mass and isospin [26].)
For this purpose, we consider fully relativistic chiral perturbation
theory as a framework for our computation. This is needed to
define consistently the fermion propagators in a magnetic back-
ground. At the same time, this work extends a previous treatment
.
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Fig. 1. Diagrams contributing to the lowest-order in-medium pion self-energy.
The small dotted vertex corresponds to the one-pion exchange part of the La-
grangian in Eq. (2), while the squared one to the two-pion exchange in the
Weinberg–Tomozawa term.

on the calculation of the fermion self-energy in relativistic chiral
perturbation theory [27].

In-medium pion properties have been extensively investigated,
both in finite systems, i.e. pionic atoms [28,29], and in infinite
nuclear matter. In the latter, an interesting aspect of pion phe-
nomenology is represented by pion condensation at high densities,
introduced by Migdal [30], which is a consequence of the fact that
at high density the electron chemical potential grows until it is
favorable for a neutron on the top of the Fermi sea to turn into a
proton and a (negatively charged) pion. On other hand, the interac-
tion of the pion with the background matter can enhance its self-
energy and consequently the pion condensation threshold density.
This issue is still open and requires more investigation because of
its implications in the context of compact stars phenomenology
[31–33]. We shall see in the sequel that the in-medium modi-
fication of the (negatively charged) pion self-energy due to the
presence of a strong magnetic background might lead to relevant
phenomenological consequences.

The Letter is organized as follows. In Section 2, we consider the
relativistic formulation of the theory, since in this framework it is
possible to define the Green’s function of the theory in the pres-
ence of a constant magnetic background in a consistent fashion. In
Section 3, we compute the lowest-order pion self-energy for the
three charge eigenstates in isospin-symmetric nuclear matter. In
Section 4, we compute the in-medium effective mass of the pion
and its dependence on the value of the applied magnetic field. Fi-
nally, in Section 5, we summarize our conclusions. We use natural
units h̄ = c = kB = 1. Four-vectors are denoted by capital letters,
for instance Pμ = (p0,p).

2. Reminder of the pion effective mass

The low-energy phenomenology of pions in nuclear matter is
well described in terms of a chirally invariant pion–nucleon inter-
action Lagrangian, expanded in powers of the low-energy scale of
the theory, i.e. the ratio of the pion momentum or mass over (4π
times) the pion decay constant:

Lπ N = L(1)
π N +L(2)

π N + · · · (1)

where the leading order, L(1)
π N , reads [25]

L(1)
π N = −Ψ̄

[
g A

2 fπ
γ μγ5τ · ∂μπ

+ 1

4 f 2
π

γ μτ · (π × ∂μπ)

]
Ψ. (2)

Here τ is the vector of Pauli matrices in isospin space, π is the
isotriplet of pions, fπ the pion decay constant and g A is the axial-
vector coupling.

The diagrams contributing to the pion self-energy from the La-
grangian (2) are shown in Fig. 1. The former is obtained from the
Weinberg–Tomozawa term, while the latter comes from the one-
pion exchange Lagrangian. Due to the coupling of the charge to the
Fig. 2. Pion Schwinger–Dyson equation. Here D0 is the free pion propagator and
D is the full one. The diagram in the previous equation denotes the sum of all
one-particle irreducible (1PI) diagrams. Q μ = (ω,q) is the pion four momentum.

vector potential, in the case of a constant magnetic background we
need to compute separately those diagrams for different pion and
nucleon charge eigenstates.

Formally, the self-energy can be defined from the pion Schwin-
ger–Dyson equation [34], displayed in Fig. 2.

Pionic modes of excitation in nuclear matter are obtained as
solutions ω(q) of the following equation

ω2 − q2 − m2
π + Π(ω,q) = 0, (3)

and in the limit of vanishing momenta this solution corresponds
to the effective pion mass

m∗ 2
π = m2

π − ReΠ
(
m∗

π ,q = 0
)
. (4)

In absence of a magnetic background, it can be shown that the
lowest-order (LO) contribution to the effective mass in (4) vanishes
in isospin-symmetric nuclear matter [35].

In asymmetric nuclear matter, the LO self-energy of the (neg-
atively charged) pion receives a contribution from the Weinberg–
Tomozawa diagram, given by [36]

ΠWT(ω,q = 0) = ω

2 f 2
π

(ρp − ρn). (5)

In the presence of a magnetic background, the pion charge
eigenstates Eq. (4) have to be modified (due to the Landau level
quantization) to

m∗ 2
π = m2

π − ReΠ
(
m∗ 2

π ,q = 0;B
) + (2n + 1)|eB|, (6)

where B is the magnetic field and n is the index of the Landau
level.

In what follows we focus on the case of symmetric nuclear mat-
ter in the presence of a constant magnetic background. Thus, any
deviation from zero of the LO pion self-energy will give a contri-
bution to the effective pion mass in a magnetic background. Since
we are dealing with dilute nuclear matter at low temperatures, we
neglect the contribution of anti-nucleons. Moreover, we choose the
x3-axis to be parallel to the magnetic field and |eB| = eB , e being
the proton electric charge. In order to simplify the calculation, we
assume the regime of strong magnetic fields, in which one can
apply the lowest-Landau-level (LLL) approximation to simplify the
propagators. We neglect the effect of the anomalous magnetic mo-
ment of protons and neutrons. The calculation is carried out in the
Landau gauge.

3. Pion self-energy in a constant magnetic field

For the negatively charged pion, the first diagram in Fig. 1 leads
to the following contribution:

ΠWT(Q ) = ΠWT
p (Q ) − ΠWT

n (Q ), (7)

where the first term is the proton loop contribution, which by us-
ing the Furry representation at finite temperature for the proton
propagator [37] reads

ΠWT
p (Q ) = 1

f 2
π

|eB|
4π2

+∞∫
dp3 nF (E3 − μ)

pL · qL

2E3
, (8)
−∞
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whereas the neutron loop contribution is not affected by the pres-
ence of the magnetic field

ΠWT
n (Q ) = 1

f 2
π

∫
d3p

(2π)3

ωE p − p · q

E p
nF (E p − μ). (9)

In Eq. (8) nF (x) = (ex/T + 1)−1 is the Fermi distribution, E3 =√
p2

3 + m2, m being the proton mass, and the subscript L indicates

that the vectors live in the two-dimensional subspace defined by
the time component and the space component that is aligned with
the magnetic field, i.e. pL = (p0, p3).

The WT self-energy for the positively charged pion will be just
the opposite of Eq. (7). Finally, the π0 does not receive any one-
loop contribution from the WT interaction term.

The contribution to the pion self-energy from the one-pion ex-
change term in the Lagrangian (2) is, on the other hand, quite
involved. For the charged pion one has that the two nucleons in
the diagram correspond to two different isospin states, one being
a proton and the other a neutron. For the proton we choose now
a more convenient form for the propagator [38], which in the LLL
approximation reads

S(p)
LLL(X, Y ) =

∫
dp0 dp2 dp3

(2π)3

×
√ |eB|

π
e−ip0(x0−y0)+ip2(x2−y2)+ip3(x3−y3)

× exp

{
−|eB|

2

[(
x1 − p2

eB

)2

+
(

y1 − p2

eB

)2]}

×P0
pL · γ L + m

p2
L − m2

, (10)

where P0 = 1
2 [1 − iγ 1γ 2 sign(eB)]. The self-energy in the coordi-

nate space is given by

ΠOPE(X, Y )

= − g2
A

f 2
π

Tr
[
γ5γ

μS p(X, Y )γ5γ
ν Sn(Y , X)Q μ Q ′

ν

]
, (11)

where Q μ and Q ′
ν are defined in the momentum space as the pion

momenta

ΠOPE(Q , Q ′) =
∫

d4 X d4Y ei(Q ′·X+Q ·Y )ΠOPE(X, Y ). (12)

By substituting the propagator in Eq. (10), one can write

ΠOPE(Q , Q ′) = (
2π3)δ(0,2,3)

(
q′ + q

)
Π̃OPE(Q ), (13)

where

Π̃OPE(Q ) = g2
A

f 2
π

√
16π

|eB| Q μ Q ν

∫
d4 P

(2π)4

× F μν(P )

(P 2 − m2)[(p + q)2
L − m2]

× exp

{
− 1

eB

[
(q1 + p1)

2]} (14)

and

F μν(P ) = (p + q)
μ
L Pν + Pμ(p + q)νL

− gμν
[
(p + q)L · pL + m2]. (15)

Notice that, in Eq. (14), we used the fact that the δ-function and
the on-shell condition for the pion lead to q1 + q′ = 0.
1
Since the pole structure of the propagators was not modi-
fied, the self-energy at finite temperature is obtained by replac-
ing the time component of the four momenta by the appropriate
(fermionic or bosonic) Matsubara frequency, i.e. Pμ = (p0,p), with
p0 = ipn + μ, ipn = 2nπ iT for the pion and ipn = (2n + 1)π iT for
the nucleon, n ∈ Z and T being the temperature.

Performing the sum over the fermionic Matsubara frequency,
the retarded self-energy reads

Π̃OPE(Q ) = − g2
A

f 2
π

√
16π

|eB| Q μ Q ν

∞∫
−∞

d3p

(2π)3
e− 1

eB (q1+p1)2

× 1

4E p E L
pq

[
F μν(E p,p)nF (E p − μ)

− F μν
(

E L
pq − q0,p

)
nF

(
E L

pq − μ
)]

× 1

q0 + E p − E L
pq + iη

, (16)

where E L
pq = √

(pL − qL)2 + m2. Notice that in this case, due to the
presence of a neutral field in the loop, one does not have the di-
mensional reduction which takes place in the case of the gluon
self-energy in QCD [39–41]. This is instead the case for the π0, as
we shall see in the following.

We separate the imaginary and real parts of the self-energy
in Eq. (16) by means of the Sokhotski–Plemelj formula. Since the
imaginary part of the self-energy satisfies the hypothesis of the
Kramers–Kronig dispersion relation, the real part can be computed
as

ReΠOPE(ω,q) = 1

π

∞
−
∫
−∞

dω′ Im ΠOPE(ω′,q)

ω′ − ω
. (17)

As before, the result for the positively charged pion will be the
opposite as compared to the π− .

The one-loop contribution to the neutral pion self-energy is the
sum of the proton and the neutron loops. The neutron loop is not
affected by the presence of the magnetic field and vanishes in the
limit of q → 0. The proton loop can be computed in a way that
is very similar to the charged pion self-energy computation. The
result reads

Π0
(

Q , Q ′) = − g2
A

2 f 2
π

(2π)4δ4(Q ′ + Q
) |eB|

2π
e− q2

1+q2
2

2|eB| Q μ Q ν

×
∫

dp3

2π

1

4E L
p E L

pq

[
Hμν

(
E L

p, p3
)
nF

(
E L

p − μ
)

− Hμν
(

E L
pq − iqn, p3

)
nF

(
E L

pq − μ
)]

× 1

E L
p − E L

pq + iqn
, (18)

where

Hμν(pL) = pμ
L (pL + qL)

ν + pν
L (pL + qL)

μ

− gμν
[
pL · (pL + qL) + m2]. (19)

As already stated previously, in this case we recover the dimen-
sional reduction, from (3 + 1) to (1 + 1), where the only spatial
dimension that is relevant for the dynamics is determined by the
direction of the magnetic field.
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Fig. 3. (Color online.) Upper panel: π− effective mass in a constant magnetic
background, as a function of the density, for zero temperature. From below,
lines correspond to increasing values of the magnetic field, namely eB/m2

π =
0.01,0.1,1,3.2,5.6,10. Lower panel: same as above, for T = 50 MeV.

4. Results

We compute numerically the integrals appearing in Eqs. (7),
(16) and (18). In the limit of q → 0 the only nonvanishing con-
tribution to the self-energy is given by the WT contribution in
Eq. (7). This is due to the fact that in symmetric nuclear matter the
poles in Eq. (16) and (18) vanish for q → 0, leading thus to a van-
ishing self-energy. So, the neutral pion, whose self-energy comes
only from the one-pion exchange term in the Lagrangian, has its
mass unaltered as is also the case when no magnetic background
is present.

Fig. 3 shows the solution of Eq. (6) in the LLL approximation
for the negatively charged pion, in the case of isospin-symmetric
nuclear matter, as a function of the density. The upper panel cor-
responds to the case of zero temperature. Clearly, the main con-
tribution to the effective mass is given by the term proportional
to |eB| in Eq. (6) that represents the trivial Landau quantization
shift. The variation with the density is almost negligible. Never-
theless, one can notice that in the case of low magnetic fields the
effective mass slightly increases with the density, while in the case
of extremely strong magnetic fields the mass decreases. Therefore,
if we would plot only the self-energy contribution to the effec-
tive mass, it would exhibit an appreciable drop for high magnetic
fields. We should, of course, stress that the extremal values of the
magnetic field magnitude shown in Fig. 3 might bring some incon-
sistency due to the fact that for too low fields one can not apply
the LLL approximation, whereas for extremely strong fields one has
Fig. 4. (Color online.) π− effective mass as a function of the magnetic field at satu-
ration density, ρ = 0.16 fm−3. The (blue) dashed line is the result for the zero tem-
perature case, while the full (red) line corresponds to a temperature T = 50 MeV.

to treat more carefully the chiral power counting. Yet, we believe
that Fig. 3 illustrates clearly the qualitative trend as one comes
from low to high magnetic fields.

In the lower panel the effect of the temperature is included.
The main features of the plot remain the same but, at equiva-
lent values of the magnetic field, one can see that these curves lie
above the corresponding curves at zero temperature. This is also
shown in Fig. 4, in which we fix the density at nuclear saturation,
ρ = 0.16 fm−3, and vary the magnetic field. The dashed curves
correspond to the zero temperature case, while the full lines to
T = 50 MeV, and one can see that, for fixed density and temper-
ature, the pion mass increases steeply with the external magnetic
field.

As remarked previously, the result for very strong magnetic
fields (|eB| � m2

π ) has to be considered as an extrapolation. In-
deed, for such high values of the magnetic field, the chiral power
counting does not hold anymore. Since the low-energy scale of the
theory (the pion mass) and the hard scale become comparable, one
should take into account higher order diagrams that become, in
principle, relevant in this case. Nonetheless, the trend seems clear
from within the region of validity of our approach and connects
smoothly to the regions of higher and lower fields, which is en-
couraging.

To unveil the role played by the real part of the self-energy
contribution to the mass of the π− , we compute its effective mass
having subtracted the trivial shift due to the presence of the mag-
netic background (Landau quantization), namely we solve

m2
π = m2

π − ReΠ
(
m2

π ,q = 0;B
)
. (20)

Fig. 5 displays our results for mπ as a function of the magnetic
field, and shows a significant decrease in the effective mass of the
π− as a function of the magnetic field. This effect is, of course,
diminished as the temperature is increased.

The phenomenological motivation comes from physical systems
with different charged particle species in the presence of moder-
ately strong magnetic fields, as can be found e.g. in compact stars.
In this case, one has to take into account the contributions coming
from higher Landau levels, at least the first nontrivial ones. Thus,
the trivial shift in the spectrum of different (charged) fermions
and bosons will be of the same order (∼ |eB|), and the contri-
bution that will be relevant for the behavior of the effective mass
will possibly be determined essentially by the real part of the self-
energy. In this context, we find that for the negatively charged pion
the effective mass is lowered by the presence of a strong magnetic
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Fig. 5. (Color online.) Solution of Eq. (20) as a function of the magnetic field, at
saturation density ρ = 0.16 fm−3. The (blue) dashed line is the result for the zero
temperature case, while the full (red) line refers to a temperature T = 50 MeV.

background. Due to this feature, properties of a system involving
dense nuclear matter and leptons, as can be found in compact stars
and supernovae [42,33], might change significantly, depending on
the behavior of the spectrum of charged fermions.

5. Summary

We have investigated hadronic matter in the low-energy sector
in the presence of a strong magnetic field in the controlled setup
of chiral perturbation theory. More specifically we have studied the
modification of the pion self-energy at finite temperature due to its
interaction with a low-density, isospin-symmetric nuclear medium
in the presence of an external magnetic field.

To one loop, for fixed temperature and density, we found that
the pion effective mass increases steeply with the magnetic field, a
result that is enhanced when temperature is included, as expected.
As a function of the density, on the other hand, the behavior of
the effective mass is quite flat for different values of the field.
However, even keeping in mind the caveat of our method when
considering too low or too high fields, it seems clear that there is
a qualitative change in the overall behavior: augmentation of the
effective mass for low fields and depletion for high fields. The lat-
ter effect is, of course, hampered as we increase the temperature.

A subtle point that can play a relevant role in some actual phys-
ical systems, with different charged particle species in the presence
of moderately strong magnetic fields, is the fact that the increase
in the effective mass of the π− with the magnetic field is due
solely to the trivial Landau quantization shift ∼ |eB|, since the real
part of the self-energy is negative in this case. As was shown in
the previous section, if we subtract the former trivial effect, the
effective mass of the negatively charged pion drops considerably
with the magnetic field. If all charged particles undergo an approx-
imately equivalent trivial shift of this sort, the modifications that
may be relevant, phenomenologically, are those brought about by
the real part of the respective self-energies. In this case, we find
that the pion mass decreases by ∼ 10% for a magnetic field |eB| ∼ m2

π ,
which favors pion condensation at high density and low temperatures.
Such scenario may take place in neutron star matter and super-
novae and requires further investigation.
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