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We investigate the phase structure of strongly interacting matter at non-vanishing isospin before the
onset of pion condensation in the framework of the unquenched Polyakov–Quark-Meson model with
2 + 1 quark flavors. We show results for the order parameters and all relevant thermodynamic quantities.
In particular, we obtain a moderate change of the pressure with isospin at vanishing baryon chemical
potential, whereas the chiral condensate decreases more appreciably. We compare the effective model
to recent lattice data for the decrease of the pseudo-critical temperature with the isospin chemical
potential. We also demonstrate the major role played by the value of the pion mass in the curvature
of the transition line, and the need for lattice results with a physical pion mass. Limitations of the model
at nonzero chemical potential are also discussed.
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1. Introduction

The thermodynamics of strongly interacting matter under ex-
treme conditions plays a major role in the understanding of the
physical scenario shortly after the Big Bang [1,2], in the outcome
of high-energy heavy ion collisions [3], in the mechanism of su-
pernovae explosions [4], and in the structure of compact stars [5,
6]. The possibility to probe such large temperatures and densities
in current experiments at LHC-CERN and RHIC-BNL, and especially
in future experiments at FAIR-GSI, calls for a detailed study of the
transition to the chirally symmetric quark–gluon plasma phase and
the properties of this new extraordinary state of matter [7–9].

In all systems mentioned above matter does not consist of equal
amounts of protons and neutrons, i.e. one has a non-vanishing
isospin density. Using Au or Pb beams in heavy ion collisions, the
proton to neutron ratio is ∼ 2/3. In astrophysical environments
the initial proton fraction in supernovae is 0.4, reduces to 0.2 and
finally reaches values of less than 0.1 in cold neutron stars. In
the universe a large asymmetry in the lepton sector is allowed
(−0.38 < μν/T < 0.02) [10], which can shift the equilibrium con-
ditions at the cosmological QCD transition [11]. Hence, in the de-
scription of the thermodynamics in all these scenarios of nature
isospin should not be overlooked.
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In this work we investigate the phase structure of strongly
interacting matter at non-vanishing isospin before the onset of
pion condensation in the framework of the Polyakov–Quark-Meson
model with 2 + 1 quark flavors. First we compute the chiral con-
densate, the pressure and the trace anomaly at vanishing quark
densities, reproducing well-established lattice data. Then we com-
pute all relevant thermodynamic quantities and the phase diagram
for a nonzero isospin chemical potential. For vanishing baryon
chemical potential, our results can be compared directly to lattice
data since this case is free of the Sign Problem [12,13].

Effective chiral models, combined with some version of the
Polyakov loop potential, usually have their parameters adjusted to
provide a good description of lattice data at zero density. Testing
effective models built in this fashion against lattice data at nonzero
isospin is crucial to understand whether their extended versions
provide qualitative and quantitative accurate descriptions of the
phase structure of strong interactions.

To date, most of the calculations at non-vanishing isospin were
done with only two quark flavors, neglecting strange quarks as rel-
evant degrees of freedom at the energy scale of the chiral and
deconfinement transition [14–31]. Furthermore, lattice calculations
at nonzero isospin were performed so far only with unphysical
heavy quark masses [14–16]. The impact of the quark mass on
the deconfining critical temperature at nonzero isospin was in-
vestigated in Refs. [17,18], using a framework that combines chi-
ral perturbation theory to describe the low-energy sector with
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the phenomenological fuzzy bag model for high energies, showing
that quark masses play a relevant role. Previously, there have also
been investigations with the hadron resonance gas model [32], the
O (2N)-symmetric φ4-theory [33], the Nambu–Jona-Lasinio model
[19–27,34], the Quark-Meson model [28], and its Polyakov-loop ex-
tended versions [29–31].

One of the aspects in the extension of the phase diagram to
nonzero isospin is the arising of a new phase. Charged pions cou-
ple to the isospin chemical potential and at μI = μu − μd = mπ

there is the onset of pion condensation [35]. The running of the
pion mass in the medium shifts the appearance of pion condensa-
tion to larger temperatures and densities. Depending on the ana-
lyzed region of isospin, temperature and baryon chemical potential,
pion condensation must be taken into account [14,15,17,18,21–29,
33,34] or not [16,19,20,31,32].

In contrast to what is considered in this work, the two-flavor
renormalization group (RG) improved Quark-Meson model was so
far only applied to analyze the pion condensate phase [28] and
investigations with the PNJL model only considered two quark fla-
vors and applied the simpler pure gauge Polyakov-loop potential
[29–31].

We restrict our analysis to moderate isospin chemical potential
values, before the onset of pion condensation. To describe strongly
interacting matter we adopt the framework of the Polyakov–
Quark-Meson model [36–52] that we enhance by applying the
unquenched Polyakov-loop potential [50,51]. We build its exten-
sion to nonzero isospin in Section 2. In Section 3 we discuss our
results on the evolution of the order parameters and thermody-
namics with increasing isospin. We compare the decrease of the
pseudo-critical temperature with isospin chemical potential to re-
cent lattice data to test the model in its extension to nonzero
isospin density. Moreover, we point out the impact of the pion
mass on the curvature of the transition line.

2. Theoretical framework

We perform our investigation within the framework of a low
energy effective model that includes important aspects of QCD:
chiral symmetry breaking and (partial) confinement (in the gluonic
sector). These properties are contained in the effective Lagrangian
of the theory

L = q̄(i/D − gφ5 + γ0μ f )q + Tr
(
∂μφ†∂μφ

)
− m2 Tr

(
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[
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where φ and φ5 are 3 × 3 matrices that combine scalar and pseu-
doscalar meson fields. All the contributions to the Lagrangian are
discussed in the following as well as in detail e.g. in Refs. [42,44,
46,53–55]. We enhance it by the application of the unquenched
Polyakov-loop potential Uglue [50,51]. To describe the creation of
constituent quark masses by spontaneous breaking of chiral sym-
metry we use a (2 + 1)-flavor Quark-Meson model [53,55]. To in-
clude isospin effects, we generalize the self-interaction potential of
the meson fields to distinguish between the up and down quark
condensates [56,57]
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Table 1
Parameters of the Polyakov loop potential of Ref. [60] converted in Ref. [48] to the
definition of the coefficients in Eqs. (3) and (4).

a0 a1 a2 a3 b3 b4

1.53 0.96 −2.3 −2.85 13.34 14.88

+ m2

2

(
σ 2

u + σ 2
d

2
+ σ 2

s

)
− hud

2
(σu + σd) − hsσs.

(2)

This potential contains spontaneous and explicit breaking of chiral
symmetry. In accord with the Vafa–Witten theorem [58] isospin
symmetry of the vacuum is not broken in QCD and therefore we
consider only one single explicit symmetry breaking term for the
up-and-down quark sector hud .

An effective description of confinement can be implemented by
the Polyakov loop as an order parameter of center symmetry [59].
Further details can be found in Ref. [48]. For the Polyakov-loop
potential, one should choose a functional form that is invariant
under center symmetry transformations [37,38,40,60,61]. Different
parametrizations of the potential are available, one of which is the
polynomial form of Ref. [40]

U(Φ, Φ̄; t,μ f )

T 4
= −b2(t)

2
Φ̄Φ − b3

6

(
Φ3 + Φ̄3) + b4

4
(Φ̄Φ)2, (3)

with the temperature-dependent coefficient b2 defined as

b2(t) = a0 + a1

1 + t
+ a2

(1 + t)2
+ a3

(1 + t)3
. (4)

Here t = (T − T0)/T0 is the reduced temperature with the critical
temperature of the Polyakov-loop potential given by T0. The pa-
rameters of the potential are chosen such that it reproduces the
temperature dependence of the Polyakov-loop expectation value
and the thermodynamics of pure gauge theory as obtained in lat-
tice calculations [40,60,61]. We use the parameter set of Ref. [60],
which we summarize in Table 1.

To convert this Yang–Mills potential for the Polyakov loop to
the glue potential of full QCD we use the relation

tYM(tglue) ≈ 0.57tglue (5)

that connects the temperature scales of both theories [50,51]. This
rescaling accounts for the back-reaction of quarks on the gluon
sector at zero quark density [62,63]. Furthermore, we include the
running of the critical temperature of the Polyakov-loop potential
with the quark densities. Therefore, we generalize the description
presented in Refs. [41,49] to include different chemical potentials
for each quark flavor,

T0(μ f ) = Tτ e−1/(α0b(μ f )), (6)

with

b(μ f ) = b̄0 − 16

π

∑
N f

μ2
f

T 2
τ

T̄ 2
0

T̄ 2
0 + m2

f

. (7)

Here, Tτ is the UV scale that is fixed to the mass of the τ -lepton,
mτ = 1777 GeV which gives a coupling α0 � 0.303 consistent with
observations [64]. The parameter b̄0 can be adjusted to consider
a dependence on the number of quark flavors. We choose b̄0 =
11Nc/6π such that T̄0 = 270 MeV. Here m f stands for the current
quark masses and we adopt ms = 95 MeV [64].

The thermal fluctuation contribution from quarks and anti-
quarks, which comes from the thermal fermionic determinant,
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Table 2
Values of constants to which the parameters of the mesonic potential are adjusted,
according to Ref. [64].

Constant fπ f K mπ mK mη mη′ mσ

Value [MeV] 92 110 138 495 548 958 400

Ωth
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= −2T
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+ ln
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(8)

includes the coupling to and between the Polyakov-loop variables
and meson fields. The dispersion relation of the quarks is given by

E f =
√

k2 + m2
f , with the individual constituent quark masses

mu = g

2
σu, md = g

2
σd and ms = g√

2
σs. (9)

We fix the Yukawa coupling g between quarks and mesons by
choosing ml = 300 MeV as the constituent mass of the light quarks.

As another step beyond the usual mean-field analysis we take
into account the fermionic vacuum loop contribution [68–72] to
the Polyakov–Quark-Meson model [44–46]
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8π2
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m4
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(
m f

Λ

)
. (10)

We include this contribution in the adjustment of the parameters
of Eq. (2) to the physical meson masses and pion and decay con-
stants in the vacuum that are given in Table 2. The dependence of
Eq. (10) on the regularization scale Λ cancels neatly with that of
these parameters as is shown in detail in Ref. [46].

All contributions discussed above add up to the grand canonical
potential

Ω(σu,σd,σs,Φ, Φ̄; T ,μ f )

= U (σu,σd,σs) + Ω vac
qq̄ (σu,σd,σs)

+ U(Φ, Φ̄; T ,μ f ) + Ωth
qq̄(σu,σd,σs,Φ, Φ̄; T ,μ f ) (11)
which is the central quantity to determine the expectation values
of the order parameters as well as the thermodynamic quantities
at given temperatures and quark densities. It can be derived via
the partition function from the underlying Lagrangian (1).

Note that Φ and Φ̄ are in general complex quantities and
Eq. (8) contributes an imaginary part to the effective potential
which is the manifestation of the fermion Sign Problem in the con-
text of the Polyakov–Quark-Meson model [48,73,74]. The standard
approach to circumvent the Sign Problem of the PQM model is to
restrict the Polyakov-loop variables Φ and Φ̄ to be two indepen-
dent, real variables, see e.g. [40]. But by this approach, the state
of thermodynamical equilibrium is identified only with a saddle-
point but not with a minimum of the effective potential. But only
with equilibrium states described by minima of the effective po-
tential one can calculate quasi-equilibrium properties of the sys-
tem, such as the surface tension and nucleation rate in a first-order
phase transition [48]. Another possibility to avoid the Sign Problem
is to treat the imaginary part of the effective potential perturba-
tively which means to simply ignore it in the first order of the
approximation [74,48]. Neglecting the complex part of the effec-
tive potential implies that the imaginary part of the Polyakov-loop
variables is zero but this approach has the advantage of dealing
with the minimization procedure for finding the state of equilib-
rium. For the present investigations the results of both approaches
are identical.

3. Results and discussion

As discussed in the previous section, we adjust the parame-
ters in order to reproduce lattice results at zero quark densities
[65–67], see Fig. 1. For a detailed discussion we refer the reader to
Refs. [50,52]. It can be seen that our results for the chiral order
parameter and thermodynamics either agree quantitatively with
lattice results or are at least within the trend of the data. To
achieve a better description of the thermodynamics in the phase
where chiral symmetry is broken, we augmented the thermody-
namics by the contribution of a gas of thermal pions. The im-
portant ingredients to achieve compatibility with the lattice data
for the order parameters and thermodynamics are given by the
inclusion of the fermionic vacuum loop contribution (10), to un-
quench the Polyakov-loop potential by applying relation (5) and
to consider the contribution of a gas of thermal pions. The in-
clusion of meson fluctuations in a renormalization group frame-
work would not further improve this agreement, as was shown
in Ref. [52]. The transition region of the chiral and deconfinement
observables (152–164 MeV) agrees as well with the lattice [65].
With this settings we have an adequate framework to investigate
the phase structure of strongly interacting matter at nonzero quark
Fig. 1. Subtracted chiral condensate and normalized pressure and trace anomaly as functions of the temperature at vanishing quark densities. We compare our results (full
green lines) to the lattice calculations of Refs. [65–67]. We use the polynomial parametrization of the Polyakov-loop potential with the parameter set of Ref. [60] (abbreviated
by Poly-BNL) with T glue

cr = 270 MeV as its transition scale and a σ -meson mass of 400 MeV. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. Subtracted chiral condensate, normalized pressure and trace anomaly as functions of the temperature for different isospin at vanishing net quark density. The arrow
indicates from which temperature on the in-medium pion mass exceeds the isospin chemical potential in the calculation with μI = 1.5mπ where mπ = 138 MeV is the
vacuum pion mass. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 3. Order parameters (left) and thermodynamic quantities (right) as functions of the isospin at T = T 0
c = 164 MeV and vanishing quark density. The arrows indicate from

where on the isospin chemical potential exceeds the in-medium pion mass. (For interpretation of the colors in this figure, the reader is referred to the web version of this
article.)
and isospin densities and to test the applicability of the model
at nonzero densities. The only restriction, which limits the upper
value of isospin chemical potential to be considered is given by
the omission of the pion condensation, an issue we will address in
a future publication [75].

To generalize the description to the case of 2 + 1 quark fla-
vors, we have to choose the quark chemical potential of strange
quarks as well. In the case of supernovae and in the early universe
there exists a local β-equilibrium with respect to weak flavor-
mixing interactions so that μs = μd . In heavy ion collisions no
net strangeness can be produced and the strange quark chemical
potential has to be adjusted accordingly. However, the case that
can be considered in lattice calculations avoiding the Sign Prob-
lem corresponds to the choice μs = 0. Since we take lattice data
as a benchmark to compare to, we show results only for the case
with vanishing strange chemical potential. For the presented re-
sults at vanishing quark density, μs = 0 corresponds to the heavy
ion case of zero net strangeness. We discuss briefly the difference
to μs = μd , and postpone a thorough analysis of this case to a
longer publication [75].

Fig. 2 shows the impact of moderate isospin on the tempera-
ture dependence of the order parameters and thermodynamics at
vanishing quark chemical potential. One can see from the plot that
a nonzero isospin brings the transition to smaller temperatures.
Furthermore, although the chiral condensate decreases apprecia-
bly, the pressure hardly rises and the maximum of the interaction
measure experiences a certain increase. Qualitatively, this depen-
dence of the chiral condensate and pseudo-critical temperature on
the isospin is also seen in the lattice calculation [14]. Further-
more, one observes that the chiral condensate gets smaller with
increasing isospin for all temperatures. This means a shrinking of
the ‘chiral circle’ of the tilted Mexican hat potential with increas-
ing isospin due to an increasing contribution of the thermal quark
Fig. 4. Phase diagram at vanishing net quark density and nonzero isospin. We com-
pare our results to the lattice calculation of Ref. [16] and the model calculation of
Ref. [17]. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

fluctuations (8). At an isospin chemical potential beyond the onset
of pion condensation an additional effect would be a rotation from
the chiral condensate to the pion condensate [25].

This is also reflected in Fig. 3 where we show the evolution of
the order parameters (left) and all relevant thermodynamic quan-
tities (right) as functions of the isospin chemical potential for
vanishing quark chemical potential and at the critical temperature
T = T 0

c (= 164 MeV). One can see that the chiral condensate of the
light quarks decreases steeply for increasing isospin chemical po-
tential. On the other hand, chiral symmetry tends to remain broken
in the strange quark sector, since the strange quark chemical po-
tential is zero. Only the nonzero temperature reduces the strange
chiral condensate and the coupling to the light quarks induces a
slight decrease of this condensate for increasing isospin chemi-
cal potential. The Polyakov-loop observables Φ and Φ̄ coincide at
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vanishing quark chemical potential. The different impact of a fi-
nite chemical potential of the up quarks μu onto Φ and Φ̄ in
Eq. (8) is just the opposite of the effect of the down quarks with
μd = −μu . This restriction onto Φ = Φ̄ at nonzero isospin but van-
ishing quark density implies that the Sign Problem is not present
in this case. In the right part of Fig. 3 we see that the pressure
and the trace anomaly change moderately with isospin at van-
ishing baryon chemical potential but the energy density is more
sensitive to the variation in isospin.

The dependence of the phase structure on the isospin chemi-
cal potential is shown in the phase diagram of Fig. 4. We show
the decrease of the pseudo-critical temperature with the isospin
chemical potential at vanishing baryon chemical potential. We con-
front our results to the recent lattice simulation of Ref. [16] and
to results of Ref. [17] where the authors combine chiral perturba-
tion theory, including nucleons, for the low-energy sector with the
phenomenological fuzzy bag model at high energy. Note that in
all model calculations the pseudo-critical temperatures are linear
functions when plotted against μ2

I in agreement with lattice data
[14,16].

All these calculations are performed with different pion masses.
To correct for the effect of the pion mass onto the abscissae of
the temperature–isospin phase diagram, we normalize the isospin
chemical potential by the individual pion masses. So pion conden-
sation at zero temperature where no medium modifications are
present sets in at the same point μI = mπ in all calculations. This
removes a general offset between calculations with different pion
masses. One observes that in the range before the onset of pion
condensation the curvature of the transition line is much more
sensitive to the pion mass than to the number of quark flavors.

The arrows in Fig. 4 indicate the points on the phase transition
lines where the isospin chemical potential exceeds the in-medium
pion mass, so that condensation of charged pions should no longer
be neglected. The upper line of Ref. [17] includes a range where
a superfluid pion condensate is present (short dot-dashed line), but
the curvature of the transition line is hardly affected by this cor-
rection. The lattice calculation, on the other hand, is performed for
values of the isospin chemical potential below the onset of pion
condensation.

We show results for 2 + 1 and 2 flavors and physical pion mass
(light blue, solid curve and green, dashed curve) and for 2 flavors
and mπ = 400 MeV (dark blue, dotted curve), the latter being more
appropriate to compare to the currently available lattice data [16].
In the case with mπ = 400 MeV, we considered the dependence
of the nucleon mass on the pion mass according to Ref. [76] and
increased the scalar coupling accordingly. The coupling λ is also
adjusted to preserve the mass difference m2

σ − m2
π in the vacuum.

The results for 2 flavors and mπ = 400 MeV (dark blue, dot-
ted line in Fig. 4) show a decrease with μI that is significantly
larger than the one obtained on the lattice. If we included meson
fluctuations within the RG-improved Quark-Meson model [43,77]
we would expect a decrease in the curvature of the phase tran-
sition line. So our result would be in line with the observation
that the pseudo-critical temperature drops faster with increasing
baryon chemical potential in low-energy effective models com-
pared to functional methods [78] and the lattice [79].

In Ref. [80] it was shown that including repulsive vector inter-
actions to a PNJL study can lead to a slope of the phase transition
line at nonzero baryon chemical potential that corresponds to the
data of lattice calculations. But one should be aware that by in-
cluding the vector meson exchange to such a model this fails to
describe lattice results of quark number susceptibilities as was
shown in Ref. [81].

Some studies compared the curvature of the crossover line
along the isospin and light quark chemical potential axes within
their calculations. While in older investigations the pseudo-critical
temperatures are almost identical along both axes [14,19,32],
Ref. [16] found a difference of about 10 % of the slope parame-
ters. The framework applied by us implies the former result but
we plan to address this issue in a future publication [75] when we
will consider thermal fluctuations of the pion fields.

Our results and those of Ref. [17] at two different pion masses
illustrate the impact of the pion mass on the phase transition line.
A larger pion mass increases the curvature of the transition line
significantly. Hence, our calculation provides a lower limit of the
pseudo-critical temperature at nonzero isospin chemical potential
for the case of 2 + 1 quark flavors and physical quark masses. Re-
sults from the lattice in the physical limit would be very helpful
to constrain the applicability of effective chiral models at nonzero
densities.

The impact of the pion mass on the transition line is much
larger than that of adding strange quarks to the system. Our re-
sults for N f = 2 lies relatively close but below the N f = 2 + 1
result and the transition temperatures only deviate by two percent
just before the onset of pion condensation.

An effect of similar magnitude and in the same direction has
a non-vanishing strange quark density with μs = μd , as is the
case in the astrophysical and cosmological scenarios. It increases
the curvature of the transition line. For instance, the value of the
transition temperature in the region just before the onset of pion
condensation becomes two percent smaller.

In a future publication [75], we shall consider nonzero pion
fields to include the possibility of pion condensation at larger
isospin, as well as meson fluctuations included by a renormaliza-
tion group improvement. Finally, this framework can be extended
to address the cosmological QCD phase transition at non-vanishing
lepton number.
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