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We study vacuum masses of charmonia and the charm-quark diffusion coefficient in the quark-gluon 
plasma based on the spectral representation for meson correlators. To calculate the correlators, we 
solve the quark gap equation and the inhomogeneous Bethe–Salpeter equation in the rainbow-ladder 
approximation. It is found that the ground-state masses of charmonia in the pseudoscalar, scalar, and 
vector channels can be well described. For 1.5Tc < T < 3.0Tc , the value of the diffusion coefficient D is 
comparable with that obtained by lattice QCD and experiments: 3.4 < 2π T D < 5.9. Relating the diffusion 
coefficient with the ratio of shear viscosity to entropy density η/s of the quark-gluon plasma, we obtain 
values in the range 0.09 < η/s < 0.16.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
The charmonium system is a bound state of a charmed quark–
anti-quark pair. The first charmonium state J/ψ was found si-
multaneously at BNL [1] and at SLAC [2] in 1974. Charmonium 
spectroscopy plays an important role [3,4] in understanding the 
strong interaction, described by quantum chromodynamics (QCD). 
Charm quarks are also produced in hard parton interactions in the 
early stage of heavy-ion collisions, e.g. at the Relativistic Heavy 
Ion Collider (RHIC) and the Large Hadron Collider (LHC). During 
the further evolution of the fireball, these quarks interact with 
the quark-gluon plasma (QGP) created in such collisions. The en-
suing loss of energy of a charm quark is different from the one 
experienced by light quarks [5,6]. A comparison of the energy loss 
for light quarks with that for heavy ones can provide insight into 
properties of the QGP.

Even in a hot and dense medium, charm quarks can form bound 
states with other light or heavy quarks. The formation and dis-
sociation of these states depends on the properties of the sur-
rounding medium. For instance, it was proposed [7] that, due to 
color screening, the formation of J/ψ is suppressed in the QGP, 
which can serve as a signal of the deconfinement phase transition. 
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More recent calculations within lattice QCD [8–11], however, show 
that the J/ψ may actually survive up to temperatures exceeding 
the critical temperature Tc of the deconfinement and chiral phase 
transition. Therefore, it is an interesting and meaningful task to 
understand charmonium properties in vacuum and medium sys-
tematically.

A first-principle method to study charmonium properties is lat-
tice QCD. Within this approach, the charmonium spectrum, includ-
ing ground, excited, and exotic states, has been computed at zero 
temperature, T = 0 [12–14], finding rather good agreement with 
experimental data. Transport properties, e.g., the charm quark dif-
fusion coefficient, which are closely related to charmonium spec-
tral functions, are also calculable within lattice QCD [15–17]. The 
charm quark diffusion coefficient has also been studied within 
a T -matrix approach [18–21] and a relativistically covariant ap-
proach based on QCD sum rules [22].

Assuming that the interaction between charm quarks can be 
described by a potential, one can adopt nonrelativistic potential 
models to study charmonium properties [23]. The parameters of 
the potential can be adjusted to the vacuum charmonium spec-
trum. In order to study charmonia at nonzero temperatures, one 
can generalize the vacuum potential to a temperature-dependent 
one based on models [24] or lattice-QCD results [25]. In this frame-
work, it is a great challenge to build a faithful connection between 
these models and QCD.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Dyson–Schwinger equations (DSEs) [26,27] which include both 
dynamical chiral symmetry breaking and confinement serve as 
a nonperturbative continuum approach for studying QCD. At T = 0, 
DSEs have been used to study properties of bound states, e.g., the 
light and heavy hadron spectrum [28,29], pion properties [30,31], 
as well as hadron form factors [32,33]. At T �= 0, the chiral and de-
confinement transitions and the excitations in the QGP have been 
studied through solving the quark gap equation [34,35]. Recently, 
a novel spectral representation has been developed to study in-
medium hadron properties and the electrical conductivity of the 
QGP [36]. These results are consistent with experiment and lattice 
QCD, which establishes the DSE approach as a powerful and reli-
able tool to study the properties of hadrons and strong-interaction 
matter.

In this work, we employ DSEs to study charmonium spectral 
functions and transport properties of the QGP. First, we calculate 
the charmonium spectrum at T = 0 in order to fix the charm quark 
current mass. Then, we study the charm quark number suscepti-
bility (QNS) and diffusion coefficient at T > Tc . At last, we use a 
formula obtained by perturbation theory to translate the diffusion 
coefficient to the ratio of shear viscosity to entropy density, i.e., 
η/s, of the QGP.

In the imaginary-time formalism of thermal field theory [37], 
the Matsubara correlation function of a local meson operator 
J H (τ , �x) is defined as

ΠH (τ , �x) = 〈
J H (τ , �x) J †

H (0, �0)
〉
β
, (1)

where β = 1/T , τ is the imaginary time with 0 < τ < β , and 〈. . .〉β
denotes the thermal average. The operator J H has the following 
form

J H (τ , �x) = q̄(τ , �x)γH q(τ , �x), (2)

with γH = 1, γ5, γμ, γ5γμ for scalar, pseudo-scalar, vector, and 
axial-vector channels, respectively.

In terms of Green functions the meson correlation functions are 
defined as

, (3)

where gray circular blobs denote dressed propagators S and ver-
tices ΓH , G(4) denotes the full quark–anti-quark four-point Green 
function, G(4)

0 denotes the two disconnected dressed quark propa-
gators in the dashed box, and black dots denote bare propagators 
or vertices.

The dressed quark propagator S is a solution of the quark gap 
equation which reads

. (4)

The dressed quark propagator depends on the dressed gluon prop-
agator Dab

μν and the dressed quark-gluon vertex Γ a
μ . The dressed 

quark propagator S(ω̃n, �p) can be generally decomposed as

S = 1/
[
i �γ · �p A

(
ω̃2

n, �p2) + iγ4ω̃nC
(
ω̃2

n, �p2) + B
(
ω̃2

n, �p2)],
where ω̃n = (2n + 1)π T , n ∈ Z , are the fermionic Matsubara fre-
quencies, and A, B , and C are scalar functions. The mass scale of 
quarks can be defined as

M0 = B(ω̃2
0, �0)

C(ω̃2
0, �0)

. (5)

The dressed vertex ΓH satisfies the inhomogeneous Bethe–
Salpeter equation (BSE),
, (6)

where K (2) denotes the two-particle irreducible kernel. The above 
equation needs the dressed quark propagator as input. Its solution 
can be decomposed according to the J P quantum number of the 
corresponding meson channel H .

Inserting the solutions of Eqs. (4) and (6) into Eq. (3), we obtain 
the imaginary-time charmonium correlation functions. However, 
for solving Eqs. (4) and (6), we have to specify Dab

μν , Γ a
μ , and K (2) . 

To this end, we use the rainbow-ladder (RL) approximation. The 
rainbow part of this approximation consists of (color indices are 
suppressed)

g2 Dμν(kΩ)Γν(ω̃n, �p; ω̃l, �q) = Deff
μν(kΩ)γν, (7)

with the effective gluon propagator written as

Deff
μν(kΩ) = P T

μνD
(
k2
Ω

) + P L
μνD

(
k2
Ω + m2

g

)
, (8)

where kΩ = (ω̃n − ω̃l, �p − �q), P T ,L
μν are transverse and longitudinal 

projection tensors, respectively, D is the gluon dressing function 
which describes the effective interaction, and mg is the gluon De-
bye mass. The ladder part of the RL approximation is given by

K (2)(ω̃n, �p; ω̃l, �q) = Deff
μν(kΩ)

[
(iγμ) ⊗ (iγν)

]
, (9)

which expresses the two-particle irreducible kernel in terms of 
one-gluon exchange. Note that the RL approximation is the leading 
term in a symmetry-preserving approximation scheme. The solu-
tions of Eqs. (4) and (6) satisfy Ward–Takahashi identities [38–40].

Now the quark gap equation and the inhomogeneous BSE, 
i.e., Eqs. (4) and (6), can be self-consistently solved once the 
gluon dressing function D is given. Here, the modern one-
loop renormalization-group-improved interaction model [41,42]
is adopted. This model has two parameters: a width ξ and a 
strength d. With the product ξd fixed and ξ ∈ [0.4, 0.6] GeV, one 
can obtain a uniformly good description of pseudoscalar and vector 
mesons in vacuum with masses � 1 GeV. We use ξ = 0.5 GeV. At 
T > Tc , we introduce a Debye mass mg in the longitudinal part of 
the gluon propagator and a logarithmic screening for the nonper-
turbative interaction [35,36] in order that physical quantities, e.g., 
the thermal quark masses for massless quarks and the electrical 
conductivity of the QGP, are consistent with lattice QCD [43,44].

All information which we are interested in is embedded in 
the spectral function of the charmonium correlation function. In 
energy–momentum space, the spectral function is defined as the 
imaginary part of the retarded correlation function,

ρH (ω, �p) = 2 Im Π R
H (ω, �p),

= 2 Im ΠH (iωn, �p)|iωn→ω+iε, (10)

where ωn = 2nπ T , n ∈ Z , are the bosonic Matsubara frequencies. 
Then, the spectral representation at zero momentum (�p = �0) reads

ΠH
(
ω2

n

) =
∞∫

0

dω2

2π

ρH (ω)

ω2 + ω2
n

− (subtraction), (11)

where the dependence of ΠH on ωn is quadratic, since it is an 
even function of ωn at �p = �0. An appropriate subtraction is re-
quired because the spectral integral does not converge for meson 
correlation functions, i.e., ρH (ω → ∞) ∝ ω2. This divergence man-
ifests itself in a corresponding divergence of the loop integral in 
Eq. (3).
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In order to solve the divergence problem, Ref. [36] suggested to 
introduce a discrete transform for ΠH ,

Π̂H
(
ω2

n1
,ω2

n2
,ω2

n3

) =
3∑

i=1

ΠH
(
ω2

ni

) 3∏
j �=i

1

ω2
ni

− ω2
n j

, (12)

where ωn1 �= ωn2 �= ωn3 . Then, we can obtain the well-defined 
spectral representation

Π̂H
(
ω2

n1
,ω2

n2
,ω2

n3

) =
∞∫

0

dω2

2π
ρH (ω)

3∏
i=1

1

ω2 + ω2
ni

. (13)

By introducing a one-variable correlator as Π̃H (ω2
n) = Π̂H (ω2

n ,

ω2
n+1, ω

2
n+2), we can reduce Eq. (13) to a one-dimensional equa-

tion for numerical convenience.
At T = 0, the Matsubara frequencies become continuous and 

the system has an O (4) symmetry. Then, the spectral represen-
tation (13) can be written in an O (4) covariant form. The char-
monium spectrum in vacuum can be extracted from the spectral 
function ρH (ω).

At T �= 0, especially, T > Tc , a charmonium state, e.g., J/ψ , 
can survive up to a certain temperature above which it dissolves. 
With increasing T , the corresponding peak in the spectral function 
becomes broader and decreases in height, and finally disappears 
altogether. Qualitatively, we may identify the charmonium disso-
ciation temperature as the temperature where the charmonium 
peak in the spectral function becomes indistinguishable from the 
background. Fitting the peak of the spectral function by the Breit–
Wigner distribution, we obtain the corresponding mass M and 
width Γ . If M ≡ Γ , one can hardly speak of a well-defined bound 
state, i.e., the charmonium has dissociated.

Of great interest are transport properties of charm quarks be-
cause they reflect the dynamics of the QGP. Several transport co-
efficients can be extracted from the electromagnetic (i.e., vector) 
current correlation function Πμν

V . First, the QNS is defined as

χ00 = ∂n(μ, T )

∂μ

∣∣∣∣
μ=0

= Π44
V (0), (14)

where n(μ, T ) is the quark number density. The second equality 
is derived from the vector Ward identity – a result of vector-
current conservation. According to Eq. (3), Π44

V only depends on 
the dressed vector vertex and quark propagator, i.e., Γ μ

V and S . 
In the non-interacting quasi-particle approximation, Γ μ

V = γ μ and 
S = 1/[i �γ · �p + iγ4ω̃n + M0]. Then, χ00 is given by

χ00 = −4Nc

∫
d3�k

(2π)3

∂n f (E�k)
∂ E�k

, (15)

where E�k =
√

M2
0 + �k2 is the quasi-particle energy, and n f is the 

Fermi distribution function.
Without the quasi-particle approximation, we have to evaluate 

the QNS numerically. To this end, we turn to the spectral repre-
sentation Eq. (13). From Eqs. (11) and (14), the zeroth component 
of the vector spectral function can be written as

ρ00
V (ω) = 2πχ00ωδ(ω). (16)

Inserting this into Eq. (13), we have

χ00 = Π̂44
V

(
ω2

n1
= 0,ω2

n2
,ω2

n3

)
ω2

n2
ω2

n3
, (17)

which is well-defined and equivalent for any ωn2 �= ωn3 �= 0. In 
comparison to Eq. (14), the above expression is much easier to 
calculate numerically.
Fig. 1. Charmonium spectral functions at zero temperature.

Table 1
The Euclidean constituent mass of the charm quark and charmonium masses at zero 
temperature (mζ

c = 0.79 GeV, ζ = 19 GeV, and dimensional quantities are given 
in GeV).

mE
c ηc J/ψ χc0 χc1

This work 1.396 2.980 3.113 3.476 3.227
PDG 1.275 2.980 3.097 3.415 3.510

From the Kubo formula, the heavy quark diffusion coefficient 
can be expressed as

D = 1

6χ00
lim
ω→0

3∑
i=1

ρ ii
V (ω)

ω
, (18)

where ρ ii
V are the spatial components of the vector spectral func-

tion (in what follows, the summation is suppressed unless stated). 
In Ref. [45], Moore and Teaney perturbatively calculated the ratio 
of D to the transport coefficient η/(ε + p), where ε is the energy 
density and p is the pressure. It is found that for a QGP with two 
light flavors, the ratio is around 6 and has a weak dependence on 
the coupling strength. Namely, we have

D

η/(ε + p)
≈ 6. (19)

Using the thermodynamic identity ε + p = sT (at zero chemical 
potential), we can translate D to η/s as

η

s
≈ 1

6
T D. (20)

In order to extract the spectral function from Π̂H which is 
given by the solution of the DSE, we adopt the maximum en-
tropy method (MEM) [46–48]. At T = 0, we follow lattice-QCD 
studies [49] and choose the MEM default model as mfrω

2, where 
the coefficient mfr is calculated in the non-interacting limit [50,51]. 
The results are shown in Fig. 1. In each channel, the first peak is 
sharp. This means that the ground-state signal is strong. The cor-
responding masses are listed in Table 1, where the pseudoscalar 
channel ηc is fitted by adjusting the current charm quark mass mζ

c , 
and the Euclidean constituent mass of the charm quark mE

c :=
{√p2 | p2 > 0, p2 = B2(p2)/A2(p2)} (because of the O (4) symme-
try at T = 0, A = C are functions of four-momentum squared p2). 
It is found that, with the exception of the axial-vector channel, all 
masses agree well with their experimental values. The χc1 mass 
(and similarly the a1 mass) comes out noticeably smaller than 
the experimental value, because the RL approximation misses the 
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Fig. 2. The heavy quark number susceptibility (the upper panel) and the ratio to 
that obtained in the quasi-particle picture (the lower panel) as a function of tem-
perature.

anomalous chromomagnetic effect in the quark-gluon vertex [52]. 
Going beyond the RL approximation [28,33], one can remedy this 
drawback. Nevertheless, it is safe to use the RL approximation for 
the vector channel.

Next, we study the QNS of charmed quarks in the QGP. The re-
sult calculated by Eq. (17) (denoted by χ00) is shown in the upper 
panel of Fig. 2. For comparison, we also present the result obtained 
by the quasi-particle formula (15) (denoted by χQP

00 ). As illustrated 
in the lower panel of Fig. 2, the ratio χQP

00 /χ00 decreases and ap-
proaches one with increasing temperature, which means that the 
quasi-particle picture works well at high temperature, but fails in 
the neighborhood of Tc .

At T > Tc , it is assumed that the vector spectral function has 
two parts, i.e., a low-energy transport peak and a continuous part 
above 2M0. Then, we prepare the default model as

ρ ii
V (ω) = 6χ00T

M0

ωηD

ω2 + η2
D

+ 3

2π
Θ

(
ω2 − 4M2

0

)

× ω2 tanh(ω/4T )

√
1 − 4M2

0/ω2

× [
1 + 4M2

0/ω2], (21)

where ηD = T
M0 D is the drag coefficient. Note that, as for T = 0, 

there is no resonance peak specified in the continuous part.
In order to completely determine the default model, we need 

prior information on ηD . In the neighborhood of Tc , i.e., T � Tc , 
we assume the system to be a strongly coupled QGP, where 
the AdS/CFT correspondence gives ηD = 2π T 2

M0
[53]. At high tem-

perature, e.g., T � 3Tc , perturbative QCD at next-to-leading or-
der (NLO) yields the thermal quark mass (for massless quarks) 
mT = gs T√

6
(1 + 1.867 gs

4π ) [54] and the drag coefficient ηD =
8π T 2

3M0
α2

s (0.07428 − ln gs +1.9026gs) [55]. In our model, mT = 0.8T , 

then gs ≈ 1.6, αs ≈ 0.2, and ηD ≈ 0.9T 2

M0
. To summarize, we make 

the Ansatz

ηD = γ T 2

M0
, (22)

where γ decreases with increasing T for Tc < T < 3Tc . Using a 
linear interpolation, we simply write

γ = 1

a + bT /Tc
, (23)

where a and b can be determined by the two limiting cases.
Fig. 3. The vector spectral function at different temperatures, where the shaded re-
gions around the curves (produced by changing the MEM default model) provide an 
estimate for the systematic error.

Fig. 4. The ratio η/s and the heavy quark diffusion coefficient as a function of tem-
perature. The dashed line is obtained by an NLO perturbative calculation at T = 3Tc , 
and the dot-dashed line is given by AdS/CFT. The error bars are obtained by altering 
the default model.

The obtained vector spectral function is shown in Fig. 3, where 
the shaded regions around the curves correspond to the uncer-
tainties by halving or doubling the height of the transport peak in 
the default model. Note that the uncertainties are relatively small. 
With increasing T , the resonance peak becomes broader and de-
creases in height, which indicates the dissociation of J/ψ . We 
estimate the dissociation temperature to be around 2Tc where 
the mass and the decay width of J/ψ become equal. On the 
other hand, the transport peak in the low-energy region becomes 
higher with increasing T . Using Eq. (18) and inserting the result 
for the QNS, we extract the T -dependence of the heavy quark 
diffusion coefficient. Furthermore, we can estimate η/s accord-
ing to Eq. (20). The results are shown in Fig. 4. It is found that, 
for 1.5Tc < T < 3.0Tc , η/s increases with T and lies within the 
bounds given by the AdS/CFT and NLO-perturbative calculations, 
respectively.

In conclusion, combining a newly proposed spectral represen-
tation of the vector current correlation function with the self-
consistent solutions of the quark gap equation and the inhomo-
geneous Bethe–Salpeter equation, we calculated the charm quark 
diffusion coefficient D of the QGP. Our result is consistent with 
that obtained by lattice QCD [15–17] as well as the T -matrix ap-
proach [18–21] and that extracted by the PHENIX experiment [56]. 
With Eq. (20), we used D to estimate η/s. We found that η/s in-
creases with increasing T . The values for η/s remain above the 
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AdS/CFT bound [53] and are close to that obtained from a func-
tional renormalization group calculation [57] and other estimates 
(see Ref. [56] and references therein). In the future, we plan to ex-
tend the study to nonzero chemical potential.
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