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Abstract

Depending on the point of time and location, insurance companies are sub-
ject to different forms of solvency regulation. In modern regulation regimes,
such as the future standard Solvency II in the EU, insurance pricing is lib-
eralized and risk-based capital requirements will be introduced. In many
economies in Asia and Latin America, on the other hand, supervisors require
the prior approval of policy conditions and insurance premiums, but do not
conduct risk-based capital regulation. This paper compares the outcome of in-
surance rate regulation and risk-based capital requirements by deriving stock
insurers’ best responses. It turns out that binding price floors affect insur-
ers’ optimal capital structures and induce them to choose higher safety levels.
Risk-based capital requirements are a more efficient instrument of solvency
regulation and allow for lower insurance premiums, but may come at the cost
of investment efforts into adequate risk monitoring systems. The paper derives
threshold values for regulator’s investments into risk-based capital regulation
and provides starting points for designing a welfare-enhancing insurance reg-
ulation scheme.
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1 Introduction

Risk-based capital requirements are an increasingly significant instrument of insur-

ance regulation. Different forms of risk-based capital requirements have been intro-

duced in Canada (1994), the United States (1994), Japan (1996), Australia (2001),

the United Kingdom (2004), the Netherlands, and Switzerland (2006). Recent de-

velopments in that direction include the European insurance regulation project Sol-

vency II with risk-based capital requirements in its first pillar, and the Solvency

Modernization Initiative of the U.S. association of insurance commissioners, NAIC.

The idea of risk-based capital requirements is to limit the insurer’s default risk below

a regulatory desired level. In Solvency II, e.g., this is specified by the annual ruin

probability of 0.5%.

Besides capital requirements, regulatory interventions into insurance pricing and

product design is an important feature of insurance regulation. In the European

Union, insurance regulation was primarily based upon the prior approval of pre-

miums and policy conditions, until the deregulation in 1994. Today, this form of

regulation is still widespread in most markets of Asia and Latin America (OECD,

2003). Also, in several U.S. states, regulators set constraints on insurance premiums

(cf. Tennyson, 2007). Empirical analyses for the U.S. market find that regulatory

prices are in some cases higher or lower than unregulated premiums (Cummins et al.,

2001; Harrington, 2002; Grace and Phillips, 2008). The regulatory objective of price

ceilings is to prevent excessive profit mark-ups on insurance premiums. Prices floors,

in turn, aim at preventing “destructive competition” and thus act as instruments of

solvency regulation (Joskow, 1973; Hanson et al., 1974; Grace and Klein, 2009).

The theoretical literature usually studies the relation between insurer default risk

and the insurance premium in one “direction”, namely by determining the premium

based on a specified level of insurer default risk. In this context, Merton (1977)

applies option pricing theory to calculate the price for deposit insurance of banks;

similarly, Doherty and Garven (1986) determine the fair premium based on the

shareholders’ default put option value. This procedure has been transferred to

insurance guarantee funds (Cummins, 1988), reinsurance (Gruendl and Schmeiser,

2002), and has been generalized with regard to imperfect competition (Cummins



and Danzon, 1997), multiline insurers (Phillips et al., 1998; Myers and Read, 2001;

Ibragimov et al., 2010), or corporate taxation (Doherty and Garven, 1986; Gatzert

and Schmeiser, 2008a). In the absence of pricing constraints, the insurer’s safety

level has also been optimized as an endogenous variable subject to insurer profit

maximization (Cummins and Danzon, 1997; Zanjani, 2002; Froot, 2007). All these

considerations can be meaningful in investigating how insurance prices are influenced

by the safety level and by solvency regulation.

The other direction, however, still holds several interesting questions: In which

way is the safety level influenced by pricing constraints? Are risk-based capital

requirements more efficient than price floors to ensure insurer solvency? If so, how

much should regulators invest to implement risk-based capital requirements? Does

it make sense to have capital requirements and to set minimum prices at the same

time?

This article develops a parsimonious model to investigate the interaction between the

insurer’s safety level and the insurance premium in both directions. In a first step,

the insurer faces risk-based capital requirements, and chooses the shareholder-value-

maximizing premium. Here, a higher safety level implies a higher premium, since the

expected payoffs to policyholders increase, and because a higher safety level causes

higher costs for the insurer’s risk management. The model incorporates frictional

costs of procuring equity, such as corporate taxes or agency issues. In a second step,

the insurer chooses the optimal safety level in the presence of pricing constraints.

Now, the insurer balances the potential default-risk-driven fall in insurance demand

against shareholders’ default put option value and the transaction costs for risk

management. Binding price floors increase the insurer’s expected profits per contract

and thus induce the insurer to attract a larger number of customers by means of a

higher safety level. In turn, binding price ceilings reduce the optimal safety level.

To compare risk-based capital requirements with price regulation, the paper derives

analytical representations for both outlined relations: The insurer’s optimal pre-

mium, based on the regulatory desired safety level, and the regulatory price that

makes the insurer choose the specified safety level. Do these prices differ? If insur-

ance demand is perfectly elastic with regard to price and insurer default risk, they
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do not, and hence capital requirements and price regulation will result in the same

safety-level/price combination. However, if demand is imperfectly default-elastic,

e.g., because policyholders have incomplete risk information, capital requirements

lead to a premium below the corresponding price floor. Therefore, risk-based capital

requirements make insurance more affordable to purchasers, and also allow for higher

shareholder value, as more contracts will be concluded. This welfare advantage jus-

tifies regulatory investments in implementing risk-based capital requirements as the

main regulatory instrument. A numerical calibration of the model shows that regu-

latory expenses for risk-based capital regulation may range between 0% and 10% of

insurance liabilities, depending on the price and default sensitivities of demand and

the magnitude of frictional costs of equity.

Besides measuring the welfare-advantage of risk-based regulation, the paper points

out that binding price floors are not necessarily an appropriate tool to enhance

insurer safety levels if risk-based capital requirements are also in place: In this case

there is a price interval in which price floors are binding and make insurance more

expensive, but have no influence on the insurer’s safety level.

The remainder of this article is structured as follows. Section 2 presents the model

framework. Section 3 derives insurers’ best response functions to regulatory con-

straints and also the optimal strategy in the absence of regulation. Section 4 high-

lights the implications of insurers’ best responses for optimal regulatory policies.

Section 5 provides graphic interpretations of the central results and illustrates them

with a numerical example. Section 6 discusses the results in light of the existing

literature and provides possible extensions. Section 7 concludes.

2 Model framework

The model incorporates three types of actors: the regulator, who imposes restrictions

on insurer safety levels and prices; an insurer with limited liability, who chooses an

allowed safety level and insurance price under an objective shareholder-value maxi-

mization strategy; and a heterogeneous group of consumers, who make their buying

decisions based on these figures. The time horizon is the interval [0, 1]. Shareholders
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are risk neutral and evaluate their future payoffs under the risk-neutral probability

measure Q.1

At time 0, shareholders endow the company with equity in the amount of K. Due to

acquisition expenses, corporate taxation, and agency costs, equity endowment is ac-

companied by up-front frictional costs, which are modeled by a proportional charge

τ ≥ 0.2 At time 1, insurance losses occur in the amount of L1 , and shareholders

receive the insurer’s remaining equity of max{A1 − L1; 0} under limited liability

protection. The insurer’s target is to maximize the net shareholder value:

SHV = exp(−r)EQ [max{A1 − L1; 0}]−K, (1)

with r the risk-free interest rate. Consumers can buy insurance at time 0, and face

future losses at time 1. The number of concluded contracts is modeled by a two-

parametric demand function y(p, dr) , where p is the insurance premium, and dr is

the default ratio, which measures the insolvency costs in terms of the value of default-

ing claims per dollar of initial liabilities: dr = exp(−r)EQ [max{L1 − A1; 0}] /L0.3

The demand function may represent the outcome of consumers’ decision-making in

either the absence or the presence of alternative offers from competitors, it may

account for information asymmetries, and there are few restrictions regarding its

shape:4 there is a finite number of potential customers, demand is continuous, twice

differentiable, and strictly decreasing in both its arguments.

The insurer’s initial assets are comprised of premium income in the amount of

y(p, dr) · p and equity endowment net of frictional costs, i.e., A0 = y · p+ (1− τ) ·K

. The arbitrage-free value of each contract’s claim is denoted by µ, and hence the

1 Cf. (Gatzert and Schmeiser, 2008b, p.2590).
2 Cf. Zanjani (2002), Froot (2007), Yow and Sherris (2008), Ibragimov et al. (2010).
3 The default ratio is frequently used when insurance pricing builds on option pricing techniques
(cf. Sommer, 1996; Myers and Read, 2001; Gruendl and Schmeiser, 2002; Gatzert and Schmeiser,
2008a,b; Ibragimov et al., 2010). It is incorporated as a parameter for insurance demand, e.g., by
Cummins and Danzon (1997) and Yow and Sherris (2008).

4 If consumers can hardly distinguish between insurer safety levels, y will react weakly to default
risk, and ydr may be close to zero; whereas ydr may be large if insurer default risk is observable.
Zimmer et al. (2011) provide an experimental estimation of the insurance demand function which
could be included in this framework.
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insurer’s initial liabilities are L0 = y · µ . Under the risk-neutral measure Q, assets

and liabilities evolve according to the following processes:5

dAt = A0 · exp
(
(r − σ2

A/2)t+ σAW
Q
A,t

)
dLt = L0 · exp

(
(r − σ2

L/2)t+ σLW
Q
L,t

)
,

with σA, σL denoting the volatilities of the asset and liability processes, and WQ
A,t,

WQ
L,t geometric Brownian motions under Q. The Brownian motions are correlated

by ρ, i.e.

dWQ
A,tdW

Q
L,t = ρdt.

This set-up permits determination of the default ratio as follows:6

dr(s, σ) = Φ(z)− s · Φ(z − σ), (2)

with s = A0/L0 the initial asset-liability ratio, σ =
√
σ2
A + σ2

L − 2ρσAσL the port-

folio volatility, z = − 1
σ

ln(s) + σ
2
, and Φ the cumulative distribution function of the

standard normal distribution.

Furthermore, the insurer’s SHV can be represented as a function of the price p and

the default ratio dr. According to Equation 2, dr(s, σ) is continuous in both its

arguments, strictly decreasing, and strictly convex in s. Thus, dr(s, σ) is invertible

with respect to s , and by using the corresponding inverse, there is a unique asset-

liability ratio s(dr, σ) corresponding to dr. SHV is therefore a continuous function

of dr and p:7

SHV (dr, p) = y(dr, p) ·
[
p− µ · (1− dr)− τ

1− τ
· [µ · s(dr, σ)− p]

]
(3)

5 (Cf. Cummins and Danzon, 1997; Phillips et al., 1998; Myers and Read, 2001; Sherris, 2006;
Gatzert and Schmeiser, 2008b; Ibragimov et al., 2010).

6 Cf. Margrabe (1978).
7 For the derivation, see Appendix A
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3 Insurer response to regulatory constraints

3.1 Risk-based capital requirements

First, I consider a binding rule which restricts the insurer’s default ratio to the level

drreg. The regulator could set up such a rule as a risk-based capital requirement and

require insurers to hold enough equity such that the default ratio does not exceed

drreg.8 The insurer will ideally respond by adjusting its equity-premium combination

as follows:

Proposition 1. Suppose that risk-based capital requirements restrict the default

ratio to drreg. Then the insurer will choose the following combination of equity and

insurance premium:9

K∗(drreg) = y ·
[
µ · s(drreg, σ)− µ · (1− drreg)− 1

1− τ
· y

−yp

]
, (4)

p∗(drreg) = µ · (1− drreg)︸ ︷︷ ︸
Time-0-value of

indemnity payments

+ τ · µ · (s(drreg, σ)− (1− drreg))︸ ︷︷ ︸
Transfer of frictional costs

of equity

+
y

−yp
,︸ ︷︷ ︸

Profit

loading

(5)

where y is evaluated at the point (drreg, p∗(drreg)).

The pricing formula based on the regulatory required default ratio drreg consists of

three components: (1) the arbitrage-free value of claims payments to policyholders,

which are adjusted for insurer default risk; (2) a premium charge that transfers

frictional costs of equity endowment to policyholders; and (3) a profit loading that is

always non-negative. If demand is perfectly price elastic, the last component is equal

to zero, the second component matches the frictional costs of equity endowment per

8 This concept is similar to the Solvency Capital Requirements (SCR) under Solvency II, which
builds on the risk measure Value-at-Risk. As Gatzert and Schmeiser (2008b) demonstrate, the
insurer’s default option value can differ substantially, even though the Value-at-Risk is binding,
which provides the insurer with an arbitrage opportunity. To avoid this adverse effect, the regulator
could specify capital requirements based on the default ratio. For multi-line insurers, such a
procedure is described by (Myers and Read, 2001, p. 568 f.).

9 For convenience, I assume throughout the paper that the optimal equity position is non-negative,
i.e., K∗(drreg) ≥ 0.
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insurance contract, and the net SHV is zero. If demand is imperfectly elastic,10 the

profit loading will be positive, and the second component will exceed the insurer’s

frictional costs:

τ ·µ·(s(drreg, σ)− (1− drreg)) = τ ·
[
K∗(drreg)

y
+

1

1− τ
· y

−yp

]
> τ ·K

∗(drreg)

y
. (6)

Under the optimal equity-premium combination, the profit loading on the premium

exceeds the "traditional" loading, which only refers to the price in-elasticity of de-

mand. As premiums add to the insurer’s assets and lower its required equity, the

higher premium helps to save frictional costs of equity. From shareholder’s perspec-

tive, a positive net SHV is possible under capital requirements, if and only if demand

is imperfectly price elastic.

The price formula in Equation (5) explains why insurance prices should be inversely

related to insurer default risk (in competitive as well as in monopolistic markets).

First, the insurer faces fewer expected payments to policyholders, and shareholders

have more limited liability protection. Second, a higher default value allows for lower

equity endowment, thus decreasing frictional costs. This basic relation between

safety and price is in line with the empirical findings of Sommer (1996).

3.2 Price regulation

Next, I explore the insurer’s response to a binding pricing constraint preg and non-

binding capital requirements. This situation may occur if the regulator seeks to

ensure solvency by imposing restrictions on insurer products and pricing policies

rather than by capital regulation. It may also be the case if capital regulation is

lax and the insurer is able to adjust its safety level, but is unable to demand the

monopoly price (e.g., due to regulatory price ceilings, or subsidized competitors

offering comparable insurance contracts below the monopoly price).

10This case is in line with the assumption that the insurance market is monopolistic competitive.
Since insurers acquire information during the relationship with policyholders, and hence policy-
holders cannot change to a competitor without incurring costs, this market form is considered more
realistic in insurance markets (see D’arcy and Doherty, 1990).
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The insurer reacts to the regulatory price preg by adjusting its equity endowment,

and hence its default ratio. The optimal adjustment of the default ratio is specified

by the first derivative of SHV with regard to dr:11.

∂y

∂dr
·
[
preg − µ · (1− dr)− τ

1− τ
· [µ · s(dr)− preg]

]
+y·µ−y·µ· τ

1− τ
· ∂s
∂dr

= 0 (7)

Equation 7 represents the trade-off which the insurer makes when deciding whether

a marginal increase of dr is to be preferred. The first term is negative and measures

the marginal lower profits due to a lower demand for higher default risk. The second

term is positive and represents the value of limited liability expansion. The third

term reflects marginal savings in the frictional costs of equity, as a higher default

ratio allows for a lower asset-liability ratio.

As the solution of Equation 7 in terms of dr would not be comparable to the result

of Equation 5, I will, instead, derive a representation for that price preg that will

induce the insurer to attain the default ratio draim. Reordering Equation 7 implies

that the corresponding price preg can be written as

preg(draim) = µ · (1− drreg)︸ ︷︷ ︸
Time-0-value of

indemnity payments

+ τ · µ · (s(drreg, σ)− (1− drreg))︸ ︷︷ ︸
Transfer of frictional costs

of equity

+µ

(
1− τ ·

(
1 +

∂s

∂dr

))
· y

−ydr︸ ︷︷ ︸
Corresponding

profit loading

(8)

where y and ydr are evaluated at the point (draim, preg(draim)). If the regulator fixes

prices at preg(draim), the insurer will optimally react by choosing the default ratio

draim.

Comparing Equations 5 and 8 reveals that p∗(dreg) and preg(draim) are very similar

in structure. The first two premium components are identical and represent the

arbitrage-free value of actual claims payments and the transfer of frictional costs

of equity endowment. The third component of Equation 8 describes the premium

11For this purpose, p is fixed at preg in Equation (3)
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loading the regulator has to permit so as to induce the insurer to choose the default

ratio draim. According to Equation 2, the first factor, µ ·
(
1− τ ·

(
1 + ∂s

∂dr

))
, is

always non-negative and strictly decreasing in draim.12 The second factor, y
−ydr

>

0, represents a loading, the extent of which depends on the default sensitivity of

demand.

preg(draim) is well-defined for any default ratio as long as there is some reaction in

insurance demand, i.e., ydr < 0. Hence, regulators may induce insurers to choose any

regulatory desired safety level by setting an adequate pricing constraint. If demand

is perfectly sensitive with regard to default risk, ydr = −∞, the third premium

component collapses, and regulators will not permit a profit loading on the premium,

meaning that the net SHV will be zero. This scenario may be realistic if prices are

exogenously fixed, consumers are perfectly informed about insurer default risk, and

homogeneous insurers compete on quality. Similar to the classic Bertrand model, in

equilibrium, insurers will attain a default risk level such that their risk management

costs are just covered at the given price. If demand is less than perfectly elastic by

default, regulators must allow a positive profit loading, and thus a positive net SHV,

in order to induce draim. Note that preg(dr) does not depend on the price elasticity

of demand, i.e., regulatory prices are determined irrespective of the profit loading

on the non-regulated premium.

3.3 No binding constraints

To discover if capital and pricing constraints are binding, or whether the insurer will

exceed a requirement, let us take a look at the insurer’s SHV-maximizing strategy in

the absence of any constraints. Since Equation 5 follows from the FOC for pricing,

and Equation 8 from the FOC for default risk, the insurer’s optimal strategy in

the absence of binding constraints is found by solving p∗(dr∗) = preg(dr∗), which is

equivalent to

12Since ∂dr(s,σ)
∂s ∈ (0,−1], ∂s(dr,σ)∂dr =

(
∂dr(s,σ)

∂s

)−1

only has values smaller or equal to -1. As dr(s, σ)

is strictly convex in s , s(dr, σ) is strictly convex in dr , and hence ∂s(dr,σ)
∂dr is strictly increasing in

dr.
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y

−yp
= µ ·

(
1− τ ·

(
1 +

∂s

∂dr

))
· y

−yp
(9)

or

µ− τ · µ ·
(

1 +
∂s

∂dr

)
=
ydr
yp

(10)

Here, the left-hand side represents the value of the extent of shareholders’ limited

liability protection (the default put option) as well as the reduction of frictional

costs, given a marginal increase in the default ratio. The right-hand side measures

the conjoint reaction of insurance demand to a marginal change in default risk and

the corresponding change in price, as transaction costs for risk management are

transferred to policyholders (see Section 4.2). Proposition 2 provides a representa-

tion of the optimal asset-liability ratio s∗. Inserting s∗ into Equations 2 and 5 leads

to the insurer’s optimal strategy (dr∗, p∗) in this situation.

Proposition 2. In the absence of regulatory constraints, the FOC for the default

ratio implies that the insurer optimally attains the asset-liability ratio

s∗(x) = exp

(
−σ · Φ−1[x]− σ2

2

)
,

with x = τypµ/ [ydr − (1− τ)ypµ] , and Φ−1 the quantile function of the standard

normal distribution.

By investigating the components of s∗ it is possible to discover under which condi-

tions the insurer has an incentive for safety. First, assume τ > 0 and consider the

parameters of the demand function. A necessary condition for s∗ > 1 is ydr
ypµ

> 1 + τ
2
,

meaning that demand reacts more strongly to default risk than to price13. Intu-

itively, insurance demand rewards safety and accepts the fact that transaction costs

for risk management are transferred via premiums. If this condition is not met, the

insurer will want to hold no equity at all. Such a scenario may be realistic if insur-

ance buyers are protected by a guarantee fund or if government bailouts exist. It is

also the case if demand is perfectly sensitive with respect to price, but not with re-

13 In particular, −ydr < −ypµ would mean that consumers prefer a price reduction of one dollar to a
one dollar DPO reduction.

11



spect to default risk, e.g., because consumers can perfectly observe prices and choose

the cheaper product, but do not have sufficient information about contract quality.

Again, the insurer has no incentive to ensure safety, and capital requirements will

always be binding.

In the opposite case, i.e., ydr
ypµ
→ ∞ , demand is perfectly elastic to default risk,

but not so to price. The insurer then aims to avoid any default risk, i.e., s∗ tends

to infinity (as does the price). Capital requirements and price floors will always be

non-binding and solvency regulation is not necessary.

Next, let us assume that ydr
ypµ

> 1+ τ
2
, and consider the border case τ → 0 , meaning

that the insurer is able to hold unrestricted equity without incurring transaction

costs. In this case, it will choose to hold an infinite amount of equity so as to avoid

all default risk.14 Again, capital requirements will always be non-binding. Price

floors can be binding, but will have no influence on the insurer’s safety level. In

summary, a positive default risk is optimal only in the presence of frictional costs of

equity (τ > 0), whereas indirect costs of capital related to the risk premiums that

shareholders demand for bearing undiversifiable risks do not solely imply insurer

default risk.

4 Implications

4.1 Comparison of capital requirements and price floors

Based on the findings on insurer response to regulation, it is possible to make com-

parisons between regulatory constraints on capital levels and on pricing. Assume

that the insurer’s strategy in the absence of regulatory constraints is uniquely char-

acterized by the FOC in Equation 8, and let s∗, dr∗ and p∗ denote the optimal

asset-liability ratio, default ratio, and price, respectively. Furthermore, let p∗(.) de-

note the insurer’s optimal price in response to a given default ratio according to

Equation 5.

14This result is consistent with Rees et al. (1999, p. 61), Zanjani (2002, p. 288), and Froot (2007, p.
293).
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In the case that the regulator seeks to restrict the default ratio to draim ∈ (0, dr∗),

the following proposition allows the comparison of capital and price requirements as

instruments of solvency regulation.

Proposition 3. Let draim ∈ (0, dr∗) be the regulatory desired default ratio. It yields

p∗(draim) < preg(draim).

Proposition 3 has several implications. To start with, preg(draim) > p∗(draim) ≥ p∗

implies that the regulator has to implement a binding price floor in order to decrease

insurer default risk by price regulation. The reason is that the price floor raises

the insurer’s expected profits per contract, and thus provides the insurer with an

incentive to attract a larger number of customers by choosing a higher safety level.15

Even more interesting, it follows that risk-based capital requirements are a more

efficient instrument than price floors for solvency regulation, as they allow for lower

insurance prices: when confronted with risk-based capital requirements at the level

draim < dr∗, the insurer responds by choosing the price p∗(draim), which is lower

than the corresponding price floor preg(draim), which would also lead to draim. As

the safety level is identical and only the prices differ, capital regulation is therefore

superior to price regulation from the consumers’ perspective.

The intuition behind this result is that risk-based capital requirements enable the

insurer to choose the most efficient combination of equity endowment and premium

income, and a part of the ensuing efficiency gain will be transferred to policyhold-

ers. Formally, the price restriction leads away from the optimal equity-premium

combination given by Proposition 1. As the solution of Proposition 1 maximizes

SHV, we can also conclude that price floors are detrimental for shareholders, and

shareholders would also advocate risk-based capital requirements. Even though the

price floor allows for higher profits per insurance contract, it cuts demand, and in

sum decreases the shareholder value.

Next, let us take a look at the distance preg(draim) − p∗(draim), and its influencing

factors. This distance measures the efficiency advantage and thus yields the maxi-

15See also Equation 7.
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mum cost at which implementing risk-based capital requirements is still preferable

to price regulation.16

Equations 5 and 8 give the length of this interval:

∆p = preg(draim)− p∗(draim) = µ

(
1− τ ·

(
1 +

∂s

∂dr

))
· y

−ydr︸ ︷︷ ︸
Required loading on the price floor

− y

−yp︸︷︷︸
Profit

loading

. (11)

The distance ∆p reflects the profit loadings on the price floor and on the optimal

premium under capital requirements. The expression can easily be calculated for

some corner cases. If price sensitivity of demand becomes large, i.e., yp → −∞, the

insurer tends to offer insurance at the fair premium, and profit mark-ups disappear.

The required price floor, however, is unaffected by yp, and hence the efficiency

advantage of price floors increases. If, in turn, default sensitivity of demand becomes

large (ydr ↑), price floors will be effective at lower levels, and thus the efficiency

advantage of risk-based capital regulation decreases.17 Furthermore, ∆p will be large

if a small change in default risk causes a large change in the amount of frictional

costs. This is the case if τ is high, i.e., if there are severe frictional costs of holding

equity, and if ∂s
∂dr

takes a high negative value. The latter will occur if the portfolio

risk is high, and if draim is close to zero. In all these cases, regulators have to allow

for a high profit loading on the premium to induce draim by means of a price floor,

and risk-based capital requirements will lead to a considerable premium reduction.

4.2 Price floors in the presence of capital requirements

Can price floors effectively enhance insurer safety levels when risk-based capital

requirements are in place? What effect does rate suppression have on insurer safety

levels? To investigate these questions, I place a weak restriction on the shape of the

demand function, which allows more insight into insurer reaction to price regulation.

16Assume that all implementation costs will be borne by insurance market participants, and insurers
will pass them on to policyholders.

17At the extremes, i.e., for ydr → ∞ and yp < ∞, the insurer tends to set its default risk to zero,
capital requirements are always non-binding, and price floors are always effective.
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For this purpose, assume that

ydr(dr, p)

y(dr, p)
is non-increasing in p. (12)

The interpretation of this assumption is that consumers who buy insurance even

at high prices are at least as sensitive to default risk as consumers are who only

buy at low prices. Appendix E shows that the assumption is fulfilled for several

frequently employed demand functions. Now, it can be shown that the price interval

(p∗(draim), preg(draim)) defines the area in which price floors are binding, but do not

enhance insurer safety levels if risk-based capital requirements are also in place.

Proposition 4. Assume that the regulator demands risk-based capital requirements

at the level draim and that y(dr, p) fulfills the statement in line 12. Then each price

floor in the interval (p∗(draim), preg(draim)) is binding, but does not induce a default

ratio below draim.

When confronted with capital requirements and a price floor in the aforementioned

interval, the insurer will countervail the higher premium by choosing less initial

equity endowment per contract in order to maintain the default ratio. Thus, the price

floor reduces the insurer’s potential to shift risks from policyholders to shareholders,

and instead risk is spread among policyholders. It is notable that such a situation

is detrimental for policyholders as well as for shareholders: Policyholders are worse

off, since the price floor makes insurance more expensive, but does not enhance

quality; SHV also decreases, since the price floor leads the insurer away from the

SHV-maximizing strategy. However, once the regulator sets up a price floor which

is higher than preg(draim), it will overrule the capital requirement, and effectively

enhance safety.

4.3 Price ceiling

The considerations above have shown that binding price floors can be used as an

instrument for solvency regulation. In turn, regulators are often concerned about the

affordability of insurance, and prescribe upper bounds for the permissible insurance

15



premium. If such a price ceiling is binding, it will undermine the insurer’s incentives

for safety:

Proposition 5. Assume that the regulator sets up a price ceiling preg below the

unregulated price p∗. Then the insurer will react by choosing a higher default ratio,

i.e. dr∗(preg) > dr∗.

An important concept for price regulation is the fair premium, which reflects the

insurer’s costs of offering insurance at a specified default risk level.18 In this frame-

work, the fair premium can be formulated as

pfair(draim) = µ · (1− draim)︸ ︷︷ ︸
Time-0-value of

indemnity payments

+ τ · µ ·
(
s(draim, σ)− (1− draim)

)︸ ︷︷ ︸
Frictional costs of equity

.19 (13)

The fair premium accounts for shareholders’ limited liability protection as well as the

frictional costs corresponding to the specified default risk level draim , and implies

that SHV is zero. However, unless demand is perfectly elastic with regard to default

risk, or the regulator restrict default risk by means of other measures, this type of

rate suppression induces the insurer to deviate from draim:20

Proposition 6. Assume that ydr <∞ and that there are no binding capital require-

ments. Confronted with a pricing constraint at the fair premium pfair(draim), the

insurer will choose a default ratio that is strictly higher than draim.

It is notable that the incentive for higher default risk may exist, even if demand

is perfectly price sensitive, and the insurer would choose pfair(draim) under capital

requirements. In fact, binding capital requirements seem to be the only way to

prevent the default risk increase, while purely monitoring and adjusting the regu-

lated price to the insurer’s new default ratio are insufficient. Insurers have manifold

possibilities for risk shifting after contracts have been purchased, and thus there

18Cf. Doherty and Garven (1986), who determine the fair premium in an OPT framework.
19For applications and modifications of the fair premium concept based on OPT, see Myers and Read
(2001), Sherris (2006), as well as Gatzert and Schmeiser (2008b).

20Note that the proof of Proposition 6 does not require the condition in line 12.
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might be an opportunity for positive SHV until the regulator becomes aware of the

risk shifting. Examples for insurers’ risk shifting opportunities include shifts in the

asset allocation towards riskier investments, a less cautious underwriting policy or

insufficient reinsurance protection.

The empirical literature reports several adverse effects of regulatory rate suppression.

Klein et al. (2002) find that insurers subject to price regulation lower their capital

levels, which is in line with Proposition 5. Harrington and Danzon (2000) report

that rate regulation in workers’ compensation insurance leads to increased loss costs,

indicating that rate regulation lowers the insurer’s incentives for loss control. For

the US automobile insurance market, Weiss et al. (2010) obtain similar results.

5 Numerical examples

5.1 Model parameters

In the following, I use a numerical example to illustrate the results graphically and

to examine the influence of parameter changes. For the asset-liability model, I

consider the following parameterization:21 µ = 250, σA = 5%, σL = 20%, ρAL = 0%,

and r = 0%. For the insurance demand function, I use the function that showed the

best fit in an experiment involving insurance purchase behavior in the presence of

default risk (see Zimmer et al. (2011)):

y(p, dr) = n · exp (−fp · p− fd · dr) , (14)

where n represents the market size, and fp, fd measure demand sensitivity to price

and default risk. This type of function implies y
−yp = 1

−fp and y
−yp = 1

fd
, and thus all

equations describing the insurer’s best response functions are closed-form solutions

21The parameterization of the asset-liability model follows the empirical study of Yow and Sherris
(2008). σA = 5% is consistent with the estimated volatility parameter of their asset model (cf.
Yow and Sherris, 2008, pp. 306-308), µ = 250$ and σL = 20% may represent the expectation value
and volatility of liability insurance claims (cf. Yow and Sherris, 2008, p. 209). As the measures in
the subsequent analysis build on risk-neutral valuation, I can omit the drift rates under empirical
probabilities.
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(see Equations 5, 6, and 8). For the carrying charge τ and the parameters of the

demand function, I apply different values and examine their influence. In the base

scenario, τ = 10%, fp = 7.2%, and fd = 40.22

5.2 Capital and price regulation

The insurer’s optimal strategies are depicted in Figure 1. The solid line provides the

insurer’s optimal price corresponding to a given default ratio (Section 3.1, Equation

5), and the dashed line describes the insurer’s optimal default ratio under price reg-

ulation (Section 3.2, Equations 7, 8). The intersection between these lines (Fig. 1,

Point C) yields the outcome of optimizing both the default ratio and the price, thus

describing the strategy in the absence of binding constraints (Section 3.3, Proposi-

tion 2). In the base scenario, the unregulated strategy is dr∗ = 1.0% and p∗ = 269.54.

If the regulator restricts the default ratio by means of risk-based capital requirements

to drreg = 0.5%, the insurer will raise the price to p∗(0.5%) = 272.91 (Fig. 1, Point

A). Alternatively, the regulator could achieve the same default ratio by means of

the price floor preg(0.5%) = 280.42 (Fig. 1, Point B). According to Proposition

3, capital requirements are the more efficient instrument for solvency regulation,

and permit a premium reduction of ∆p = 280.42 − 272.91 = 7.51 in the base

scenario. Furthermore, the interval between 272.91 and 280.42 defines the area of

price floors which are binding, but do not enhance the insurer’s safety level if capital

requirements at the default ratio 0.5% are also in place (Proposition 4).

Vice versa, let us analyze the consequences of a binding price ceiling. If the regulator

does not enforce capital requirements and suppresses the premium by 1% below the

unregulated price, i.e., preg = 0.99 · 269.54 = 266.84, the insurer will respond by

increasing the default ratio to 1.24% (Fig. 1, Point D). Hence, the price reduction

of 1% implies a default risk increase by 24%.

22Under the insurer’s SHV-maximizing equity-price combination, this parameter set implies that the
price elasticity of demand is equal to 19.41, and the default elasticity is equal to 0.4, both of which
are similar to the empirically estimated parameters in (Yow and Sherris, 2008, p. 318).
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5.3 Influence of the sensitivity parameters of demand

I next investigate the variation in the results if the default sensitivity of demand

increases from fd = 40 to fd = 50, e.g., due to higher risk transparency in the

market. As depicted in Figure 2, the dashed line moves downwards, and this has

two consequences: Firstly, the intersection with the solid line moves to the top left,

i.e. insurance will become safer and more expensive. Secondly, price regulation

becomes more effective, and the insurer will attain the default ratio 0.5% already at

the price floor 276.14. Since the response function to capital regulation, p∗(dr), is

not affected, the efficiency advantage of capital regulation over price floor decreases.

The gray arrows in Figure 2 illustrate the consequences of fd → ∞. At the limit,

the dashed line will be congruent with the fair premium pfair(dr) (see Equation

8). Also, the solid line will move to pfair(dr) if fp → ∞ (see Equation 5). Hence,

the response functions to capital and price regulation are identical if demand reacts

infinitely strong to price and default risk, fd →∞, fp →∞.

5.4 Threshold for investment in a risk-based regulatory scheme

In the base scenario, the optimal premium under risk-based capital requirements is

lower by 7.51 than the corresponding price floor. Assume that the current solvency

regulation system is based on price floors, the costs of regulation are borne by poli-

cyholders, and insurance contracts are homogeneous. In this environment, changing

to a risk-based capital requirement system of regulation will be advantageous to

both policyholders and shareholders if the regulator invests up to 7.51 per contract

(or 3.0% of insurance liabilities) in such a scheme. With higher default sensitivity

of demand, the threshold shrinks to 3.2 per contract (or 1.3% of insurance liabil-

ities). Ceteris paribus, there is less potential to lower insurance prices by shifting

from price floors to capital regulation if the demand reacts strongly to default risk.

Vice versa, the threshold enlarges to 5.9% of liabilities if default sensitivity is only

fd = 30 (see Table 1). In this case, policyholders have less power to control insurer

default risk, making capital regulation more justifiable.

19



Figure 3 compares these results to scenarios with higher price sensitivity of demand (

fd = 9.0% instead of 7.2%) and higher frictional costs (τ = 12.5% instead of 10.0%).

Higher price sensitivity induces the insurer to demand lower profit mark-ups on the

premium if default risk is controlled by capital requirements (irrespective of the

default sensitivity). Hence, the threshold at which risk-based regulation becomes

superior increases by 1.1 percentage points of insurance liabilities. Furthermore,

frictional costs of equity increase the efficiency advantage of risk-based capital reg-

ulation, because the insurer becomes more reluctant to hold equity and aims at

increasing default risk. Hence, the regulator must increase the price floor to coun-

teract this incentive, particularly if demand is only weakly default sensitive. In

the latter case (τ = 12.5%, fd = 30), the threshold for investment in risk-based

insurance regulation is 7.9% .

6 Discussion

6.1 Multiple risk management instruments

To model the insurer’s optimal safety level, the framework in this paper considers

the equity level as a variable, while the risk profile of the asset-liability portfolio

is fixed; this procedure is similar to Cummins and Danzon (1997), Zanjani (2002)

or Yow and Sherris (2008). In contrast, insurer risk-taking could be modeled by

the fraction of risky investments in the insurer’s assets (cf. MacMinn and Witt,

1987; Filipovic et al., 2009), or the purchase of reinsurance. Presumably the basic

results of this paper can be transferred to models with multiple risk management

instruments: Risk-based capital regulation only requires insurers to comply with

the desired safety level, while the choice of risk management instruments is not

restricted. Hence, insurers can choose the most efficient mix of instruments, such as

equity, reinsurance, or alternative risk transfer. Singular regulatory requirements,

such as pricing constraints, underwriting limits or investment guidelines impose

additional restraints on the insurer’s risk management strategy, and lead away from

the most efficient combination. The company therefore faces higher costs for offering

insurance, and insurance contracts will be more expensive for policyholders.
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6.2 Reference to the bank regulation literature

Similar to the analysis of capital requirements and price floors in insurance regula-

tion, the bank regulation literature provides a discussion about deposit rate ceilings

as a regulatory instrument. Hellmann et al. (2000) show that deposit rate ceilings

can prevent banks from investing their capital in risky assets, as they increase the

bank’s franchise value. Repullo (2004) sets up a model with imperfect competition

by employing Salop’s (1979) circular road model. The author shows that both risk-

based capital requirements and deposit rate ceilings can ensure that banks invest in

prudent assets. However, risk-based capital requirements allow for higher deposit

rates. These results are consistent with Proposition 3 in this article, even though the

model specifications differ: particularly because insurance claims are stochastic and

insurance demand is affected by the insurer’s safety level.23 An interesting extension

of the proposed model in this article would be the implementation of the derived

response function into a competition model, such as in Salop (1979).

6.3 Interest rate guarantees in life insurance

The paper shows that in the presence of capital requirements, there is a price interval

in which price floors are binding and make insurance more expensive, but have no

effect on insurer safety levels. In this situation, price floors decrease both consumer

welfare and shareholder value and are thus detrimental to total welfare. One real-life

example of such a situation is European endowment and private pension insurance,

which is subject to maximum discount rates for calculating actuarial provisions.

This restriction effectively serves as an upper boundary for the guaranteed interest

rate which is included in the contract or, conversely, as a minimum premium for

each unit of guaranteed insurance benefit (price floor). Once the EU framework

for insurance regulation, Solvency II, comes into force, life insurers are also subject

to risk-based capital requirements. According to Proposition 4, the interest rate

restriction will either be ineffective with regard to life insurers’ safety levels, or will

23Hellmann et al. (2000) and Repullo (2004) assume that depositors have complete deposit insurance
protection against bank default risk.
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override, and thus make redundant, the Solvency II capital requirements. In either

case, the result will not be optimal for welfare. It will be interesting to see whether

or not the interest rate constraint is effective and, if so, how the situation could

be improved. These questions could be answered by extending and calibrating the

model to a life insurance context.

7 Conclusion

The paper studies the interaction between price regulation and optimal safety levels

of insurance companies. It shows that rate suppression induces insurers to reduce

their safety levels. Binding price floors, in turn, induce higher safety levels and

thus act as a regulatory instrument for solvency regulation. If insurance demand is

less than perfectly elastic with regard to default risk, risk-based capital requirements

turn out to be more efficient than price floors, as they lead to lower insurance prices,

and therefore increase welfare.

Quantification of the potential welfare advantage of risk-based regulation can sup-

port public policymakers in their decision whether to implement risk-based regu-

latory standards or to rely on product and price regulation. The analytical repre-

sentation of the insurer’s response shows that risk-based capital requirements are

superior, especially if insurance demand reacts strongly to price and weakly to in-

surer default risk, if holding equity causes severe frictional costs, and if insurance

claims exhibit a high volatility.

The paper provides several starting points for future research. The predicted influ-

ence of price regulation on insurer default risk could be subjected to empirical tests.

Further, additional research should be conducted to estimate regulatory costs, e.g.,

due to the implementation of risk models, or the supervision of these models by reg-

ulatory agencies. These results could be balanced against the efficiency advantage

of risk-based capital requirements, which is quantified in this article. Finally, the

paper illustrates that using multiple regulatory instruments, such as capital require-

ments and price floors, can lead to suboptimal outcomes. As discussed in section 6.3,

this question could be explored by translating the framework into a life insurance

context.
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Appendix

A Derivation of Equation 3

Given the portfolio volatility σ and the default ratio dr, the insurer’s asset-liability

ratio must fulfill

s(dr, σ) =
A0

L0

=
y(dr, p) · p+ (1− τ) ·K

y(dr, p) · µ
, (15)

where the second equation follows from the definition of A0 and L0. Solving Equation

(15) for K gives the corresponding initial equity endowment:

K = y(dr, p) · s(dr, σ) · µ− p
1− τ

. (16)

Inserting this equation and the definition dr = exp(−r)EQ [max{L1 − A1; 0}] /L0

into Equation (1) implies that:

SHV (dr, p) = exp(−r)EQ max{A1 − L1; 0} −K

= exp(−r)EQ[A1 − L1 + max{L1 − A1; 0}]−K

= A0 − L0 + L0 · dr −K

= y(dr, p) · p+ (1− τ) ·K − y(dr, p) · µ · (1− dr)−K

= y(dr, p) ·
[
p− µ · (1− dr)− τ

1− τ
· [µ · s(dr, σ)− p]

]
.

B Proof of Proposition 1

The first-order condition for pricing is

d
dp
SHV (drreg, p) = 0

⇔ yp ·
[
p− µ · (1− drreg)− τ

1− τ
· [µ · s(drreg, σ)− p]

]
+

y

1− τ
= 0.

Solving the latter equation for p and inserting the result into Equation (16) yields

the statement.
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C Proof of Proposition 2

The first-order condition for the default ratio in the absence of constraints, Equation

(10), implies that
∂dr

∂s
=

(
∂s

∂dr

)−1
= − τypµ

ydr − (1− τ)ypµ
. (17)

Let ϕ denote the density function of the standard normal distribution, and z̄ =

z − σ
2

= − 1
σ

ln(s). Using Equation (2), the left-hand side of Equation (17) can be

rewritten as

∂dr

∂s
= −ϕ(z)

σs
+ s · ϕ(z − σ)

σs
− Φ(z − σ)

=
ϕ(z)

σs

(
−1 + s · ϕ(z − σ)

ϕ(z)

)
− Φ(z − σ)

=
ϕ(z)

σs

(
−1 + s · exp

[
−1

2

[(
z̄ − σ

2

)2
−
(
z̄ +

σ

2

)2]])
− Φ(z − σ)

=
ϕ(z)

σs
(−1 + s · exp[z̄σ])− Φ(z − σ)

=
ϕ(z)

σs
(−1 + s · exp[− ln(s)])− Φ(z − σ)

= −Φ(z − σ)

Replacing ∂dr
∂s

by the right-hand side of Equation 17 implies that

−Φ(z − σ) = − τypµ

ydr − (1− τ)ypµ

⇔ Φ

(
− 1

σ
ln(s)− σ

2

)
=

τypµ

ydr − (1− τ)ypµ

⇔ − 1

σ
ln(s)− σ

2
= Φ−1

[
τypµ

ydr − (1− τ)ypµ

]
⇔ s = exp

(
−σ · Φ−1

[
τypµ

ydr − (1− τ)ypµ

]
− σ2

2

)
.
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D Proof of Proposition 3

At the limit, drreg → 0, it yields

preg(drreg)− p∗(drreg) = µ ·
(

1− τ ·
(
1 +

∂s

∂dr︸︷︷︸
→−∞

))
· y

−ydr︸ ︷︷ ︸
<∞

− y

−yp︸︷︷︸
<∞

→ ∞ (for drreg → 0).

As preg(drreg)− p∗(drreg) 6= 0 for drreg ∈ (0, dr∗), and both functions are continuous

in this interval, we have preg(drreg)− p∗(drreg) > 0 ∀ drreg ∈ (0, dr∗).

E Examples for demand functions that fulfill Eq. 12

I show that the statement in line 12 is fulfilled by some common demand functions.

(1) Linear demand (cf. Yow and Sherris, 2008, p. 311): y(dr, p) = α− β · p− γ · dr.

ydr(dr, p)

y(dr, p)
=

−γ
y(dr, p)

decreases in p (as y(dr, p) decreases in p)

(2) Constant default-risk elasticity of demand: εdr ≡ −ydr/(y/dr).

ydr(dr, p)

y(dr, p)
= −εdr

dr
is constant in p.

(3) Exponential demand (cf. Zimmer et al., 2011): y(dr, p) = n·exp (−fp · p− fd · dr).

ydr(dr, p)

y(dr, p)
= − 1

fp
is constant in p.
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F Proof of Proposition 4

Let preg := preg(draim) and p ∈ (p∗(draim), preg). It yields:

1

y(draim, p)
· dSHV

d dr

∣∣∣∣
(draim,p)

=
ydr(dr

aim, p)

y(draim, p)
·
[

p

1− τ
− µ · (1− draim)− τ

1− τ
· µ · s(draim)

]
+ µ− µ · τ

1− τ
· ∂s
∂dr

>
ydr(dr

aim, preg)

y(draim, preg)
·
[
preg

1− τ
− µ · (1− draim)− τ

1− τ
· µ · s(draim)

]
+ µ− µ · τ

1− τ
· ∂s
∂dr

=
1

y(draim, preg)
· dSHV

d dr

∣∣∣∣
(draim,preg)

= 0.

Confronted with the regulatory price p, the insurer could increase SHV by choosing

a higher default ratio than draim. This, however, is not permitted due to capital

requirements, and the insurer therefore stays with draim.

G Proof of Proposition 5

Let p < p∗ = p∗(dr∗). Running the calculation analogously to the proof of Proposi-

tion 4, it follows that

1

y(dr∗, p)
· dSHV

d dr

∣∣∣∣
(dr∗,p)

>
1

y(dr∗, p∗)
· dSHV

d dr

∣∣∣∣
(dr∗,p∗)

= 0,

meaning that the insurer aims at a higher default ratio than dr∗ in the presence of

the price ceiling.
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H Proof of Proposition 6

Let pfair = pfair(draim). At the point
(
draim, pfair

)
it yields:

dSHV
d dr

∣∣∣∣
(draim,pfair)

= ydr(dr
aim, pfair) ·

[
pfair

1− τ
− µ · (1− draim)− τ

1− τ
· µ · s(draim)

]
︸ ︷︷ ︸

=0

+y(draim, pfair) · µ ·
(
1− τ

1− τ
· ∂s
∂dr︸︷︷︸
<0

)
> 0,

and thus, the insurer will optimally attain a higher default ratio than draim.
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I Figures

Figure 1: Insurer’s optimal strategies under capital regulation or price regulation
(base scenario)
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Figure 2: Insurer’s optimal strategies under capital regulation or price regulation;
default sensitivity of demand fd = 40, 50,∞.

Figure 3: Price difference (in % of liabilities) between insurance premium under
risk-based capital requirements and price floor corresponding to default ratio 0.5%.
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