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In this work the baryon number and strange susceptibility of second and fourth order are presented.
The results at zero baryon-chemical potential are obtained using a well tested chiral effective model
including all known hadron degrees of freedom and additionally implementing quarks and gluons in
a PNJL-like approach. Quark and baryon number susceptibilities are sensitive to the fundamental degrees
of freedom in the model and signal the shift from massive hadrons to light quarks at the deconfinement
transition by a sharp rise at the critical temperature. Furthermore, all susceptibilities are found to be
largely suppressed by repulsive vector field interactions of the particles. In the hadronic sector vector
repulsion of baryon resonances restrains fluctuations to a large amount and in the quark sector above Tc

even small vector field interactions of quarks quench all fluctuations unreasonably strong. For this reason,
vector field interactions for quarks have to vanish in the deconfinement limit.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

A major objective of heavy-ion experiments as performed at
the RHIC, LHC, and future experiments at the upcoming Facility
for Antiproton and Ion Research (FAIR) is to study properties of
strongly interacting matter, particularly characteristics of the phase
transition at high temperatures and baryon densities. There are
robust indications that in high-energy nuclear collisions an ex-
tremely hot and dense state of matter forms. This quark–gluon
plasma (QGP) shows characteristics of a nearly perfect fluid with
very low viscosity [1–4]. Lattice QCD has found this deconfinement
transition from a hadron resonance gas (HRG) to a gas of quarks
and gluons at zero baryon-chemical potential μB = 0 to happen at
T ≈ 160 MeV in a smooth cross-over for all thermodynamic vari-
ables [5,6]. At finite μB , this phase transition is shifted to smaller
temperatures [6–9], whereas the exact position, the order of the
phase transition, and the potential existence of a critical end point
(CEP) in the region μB > 0 are still subject of scientific study.

The extraction of robust observables for the phase transition
from final state particles remains a major difficulty in studying
the QCD phase diagram experimentally. Since average fluctuations
of quantum numbers in a finite volume differ significantly be-
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tween the confined and deconfined phase, fluctuations of con-
served charges, such as of the net baryon number and the electric
charge, might be suitable indicators for the phase transition and
may signal QGP formation [10,11].

Generally, in experiments fluctuations of observables occur due
to systematic uncertainties in experimental techniques including
inexact measurement processes and statistical uncertainties. Ad-
ditional random fluctuations of more fundamental nature exist
which can be attributed to the dynamics and thermodynamics
of the system under consideration. In the microscopic limit, ran-
dom density fluctuations occur in an early stage of a dynamically
evolving system. In heavy-ion collisions initial event-by-event in-
homogeneities arise due to randomly distributed impact param-
eters and colliding nucleons as well as to quantum fluctuations
in the scattering cross sections [12]. Initial inhomogeneities in a
thermalized system can strongly be amplified, when the system
evolves through a phase transition [13–15]. At the critical tem-
perature of a first-order phase transition, two degenerate thermal
equilibriums exist. When the hot system cools down through the
transition, parts of the matter can remain in an unstable local
minimum and due to spinodal decomposition narrowly defined
regions with different thermodynamic properties can emerge. Fur-
thermore, processes such as critical slowing down, reheating of the
system, and the formation of domains with a potential clumping
of matter can occur in dynamical systems near a CEP or when
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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crossing a phase transition [12,16–19]. Therefore, the enhancement
of (event-by-event) fluctuations may hint the creation of a QGP
[10,11], hitting the CEP [12,16,20–22] or crossing a first-order
phase transition [14,15,17–19]. However, no experimental indica-
tions for increased fluctuations in the transverse momentum close
to the suggested region of a CEP have been observed yet [23–25].

In heavy-ion experiments, fluctuations are studied on an event-
by-event basis. Observations of fluctuations are restricted to acces-
sible observables, such as momentum correlations of produced par-
ticles and fluctuations of quantum numbers in small sub-volumes.
In theoretical models assuming thermal equilibrium, fluctuations
of conserved charges in defined volumes such as electric charge,
baryon number, (strange) quark number, and other quantum num-
bers correlate with higher-order cumulants of the partition func-
tion, so-called susceptibilities. This approach to fluctuations is
widely used by lattice QCD and other models for strongly inter-
acting matter [26–30].

Relating theory considerations with experiment, in [31] it is
pointed out that susceptibilities can be measured experimentally
“since they can be expressed as integrals over either spatial or
momentum space correlation functions. Thus, as long as one deals
with susceptibilities, i.e. (co)-variances, there is a one to one map-
ping from lattice QCD results to heavy-ion collisions. The suscep-
tibilities can be extracted from data either by studying event-by-
even fluctuations of a given quantity or by measuring and integrat-
ing the appropriate multi-particle densities [32]”. This implies the
comparability of experimental data to theoretical models, such as
PNJL and chiral effective models.

For the outlined reasons, susceptibilities from the chiral model
should signal the shift of degrees of freedom at the phase transi-
tion due to the drop in the effective baryon masses (chiral tran-
sition) and the rising quark abundance above Tc (deconfinement
transition). Comparing model results to lattice QCD can give insight
into potential differences in the underlying degrees of freedom and
to what extent this transition is driven by hadrons or quarks.

2. Chiral effective model

This work studies fluctuations of conserved charges at the
phase transition using a unified approach to QCD matter. The ef-
fective model combines an SU(3)-flavor σ –ω model [33–36] with
a PNJL-type approach for deconfinement [37–43]. The model fea-
tures a chiral and deconfinement transition and includes both an
HRG phase with the spectrum of all known hadrons with masses
mH ≤ 2.6 GeV [44,45] and a quark–gluon phase at high tempera-
tures and densities. In the following, basic concepts of the model
are shortly outlined; see [46] for a comprehensive review and all
parameter values.

In mean field approximation [47,48] the full Lagrangian reads
L = Lkin + Lint + Lmes. It includes the kinetic energy of the
hadrons Lkin [35]. Furthermore, Lint describes the attractive in-
teraction of baryons and quarks with the scalar isoscalar mesons
condensates σ , ζ and the repulsive interaction with the vector
isoscalar fields ω, φ expressed by

Lint = −
∑

i

ψ̄i
[
γ0

(
giωω0 + giφφ0) + m∗

i

]
ψi . (1)

Index i runs over the three lightest quark flavors (u,d, s), the
baryon octet, decuplet, and all heavier baryon resonances. The
σ -field is the order parameter for the chiral transition.

Except for a small explicit mass δmi , the particles’ coupling
strengths giσ ,ζ to the scalar fields dynamically generate the ef-
fective masses

m∗ = giσ σ + giζ ζ + δmi . (2)
i
It is δmu,d = 6 MeV, δms = 105 MeV for the quarks and δmi =
150 MeV for nucleons. The value of δmi becomes larger with in-
creasing vacuum mass of the specific particle. A decreasing σ -field
at high T and μ causes the effective baryon masses to drop and,
thus, chiral symmetry to be restored. Accordingly, the effective
chemical potentials for quarks and baryons μ∗

i = μi − giωω− giφφ,
are generated by the vector couplings giω,φ .

Couplings of the baryon octet are fixed such as to reproduce
well-known vacuum masses, nuclear saturation properties, and the
asymmetry energy [36,49], resulting in gN

σ = −9.83, gN
ζ = −1.22,

gN
ω = 11.56 for the nucleons. Quark couplings gu,d

σ = −3.5 for non-
strange quarks and gs

ζ = −3.5 for strange quarks are fixed such as
to restrain free quarks from the ground state and to comply with
the additive quark model. The quark vector couplings gqv, i.e. gu,d

ω

and gs
φ , remain free parameters to study the repulsive effect of

vector field interactions.
The baryon resonance couplings (including the decuplet) are

scaled by rs , rv to the respective couplings of the nucleons via
gBiσ ,ζ = rs · gNσ ,ζ and gBiω,φ = rv · gNω,φ [50]. To obtain a cross-
over at μB = 0 in all quantities, the scalar resonance coupling is
fixed rs ≈ 1. The vector coupling rv is varied in order to study the
suppressive effect of vector field interactions. Baryon resonances
have large impact on the overall phase structure and the resulting
order and position of the phase transition. Reasonably large reso-
nance vector couplings rule out a potential first-order phase transi-
tion in favor for a smooth cross-over in the whole T –μ plane [50].
This smooth transition is due to the gradual population of heavy-
mass resonances states. A non-interacting HRG is considered by
neglecting all particle interactions with the fields and setting δmi
to the respective vacuum mass.

The meson part of the full model Lagrangian

Lmes = 1

2

χ

χ0

(
m2

ωω2 + m2
φφ2)

+ g4

(
ω4 + φ4

4
+ 3ω2φ2 + 4ω3φ√

2
+ 2ωφ3

√
2

)

− 1

2
k′

0

(
σ 2 + ζ 2) + k1

(
σ 2 + ζ 2)2

+ k2

(
σ 4

2
+ ζ 4

)
+ k′

3σ
2ζ

− k4χ
4 − 1

4
χ4 ln

χ4

χ4
0

+ δ

3
χ4 ln

σ 2ζ

σ 2
0 ζ0

− χ2

χ2
0

[
m2

π fπσ +
(√

2m2
k fk − 1√

2
m2

π fπ

)
ζ

]
(3)

includes the mass terms, self interactions of the vector and scalar
mesons, and explicit symmetry breaking. In the absence of quarks,
the dilaton field χ , introduced as a gluon condensate in order
to ensure QCD scale invariance [35], is fixed at its ground state
value χ0. In order to suppress the chiral condensate in the decon-
fined quark phase, a coupling of the Polyakov loop Φ to the dilaton
field is introduced via

χ = χ0
[
1 − 1/4

(
Φ2 + Φ̄2)2]

. (4)

All thermodynamic quantities are derived from the grand canonical
potential

Ω/V = −Lint −Lmes + Ωth/V − UPol, (5)

with Ωth defined in the heat bath of hadrons and quarks including
thermal contributions from mesons, baryons, and quarks
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Ωqq̄ = −T
∑

j

γ j

(2π)3

∫
d3k

(
ln

[
1 + Φe− 1

T (E∗
j (k)−μ∗

j )
]

+ ln
[
1 + Φ̄e− 1

T (E∗
j (k)+μ∗

j )
])

, (6)

with j = u,d, s, the spin–isospin degeneracy factor γ j , and the

single particle energy E∗
j (k) =

√
k2 + m∗2

j . This direct coupling of

quarks to the Polyakov loop Φ ensures a negligibly small contri-
bution at low T and μB which notably increases at the phase
transition. Unlike in recent Polyakov loop extended quark–meson
models (PQM), our model neglects contributions from the fermion
vacuum term. In [51–53] it is presented that including a fermion
vacuum term in such models causes a much smoother transition
at μB = 0 and shifts a CEP to significantly higher potentials as was
shown for including the broad baryon resonance spectrum in the
hadron part of the present model in [50].

Quarks are introduced in the style of recent PNJL mod-
els [37–43] defining the scalar Polyakov loop field Φ via the trace
of the time component A0 of the SU(3) color gauge background
field Φ = 1/3 Tr [exp (−A0/T )]. In the heavy-quark limit, Φ signals
the breakdown of Z(3) center symmetry and serves as an order
parameter for deconfinement. The transition dynamics from the
HRG to the deconfined quark–gluon phase are controlled by the
effective Polyakov loop potential

U = −(
a(T )Φ̄Φ

)
/2

+ b(T0/T )3 ln
[
1 − 6Φ̄Φ + 4

(
Φ̄3 + Φ3) − 3(Φ̄Φ)2], (7)

adopted from [42]. Together with the parameter a(T ) = a0 +
a1(T0/T ) + a2(T0/T )2 and all parameters therein (see [46] for val-
ues), U (T ,Φ, Φ̄) is constructed such as to reproduce lattice data
for QCD thermodynamics in the pure gauge sector as well as
known features of the deconfinement transition [42]. At low tem-
peratures in the confined phase, the minimum of the potential
lies at Φ = 0 and it gradually shifts with higher temperatures to
Φ → 1 above the critical Polyakov temperature T0.

Minimizing Ω/V (T ,μ) with respect to the fields, yields the
equations of motion of the fields and particle densities. Solving this
set of equations, all thermodynamic variables are derived from the
pressure p = −∂Ω/∂V and the entropy density s = ∂ p/∂T and the
expression for the internal energy ε = T s − pV + ∑

i μiρi , where i
includes all particles in the model.

With increasing temperatures, the particle density of hadrons
decreases significantly leaving pure quark–gluon matter in the
high-temperature limit. In the chiral model, this shift in the fun-
damental degrees of freedom is implemented via an eigenvolume
V i

ex of all hadrons i, in analogy to [54–56] and also used in similar
hadron models [57–61]. The baryons exhibit a volume V B

ex close
to the proton charge volume [62] and the mesons V M

ex = 1/8V B
ex.

Since quarks are assumed to be point-like V q
ex = 0. This formal-

ism effectively suppresses hadrons at high T and μ, at the latest
when quark abundances rise quickly at the deconfinement phase
transition, and in the high-T , high-μ limit a pure quark–gluon
phase is established. In order not to spoil the model’s thermody-
namic consistency, the introduction of an excluded volume entails
the re-definition of the chemical potentials, i.e. reducing μ∗

i by the
occupied volume as shown in [46]. Furthermore, the particle den-
sities as well as the energy and the entropy have to be corrected
by the ratio of the total volume to the non-occupied sub-volume.

2.1. Susceptibilities

At any given point in the phase diagram (T ,μB), the pressure
p(T ,μB) can be determined by Taylor expanding the pressure at T
and zero baryon-chemical potential p(T ,μB = 0) = −Ω/V with
respect to the ratio μB/T

p(T ,μB)

T 4
=

∞∑
n=0

cB
n (T )

(
μB

T

)n

. (8)

In the limit of small μB , this method yields good numerical results
and is widely used by lattice QCD for the extrapolation of data at
μB 	= 0 along lines of constant μB/T -ratio [26,63–65]. The Taylor
coefficients of the order n are defined as

cB
n (T ) = 1

n!
∂n(p(T ,μB)/T 4)

∂(μB/T )n

∣∣∣∣
μB=0

, (9)

which are related to the susceptibilities χ B
n , analogously to cumu-

lants in classical statistics, via

χ B
n = n!cB

n . (10)

In general, the susceptibilities χ i, j,k are derived from the grand
canonic partition function Z = exp(−Ω/T ) using

χ
i, j,k
n (T ) = 1

V T 3

∂ni ∂n j ∂nk

∂(μi/T )ni ∂(μ j/T )n j ∂(μk/T )nk
ln(Z). (11)

The χ
i, j,k
n signal fluctuations of conserved charges Q i, j,k [66]. Con-

sidering three-flavor QCD, the conserved charges Q are baryon
number B , electric charge Q and strangeness S . In the following,
only B and S fluctuations are considered.

Following this procedure, the first-order strange quark suscepti-
bility χ S

2 (T ) is determined by expanding the pressure with respect
to the strange chemical potential μs

χ S
2 (T ) = ∂2(p(T ,μs))

∂μ2
s

∣∣∣∣
μs=0

. (12)

This quantity describes fluctuations of the strangeness quantum
number at zero strange quark chemical potential.

Since in the chiral hadronic model, p(T ,μB ,μs) can be calcu-
lated at any given point in the phase diagram, susceptibilities can
directly be determined numerically via Eqs. (9), (12).

3. Results

In order to quantify the impact of the quark phase and of re-
pulsive vector interactions, this study of fluctuations in the transi-
tion region compares susceptibilities with different model param-
eterizations differing in the fundamental particle constituents and
the respective couplings strengths. The HRG scenario describes the
pure HRG in absence of a quark phase neglecting any excluded
volume effects. In this scenario, the hadron resonance gas is con-
sidered to be ideal, i.e. all hadronic degrees of freedom do not
couple to the fields. Therefore, the particles’ masses are fixed at
their vacuum expectation values and point-like hadrons are con-
sidered. The validity of describing strongly interacting matter in
terms of a pure hadron gas gets violated temperatures above Tc

at the latest when deconfinement sets in and quarks and gluons
become the relevant degrees of freedom.

The interacting HRG scenario (int. HRG) includes only hadron
degrees of freedom as well. In contrast to the HRG parametrization,
in this scenario hadrons couple to the meson fields as described
above. As a result, their masses and effective chemical potentials
are dynamically generated. Since there is no quark phase, this
parametrization also does not take into account excluded volume
effects.
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Fig. 1. Second-order baryon number susceptibilities χ B
2 /T 2 at μB = 0 as function

of T . Depicted are results for resonance vector couplings rv = 0 (a) and rv = 0.8 (b)
for the non-interacting pure HRG (gray line) and the fully interacting HRG (red line).
Furthermore, results of the fully interacting model including quarks are shown for
quark vector couplings gqv = 0 (blue line) and gqv = 4.0 (green line). The quark
scalar coupling is fixed at gqs = 3.5. Strong vector coupling suppress fluctuations
significantly. Considering a finite quark vector coupling, fluctuations get unreason-
ably restrained above Tc . Lattice data is taken from [29] (HISQ), [67] (p4), and [68]
(stout). (For interpretation of the references to color, the reader is referred to the
web version of this article.)

When implementing the PNJL-like quark phase, the int.
HRG + q parametrization denotes the best practice scenario in-
cluding hadrons and quarks fully coupled to the fields and hadrons
exhibiting a finite eigenvolume.

The study of the strange susceptibility additionally makes use of
the HRG + q parametrization. This scenario contains hadrons and
quarks which are considered to be ideal, i.e. all couplings to the
meson fields vanish. However, quarks still couple to Φ and ex-
cluded volume effects apply.

3.1. Non-strange susceptibilities

Fig. 1 shows the second-order baryon number susceptibilities
χ B

2 /T 2 at μB = 0 as functions of T contrasted to lattice QCD data
using different actions [29,67,68]. Panel (a) depicts susceptibilities
for vanishing resonance vector couplings rv = 0 and (b) for rv =
0.8.

As a reference, the gray line shows the non-interacting HRG
without quarks. Since this scenario lacks a phase transition, there
is no shift in the underlying degrees of freedom. Hence, there is
no sudden change in χ B

2 but rather it rises monotonously with in-
creasing temperature due to the gradual population of heavy-mass
resonance states. This monotonic behavior is not affected by the
resonance vector coupling. In this scenario, the absence of sup-
pressive vector field interactions causes an overestimation of the
number of degrees of freedom entailing large χ B

2 /T 2-values at
high T .

This overestimation is even enhanced for the fully interacting
HRG (red line). Considering full scalar field interactions and van-
ishing resonance vector couplings (a), starting from T ≈ 150 MeV
the slope of χ B

2 is much steeper than for the non-interacting HRG.
This rapid rise of fluctuations signals the sudden decline of ef-
fective baryon masses at higher T at which m∗ becomes small
enough for massive resonance states to be abundantly populated.
In a small range around Tc ≈ 165 MeV [50] the �-resonance mass
falls down to m∗
� ≈ 0.4m∗

�(T0) and in the absence of a quark phase
�-resonances are most abundant above Tc [46]. The drop of m∗
causes a sudden increase of degrees of freedom reflected in the
steep incline of χ B

2 at Tc .
In contrast, when choosing larger and more reasonable res-

onance vector couplings rv = 0.8 [50], hadrons become notably
suppressed above Tc . A similar quenching effect on fluctuations
has been found for contributions of the fermion vacuum term in
PQM models [69,70]. With rv = 0.8 (Fig. 1(b)) the drop of m∗ is
still existent and χ B

2 of the int. HRG shows a sudden increase
at Tc . However, at slightly higher temperatures χ B

2 /T 2(T ) flat-
tens and rises again at T ≈ 180 MeV, where the ζ -field drops and
strange baryon masses become light. In contrast, the light quark
susceptibility χu,d

2 , which has no strange contribution, saturates

at χu,d
2 /T 2 ≈ 1 slightly above Tc . This finding underlines the ma-

jor impact of hadron resonances and their couplings on the phase
structure and the overall behavior of the system at Tc found in
[46,50]. The key implication of these rather large baryon resonance
vector couplings lies in the disappearance of a first order phase
transition and a CEP. With rv → 1 only a smooth cross-over exists
in the whole phase diagram [50].

Comparing the purely hadronic results to lattice QCD, the
slope of χ B

2 /T 2(T ) from recent continuum extrapolated lattice
QCD [29,68] is in line with HRG results of the model up to
T ≈ 150–170 MeV depending on the couplings. At higher T where
quark degrees of freedom become relevant the pure hadronic de-
scription breaks down. Older lattice results with the p4 action [67]
show a slightly higher Tc and seem to be too small at T < Tc com-
pared to HRG results. This discrepancy may be caused by potential
cut-off effects in lattice QCD on small lattice sites (Nτ ≤ 8).

Similar observations for the suppression of fluctuations with
stronger vector interactions are made for the fully interacting
model including quarks. In this case, quark vector couplings largely
impact the χ B

2 -slope. In both panels, Fig. 1 shows results of the
chiral model including quarks with vanishing quark vector cou-
plings gqω = 0 (blue line) and with finite couplings gqω = 4.0
(green line), with the notation gqω and gqv used synonymously.
In both HRG + q scenarios the second-order susceptibilities ex-
hibit a peak at Tc ≈ 175 MeV when the shift in the degrees of
freedom is the fastest. For higher T , susceptibilities for gqω = 0
rise to the Stefan–Boltzmann (SB) limit while they saturate at
much lower values with gqω = 4.0. At high temperatures, excluded
volume effects cause an effective suppression of hadrons and re-
sult in a plateau-like slope or even a small decline of χ B

2 up to
T ≈ 220 MeV. In the presence of quarks, the effect of the reso-
nance vector couplings on the susceptibilities lessens and when
changing rv = 0 (a) to rv = 0.8 (b), the absolute height is only re-
duced by a small amount for both gqω-values.

In contrast to the minor impact of hadron vector couplings in
the presence of a quark phase, quark vector couplings gqω have a
strong quenching effect on fluctuations. When changing gqω from
zero to gqω = gNω/3 = 4.0, the peak height of χ B

2 decreases sig-
nificantly and, likewise, the deviation from lattice data increases
for gqω = 4.0 at high T . In [71,72] it is argued, that a large quark
vector coupling is needed to properly describe heavy-mass neu-
tron stars within the framework of a PNJL equation of state (EoS).
This reasoning bases on the substantial stiffening of the EoS with
larger quark vector couplings [46], what shifts the mass-radii re-
lation for neutron stars towards higher masses. By doing so, these
EoS match a constraint put up by the recent observation of massive
two-solar-mass hybrid stars [73]. In stark contrast to this EoS con-
straint from neutron star properties, in the context of conserved
charge fluctuations, finite quark vector couplings must be ruled
out due to the strong suppression of susceptibilities. At T > Tc ,
χ B values from lattice QCD can only be achieved in the full model
2
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Fig. 2. Fourth-order baryon number susceptibilities χ B
4 /T 2 at μB = 0 as functions

of T . The figure depicts results for two values of rv (a) and (b) and for the same
model scenarios as in Fig. 1. Fluctuations at the phase transition decrease signifi-
cantly when choosing larger vector couplings of the particles. For non-zero quark
vector couplings gqv (green line in (b)), χ B

4 /T 2 exhibits only a small maximum
at Tc . Lattice data from [67] (p4) and [68,75] (stout). (For interpretation of the ref-
erences to color, the reader is referred to the web version of this article.)

without quark vector interactions. The suppression of fluctuations
in the transition region is even more pronounced for higher-order
susceptibilities.

Comparing the Polyakov loop from the chiral model to lattice
QCD as a function of T [46] indicates a rather slow and smooth
shift in the degrees of freedom over a large temperature-range in
lattice QCD rather than a more sudden switching to deconfined
quarks at Tc in PNJL models and in the chiral model. The deviation
of χ B

2 in the chiral model from lattice QCD underlines this discrep-
ancy. While the fully interacting HRG in the chiral model shows a
sharp incline of χ B

2 at Tc , in lattice QCD the absence of a sharp rise
and a slowly increasing χ B

2 up to rather large temperatures hint at
a more gradual shift from hadrons to quarks. This immanent dis-
crepancy between lattice QCD and PNJL models in the transition
to the free quark sector is reflected in conserved charge fluctua-
tions close to Tc . In [74] these differences between PNJL and lattice
QCD have been attributed to the presence of bound states in the
QGP even well above Tc . However, in the chiral model fluctua-
tions above Tc are clearly suppressed by excluded volume effects
of baryons which are still present in this region.

The same conclusions as for χ B
2 and the impact of vector in-

teractions on fluctuations Tc also apply for higher-order suscep-
tibilities. Fig. 2 shows the fourth-order susceptibilities χ B

4 /T 2 for
the same model scenarios as above. As seen for χ B

2 , also χ B
4

of the non-interacting HRG without quarks rises smoothly up to
very high values. For the interacting HRG and rv = 0.8, χ B

4 (T ) ex-
hibits a sharp peak at Tc and overestimates the susceptibilities at
higher T . For rv = 0.8, the contribution of strange baryons already
seen in χ B

2 leads to an additional peak at T ≈ 190 MeV. Including
the quark phase with gqv = 0 (blue line) and rv = 0.8, this sce-
nario (int. HRG + q) yields a sharp and narrow peak around Tc . In
contrast, the more recent and continuum extrapolated stout data,
which are derived from [68] and [75], indicate a much broader
range of fluctuations in line with HRG results at low temperatures.
However, while newest lattice data indicates a totally smooth
χ B/T 2-curve, at low temperatures the error bars are still large. In
4
Fig. 3. Ratio of the fourth to the second-order baryon number susceptibilities
χ B

4 /χ B
2 at μB = 0 as functions of T . As before, the figure illustrates results for two

resonance vector couplings rv = 0 (a) and rv = 0.8 (b) and for model scenarios as
in Fig. 1. Lattice data taken from [67] (p4) and [75] (stout). (For interpretation of
the references to color, the reader is referred to the web version of this article.)

the high-temperature limit, lattice QCD and model results includ-
ing quarks converge to the SB quark limit.

Again, larger gqv strongly suppresses fluctuations. When assum-
ing gqω = 4.0, the resulting χ B

4 (T ) shows only a minor peak at
Tc confirming the observation, that gqω has to vanish in order to
reproduce fluctuations as seen in lattice QCD. In contrast to χ B

2 ,
χ B

4 -values from both int. HRG + q scenarios yield similar values in
the high-T limit.

In heavy-ion collisions, susceptibilities are subject to additional
random fluctuations due to changing volumes of the colliding sys-
tems caused by randomly different collision geometries in each
collision process and due to limited detector acceptance. To cir-
cumvent this constraining effects and to consistently remove the
impact of ever varying volumes and other random fluctuations,
susceptibility ratios are studied [31]. It is shown in [76,77] that
also conservation laws can significantly alter fluctuation signals
and obscure the connection between the susceptibilities from lat-
tice (or models) and what is measured in experiment. However
such effects can eventually be accounted for [76,77] and fluctu-
ations remain an interesting topic, also in heavy-ion collisions.
Ref. [78] presents that the ratio of fourth to second-order suscep-
tibilities χ B

4 /χ B
2 is sensitive to the shift in the system’s underlying

degrees of freedom. This ratio can provide information about the
constituents of a thermal medium that carries net quark number
in both the HRG as well as in the quark phase.

Fig. 3 shows the ratio χ B
4 /χ B

2 from the model at μ = 0 as a
function of T . As seen for χ B

2 and χ B
4 , the ratio signals a rapid

shift in the degrees of freedom at Tc by a narrow peak for all sce-
narios considering full mean field interactions. Again, the effective
hadron suppression via excluded volume effects as well as via res-
onance vector couplings for all particles have major impact on the
fluctuation strength and hence, on the height of the peak at Tc .
Therefore, the HRG + q scenario assuming gqω = 4.0 (green line)
clearly underestimates χ B

4 /χ B
2 at Tc .

None of the scenarios presented here fully reproduces χ B
4 /

χ B
2 -results from lattice QCD which again show a rather narrow

peak for older p4 and a much broader peak for recent stout re-
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Fig. 4. Strange quark number susceptibilities χ s
2/T 2 at μB = 0 as functions of T

for the different model scenarios. The model results are contrasted to lattice data
from [8,26,29,68,79–83]. Here, the resonance vector coupling is set to rv = 0. When
the vector coupling of the strange quark increases from gqφ = 0 (solid green line) to
gqφ = gqΛ = −7.4 (dashed green line), strange quark number fluctuations are no-
tably suppressed at high T . (For interpretation of the references to color, the reader
is referred to the web version of this article.)

sults. At high temperatures T > Tc , effective model results with
gqω = 0 and lattice QCD converge again in the quark limit.

3.2. Strange susceptibility

Below the deconfinement transition in the HRG, strangeness is
carried by strange hadrons, mainly strange mesons (kaons). Com-
pared to the temperature scale in this region, strange hadrons have
rather large masses. Therefore, the production of strange hadrons
is largely suppressed and their multiplicities are small at low T
[46,50]. Contrastingly, in the high-T limit, i.e. in the pure quark–
gluon phase, low-mass strange quarks contribute exclusively to
the total strangeness in the system. Due to the much smaller
quark masses, fluctuations in the strangeness number should in-
crease rapidly at the transition from hadrons to quarks. In the
pure quark–gluon phase fluctuations of the strange quark num-
ber should reach a maximum. Due to this direct connection of
strange quark number fluctuations with the underlying degrees of
freedom, the strange quark susceptibility χ S

2 signaling strangeness
fluctuations might serve as an indicator for the deconfinement
transition (see e.g. [26,29,67,68,79,80] for χ s

2 from lattice QCD).
Fig. 4 depicts the strange susceptibility χ S

2 divided by T 2 as
a function of T . Although restricting the net strangeness in the
total system to f s = 0, this quantity reflects the fundamental dif-
ference in underlying degrees of freedom between the different
model scenarios considered here. In the non-interacting HRG, more
heavy-mass strange hadrons are produced with increasing T . Since
there is no abrupt shift in the degrees of freedom and the hadron
masses do not change due to the absence of mean field interac-
tions, χ S

2 rises continuously. The χ S
2 (T ) reproduces lattice results

up to Tc . The behavior of χ S
2 changes when m∗ drops at Tc due

to non-vanishing scalar field couplings. In this case (red line), with
increasing T baryons loose a large amount of their mass and signif-
icantly more strange hadrons are produced with higher T . Hence,
in this case χ S

2 exhibits a steep and sudden rise at the critical tem-
perature.

Next, this study turns to the additional quark phase and its ef-
fect on χ S

2 at the phase transition. With the HRG + q scenario
neglecting all mean field interactions (purple line), the shift in
the degrees of freedom is reflected by an increase of χ S

2 with a
curvature qualitatively comparable to lattice results. When quarks
dominate the system at temperatures above T ≈ 1.5Tc , χ S

2 flat-
tens. Compared to other model scenarios, in this non-interacting
HRG + q scenario χ S is significantly larger at T < Tc . This effect
2
can be attributed to the lack of repulsive quark interactions caus-
ing quarks to be present even at very low T and, hence, increasing
strange quark fluctuations in this region. The appearance of quarks
below Tc notwithstanding, it is shown in [46] that even a small
quark vector couplings can prevent free quarks from populating
the ground state and reasonable ground state properties can be re-
produced within the effective model.

Considering the int. HRG + q scenario with full mean field in-
teractions (green lines) the slope of χ S

2 (T ) changes. Fig. 4 shows
results for vanishing vector couplings of the strange quarks gqφ = 0
(solid green line) and for a finite value gqφ = gΛφ = −7.4 (dashed
green line). For both couplings, χ S

2 (T ) is much flatter as in the
HRG + q scenario without interactions due to a prolonged shift
from hadrons to quarks. When neglecting strange quark vector
interactions gqφ = 0, the value of χ S

2 reaches the ideal quark
gas limit (purple line) at high temperatures T ≈ 2Tc . Contrast-
ingly, when strange quarks are suppressed by vector field interac-
tions, χ S

2 reaches its maximum at Tc , where strange hadrons and
quarks coexist and decreases again due to the vector suppression
of strange degrees of freedom with higher temperatures.

This finding underlines the observations made for non-strange
susceptibilities: Even small vector field interactions cause a signifi-
cant suppression of fluctuations at the phase transition. Comparing
susceptibilities from the model to lattice QCD results, it becomes
apparent, that strange quarks cannot exhibit a considerable cou-
pling to the respective vector field.

When regarding the strange susceptibility as an observable for
deconfinement, one should keep in mind that not only a shift from
hadrons to quarks but also the drop in the effective strange-hadron
masses leads to a sudden increase of χ S

2 at the critical tempera-
ture. For this reason, if the chiral and the deconfinement phase
transition do not happen at the same temperature, fundamentally
different and more complicated χ S

2 (T )-curves with considerable
contributions both from strange hadrons and from strange quarks
near the phase transition might be possible.

4. Summary and conclusions

This work presents non-strange and strange susceptibilities at
the phase transition (Tc ≈ 165 MeV) at μB = 0 obtained from a
chiral model including a PNJL-like quark phase. The model includes
all known hadrons and quarks and by this features a chiral transi-
tion as well as deconfinement.

Comparing model results to lattice QCD, it shows that heavy-
mass baryon resonances largely impact fluctuations in the hadronic
sector in the vicinity of Tc and the steep increase of susceptibili-
ties in this region results from the occurrence of multiple baryon
resonance states with low effective masses. However, rather large
repulsive vector field interactions for baryon resonances must be
considered to restrain light quark number susceptibilities to rea-
sonable values below Tc . In σ –ω models including a large spec-
trum of heavy-mass resonances strong vector field interactions
necessarily lead to moving the CEP to large μB . In the chiral model
used here, vector field interactions of the size determined in this
study cause the first order phase transition and a CEP to van-
ish [50].

In the quark sector, model results show that particles are al-
most acting like an ideal gas. Particularly, this implies that repul-
sive interactions of quarks with strange and non-strange vector
meson condensates must vanish in order not to annihilate fluc-
tuations above Tc . The strange quark number susceptibility re-
flects not only the shift from hadrons to quarks but also signals a
large contribution from strange baryons, which loose most of their
masses at the chiral transition. Therefore, the strange susceptibil-
ity should not be regarded as a clear indicator for the shift in the



182 P. Rau et al. / Physics Letters B 733 (2014) 176–182
degrees of freedom. This finding encourages further model studies
to explore the contribution of hadrons and quarks at the transition
using the baryon-strangeness correlator to show how fast the ideal
gas limit is achieved.
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