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1 Introduction

Through changes in social, financial and regulatory conditions, both life insurance policyholders

and life insurers are facing big challenges. One of the large social challenges in most of the western

countries is the demographic change caused by declining birth rates and an increasing longevity

of the population1. Therefore, the retirement quotient rises; as a result pay-as-you-go (PAYG)

retirement systems come under pressure while funded retirement products gain relevance. In

addition, the liquidity-need increases for elderly people, which is mainly driven by increasing

medical expenses at old ages. According to a study by Standard Life (2013), the liquidity-need

of persons older than 85 years is six times higher than for persons below 65 years of age. As

a consequence, the demand for funded retirement products that help to diminish the pension

provision gap in an aging society increases.

Without doubt, life and health insurers already offer appropriate pension, health insurance and

life-care products, sometimes combined to enhanced annuities. Yet insurers are exposed to

changing financial and regulatory conditions. Traditional pension products often entail mini-

mum return guarantees, which providers try to ensure by investing extensively in fixed-income

securities. However, the current low interest environment clearly shows large solvency risks

caused by the issuance of lifetime guarantees. The possible way out of this problem, i.e., to

invest extensively in more profitable asset classes like stocks, is however restricted due to its

higher risk and its limited ability to cover granted guarantees. Furthermore, providers of pen-

sion products are exposed to the longevity risk of their customers, which can only be partially

passed on to them.

In the European Union and many other parts of the world, the regulatory conditions for providers

of private pension products change substantially with the introduction of risk-based solvency

regulation. The market-consistent valuation of investments as well as of technical provisions

immediately reveals the addressed high risks of traditional life and health insurance products

involved and therefore can cause severe financial imbalance for life insurers. In a traditional

insurance context, managing these risks requires considerable equity capital backing or other

comprehensive risk management activities like re-insurance or securitization. Such risk man-

agement ultimately has to be funded by higher insurance premiums, which might make pension

planning unattractive.

The changes in social, financial and regulatory conditions therefore lead to the quest for innova-

1 See for example Statistisches Bundesamt (2015) for a prognosis for the demographic change until the year
2060 in Germany.
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tive instruments for private pension planning. A product innovation should optimally reduce or

dispense with the need for investment guarantees and risks related to longevity, and nevertheless

be able to provide reliable insurance performance. At the same time it should meet the concerns

of increasing liquidity-needs at old ages.

Against this backdrop, we transfer the idea of the historic tontine to a modern context and

analyze whether it can help to solve the aforementioned problems. A tontine provides a mortality

driven, age-increasing payout structure. Although an insurer can easily replicate such a payout

structure, the tontine has the big advantage of its simplicity and (presumably) low costs. While

traditional insurance products entail large safety and administrative cost loadings2, a tontine can

be offered at low additional costs. This is because a tontine is a simple redistribution mechanism

of the invested funds without the need for an active management. The investment strategy of

the tontinized wealth can be decided on an individual basis according to the individual risk

aversion, without the issuance of guarantees. Due to the linkage between tontine returns and

individual mortality, tontine payments are very low in younger years and increase strongly for

very high ages. As we observe an increasing liquidity-need at old ages, we can show that the

tontine can be an appropriate instrument to serve as financial protection in the late retirement

years for relatively small investment volumes at low cost.

We show that a modern tontine can be an appropriate complement to existing privately funded

pension solutions with the ability to improve policyholders’ welfare. To this end, we take the

perspective of a tontine holder who holds a tontine for pension planning purposes. We compare

the tontine and its benefit structure with that of a conventional pension annuity and derive

implications for the individual tontine demand. We show that a tontine can be a cost-efficient

instrument to serve the increasing monetary demand at old ages and can thereby become an

interesting supplement to traditional pension planning solutions. Although tontines do not

provide for any investment guarantees, their features make it possible to generate cash flows

that cover the age-specific needs of retirees. In an aging society, tontines can thus become an

interesting instrument of old-age provision, complementary to conventional insurance products.

For assessing the advantages and disadvantages of tontines, their age-increasing payments with

the ability to finance the also increasing care costs have so far not been investigated. This is the

gap in the literature which we try to bridge with our contribution.

In our article, we aim at assessing the effects of tontinizing some fraction of the individual

2 According to Bundesanstalt für Finanzdienstleistungsaufsicht (2014) the average acquisition and adminis-
trative costs for German life insurers are 10.7% of the gross premiums and amount to more than 20% for
Non-Direct Insurers.
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retirement wealth on the individual lifetime utility, considering an increasing liquidity-need at

old ages. We illustrate under which conditions there are appropriate incentives for individuals

to hold some fraction of retirement wealth in tontines compared to complete annuitization.

The remainder of the article is organized as follows: Section 2 introduces the general concept

of tontines. Section 3 reviews the relevant literature on tontines and increasing liquidity-needs

at old ages. Section 4 introduces our model framework specifying the underlying mortality

dynamics, the tontine model as well as the old-age liquidity-need curve and the valuation of

annuities. Finally, we propose a Cumulative Prospect Theory based valuation of lifetime utility

of tontines and annuities. In Section 5, we first describe the data and the calibration we adopt

and provide findings for the optimal individual wealth allocation and discuss our results. Section

6 provides implications and our conclusion.

2 Tontines

The Italian Lorenzo de Tonti invented a product to consolidate the public-sector deficit in the

1650s.3 His ideas were based on the pooling of persons by considering their mortality risk.

The innovation was that, in exchange for a lump sum payment to the Italian government, one

received the right to a yearly, lifelong pension. This pension increased over time because the

yields were distributed among a smaller amount of surviving beneficiaries. The last survivor

thus received the pensions of all others who died before. As Manes (1932) notes, the valuation

of the original tontine was inaccurate, retirees were grouped in broad age classes, and so the

contract terms were not fair in an actuarial sense. In this article, we build upon a fair tontine

based on Sabin (2010) that allows participants to be of any age, of any gender, and to invest a

desired amount of money4 in the tontine. Furthermore, the tontine is revolving, which means

that new members can join the tontine at any age and take on the position of deceased members.

Apart from that it is not allowed to leave the tontine before passing away. The tontine is a fair

lottery for every member. Expected individual tontine payments equal the individual investment

in the tontine, yielding an unconditional expected profit of zero. Expected tontine payments

depend on the individual stake in the tontine and on the individual survival probability. On

the one hand, if a member dies, he or she loses the entire stake, while, on the other, if he or

she survives he or she receives some fraction of the stake of deceased members. To be fair, both

expected gains and losses are equal in each period. Because the survival probability declines

3 See McKeever (2009) for an overview of the history of tontines.
4 According to Sabin (2010) a fair tontine is a tontine in which the distribution to surviving participants is

made in unequal portions according to a plan that provides each participant with a fair bet.

3



with age and tontine payments are only paid if one survives, the probability of receiving tontine

payments decreases. To counterbalance the otherwise induced reduction in expected tontine

payments, the size of the payments one receives has to increase. Through this mortality-driven

feature, the expected conditional tontine payments increase with age. Mortality, therefore, is

the crucial factor for determining the tontine benefit structure. For example, a man born in

1981 can expect to live 84 years, while a man born in 2013 has an increased life expectancy of

89 years. This difference of 5 years translates directly into different benefit patterns, especially

at old ages. Furthermore, the whole composition of the demographic structure of the tontine

members changes on the basis of the population mortality, which also impacts the actual tontine

benefit realization structure. Therefore, it is important to model and forecast the development

of mortality and demographic structure of the tontine members. We use the one-factor model by

Lee and Carter (1992) to forecast mortality, which is the standard approach to model mortality

rates. Recent studies which use the Lee-Carter model are, for example, Renshaw and Haberman

(2003) and Renshaw and Haberman (2008). The Lee-Carter model only considers cohort effects,

i.e. changes of mortality within a cohort. Willets (2004) empirically substantiates cohort effects

as characteristic of mortality dynamics.

While in a traditional annuity5, longevity risk is transferred from the insured to the insurer

(and covered by its risk management instruments), in a tontine the risk that a single participant

might live longer than expected is completely borne and shared by the other tontine holders

who in this case receive less cash flows than expected. Therefore, no equity capital backing

is needed to cover longevity risk, and the tontine can be offered without a risk-cost loading.

However, the tontine has the disadvantage that because individual shares in the tontine as well

as times of death of tontine members are random, both amount and timing of tontine payments

are uncertain.

Because the tontine members carry, pool and share the total risk among each other while the

offering provider does not bear it, a tontine can be offered at a cheaper price than a compara-

ble traditional life insurance product. Additionally, it generates age-increasing benefits and is

therefore able to meet the increasing monetary requirements at old ages. Moreover, due to the

absence of guarantees, the tontine enables participation in stock market developments. However,

the tontine generates volatile payments, which means that the insurance character of a tontine

might not be ensured in every situation.

So far, tontines have been considered an alternative or historic predecessor of traditional pension

5 In the following we use annuity synonymously for the traditional life insurance product.
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insurance. However, tontines were considered to be inferior compared to traditional pension

insurance, because the latter provides less volatile payments for an equal expected return6. In

addition, one could think of potential moral hazard problems among tontine members. However,

Milevsky (2015) found no evidence that such phenomena have ever occurred in practice.

3 Literature Review

In the existing literature there are only few contributions on the evaluation of longevity-linked

securities from a policyholder perspective. Sabin (2010) designs a fairly priced tontine with

regard to age, gender and entry date with an equivalent to a common annuity scheme. His results

exhibit a better payout pattern than a typical insurer-provided annuity not just on average, but

for virtually every member who lived more than just a few years. Cairns et al. (2008) summarize

various instruments that deal with longevity risks of insurance companies. Their review presents

various concepts of longevity-linked securities, such as mortality swaps and longevity bonds that

may serve as a hedging instrument against longevity. However, the products introduced had

only moderate success due to low market acceptance and the lack of a perfect hedge. Milevsky

and Salisbury (2015) derive an optimal tontine design by accounting for sensitivity of both the

tontine size and the longevity risk aversion for each tontine member. By doing so, they raise

the question whether an optimally designed tontine with low implications regarding capital

requirements for the sponsor will gain more attention in times of risk-based capital standards

and conclude that, due to higher volatility of the payments, the tontine provides a lower utility

than a traditional life annuity. Forman and Sabin (2014) construct a fair transfer plan (FTP) to

guarantee a fair bet for all participating investors of a tontine by accounting for each age, death

expectancy and investment level. They show that a fairly designed tontine is superior to defined

benefit plans in terms of funding and sponsoring of the pension system. They illustrate that a

fairly developed tontine model would improve the situation of pension providers while serving

the retirement income demand of the tontine participants. In an empirical work, Blanchet

(2013) derives the trend of retirement consumption. He observes a shift in the expenditures

towards increasing health care, entertainment and food. This work is the basis for the old-age

liquidity-need function that can be served by the tontine.

6 See Sabin (2010).
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4 Model Framework

We first model mortality dynamics in Germany for the upcoming decades and derive in a second

step possible demographic pyramids. These, in turn, are the basis for the composition of the

fair revolving tontine. We then estimate the risk-free benefit profile of a standard annuity and

compare it to the risky benefit profile of a tontine. We assume that each individual i has

wealth Wi consisting of the total available funds and that there is no further source of income

in the future. Wi can be seen as the sum of both discounted future earnings until retirement

and savings up to the investment date. We assume a situation in which Wi will be completely

converted into pension installments7. For the expected tontine benefit, we provide a closed-form

solution while we determine the realized benefit by performing a Monte Carlo simulation. We

then analyze to what extent tontine and traditional annuity are able to satisfy an empirically

estimated, increasing old-age liquidity-need function for different settings. Furthermore, we

estimate an optimal portfolio consisting of annuity and tontine which maximizes expected utility.

We provide results for different demographic scenarios and mortality dynamics for Cumulative

Prospect Theory and Expected Utility Theory and show the capability of tontines as instruments

for retirement planning from a policyholder perspective. Finally we incorporate subjective beliefs

about individual mortality to account for different perceptions about individual life expectations,

which leads to a changing optimal asset allocation for retirement planning.

4.1 Mortality Model

In a first step, we project mortality rates for a forecast horizon of t = 1, . . . , T years. Our

starting point is the one-factor-model for estimating mortality rates by Lee and Carter (1992).

According to the Lee-Carter Model (LC model) the one-year death probability qx,t of a person

aged x in year t is specified as

ln (qx,t) = ax + bx · kt + εx,t ⇔ qx,t = eax+bx·kt+εx,t (1)

where ax and bx are time constant parameters for a male aged x that determine the shape and

the sensitivity of the mortality rate to changes in kt, which is a time-varying parameter that

captures the changes in the mortality rates over time. εx,t is an error term with mean 0 and

constant variance8. As originally proposed by Lee and Carter (1992), the estimation of the time

7 This assumption can be substantiated by Yaari (1965), who shows that under the expected utility paradigm
for fairly priced annuities without bequest motive, complete annuitization is optimal

8 We use y for a female aged y years analogously.
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varying parameter kt can be performed by fitting a standard ARIMA model using standard

time series analysis techniques. The ARIMA(p, d, q) process is given by

kt = (α0 + α1kt−1 + α2kt−2 + ...+ αpkt−p + β1εt−1 + β2εt−2 + ...+ βqεt−q) + εt = k̂t + εt (2)

in which the error term is normally distributed ε ∼ N(0, σk).
9

4.2 Demographic Structure

Based on the predicted mortality rates qy,t for the one-year death probability of a woman aged y

in period t, and qx,t for the one-year death probability of a man aged x in period t, we determine

the demographic structure of an economy in every period t. Qy,t (Qx,t) is the total quantity

of female (male) persons of a cohort aged y (x) at time t. Equation (3) shows the updating

process. Newborns, or persons in their first year of life (y, x = 1) are determined by the sum of

the age-specific fertility rate AGZy times the quantity of females of the respective age y in each

period t, which is weighted by the fraction of newborn females f0 and males m0 = 1− f0. From

the second year of being alive, the number of persons is the probability to survive one year of

someone who was one year younger in the year before times the number of persons who were

one year younger in the year before:

Qy,t =


f0 ·

Ω∑
y=2

Qy,t ·AGZy

Qy−1,t−1 · (1− qy−1,t−1)

Qx,t =


m0 ·

Ω∑
y=2

Qy,t ·AGZy for y, x = 1

Qx−1,t−1 · (1− qx−1,t−1) for y, x = 2 . . .Ω

(3)

We determine these quantities for all cohorts y, x = 1, . . . ,Ω in all periods t = 1, . . . , T for

males and females to estimate the corresponding population pyramids. Equation (4) shows the

Cumulative Distribution Function (CDF) of a person aged x in each t, where κy,t =
Qy,t

Ω∑
y=1

Qy,t

and

κx,t =
Qx,t

Ω∑
x=1

Qx,t

for y, x = 1, . . . ,Ω are the fractions of each cohort of females and males of the

total female and male population in each period t.

Fy,t =



0 : y < 0

y∑
1
κy,t : 0 ≤ y < Ω

1 : y > Ω

Fx,t =



0 : x < 0

x∑
1
κx,t : 0 ≤ x < Ω

1 : x > Ω

(4)

9 The term d indicates the grade of co-integration of the series. For further mathematical details, please refer
to Brockwell and Davis (2013) pp. 273-320.
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The fractions of females and males aged y and x of the total population in each t are fy,t =
κy,t

κy,t+κx,t

and mx,t = 1− fy,t. The predicted mortality rates and demographic structures are the basis for

calculating the tontine composition and tontine benefits and are the starting point to analyze

the impact of the demographic development on the tontine and its possible application as an

alternative retirement planning product.

4.3 Tontine Model

We model a fair revolving tontine based on Sabin (2010) that allows tontine participants to be

of any gender and age, and to invest a desired one-time initial amount of money Bi at tontine

entrance. Bi then is tied in the tontine and cannot be withdrawn before the tontine member’s

death. Furthermore we assume that there is no possibility to inject additional capital for any

individual in future periods. While the original model considers infinitesimal points in time,

resulting in only one member being able to die at one point in time, we adjust the model to a

yearly time frame allowing for multiple deaths. We further assume the number of the tontine

members N as fixed: every time a participant dies, the tontine is refilled to N . A new entrant i

is randomly drawn from the period-corresponding demographic structure. We assume entrants

at least to be of a certain age y, x and also assume an upper limit of entering the tontine of

age y, x so 0 ≤ y, x < y, x ≤ Ω. The random age of an individual i entering the tontine in t is

expressed by

yE,i,t, xE,i,t = F−1
t (z) (5)

where F−1 is the inverse function of F with Pr (y) = fy,t and Pr (x) = mx,t and with z ∈(
F−1
t

(
y
)
, F−1

t (y)
)

or z ∈
(
F−1
t (x) , F−1

t (x)
)

where z is uniformly distributed on U
(
F−1
t

(
y
)
, F−1

t (y)
)

or U
(
F−1
t (x) , F−1

t (x)
)
. We further assume the establishment of the tontine in t = 0 and refrain

from investing the tied capital to streamline the model and to be able to quantify solely the

interrelation of mortality benefits and demographic change. For better readability, we denote

the one-year death probability of individual i with the beforehand assigned characteristics as

qi,t in t. The index i allows to identify each individual with its specific characteristics in each

period. Furthermore we denote the age of a person as x in the following, irrespective of the

gender.

Let {Ai,t} be the event that i dies in t with P (Ai,t) = qi,t and
{
Ac
i,t

}
be the event that i survives

in t with P
(
Ac
i,t

)
= 1− qi,t. Let

{
Ac

0,t

}
be the event that at least someone dies in t and {A0,t}

be the event that no one dies in t. Using the inclusion-exclusion principle10, the probability that

10 see for example Graham et al. (1997).
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at least someone dies in t is

P
(
Ac

0,t

)
= P

(
N⋃
i=1

Ai,t

)
=

N∑
j=1

(−1)j+1
∑

I⊆{1,...N}
|I|=j

P

(⋂
i∈I

Ai,t

)
and the probability that no one dies in t is

P (A0,t) = 1− P

(
N⋃
i=1

Ai,t

)
.

{
Ak,t | Ac

0,t

}
denotes the event that k dies in t conditioned that at least someone dies in t. Using

the law of total probability yields for the probability that k dies in t conditioned that at least

someone dies in t

P
(
Ak,t | Ac

0,t

)
=

P (Ak,t)

P
(
Ac

0,t

) =
qk,t∑N

j=1

(
(−1)j+1∑

I⊆{1,...N}
|I|=j

P
(⋂

i∈I Ai,t
)) = ρk,t. (6)

If member i dies, his or her balance account Bi is distributed to the survivors. To be fair,

this reallocation takes place according to the specific characteristics of the surviving members:

Older members and those with a larger stake in the tontine receive more. If member k 6= i dies,

member i receives a fraction of k’s balance ai,k,tBk, where

0 ≤ ai,k,t ≤ 1 for i, k = 1, . . . , N and i 6= k. (7)

k’s balance is forfeited entirely, so

ak,k,t = −1 for k = 1, . . . , N. (8)

Equation (8) states that the dying members’ stake in the tontine is distributed among the

surviving members. In sum, the amount lost by k equals the sum of the distributed benefits to

the surviving members, so
N∑
i=1

ai,k,t = 0 for k = 1, . . . , N. (9)

The unconditional expected benefit received by member i in t is the return in case no one dies

and the return if at least someone dies, weighted with their corresponding probabilities, thus

E [ri,t] = E [ri,t | A0,t]P (A0,t) + E
[
ri,t | Ac

0,t

]
P
(
Ac

0,t

)
(10)
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Since return is generated solely by mortality, if no one dies, there cannot be any return, thus

E [ri,t | A0,t] = 0 and the expected return comprises the second term of the right-hand side of

Equation (10). The expected return conditioned that at least someone dies is the sum of the

conditional dying probability weighted fractions of the balance accounts over all k members in

t, thus

E
[
ri,t | Ac

0,t

]
=

N∑
k=1

ρk,tai,k,tBk. (11)

To achieve a fair tontine, each member’s expected benefit is zero in each year. This is because

the expected loss of the own balance account in the case of the own death has to be offset by the

expected gains one receives from other members’ deaths, so E
[
ri,t | Ac

0,t

] !
= 0. The older i is, the

higher the death probability qi,t, causing that ρi,t increases as well and leads to a higher expected

loss in case of the i-th death. This has to be compensated by an increase in the fractions ai,k,t

one receives in the case of other members’ death to counterbalance the aforementioned effect

and to create a fair bet.

To satisfy the conditions of a fair bet for every tontine member i = 1, . . . , N , requires to search

for a set of ai,k,ts that yield an expected benefit of zero for every tontine member and which

fulfills conditions (6), (7), (8) and (9), yielding E[ri,t] = E[ri,t|Ac
0,t] = 0.

As Sabin (2010) shows, such a set of ai,k,ts exists only if no member is exposed to more than

half of the total risk of the tontine and can be achieved by the introduction of a ceiling of the

amounts to invest Bi. Choosing N large enough additionally reduces the threat of a single

individual holding too large a fraction of risky exposure of the tontine. Here, we implement an

algorithm11 for the determination of the set of ai,k,ts that is proposed by Sabin (2010), which

approximately assigns constant ai,k,ts, irrespective of k for k 6= i and which provides best results

for large N . In the following, we assume that the resulting ai,k,ts satisfy conditions (6) - (9) and

that no member holds more than half of risky exposure on the tontine, formally meaning that

ρi,tBi ≤
1

2

N∑
k=1

ρk,tBk for i = 1 . . . N. (12)

The expected return, conditioned that i survives in t, is

E
[
ri,t|Ac

i,t

]
=

N∑
k=1
k 6=i

ρk,tai,k,tBk. (13)

11 For further algorithms to construct a tontine, see Sabin (2011).
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Because Equation (11) is solved to be zero, to yield a fair bet,
N∑
k=1
k 6=i

ρk,tai,k,tBk = −ρi,tai,iBi and

equation (13) is

E
[
ri,t|Ac

i,t

]
= µi,t = qi,tBi. (14)

This is an interesting property since the individual expected return in case of the own survival

is solely driven by the own mortality qi,t and the own investment in the tontine Bi, and does

not depend on the tontine composition.

The unconditional realized benefit for i in t is

ri,t =

N∑
k=1
k 6=i

ai,k,tBk1{Ak,t⋂Ac
i,t} −Bi1{Ai,t}

where the indicator function 1{...} takes on the value of 1 if the respective event occurs and 0

otherwise and therefore 1{...} ∼ BerP (...). The realized return conditioned that i survives is

ri,t|Ac
i,t =

N∑
k=1
k 6=i

ai,k,tBk1{Ak,t}. (15)

Since the ai,k,ts are approximately constant for i for every k for large N , ai,k,t ≈
qi,tBi

N∑
k=1
k 6=i

qk,tBk

, and

equation (15) is

ri,t|Ac
i,t ≈ qi,tBi

N∑
k=1
k 6=i

Bk1{Ak,t}

N∑
k=1
k 6=i

Bkqk,t

. (16)

Although the volatility of the tontine converges toward zero for N → ∞, for a finite and

realistic tontine size, the payouts are volatile. As Appendix A.1 shows, the tontine payouts are

approximately normally distributed, with

µi,t = qi,tBi

and

σi,t =
qi,tBi√
M − 1

√√√√√√√√√√√
M∑
m=1


N∑
k=1
k 6=i

Bk1
m
{Ak,t}

N∑
k=1
k 6=i

Bkqk,t

− 1



2

. (17)
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with M Monte Carlo simulation paths.

4.4 Annuity Model

We assume that the individual has pension wealth Wi, no other wealth, no other source of

income and the share of wealth which is not tontinized is annuitized. The individual can choose

to hold any positive proportion of his wealth in an annuity or in a tontine. The individual has no

heirs and no desire to leave a bequest. We refer to an annuity applied by Milevsky (2006) which

requires a lump sum investment of Wi −Bi. The annuity then pays a stable income stream on

a yearly basis until the participants’ death, starting as an immediate annuity.

The conditional survival probability of a person aged x in t of surviving τ more years is defined

as

τp
t
x =

τ−1∏
j=0

(
1− qt+jx+j

)
.

Because we refrain from interest rates in this model, the lump sum price ātx in t of an immediate

annuity which provides an income of 1 EUR per year until death is equal to the expected

remaining lifetime of a person aged x in t, E
[
T tx
]

which is the sum of the conditional survival

probabilities:

ātx = E
[
T tx
]

=
Ω∑
τ=1

τp
t+τ
x .

To simplify, we denote the price of the immediate annuity as āti, where the individual charac-

teristics can be identified via i. A lump sum investment of Wi − Bi in the annuity provides a

stable, lifelong and yearly income stream of

Ri,t =
Wi −Bi

āti
. (18)

The individual now can decide on the allocation of tontinization (Bi) and annuitization (Wi−Bi)

of the wealth Wi.

4.5 Old Age Liquidity Need Function

According to the Worldbank (2015), life expectancy at birth has increased between 1970 and

2013 from 70.6 to above 80 years. The increasing lifetime will cause the number of people over

80 years old to almost double to 9 million in Germany by the year 2060 according to forecasts

by the Statistisches Bundesamt (2015). In the future, it is therefore very probable that very

high ages of 100 years and even more will be achieved by a large number of people. According
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to the medicalisation thesis motivated by Gruenberg (1977), the additional years that people

live due to demographic change are increasingly spent in bad health condition and disability.

In those additional years of life, the demand for care products and medical service increases

over-proportionately. Coming from 2.6 million nursing cases in Germany in 2013, Kochskämper

(2015) estimates between 1.5 and 1.9 million additional nursing cases in Germany in the year

2060 due to demographic change. By the year 2030, the demand for stationary permanent care

will increase by 220,000 places in Germany.

While previous research finds a systematic decrease in the consumption level at retirement12,

incorporating the nursing care costs and medical expenses to consumption yields a so called

retirement smile. When people retire they are mostly still healthy and have therefore time to

spend on lifestyle. As they age, first physical constraints appear, they become more and more

home-bound and thus consumption declines while supplementary and medical costs are still at

a low level. As people become very old they rely more on assisted living requirements, and

costly long-term nursing care is needed. Therefore the typical monetary demand for a retiree

is U-shaped. Based on own empirical research13 we model an old-age liquidity-need function,

which accounts for demand for nursing care and medical service. The determination of the

liquidity-need function is based on data available on consumer spending in the SOEP from 1984

to 2013. We determine the age-specific expenditure pattern for the spending categories food,

living, health, care, leisure, refurbishment and miscellaneous and finally aggregate them. The

considered age ranges from 60 to 95. From the age of 95 on, we extrapolate until the age of 105

due to the limited data basis for those ages. The modeling of the nursing care costs is based on

the costs of an inpatient, permanent care, which occurs in nursing homes, even though a large

share of care is performed by family members and nursing care services. The inpatient care costs

reflect the actual potential resources needed in a more appropriate manner because in home care,

the time spent by family members is not taken into account. Moreover, many refuse inpatient

care only because of lacking resources. Figure 1a shows our estimates of the average nursing

care costs from the age of 60 to 90 per year. In addition, the liquidity-need without nursing care

costs is shown. If we aggregate both components, we obtain the characterized retirement smile,

which is presented in figure 1b.

In our model, we map the old-age liquidity-need via a polynomial liquidity-need function Dt

with order 2 which is calibrated based on our results, and assume an extrapolation up to the

12 See for example Hamermesh (1984), Mariger (1987), Banks et al. (1998), Bernheim et al. (2001) or Haider
and Stephens Jr (2007).

13 The data used in this publication was made available to us by the German Socio-Economic Panel Study
(SOEP) at the German Institute for Economic Research (DIW), Berlin.
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Figure 1: The Retirement Smile

maximum attainable age of x = 105. The desired consumption level is driven by age x in t so

Dt = β0 + β1xt + +β2x
2
t εt (19)

where the parameters β0, β1 and β2 are fitted using our empirical data and εt is the error term

in t.

4.6 Multi Cumulative Prospect Theory Valuation

So far, we have on the one hand an income stream which is composed of both certain and

volatile annuity payments, and on the other an age-increasing liquidity-need which the income

stream should cover. We aim to design the payout pattern of tontine and annuity such that

the liquidity-need can be served in an optimal way. Therefore, we evaluate the income stream

relative to the liquidity-need. An income stream larger than the liquidity-need is considered

to be utility-generating, while an income stream lower than the liquidity-need generates dis-

utility. In this sense, we look at the utility of the relative income stream in reference to the

liquidity-need, rather than the absolute level of the income. Since the liquidity-need increases

with age, a payout which is able to meet the demand in early years might not be sufficient in

the later years of retirement. Therefore, to evaluate an income stream relative to a reference

point, or in other words, gains and losses, the Cumulative Prospect Theory (CPT), originated

by Kahneman and Tversky (1979) and enhanced by Tversky and Kahneman (1992) is highly

suitable for our purpose: If the income stream is not sufficient to meet the liquidity-need, the

missing difference to the reference point is valued rather than the absolute level of the income

stream. Although the CPT is a descriptive rather than a normative theory, it allows us to
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capture the aforementioned properties and to determine an optimal, CPT-utility maximizing

fraction to be invested in the tontine. Schmidt (2015) shows that using CPT to value insurance

demand can yield an optimum of full insurance coverage. To capture the life-cycle dynamics

of the repeating payments until death, we use the Multi Cumulative Prospect Theory (MCPT)

applied by Ruß and Schelling (2015) where the CPT utility is determined in every period t under

consideration of a changing reference point which is represented by the respective liquidity-need

Dt and finally aggregated with respect to survival prospects. The total utility of person i over

his or her stochastic remaining lifespan is the weighted sum of the CPT utilities in each point

in time t deflated by a subjective discount factor δ ≤ 1. The conditional survival probability

τpx of an x year old of surviving τ more years is incorporated in the CPT utility. It is combined

with the occurrence probability of the respective payouts and this joint probability is valued

according to the CPT, thus

MCPT (i) =
T−x∑
τ

δτCPT (Zi,t+τ ) (20)

where

CPT (Zi,t+τ ) =

∫ 0−

−∞
v (z) d

(
w− (Fi,t+τ (z))

)
+

∫ ∞
0+

v (z) d
(
−w+ (1− Fi,t+τ (z))

)
(21)

is the CPT in an adjusted version to allow for continuous probability distributions14. The

probability weighting function w+ (F ) for gains and w− (F ) for losses is

w+ (F ) =
F γ

(F γ + (1− F )γ)
1/γ
, w− (F ) =

F κ

(F κ + (1− F )κ)
1/κ

(22)

The value function v (z) is given by

v (z) =


za z ≥ 0

−λ |z|b z < 0

(23)

where a, b ∈ (0, 1) and λ > 1. The mixture cumulative distribution function, to account for the

joint probability of conditional survival and the payout size, is

Fi,t+τ (z) = (1−τ px) 1[0,∞) +τ px

∫ z

−∞
dFNi,t+τ (u) (24)

14 See for example Hens and Rieger (2010), Ågren (2006) or Ruß and Schelling (2015) who use the CPT in a
continuous context.
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with the first moment

µi,t+τ = qi,t+τBi +
Wi −Bi
ai,0

−Di,t+τ (25)

and the second moment σi,t+τ resulting from equation (17) for the normally distributed gains

and losses.

Figure 2 shows the intuition of equation (24) for a mean zero payout: if one is alive, one receives

payments which occur with the conditional survival probability τpx. Up to the point where

payments equal the liquidity-need, they are perceived as losses. If one dies, one receives no

payments out of the tontine and annuity. Therefore, at z = 0, there is an immediate jump in

the CDF of 1 −τ px, because the probability of receiving less than 0 results not only from the

probability of being alive and experiencing a payment of zero, but additionally from dying and

therefore receiving nothing. If one is alive and payments are sufficient to satisfy the liquidity-

need, they are perceived as gains. Therefore, less probability mass is assigned to losses and

more probability mass is assigned to gains using the mixture CDF compared to a normal CDF.

Incorporating the mixture CDF in the analysis, equation (21) becomes

CPT (Zi,t+τ ) =τ px

[∫ 0−

−∞
v (z)w−′ (Fi,t+τ (z)) fNi,t+τ (z) dz +

∫ ∞
0+

v (z)w+′ (1− Fi,t+τ (z)) fNi,t+τ (z) dz

]

+ (1−τ px)
[
v
(
0−
)
w−′

(
Fi,t+τ

(
0−
))

+ v
(
0+
)
w+′ (1− Fi,t+τ (0+

))]
(26)

with

w′ (F ) =
F θ−1

(
F θ + (1− F )θ

)− θ+1
θ
(

(F − 1) (θ − 1)F θ + (F (θ − 1)− θ) (1− θ)θ
)

θ − 1

(27)

where θ ∈ (γ, κ). The first line of equation (26) is the utility in case of survival, whereas the
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second line is the utility in case of death, which is 0, since v (0) = 0.

Finally, we numerically maximize equation (20) subject to the optimal level of tontine investment

Bi.

max
Bi

MCPT (i)

s. t. Bi ≤Wi, Bi ≥ 0

(28)

4.7 Variation: Stochastic Liquidity Need in MCPT Valuation

From Equations (25) and (17), it follows that the combined payout of tontine and annuity is

normally distributed with

Zi,t ∼ N
(
µi,t, σ

2
i,t

)
.

To cover effects stemming from uncertainty about the future liquidity-need, we assume that the

liquidity-need itself is normally distributed with mean E (Di,t) and standard deviation σDi,t ,

therefore

µi,t ∼ N
(
µi,t0, σ

2
µi,t

)
where µi,t0 = qi,tBi + Wi−Bi

ai,0
− E (Di,t) and σ2

µi,t = σ2
Di,t

is calibrated based on own empirical

research. If we write

Z ′i,t =
(
Z ′i,t − µi,t

)
+ µi,t

then (
Z ′i,t − µi,t

)
∼ N

(
0, σ2

i,t

)
and

Z ′i,t ∼ N
(
0, σ2

i,t

)
+N

(
µi,t0, σ

2
µi,t

)
= N

(
µi,t0, σ

2
i,t + σ2

µi,t

)
(29)

because the sum of two independent normally distributed random variables is also normally

distributed. While the mean expected payout remains the same, the volatility increases to the

sum of the volatility of the tontine payment and the volatility of the liquidity-need.

4.8 Variation: Subjective Mortality

To account for subjective beliefs about the own mortality risk, we adjust the objective forecasted

mortality. It is important to understand the difference compared to the probability adjustment

which CPT undertakes: while CPT accounts for a deviating perception of objective probabilities,

the subjective mortality adjustment modifies the average probabilities subject to own percep-

17



tions about the individual health status. People who believe to live longer than the aggregate

average because they feel very healthy or have an active lifestyle perceive to have lower death

probabilities and thus believe to have a longer expected remaining lifetime. Therefore, the op-

timistic subjective death probability q′x,t is lower than the average, objective death probability

qx,t. Likewise, the pessimistic subjective death probability q′x,t for persons who believe to live

shorter than the overall average (because of severe illness or the awareness of a poor lifestyle)

is higher than the actual death probability qx,t. Bissonnette et al. (2014) show that, within dif-

ferent groups (e.g. gender, ethnic background or education), people with similar characteristics

are only slightly optimistic regarding their survival prospects compared to the average mortality

within the subgroup, whereas the actual subgroup mortality itself differs tremendously from

the overall population mortality. The authors conclude that the individual perceptions are very

precise. Therefore, it is important to incorporate subjective survival probabilities in our analy-

sis, because people who believe to live longer tend to live longer, and thus different retirement

planning solutions are needed for different individuals. To account for subjective mortality in

our model, we adjust the actual mortality rates qx,t by an individual mortality multiplier d,

therefore the subjective mortality rate q′x,t is

q′x,t =


d · qx,t if d · qx,t ≤ 1

1 otherwise

(30)

where d is the realization of a random variable D and determines the subjective survival prob-

ability. For 0 < d < 1 the individual expects to live longer than the average, if d = 1 the

individual self assesses his or her lifetime of being average and if d > 1, the individual expects

to live shorter than the actual mortality table predicts. Furthermore, qΩ = 1 which means that

there is a limiting age Ω when the individual dies with certainty. A simple modeling approach

for d ∼ D is shown in Appendix A.3, where D is modeled using a Gamma Distribution. Since

the insurance company offering tontines and annuities uses average objective mortality rates,

pricing is undertaken on the basis of average mortalities. The subjective beliefs only influence

the subjective determination of individual utility.
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5 Calibration and Results

We calibrate the Lee-Carter model based on data from the Human Mortality Database15, and

forecast mortality rates for T = 100 years beginning from 2011 which is denoted by t = 1 in

the analysis. The fractions of female and male newborns we use to update population pyramids

are calculated based on German birth statistics16. The age-specific birth rates are based on

German birth statistics17 and describe the number of newborns per year of a woman in each

cohort. The maximum attainable age is set to be Ω = 105 which means that at the age of

x = 105 one dies with certainty. We consider initial wealth Wi as an independent variable

in our analysis and measure its influence on the optimal investment behavior under various

scenarios. The parameters of the polynomial liquidity-need function Dt are β0 = 163, 984.686,

β1 = −4, 000.634 and β2 = 28.589 and fit our empirically estimated old-age demand function

based on SOEP data.

5.1 Base Case

In Table 1, we report the parameters used in the MCPT18 analysis, which constitute the base

case. We consider i as a male individual aged 62 in the year the tontine is set up (t = 1), and

vary his initial endowment Wi. Furthermore, we assume that the remaining tontine members

k = 1 . . . N, k 6= i behave optimally, i.e. the individual amounts Bk invested in the tontine

are assumed to be the MCPTk-utility maximizing amounts and are assumed to be uniformly

distributed on [0, 50, 000].19 Based on M = 10, 000 simulations, we calculate the realized tontine

returns for individual i in every period and thereby determine the moments of the normal

approximation of tontine returns for member i. We set the subjective discount factor δ = 1,

because we assume that the future states are as important as present states for an individual who

aims to secure the future standard of living20. We calibrate the CPT parameters a, b, λ, γ and κ

according to the values proposed by Tversky and Kahneman (1992). The expected return and

15 Data from 2011, Source: http://www.mortality.org.
16 Data from 2000 - 2010, see Statistisches Bundesamt (2012).
17 Data from 2011, Statistisches Bundesamt, https://www.destatis.de/DE/ZahlenFakten/

GesellschaftStaat/Bevoelkerung/Geburten/Tabellen/GeburtenzifferAlter.html.
18 We use the notation MCPT according to Equation (20) for the sum of the periodic CPT utilities and CPT

according to Equation (26) for the periodic utilities.
19 There exists a corresponding amount of initial wealth Wk for which Bk is optimal. We make this assumption

due to computational reasons. The values correspond roughly to the optimal amount invested in the tontine
for the considered male individual for the considered range of initial wealth Wi. Thereby we provide the
optimal investment decision for hypothetical levels of Wk, which are roughly in the same range as the
bandwidth of Wi.

20 In this sense, Parsonage and Neuburger (1992) and Van der Pol and Cairns (2000) provide empirical evidence
that it is feasible to assume a subjective discount rate of zero for the discounting of future health benefits.

19
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the standard deviation in selected periods, if we set Wi such that the optimal Bi = 30, 000 can be

seen in Table 2 in Appendix B. Since the expected tontine return as well as the tontine volatility

are driven by the individual death probability, both increase as i becomes older. Aged 62 in

t = 1, person i can expect to receive a first-year tontine return of 345.15 EUR which amounts

to 1.15% of the initial tontine investment of Bi = 30, 000 EUR. In t = 10, his expected return

is roughly 1.6 times higher than in the first year but still amounts to only 1.86% of the initial

investment. The payments thus increase slowly in the early retirement years because of the slow

increase of death probabilities in the early years. After 20 years, at the age of 81, the return

is already 4.8 times as large as in the first year and the single payment in this year amounts

to 5.51% of the initial investment. For very high ages, the payments increase tremendously: at

the age of 91, in t = 30, the tontine return is almost 16.3 times as large as in the first year

and yields 18.73%. Every year of further survival then yields even steeper increasing returns,

being 47.69% of the initial investment at the age of 101 in t = 40, and finally 100% at the

maximum attainable age of 105 in t = 44. Neglecting interest rate effects, person i can expect

to recoup his initial investment in year 26 at the age of 87. Since the standard deviation of the

tontine returns depends on the individual mortality, volatility increases similarly with age. In

comparison, an immediate fair annuity with investment of 30,000 EUR for person i would yield

an income of yearly 1458.96 EUR. Therefore, the investor could recoup his initial investment

already after 21 years at the age of 82. This is because the annuity provides stable payments

whereas tontine payments increase with age. This first result indicates that a tontine might be

the preferred product for someone who expects to live long. Figure 3 shows the yearly expected

payout patterns of a tontine and an annuity with investment volume normalized to unity. The

important question then is which combination of both instruments is best suited to meet the

old-age liquidity-need?
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Parameter Notation Value

Forecast horizon (in years) T 100

Maximum attainable age Ω 105

Fraction of female newborns ωf 48.68 %

Fraction of male newborns ωm 51.32 %

Lower boundary age at tontine entrance x 62

Upper boundary age at tontine entrance x 100

Size of the tontine N 10,000

Monte Carlo Paths M 10,000

Subjective discount factor δ 1

CPT value function parameters a, b 0.88

CPT loss sensitivity factor λ 2.25

CPT w+ parameter γ 0.61

CPT w− parameter κ 0.69

Table 1: MCPT parameters Base Case

Based on these considerations, we determine the CPT utility CPT (Zi,t) in each period for

different levels of Wi for member i. Figure 4a shows the CPT utility of member i for an initial

wealth Wi = 610, 000 EUR in each point in time t which is the expected contribution of the

CPT utility ton the aggregated MCPT utility. Since survival probabilities decline with age, the

impact of each CPT utility declines with age and finally converges toward zero. If available funds

are higher (lower) than the age-increasing liquidity-need, which we incorporate as time-changing

reference point, funds are valued as gains (losses). We first consider the case where person i

completely annuitizes his initial wealth (solid blue line). As annuity payments are constant, an

increasing liquidity-need Di,t causes declining CPT utility. In early years, demand can be met.

As the liquidity-need rises, it exceeds the available funds and CPT utility decreases and finally

becomes negative. At the same time, as age increases, the declining survival probability causes a

a lower CPT utility which reduces the impact of late periods on MCPT utility. For the very late

years, the huge decline of survival probabilities outweighs the decreasing CPT utility. Finally,
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Figure 4: Base Case

the impact approaches zero. Second, we consider the complete tontinization of initial wealth

(densely dotted red line). Since tontine payments are driven by mortality, payments are very

low in the early years and increase in age, thus the liquidity-need cannot be met in early ages

and can easily satisfy Di,t in later years. Tontine and annuity payments proceed adversely and

a portfolio of both can help to generate payout patterns which enable the increasing liquidity

demand to be financed appropriately. The dashed magenta line shows the CPT utilities of a

payout pattern of a portfolio consisting of 10% tontine and 90% annuity. While still being

able to satisfy the demand at the early ages, it is also able to provide sufficient funds in the

later years. The sum of the CPT utilities yields the MCPT utility, and we are searching for

those combinations of tontine and annuity investments for different levels of Wi, which maximize

MCPT utility.

Figure 4b exemplarily shows the MCPT utility for different fractions of Wi = 566, 000 EUR
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invested being in the tontine (Bi). The remaining fraction Wi−Bi is annuitized. Starting from

a situation of complete annuitization, i can increase his MCPT utility by investing a positive

fraction in the tontine, and finally maximizes his MCPT utility if he invests 11.396% of Wi in the

tontine. An optimal fraction exists because of two counteracting effects: A higher investment

in the tontine increases the later years’ CPT utilities more than it decreases the early years’

CPT utilities. Up to an optimal point, the increase in CPT utility in the late years outweighs

the decrease in CPT utility in early years. Beyond this optimal point, the decrease in CPT

utility in early years outweighs the increase in CPT utility in the late years, yielding a declining

MCPT utility. These effects are resulting from the fact that up to the age of 80, the annuity

provides a higher return than the tontine, while beyond the age of 80, the tontine outperforms

the annuity. Therefore, one unit of additional investment in the tontine decreases CPT utilities

until the age of 80 and increases CPT utilities beyond the age of 80, finally yielding an optimal,

MCPT utility maximizing tontine investment level.

Figure 4c shows the optimal, MCPT utility maximizing fractions to be invested in the tontine for

different levels of initial wealth Wi. If Wi < 532, 000 EUR, it is not optimal to invest anything in

the tontine. This is because even for complete annuitization, annuity payments are so low that

the CPT utility losses in early years, caused by investing in the tontine, are large and cannot

be offset by the CPT utility gains in later years, caused by increasing tontine payouts. As Wi

increases, the optimal fraction to invest in the tontine increases very sharply up to Wi = 566, 000,

EUR and decreases thereafter. In this wealth region the reduction in early years CPT utilities

due to shifting from annuity to tontine investment can be overcompensated by the increase in

late years’ CPT utilities. This is because the marginal CPT utility in early years is lower for

higher Wi, and therefore more wealth can be shifted from the annuity to the tontine investment.

The optimal tontine fraction decreases beyond the peak at Wi = 566, 000 because for higher Wi,

marginal CPT utility decreases for late years’ consumption and less wealth in relative terms is

needed to increase late years’ CPT utilities. In other words, the CPT utilities in early years’

do not decline much, while late years’ consumption can still be financed with the additional

tontine payments. For Wi > 779, 000 EUR it is again optimal not to invest at all in the tontine.

This is because at this wealth level, the annuity payments are sufficient to satisfy the liquidity-

need in early as well as in later years. An investment in the tontine thus would reduce early

consumption possibilities and therefore reduce early years CPT utility, while the gain from later

consumption would be very small because later years’ liquidity-need can already be met by the

annuity payments. Therefore, the tontine would take away funds in early years in which survival
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prospects are high and therefore negatively impact utility. In turn, the tontine would provide

funds in states when the additional tontine payments are not needed because funds from the

annuity payments are already sufficient. In addition, these funds hardly contribute to MCPT

utility because of low survival prospects at high ages.

Figure 4d shows the optimal MCPT utility for different levels of Wi compared to the MCPT

utility under complete annuitization. For Wi < 532, 000 EUR and Wi > 779, 000 EUR, complete

annuitization provides the highest MCPT utility. As seen before, in these domains tontine

investment reduces the MCPT utility. Therefore the optimal decision and complete annuitization

correspond. For Wi ≥ 532, 000 EUR and Wi ≤ 779, 000 EUR, the highest MCPT utility can be

achieved by investing an optimal fraction in the tontine. The highest MCPT utility increase can

be generated at Wi = 582, 000 EUR, while the utility increase decelerates for lower and higher

amounts of Wi. This can be seen in the gray shaded area, which corresponds with the scale on

the right hand side of the figure.

5.2 Variation: Expected Utility Theory (EUT) Calibration

If we set the parameters of the value function of the CPT to a = b = 0.5, we receive a square

root utility. In addition, setting the parameters of the weighting function to γ = κ = 1 yields

actual occurrence probabilities instead of their subjective perceptions. Appendix A.4 shows the

resulting model, which is an expected utility calibration with objective probability weights. As

Figure 5 shows, the expected utility-maximizing fractions of tontine investment are generally

similar compared to the base case setting. It is striking that at Wi = 590, 995.07 EUR the

optimal fraction to invest in the tontine immediately jumps from 0 to 10,80% and decreases

thereafter, until it finally reaches 0 again at Wi = 950, 158.80 EUR. Compared to the base case,

investment in the tontine is optimal for higher Wi than in the base case. Furthermore, the

maximum tontine investment is slightly lower. Utilizing the EUT calibration, we can explain

the immediate jump in the optimal fraction of tontine investment, which appears similar to the

base case.

Figure 6a shows the expected utility values for Wi = 570, 000 EUR for different levels of tontine

investment. The highest expected utility can be achieved if no investment in the tontine takes

place. If the tontine investment increases, the expected utility first decreases and at roughly

12%, there is a little peak with a local maximum where expected utility slightly increases,

but finally decreases thereafter again. As shown in figure 6b, for a 10,000 EUR higher initial

wealth Wi = 580, 000 EUR, two changes in the shape of the expected utility curve can be
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relative to Wi for square-root utility calibration of the base case
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observed: first the hump increases, meaning that the positive influence on expected utility of

tontine investments increases, and second, the hump moves a bit to the left compared to the

previous wealth level, meaning that the local maximum occurs for lower fractions of tontine

investment, compared to the situation presented in 6a. As initial wealth reaches the threshold

value Wi = 590, 995.065 EUR (Figure 6c), the hump is as large as that the expected utility with

10.82% tontine investment equals the expected utility without tontine investment. Therefore,

the individual is indifferent between no tontine investment and 10.82% tontine investment. For

a tontine investment between 0 and 10.82%, the expected utility is lower compared to the

maximum expected utility. For tontine investments larger than 10.82%, the expected utility

decreases as well. As Wi further increases, the peak further moves to the left and surmounts the

expected utility without tontine investment (Figure 6d). Gradually, the local minimum between

no tontine investment and optimal tontine investment disappears (Figure 6d). Finally, as Wi

is very large, the slope around the local maximum is very flat and finally disappears when the

expected utility maximizing fraction to invest in the tontine hits 0 again (Figure 6f).

5.3 Variation: Tontine Size

For an increased tontine size of N = 100, 000 (compared to N = 10, 000 in the base case), the

volatility of the tontine payments declines (Table 2 in Appendix B). As presented in Figure 7,

less volatile tontine payments cause that it is optimal to invest in the tontine for lower Wi than in

the base case scenario. Similarly, for higher Wi, investing in the tontine remains beneficial with

an increased pool size. This is because less volatile payments generally enhance CPT utilities.

Therefore, it is optimal for both a lower and a higher Wi to invest in the tontine compared to

N = 10, 000.

5 6 7 8 9

·105

0%

5%

10%

Wi

Base case N = 10,000
N = 100,000

Figure 7: MCPT utility maximizing fractions to invest in the tontine for different levels of Wi

for N = 100, 000
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5.4 Variation: Stochastic Liquidity Need

If we assume a stochastic liquidity-need, the fact whether cash flows lead to gains or losses with

respect to the liquidity-need is affected by the volatility of the tontine payments as well as by

the volatility of the liquidity-need. A stochastic liquidity-need increases the overall volatility

and therefore CPT utilities decline. First, we set the variance of the liquidity-need at σ2
µi,t =

σ2
Di,t

= 2, 5002. As a consequence, the wealth level at which it becomes optimal to invest in the

tontine increases compared to the base case (see Figure 8). Furthermore, it remains optimal

to invest in the tontine for higher Wi compared to the base case. The reason for this lies in

the fact that in early years, the more volatile nature of gains and losses makes it desirable to

hold more funds to be able to fulfill the liquidity-need. Every unit taken away from the annuity

in the early years causes a huge decline in early years CPT utilities. Therefore, it is optimal

only for a higher Wi to invest in the tontine. The opposite effect applies to high Wi. The

volatile liquidity-need brings about situations of high liquidity-need in which payments from

the tontine can support its coverage. Therefore, it is optimal for a higher Wi to hold some

fraction of the tontine. Furthermore, the optimal level of tontine investment is lower compared

to the base case because the tontine investment itself adds another layer of volatility to the

payments, which decreases utility. As we further increase the volatility of the liquidity-need to

σ2
µi,t = σ2

Di,t
= 5, 0002, we can observe a boost in all three effects. A higher Wi is required to

start investing in the tontine in order to lower the risk of experiencing a utility-harming drop far

below the liquidity-need. As the level of Wi is relatively high, the tontine investment loses its

efficiency compared to the resulting annuity payments, yielding a lower optimal fraction to be

invested in the tontine. Nevertheless, due to the higher volatility, it is still optimal for a higher

Wi to invest in the tontine in order to be able to absorb shocks of the liquidity-need.
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for stochastic liquidity-need

5.5 Variation: Subjective Mortality

If we adjust the mortality to d = 0.8, the individual expects to live longer than average. This

means that future periods have a greater impact on MCPT utility because survival probabilities

decline less fast. Therefore, later years CPT utilities are higher compared to the base case. This

situation is presented in figure 9a, where the dotted lines represent the CPT utility paths for

the base case and the solid lines represent the CPT utility paths for the subjective, improved

mortality. As a result, positive and negative subjective CPT utilities both have a higher impact

on total MCPT utility compared to the base case, indicating that it might be more favorable

to invest a higher fraction in the tontine because it is more likely to experience the later years’

CPT utilities. Figure 9b shows that it is optimal to invest in the tontine for lower Wi because,

by investing in the tontine later years’ CPT utilities gain more relevance and are higher although

early years’ CPT utilities are reduced. By investing more intensely in the tontine, overall MCPT

utility can be increased. Furthermore, it is optimal to invest in the tontine up to a higher Wi,

compared to the base case. This is because marginal CPT utility in later years increases as

survival probabilities increase. Early years CPT utility losses can be overcompensated by later

years CPT utility gains. Furthermore, later years’ CPT utility losses also have a higher impact

on the MCPT and, therefore, a tontine investment in higher Wi regions can help to mitigate the

otherwise resulting underfunding problem. In addition, it is optimal to invest a higher fraction

in the tontine for all Wi’s for which it is optimal to invest in the base case. This is due to the

increased probability of experiencing CPT utilities in the late years.
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Figure 9: Subjective Mortality Beliefs

5.6 Variation: Changing Liquidity Need

In this section we change the shape of the liquidity-need. First, we parallel shift the standard

retirement smile curve up by 10,000 EUR. Second, we assume an exponential growth of the

standard retirement smile by Dexp
t = 1.01tDt. Since the standard retirement smile represents

the average liquidity-need unconditioned on the health status, an exponential growth can be

interpreted as the liquidity-need conditional on bad health. Figures 10a and 10b show the

resulting liquidity-need curves and the optimal fractions to invest in the tontine for the different

liquidity-need curves. If we assume a parallel, upward shift of the liquidity-need curve by 10,000

EUR, two characteristics of the optimal investment choice can be observed. First, the optimal

investment pattern shifts to the right, which means that it is optimal to invest a fraction in the

tontine only for higher initial wealth endowment Wi. Second, the optimal fractions to invest

in the tontine are lower compared to the base case. The reason for these two properties lies

in the increasing liquidity-need in every period. For a relatively low Wi, it is not optimal to

invest in the tontine because the loss in CPT utilities in the early years due to a reduction of

annuitized wealth exceeds the CPT utility gains in later years. Only if there is sufficient initial

wealth it is optimal to invest in the tontine. The maximal tontine investment in the parallel

shift case is lower compared to the peak in the base case. This is a consequence of the rightward

shift of the optimal tontine investment curve. A lower fraction of the tontine is necessary to

be invested in the tontine simply because, on an absolute level, more initial wealth is available.

As a consequence, a lower fraction invested in the tontine is able to generate enough income to

provide higher late years CPT utilities than the reduction in early years consumption decreases
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Figure 10: Variations in Liquidity Need Shape

overall MCPT utility. If we assume an exponentially increasing retirement smile, investment

in the tontine starts for a higher Wi compared to the base case and below the parallel shift

case at approximately Wi = 600, 000 EUR. Furthermore, the peak of the optimal amount to be

invested in the tontine is almost twice as large compared to the base case. Optimal positive

fractions of tontine investment persist longer for high Wi. This is because in the early years the

liquidity-need in the exponential case is relatively close to the base case and disproportionately

increases with age, compared to the base case. Therefore, the CPT utility decrease in early

years is relatively low when investing some fraction in the tontine, while the CPT utility gains

of the tontine investment in the late years are very high. Thus, with large amounts invested in

the tontine, the early years’ CPT utilities do not suffer much, while later years’ CPT utilities

benefit strongly. As a consequence, larger amounts to be invested in the tontine are optimal to

satisfy the liquidity-need best. To sum up, the tontine is most powerful if the liquidity-need is

low in the early years and high in the later years of retirement.

6 Summary and Conclusion

The changing social, financial and regulatory framework, such as an increasingly aging society,

the current low-interest environment, as well as the implementation of risk-based capital stan-

dards in the insurance industry, lead to the search for new product forms for private pension

provision. These product forms should reduce or avoid investment guarantees and risks stem-
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ming from longevity, still provide reliable insurance benefits and at the same time reflect in

the payout pattern the increasing financial resources required for very high ages. We propose

the traditional tontine to serve as such “product innovation”, especially in combination with a

traditional life annuity.

To assess the effects of tontine investments on policyholders’ welfare, we develop a model by

which individual old-age liquidity-need and payouts stemming from annuity and tontine invest-

ment can be evaluated and result in an optimal retirement planning decision, based on individual

preferences, characteristics and subjective mortality beliefs.

To show the effects of a tontine investment on retirement planning, we model the develop-

ment of the changing population structure for the next 10 decades in Germany. Based on the

changing mortality dynamics, we describe a fair revolving tontine. To assess its advantages and

disadvantages compared to a traditional life annuity, we derive a targeted consumption level

from empirical data and compare the tontine payout structure with the payout structure of a

traditional annuity with regard to the ability of meeting the desired consumption.

Our results reveal that a portfolio of annuity and tontine can provide the highest expected

MCPT utility. While the annuity pays a stable, constant pension, the tontine provides volatile,

age-increasing payouts. The results of our analyses prove to be sensitive with respect to the

initial wealth endowment and the subjective expectation about the remaining lifetime of an

individual. For very low and very high endowments, complete annuitization is optimal, whereas

for medium endowments of initial wealth, it might be optimal to invest some fraction in the

tontine, depending on individual circumstances. Taking these circumstances into account, our

results indicate that, from a policyholder perspective, a tontine can be a beneficial supplement

to existing retirement planning solutions.

Future research could incorporate investment risk and analyze its effects on the optimal ton-

tine investment decision. The level of investment risk might significantly change the optimal

allocation of retirement wealth. In this context, the integration of reinvestment opportunities

of tontine and annuity returns might yield an additional determining factor for the optimal re-

tirement planning decision. Another interesting area for further research is the analysis from an

insurer’s perspective. It will be interesting to analyze whether the supply of tontines can reduce

the insurer’s capital requirements, or reduce safety loadings included in annuity prices, since the

tontine involves no longevity risk for the provider, and might partially substitute annuities.
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A Appendix

A.1 Tontine Volatility

The variance of the return conditional that i survives in t is
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If we assume constant ai,k,t’s, the variance can be expressed as
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because E
[
1{Ak,t}

]
= qk,t. Nevertheless, the tontine we employ is large, but still risky21.

For a fixed tontine size N , the tontine payouts are still volatile and follow a Poisson binomial

distribution in each t which we approximate by a normal distribution22 N (µi,t, σi,t) for large N

where µi,t = qi,tBi and

σi,t =
qi,tBi√
M − 1
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.

with M Monte Carlo simulation paths.

21 At a tontine size of N = 100, 000, 000 members, the volatility would be negligible. Of course, a tontine of
this size is not realistic. Therefore we design a tontine of a size which might be practically realizable and
therefore comprises of significant volatility.

22 see for example Volkova (1996), Hong et al. (2009), Hong and Meeker (2010) and Hong (2011).
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A.2 Normal Distribution of Gains and Losses

The CDF of the normally distributed gains and losses is

FNi,t+τ (u) =
1

σi,t+τ
√

2π

∫ z

−∞
e
− 1

2

(
s−µi,t+τ
σi,t+τ

)2

ds. (31)

The PDF of the normally distributed gains and losses is

fNi,t+τ (u) =
1

σi,t+τ
√

2π
e
− 1

2

(
z−µi,t+τ
σi,t+τ

)2

. (32)

A.3 Modeling Subjective Mortality

Hoermann and Ruß (2008) propose a gamma distribution for modeling D ∼ Γ (α, β, γ) with

density function

fΓ
(α,β,γ) (d) =

1

Γ (α)βα
(d− γ)α−1 e

− d−γ
β ,

expected value

E (D) = αβ + γ

and Variance

V ar (D) = αβ2

for d ≥ γ, γ ∈ R and α, β > 0.

A.4 Expected Utility Theory Calibration of CPT

Instead of using subjective utility valuation by MCPT, we estimate lifetime utility of person i,

who is x years old in t, by expected utility theory where we use a square root utility function

EU (i) =

T−x∑
t

δτ EU (Zi,t) . (33)

This is basically the prospect theory where the parameters of the value function a = b = 0, 5

yielding a square root utility, and the parameters of the weighting function γ = κ = 1 yield-

ing actual weighting of the states instead of subjective perceptions. Therefore, instantaneous

expected utility in t is

EU (Zi,t) =τ px

∫ ∞
−∞

v (z) fi,t (z) dz (34)
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where

v (z) =


√
z z ≥ 0

−
√
|z| z < 0.

(35)

The PDF of available funds for i in t results from equation (32), with its moments coming from

equation (25) and equation (17). Finally we numerically maximize equation (33) subject to the

optimal level of tontine investment Bi.

max
Bi

EU (i)

s. t. Bi ≤Wi, Bi ≥ 0

(36)

B Tables

t 1 10 20 30 40 44

µi,t 345.15 559.72 1,652.04 5,619.14 14,307.30 30,000

σN=10,000
i,t 19.05 25.30 63.63 227.70 572.00 1169.77

σN=100,000
i,t 5.93 8.74 23.00 78.43 187.74 370.75

Table 2: Properties of normally distributed tontine returns for Bi = 30, 000 in t in EUR for
tontine size N = 100, 000 vs. N = 10, 000
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