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Abstract
Proteins are biological macromolecules playing essential roles in all living organisms.
Proteins often bind with each other forming complexes to fulfill their function. Such
protein complexes assemble along an ordered pathway. An assembled protein complex
can often be divided into structural and functional modules. Knowing the order of
assembly and the modules of a protein complex is important to understand biological
processes and treat diseases related to misassembly.

Typical structures of the Protein Data Bank (PDB) contain two to three subunits
and a few thousand atoms. Recent developments have led to large protein complexes
being resolved. The increasing number and size of the protein complexes demand
for computational assistance for the visualization and analysis. One such large
protein complex is respiratory complex I accounting for 45 subunits in Homo sapiens.
Complex I is a well understood protein complex that served as case study to validate
our methods.

Our aim was to analyze time-resolved Molecular Dynamics (MD) simulation data,
identify modules of a protein complex and generate hypotheses for the assembly
pathway of a protein complex. For that purpose, we abstracted the topology of protein
complexes to Complex Graphs of the Protein Topology Graph Library (PTGL). The
subunits are represented as vertices, and spatial contacts as edges. The edges are
weighted with the number of contacts based on a distance threshold. This allowed
us to apply graph-theoretic methods to visualize and analyze protein complexes.

We extended the implementations of two methods to achieve a computation of
Complex Graphs in feasible runtimes. The first method skipped checks for contacts
using the information which residues are sequential neighbors. We extended the
method to protein complexes and structures containing ligands. The second method
introduced spheres encompassing all atoms of a subunit and skipped the check for
contacts if the corresponding spheres do not overlap. Both methods combined allowed
skipping up to 93 % of the checks for contacts for sample complexes of 40 subunits
compared to up to 10 % of the previous implementation. We showed that the runtime
of the combined method scaled linearly with the number of atoms compared to a
non-linear scaling of the previous implementation

We implemented a third method fixing the assignment of an orientation to
secondary structure elements. We placed a three-dimensional vector in each secondary
structure element and computed the angle between secondary structure elements to
assign an orientation. This method sped up the runtime especially for large structures,
such as the capsid of human immunodeficiency virus, for which the runtime decreased
from 43 to less than 9 hours.

The feasible runtimes allowed us to investigate two data sets of MD trajectories
of respiratory complex I of Thermus thermophilus that we received. The data sets
differ only by whether ubiquinone is bound to the complex. We implemented a
pipeline, PTGLdynamics, to compute the contacts and Complex Graphs for all
time steps of the trajectories. We investigated different methods to track changes of
contacts during the simulation and created a heat map put onto the three-dimensional
structure visualizing the changes. We also created line plots to visualize the changes
of contacts over the course of the simulation. Both visualizations helped spotting
outstandingly flexible or rigid regions of the structure or time points of the simulation
in which major dynamics occur.

We introduced normalizations of the edge weights of Complex Graphs for identi-



fying modules and predicting the assembly pathway. The idea is to normalize the
number of contacts for the number of residues of a subunit. We defined five different
normalizations.

To identify structural and functional modules, we applied the Leiden graph
clustering algorithm to the Complex Graphs of respiratory complex I and the
respiratory supercomplex. We examined the results for the different normalizations
of the weights of the Complex Graphs. The absolute edge weight produced the best
result identifying three of four modules that have been defined in the literature for
respiratory complex I.

We applied agglomerative hierarchical clustering to the edges of a Complex Graph
to create hypotheses of the assembly pathway. The rationale was that subunits with
an extensive interface in the final structure assemble early. We tested our method
against two existing methods on a data set of 21 proteins with reported assembly
pathways. Our prediction outperformed the other methods and ran in feasible
runtimes of a few minutes at most.

We also tested our method on respiratory complex I, the respiratory supercom-
plex and the respiratory megacomplex. We compared the results for the different
normalizations with an assembly pathway of respiratory complex I described in the
literature. We transformed the assembly pathways to dendrograms and compared
the predictions to the reference using the Robinson-Foulds distance and clustering in-
formation distance. We analyzed the landscape of the clustering information distance
by generating random dendrograms and showed that our result is far better than
expected at random. We showed in a detailed analysis that the assembly prediction
using one normalization was able to capture key features of the assembly pathway
that has been proposed in the literature.

In conclusion, we presented different applications of graph theory to automatically
analyze the topology of protein complexes. Our programs run in feasible runtimes
even for large complexes. We showed that graph-theoretic modeling of the protein
structure can be used to analyze MD simulation data, identify modules of protein
complexes and predict assembly pathways.



Zusammenfassung
Proteine sind biologische Makromoleküle, die eine essenzielle Rolle in allen lebenden
Organismen spielen. Proteine erfüllen dabei verschiedenste Aufgaben, die von Stabil-
ität für Zellen bis hin zur Erbgutvervielfältigung reichen. Häufig lagern sich Proteine
dafür zusammen und bilden Proteinkomplexe. Daraus ergeben sich verschiedene
Abstraktionsstufen für Proteinkomplexe: die Stufe der Atome, der Aminosäuren, der
Sekundärstrukturelemente und der Proteinketten, beziehungsweise Untereinheiten
im Kontext von Komplexen.

Ähnlich wie die Faltung von Proteinketten, assemblieren Proteinkomplexe entlang
eines geordneten Pfades. Ein assemblierter Proteinkomplex kann oft in strukturelle
und funktionelle Module unterteilt werden. Die Reihenfolge der Assemblierung und
die Module eines Proteinkomplexes zu kennen, ist wichtig, um biologische Prozesse zu
verstehen und Krankheiten zu heilen, die im Zusammenhang mit Fehlassemblierung
stehen.

Typische Strukturen der Protein Data Bank (PDB) enthalten zwei bis drei
Untereinheiten und einige tausend Atome. Kürzliche Entwicklungen in der Protein-
strukturvorhersage, besonders single-particle cryo-electron microscopy with image
reconstruction, haben dazu geführt, dass große Proteinkomplexe aufgeklärt wurden.
Die Größe der Proteinkomplexe erfordert Unterstützung durch Rechner für die Visu-
alisierung und Analyse. Eines dieser großen Proteinkomplexe ist der respiratorische
Komplex I, der in Homo sapiens 45 Untereinheiten ausmacht. Komplex I ist ein gut
untersuchter Proteinkomplex, der uns als Fallbeispiel diente, um unsere Methoden
zu validieren.

Unser Ziel war es, zeitaufgelöste Molecular Dynamics- (MD-)Simulationsdaten
zu analysieren, Module eines Proteinkomplexes zu identifizieren und Hypothesen für
den Assemblierungspfad eines Proteinkomplexes zu generieren. Dafür abstrahierten
wir auf unterschiedlichen Abstraktionsstufen die Topologie von Proteinkomplexen auf
Graphen der Protein Topology Graph Library (PTGL). In Complex Graphs werden
die Untereinheiten durch Knoten repräsentiert und räumliche Kontakte als Kanten.
Räumliche Kontakte basieren auf einem Distanzschwellwert zwischen Atomen, sodass
zum Beispiel zwei Atome von Aminosäuren unterhalb einer Distanz von 4 Å als
Kontakt definiert werden. Die Kanten des Complex Graphs sind mit der Anzahl an
Kontakten gewichtet. Die Übertragung der Topologie von Proteinkomplexen auf
Graphebene erlaubte uns, automatisiert graphentheoretische Methoden anzuwenden,
um Proteinkomplexe zu visualisieren und zu analysieren.

Wir erweiterten die Implementierungen von zwei Methoden, um eine Berechnung
von Complex Graphs in hinnehmbarer Laufzeit zu erreichen. Die erste Methode
übersprang das Überprüfen von Kontakten unter Nutzung der Information, welche
Aminosäuren sequentielle Nachbarn sind. Wir erweiterten die Methode, sodass sie
auch auf Proteinkomplexe und Strukturen, die Liganden enthalten, angewandt werden
kann. Die zweite Methode führte Sphären ein, die den Distanzvergleich aller Atome
zweier Aminosäuren übersprang, wenn die Sphären der Aminosäuren nicht über-
lappten. Wir erweiterten die Methode, indem wir ebenfalls Sphären für Proteinketten
einführten. Die beiden Methoden kombiniert erlaubten bis zu 93 % der Überprüfun-
gen auf Kontakte für beispielhafte Komplexe von 40 Untereinheiten zu überspringen,
verglichen mit bis zu 10 % der vorherigen Implementierung. Wir zeigten, dass die
Laufzeit der kombinierten Methoden linear mit der Anzahl an Atomen skalierte,
verglichen zu einer nicht-linearen Skalierung der vorherigen Implementierung.



Wir implementierten eine dritte Methode, die die Zuordnung von einer Orien-
tierung zwischen zwei Sekundärstrukturelementen korrigierte. Wir platzierten einen
dreidimensionalen Vektor entlang des Verlaufs jedes Sekundärstrukturelements und
berechneten den Winkel zwischen Sekundärstrukturelementen, um eine Orientierung
zuzuordnen. Die Methode reduzierte die Laufzeit besonders für große Strukturen wie
die Hülle vom menschlichen Immundefizienz-Virus, für das die Laufzeit von 43 zu
weniger als 9 Stunden reduziert wurde. Diese hinnehmbaren Laufzeiten erlaubten uns
die Untersuchung umfangreicher Proteinkomplexe, wie Komplex I der Atmungskette.

Wir erhielten zwei Datensätze MD-Trajektorien des Komplex I von Thermus
thermophilus. Die Datensätze unterscheiden sich nur darin, ob Ubiquinon an den
Komplex gebunden ist. Wir implementierten eine Pipeline, PTGLdynamics, um die
MD-Trajektorien einzulesen und Kontakte sowie Complex Graphs für alle Zeitschritte
der Trajektorien zu berechnen. Wir untersuchten unterschiedliche Methoden, um die
Änderungen von Kontakten über die Simulation hinweg zu verfolgen.

Zunächst untersuchten wir die Änderungen der Kantengewichte zwischen Complex
Graphs aufeinander folgender Zeitschritte. Wir verglichen die absolute Anzahl an
Änderungen und die Anzahl an Änderungen normalisiert mit der Kettenlänge. Die
Änderung an Kontakten an den Kantengewichten zu bemessen erwies sich als ungenau,
da sich hinzukommende und verlorene Kontakte gegenseitig in der Anzahl ausgleichen.
Außerdem enthielten die Kantengewichte nur die Änderungen von Kontakten zwischen
Proteinketten, aber nicht Änderungen von Kontakten innerhalb einer Proteinkette.

Um dieses Problem zu beheben, erweiterten wir die Pipeline um den Vergleich der
einzelnen Kontakte zwischen Aminosäuren. Dadurch erhielten wir die exakte Anzahl
an Kontaktänderungen und konnten zwischen Kontakten innerhalb und Kontakten
zwischen Proteinketten unterscheiden. Da wir zuvor die Kantengewichte des Complex
Graphs nutzten, konnten wir nur die Ebene der Proteinketten betrachten. Durch das
Verfolgen der Kontakte zwischen Aminosäuren konnten wir nun auch auf der Ebene
der Aminosäuren Beobachtungen anstellen.

Wir erzeugten für jeden Ansatz eine Heatmap, die wir auf die dreidimensionale
Struktur legten, um Bereiche geringer oder großer Änderung der Kontakte zu visual-
isieren. Die Heatmaps der unterschiedlichen Ansätze erlaubten je nach Fragestellung
besonders starre oder flexible Proteinketten oder einzelne Aminosäuren zu identi-
fizieren. Bei der Heatmap auf der Ebene von Proteinketten, unter Einbezug von
Kontakten zwischen und innerhalb von Proteinketten, konnten wir sehen, dass der
Matrixarm größtenteils starr und der Membranarm größtenteils flexibel war. Wir
konnten außerdem die Heatmaps der beiden Datensätze vergleichen und somit die
Unterschiede zwischen den Simulationen, in Bezug auf geänderte Dynamiken, visual-
isieren. In der Heatmap von diesem Vergleich konnten wir sehen, dass die meisten
Aminosäuren eine ähnliche Anzahl an Kontaktänderungen aufwiesen, sich einige
Aminosäuren jedoch unterschiedlich in den Simulationen verhielten. Die Unterschiede
waren in der Nähe von Ubiquinon besonders groß. Wir erzeugten außerdem Liniendi-
agramme, um die Änderungen von Kontakten über den Verlauf der Simulation zu
visualisieren.

Für die nachfolgenden Betrachtungen führten wir Normalisierungen der Kan-
tengewichte von Complex Graphs ein. Ziel war es, die Kantengewichte mit der Länge
der beteiligten Proteinketten zu normalisieren, weswegen in jeder Normalisierung die
Anzahl absoluter Kontakte durch einen Term geteilt wird, der die Längen der Pro-
teinketten enthält. Je nach Term definierten wir fünf verschiedene Normalisierungen.



Beispielsweise werden bei der additiven Normalisierung die Längen der Proteinketten
addiert und bei der multiplikativen multipliziert.

Wir wandten den Leiden-Graphenclusteralgorithmus auf Complex Graphs des
respiratorischen Komplexes I und des respiratorischen Superkomplexes an, um eine
strukturelle oder funktionelle Unterteilung vorherzusagen. Die Vorteile des Algo-
rithmus sind, dass er keine Vorgabe einer gesuchten Anzahl an Clustern benötigt
und Kantengewichte berücksichtigt. Wir testeten die Performanz der verschiedenen
Normalisierungen und der absoluten Kantengewichte. Für Komplex I verglichen
wir die Partitionen des Leiden-Graphenclusteralgorithmus mit der Einteilung in der
Literatur in vier Module. Für den Superkomplex verglichen wir die Partitionen mit
der Einteilung in die Komplexe und mit der Unterteilung von Komplex I in Module.

Das Clustering mit dem absoluten Kantengewicht erzeugte die beste Partition,
da drei von vier Clustern exakt den Modulen von Komplex I aus der Literatur
entsprachen. Das vierte Modul erstreckte sich über zwei Cluster. Bei dem Superkom-
plex erzeugte das Clustering mit den absoluten und den additiven Kantengewichten
dieselbe Partition. In dieser entsprachen die Cluster jeweils den zwei Kopien des
Komplexes III und dem Komplex IV. Ein Cluster entsprach dem Matrixarm von
Komplex I und zwei Cluster entsprachen mit einer Ausnahme den zwei übrigen
Modulen.

Wir wandten agglomeratives hierarchisches Clustern der Kanten eines Complex
Graph an, um Hypothesen über den Assemblierungspfad zu erzeugen. Die Idee
dahinter war, dass Untereinheiten mit einem extensiven Interface in der finalen
Struktur früh assemblieren. Als Maßstab dafür, wie extensiv ein Interface ist,
benutzten wir die Kantengewichte des Complex Graphs. Wir testeten das absolute
Kantengewicht und die Normalisierungen. Wir benutzten keine klassische linkage
function, sondern verschmolzen zwei Knoten des Complex Graphs, nachdem deren
jeweilige Cluster in einem Schritt des agglomerativen Clusterings verbunden wurden.
Daraus folgte, dass wir die Kantengewichte verschmolzener Kanten addierten und
gegebenenfalls die Normalisierungen neu berechneten.

Wir verglichen unsere Methode mit zwei existierenden Methoden auf einem
Datensatz von 21 Proteinen mit bekannten Assemblierungspfaden. Basierend auf
der Literatur benutzten wir drei Bewertungsschemata, um die Güte einer Vorhersage
zu bestimmen. Unsere Vorhersagen, basierend auf dem additiven Kantengewicht,
übertrafen die anderen Methoden für alle drei Bewertungsschemata. Unsere Methode
sagte 14 von 21 Komplexen und insgesamt 45 von 58 Zwischenschritten korrekt
voraus. Darüber hinaus lieferte unsere Methode die Vorhersage höchstens in wenigen
Minuten pro Komplex, verglichen mit tagelangen Berechnungen einer existierenden
Methode.

Wir wandten unsere Methode auf den respiratorischen Komplex I, den respira-
torischen Super- und Megakomplex an. Wir benutzten eine experimentelle Bestim-
mung des Assemblierungspfades von Komplex I aus der Literatur als Referenz. Um
einen quantitativen Vergleich zu ermöglichen, der über die drei Bewertungsschemata
von vorher hinausgeht, transformierten wir den Referenzpfad und unsere Vorhersagen
zu Dendrogrammen. Auf diese Weise konnten wir die Robinson-Foulds-Distanz und
die Clusterinformationsdistanz benutzen, um den Unterschied zwischen Referenz und
Vorhersage zu quantifizieren. Die Robinson-Foulds-Distanz erwies sich als ungeeignet,
da sie wenig sensitiv war. Der vorhergesagte Pfad für Komplex I mit der niedrigsten
Clusterinformationsdistanz zur Referenz war der Pfad basierend auf den additiven
Kantengewichten.



Wir analysierten die Landschaft der Clusterinformationsdistanz, um den erhalte-
nen Distanzwert besser einschätzen zu können. Wir erzeugten dafür drei Millionen
zufällige Dendrogramme mit den Blattbeschriftungen von Komplex I. Keines der
zufälligen Dendrogramme besaß eine Clusterinformationsdistanz zur Referenz, die
ansatzweise so niedrig war wie die zwischen dem vorhergesagten Pfad und der Referenz.
Der Mittelwert der Clusterinformationsdistanzen wich um den zwanzigfachen Betrag
der Standardabweichung von der Clusterinformationsdistanz des vorhergesagten
Pfades ab. Wir schlossen daraus, dass sehr viel mehr zufällige Dendrogramme nötig
wären, um einen vergleichbar ähnlichen Pfad zu erhalten, und dass die Vorhersage
besser als zufällig erwartbar ist.

Für einen qualitativen Vergleich diskutierten wir die Ähnlichkeiten und Unter-
schiede der vorhergesagten Pfade mit der Referenz. Eine betrachtete Eigenschaft
war, ob die Topologie eines Dendrogramms modular oder einer Treppe entsprechend
ist. Das Dendrogramm basierend auf den absoluten Kantengewichte war ein Ex-
trembeispiel für eine Topologie wie eine Treppe, denn mit wenigen Ausnahmen
kam in jedem Schritt eine neue Untereinheit zu dem bestehenden Komplex hinzu.
Das Dendrogramm basierend auf der multiplikativen Normalisierung stellte das
Gegenbeispiel dar, denn es bildeten sich Subkomplexe, die sich nach und nach modu-
lar miteinander verbanden. Diese unterschiedlichen Eigenschaften waren klar mit
unserer benutzten linkage function und dem absoluten Kantengewicht sowie der
multiplikativen Normalisierung zu erklären.

Das Dendrogramm basierend auf der additiven Normalisierung wies größtenteils
eine modulare Topologie auf, allerdings nicht so strikt wie für die multiplikative
Normalisierung. Wir konnten alle Subkomplexe der Vorhersage Subkomplexen
der Referenz zuordnen. Die Zuordnungen waren unterschiedlich passend, denn
manchmal fehlten Untereinheiten, die sich an anderer Stelle befanden, oder es waren
zusätzliche Untereinheiten im Subkomplex enthalten. Dennoch wies die Vorhersage
des Assemblierungspfades viele Ähnlichkeiten in der Bildung der Subkomplexe mit der
Referenz auf. Wir konnten im qualitativen Vergleich die quantitative Einschätzung
bestätigen, dass die Vorhersage unter Benutzung der additiven Kantengewichte am
besten funktionierte.

Wir erweiterten den Betrachtungsfall von Komplex I auf den Super- und Megakom-
plex. Unsere Methode konnte für die additiven Kantengewichte teilweise zwischen
den einzelnen Komplexen unterscheiden, indem diese einzeln assemblierten. Die
beiden Kopien von Komplex III konnten jedoch nicht unterschieden werden. Die
Vorhersage für Komplex I als Teil des Super- oder Megakomplexes ist weniger ähn-
lich zur Referenz als für Komplex I isoliert betrachtet. Wir schlossen daraus, dass
unsere Methode auch für die Vorhersage von Assemblierungspfaden von Super- und
Megakomplexen geeignet ist, aber die Vorhersage schwieriger ist und damit die
Ergebnisse schlechter sind.

Die Arbeit war der graphenteoretischen Untersuchung von der Topologie von
Proteinkomplexes gewidmet. Im Laufe der Untersuchung testeten wir verschiedene
Herangehensweisen, zum Beispiel für die Behandlung von Liganden oder die Normal-
isierung von Kontakten zwischen Proteinketten. Der Umgang mit Liganden ist nicht
trivial, da sie keine eigenen Proteinketten darstellen und in der Regel kürzer sind,
aber gleichzeitig sind Liganden wichtige Bestandteile und Kontaktpartner innerhalb
von Komplexen. Wir testeten Kontakte, die transitiv über Liganden definiert sind,
doch fanden für unsere Fallbeispiele keine Verbesserungen für die Vorhersagen. Der



sinnvolle Einbezug von Liganden sollte weiter untersucht werden und könnte je nach
Methode unterschiedlich ausfallen.

Die vorgeschlagenen Normalisierungen von Kontakten lieferten für die Modul-
und Assemblierungsvorhersage zum Teil stark unterschiedliche Ergebnisse. Für die
Modulvorhersage erzielte die Benutzung der absoluten Anzahl an Kontakten bessere
Ergebnisse als irgendeine Normalisierung, danach folgte die additive Normalisierung.
Bei der Assemblierungsvorhersage erzielte die Vorhersage unter Benutzung multiplika-
tiver Kantengewichte gute Vorhersagen, da der Pfad wie in der Referenz eine modulare
Topologie aufwies. Die Vorhersage unter Benutzung der additiven Normalisierung
erzielte jedoch ein insgesamt besseres Ergebnis. Es sollten weitere Normalisierungen
untersucht werden, um die verschiedenen Kettenlängen zu berücksichtigen. Es ist
denkbar, dass für verschiedene Anwendungen unterschiedliche Normalisierungen
bessere Ergebnisse liefern.

Die Vorhersage des Assemblierungspfades könnte weiter verbessert werden, in-
dem die Auswirkungen verschiedener Parameter untersucht wird. Anfänge legten
wir mit der Betrachtung des Distanzschwellwerts, dessen Erhöhung auf 7 Å bei
schwierigen Fällen ein besseres Ergebnis erzielte. Bei anderen schwierigen Fällen
schlagen wir eine unterschiedliche Gewichtung von Kontakten vor, basierend darauf,
ob der Kontakt zwischen Sekundärstrukturelementen besteht. Um die Lesbarkeit der
vorhergesagten Assemblierungspfade zu erhöhen und damit ihre praktische Anwen-
dung zu ermöglichen, schlagen wir eine automatisierte Visualisierung im Stile von
Schaubildern vor, die die gebildeten Subkomplexe in den Fokus stellen.

Zusammenfassend konnten wir zeigen, welches Potenzial in der Nutzung von
Graphentheorie für die automatisierte Untersuchung von Proteinkomplexen steckt.
Umfangreiche MD-Simulationsdaten können automatisiert auf herausragende Zeit-
punkte und Regionen in der Struktur untersucht und die Ergebnisse visualisiert
werden. Damit können Erkenntnisse aus den Daten gewonnen werden, die sonst
verborgen blieben oder nur aufwendig erlangt würden. Die Vorhersage von struk-
turellen und funktionellen Modulen von Proteinkomplexen funktionierte gut für die
betrachteten Beispiele und könnte benutzt werden, um Erkenntnisse über nicht un-
tersuchte Proteinkomplexe zu erlangen. Die Vorhersage vom Assemblierungspfad von
Komplex I zeigte umfangreiche Übereinstimmungen mit der Referenz. Angewandt
auf weniger gut untersuchte Komplexe könnte die Vorhersage Experimente und deren
Richtung motivieren, um die experimentelle Bestimmung von Assemblierungspfaden
zu unterstützen. Aufgrund der auf Laufzeit optimierten Implementierungen kön-
nen die Vorhersage von Modulen und des Assemblierungspfades in Sekunden bis
Minuten für typische Proteinkomplexe ausgeführt werden. Auf diese Weise könnte
eine Datenbank aufgebaut werden, welche die Vorhersagen für alle Komplexe der
PDB enthält. So eine Datenbank könnte Forschende unterstützen, Proteinkomplexe
besser zu verstehen, weiter zu erforschen und Heilmittel für Krankheiten zu finden.
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1 Introduction

1.1 Motivation

Proteins are essential for all living organisms. Amid carbohydrates, lipids and nucleic
acids, proteins are one of four major classes of biological macromolecules. Proteins
fulfill a plethora of different tasks. For example, membrane proteins act as dynamic
transporters through membranes, structural proteins give stability and enzymes
catalyze chemical reactions. Proteins are able to work as microbiological machines
composed of rigid as well as flexible parts.

Our understanding of the world of proteins is founded on many decades of research.
Researchers have discovered the existence of [23] amino acids, amino acids as building
blocks [24] and the process of folding of proteins [25]. More discoveries have been
the flexibility of proteins, intrinsically disordered proteins [26] or the dynamic role of
membrane proteins following the fluid mosaic model [27]. To understand the function
of a protein, its sequence of amino acids and its structure is of utmost importance.

Proteins most often fulfill their function by binding to other proteins forming
complexes. For a protein complex, the composition of single proteins and in which
order they assemble is important. Misassembly can cause problems for cells [28].
The assembly of proteins has been investigated for a long time, for example, for
simple oligomeric enzymes [29] and oxygen-related proteins [30]. Protein complexes
are often organized in functional and structural modules.

The structure of protein complexes can be resolved experimentally or predicted
computationally. The Protein Data Bank (PDB) contains more than 190,000 experi-
mental and 1,000,000 computational structures (October 2022). Structures of more
than 99,999 atoms or 62 subunits (large structures) cannot be saved in the legacy file
format. Because of this, many bioinformatic tools and databases cannot handle large
structures. Aside from the file format, large structures pose a special challenge for
computational tools, because of long runtimes and the need for large memory. But
computational tools are necessary to visualize, classify and analyze proteins, because
the number and size of resolved proteins increases steadily.

In this work, we focus on protein complexes. We investigate the structure and
interactions of the single subunits of a complex. We apply graph theory to abstract
protein structures to a format that is machine-readable and for which plenty of
methods exist for the analysis. We particularly focus on protein complexes of more
than 15 subunits up to large structures.

The main use case of our approaches is respiratory complex I (rCI) composed
of 45 subunits in the case of Homo sapiens. rCI is essential for cells, because it is
involved in the electron transport chain and proton pumping to provide the cell with
adenosine triphosphate (ATP) [31]. Many diseases are related to misassembly or
malfunction of rCI [32, 32]. The respiratory chain has been investigated for a long
time [33] and is still an important point of research.

We investigated three topics applying graph theory to protein complexes. We
analyzed the movement of residues and changes of interactions during the time course
of a simulation. Next, we identified modules within protein complexes that allow
inferring structural and functional units. Lastly, we predicted the assembly pathway
of proteins to generate hypotheses that can guide experiments.
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1.2 Structure of proteins

Structures of proteins are the input for our work, and our work aims to shed light on
protein structures. Because of this, we shortly introduce general aspects of protein
structures. The aspects presented here are basic knowledge for understanding this
work. Directly applied material and methods will be described later (see Section 2).
The following subsection can be read, for example, in Branden and Tooze [34].

Amino acids are the building blocks of proteins. An amino acid contains a central
carbon (Cα). An amino (NH2) group, a carboxyl group (COOH), a side chain and
a hydrogen are bound to the Cα. There are 20 primary amino acids in nature that
differ in their side chain.

The bond between the amino group of one and the carboxyl group of another
amino acid under elimination of water is called peptide bond. Amino acids joined by
peptide bonds are called a protein or polypeptide chain. The amino group at one
end of a protein chain is called N-terminus and the carboxyl group at the other end
C-terminus.

Four levels of abstraction of protein structure are differentiated. The primary
structure describes the sequence of amino acids. The secondary structure describes
local, regular arrangements of amino acids that form patterns. Commonly defined are
two secondary structure elements (SSEs): helices and strands. The tertiary structure
describes the atom coordinates of a protein chain and ligands in three-dimensional
(3D) space. The quaternary structure describes the formation of complexes consisting
of multiple protein chains.

1.3 State of the art

In the last thirty years, many bioinformatic tools have been developed. Notable ones
include CATH [35] and Structural Classification of Proteins (SCOP) which can be
devided in the databases SCOP2 [36, 37] and SCOPe [38, 39]. CATH and SCOP
define domains of protein chains and classify these domains. The classification groups
structurally similar domains into the same class. Both databases aim to include and
infer evolutionary relationships between domains.

TOPS [40] provides diagrams of the topology of SSEs and their analysis. ProSMoS
[41] abstracts the topology of SSEs to matrices containing the information of contacts
between SSEs. Pro-origami [42] draws editable structure cartoons comprising SSEs.
The tools mentioned above work on the level of SSEs and provide searches for proteins
similar in structure and function.

InterEvol [43] abstracts multimeric proteins to graphs and focuses on the interface
of protein-protein interactions (PPIs). CORUM [44] is a manually curated database
of mammalian complexes and relies on IntAct [45] for information about PPIs. The
team of IntAct also developed Complex Portal [46] which is a manually curated
database of protein and nucleic acid complexes. PCDq [47] is a database of human
complexes that have been predicted from PPI network data. STRING [48] is a
database of PPIs that are either physical or functional. PCFamily [49] visualizes
and analyzes complexes graph-theoretically. The above mentioned tools visualize,
abstract and collect information about proteins on the level of protein chains.

The approach of 3D Complex [50] is similar to the approach we present in this
work. 3D Complex abstracts the topology of protein complexes to graphs where
each vertex corresponds to a protein and an edge to an interface. An interface
is defined by the number of residue contacts. A residue contact is assigned if the
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residues are spatially close to each other. Edges are weighted with the average
number of amino acids contributing to an interface. The graphs are used for the
comparison of the topology and for the hierarchical classification of the complexes.
3D Complex explicitly omits complexes consisting of more than 62 subunits due to
the new marcomolecular crystallographic information file (mmCIF) format they are
saved in and due to the high computational costs. 3D Complex uses information of
SCOP 1.69 and, consequently, can only cover proteins that are present in this release
of SCOP.

Powerful tools exist to visualize and analyze molecular dynamics (MD) simulation
data, such as VMD [51]. DynDom [52] determines domains and movement of domains
for two conformations of the same structure which could be applied to MD simulation
data. Bougueroua et al. [53] have presented a method that graph-theoretically
analyzes MD simulation data to show transitions of states. Bougueroua et al. have
applied their method to gases and liquids. We do not know of any application
analyzing MD simulation data of protein complexes graph-theoretically.

Different clustering techniques have been applied to structural data. A typical
approach is graph clustering of PPI networks to identify protein complexes. This
is done by many tools, such as PEWCC [54], ClusterViz [55], ClusterONE [56] or
MCODE [57]. SCODE [58] uses supervised learning with features specified in a
Bayesian network structure to identify protein complexes in PPI networks. We do
not know of any approach that applies graph clustering to graphs of topology on the
level of chains to identify functional modules.

The computational prediction of assembly pathways is largely unexplored. To
our knowledge, only two computational methods have been published. Similar to our
approach, Levy et al. [59] and Marsh et al. [60] have used the contact definition of
3D Complex [50] to infer an order of assembly from large to small interfaces of the
final structure. The method of Levy et al. and Marsh et al. is not publicly available
and has not been applied to larger protein complexes, such as rCI. Path-LZerD [61]
applies multi-docking to single protein chains to predict the structure of a complex
and predict an assembly pathway along the way. Path-LZerD has not been applied
to structures of more than seven subunits, such as rCI.

1.4 Aim and structure of this thesis

This work aims to investigate protein complexes by applying graph-theoretic methods.
The work is structured into the sections: Introduction, Material and methods, Results
and discussion, and Conclusion and outlook. Appendix and Bibliography are provided
after that.

In section 1, Introduction, we lay out the motivation of the work embedding
it in a general scientific context. We briefly introduce the structure of proteins.
We present the state of the scientific discourse embedding the work in the specific
scientific context.

In Section 2, Material and methods, we present the material and methods
used. We give an overview of graph-theoretic methods, such as graph clustering,
dendrograms and agglomerative clustering. We introduce biological methods, for
example, for the determination of protein structures and assembly pathways, and the
respiratory chain. We introduce two important databases, the PDB and DSSP, as
well as software tools. Next, we explain the Protein Topology Graph Library (PTGL)
in detail covering the definitions of contacts, different graphs, the user interface and
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implementation. Lastly, we present the data sets and use cases we worked with,
which are mainly complexes of the respiratory chain.

Section 3, Results and discussion, is the main part of this thesis. We present
new implementations and discuss their runtime improvements in section 3.1. In
section 3.2, we present the analysis of data from MD simulations. In Section 3.3, we
introduce different types of normalizations of edge weights. We present the prediction
of modules by graph clustering of graphs of topology in section 3.4. Lastly, we
discuss the results of predicting the assembly pathway by agglomerative hierarchical
clustering of topology in section 3.5.

In section 4, we conclude the work and give a perspective for further research.
In the appendix, we present additional figures and tables. In the bibliography, we
provide all citations of this work.
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2 Material and methods

2.1 Graph Theory

2.1.1 Introduction

This sub-subsection is based on Newman [62].
A graph consists of vertices and edges, which join vertices. A graph with at

most one edge between the same two vertices, and without edges connecting a vertex
to itself is called simple graph. In an undirected graph, edges possess no direction
differentiating between the connected vertices. In a weighted graph, each edge is
assigned a weight. Consequently, a simple, undirected, weighted graph G = (V,E, c)
is a collection of a set of vertices, V , a set of edges, E, and a function c. The elements
of E are sets of two elements of V each. The function c assigns a number to each
element of V .

A path is a sequence of vertices connected by edges. A loop is a path, in which
the start vertex and the end vertex are identical. A graph is connected if each vertex
can be reached by every other vertex via a path.

A tree is a connected, undirected graph without loops. A rooted tree contains
a vertex that is designated as root vertex. An hierarchy can be imposed from the
root to the other vertices. Because of the hierarchy, vertices can be designated as
parents and children in the means that of two connected vertices the one with a
lower distance to the root is the parent and the other is the child. In a binary rooted
tree, there is no vertex with more than two children. Vertices without children are
called leaves. Vertices that are neither the root nor leaves are called inner vertices.
A rooted tree is terminally labelled if all leaves are assigned a label. In an unordered
tree, there is no order imposed among inner vertices with the same distance to the
root.

2.1.2 Graph clustering

This sub-subsection about graph clustering is based on Fortunato [63].

Overview

Graphs contain entities of a system as vertices and relationships among them as edges.
A general aspect of graph theory is finding clusters of vertices that are similar to
each other. In the case of an unweighted graph, these clusters can only be identified
by their topology. For weighted graphs, the weight can be interpreted as measure of
similarity or distance.

No final, accepted definition of a cluster exists. In general, vertices within a
cluster should be more densely connected than vertices between clusters. For weighted
graphs, this extends to higher edge weights within clusters than between clusters. In
this work, we use the term cluster which may also be called community or module in
the literature.

In a partition of a graph, each vertex is assigned to exactly one cluster. A cover,
on the contrary, allows vertices to be part of multiple clusters.

Modularity

Modularity [64] is a quality function for the assessment of partitions of a graph. It is
derived from the idea that a random graph does not contain clusters. The partition
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is compared to a null model of a randomly rewired graph such that chosen graph
properties stay the same but no clusters can be expected. In a typical null model,
the degree sequence of the rewired graph is the same as for the original graph. If the
modularity is positive, the partition is considered good.

The modularity Q can be defined as the sum of the modularities of each cluster
of the partition as

Q =
nc∑

c=1

[
lc
m
−
(
dc

2m

)2]
(1)

where the sum iterates over the clusters, nc is the number of clusters, lc the
number of edges within a cluster, dc the sum of degrees of the vertices of a cluster
and m the number of edges in the graph.

Similarily, for weighted graphs, the weighted modularity Qw can be defined as

Qw =
nc∑

c=1

[
Wc

W
−
(
Sc

2W

)2
]

(2)

where W is the sum of all weights, Wc the sum of all weights within a cluster
and Sc the sum of weights of the vertices of a cluster.

Louvain and Leiden algorithm

The Louvain algorithm [65] can be used for weighted graphs. The algorithm greedily
searches a partition optimizing the weighted modularity. At the start, all vertices
represent their own clusters. For each vertex, the gain in modularity is computed by
placing it in the cluster of each neighbor. The vertex is placed in the cluster of the
neighbor of highest increase of modularity if the increase is positive.

Each cluster is merged into a single vertex (super-vertex). Super-vertices are
connected by an edge if any of the vertices of the corresponding clusters were
connected. The edge weights are the sums of the initial edges. These two steps are
repeated producing a partition in hierarchical steps until no gain in modularity can
be achieved anymore.

In the first step, modularity is greedily optimized locally. By creation of super-
vertices, modularity is greedily optimized globally. Compared to other algorithms,
the Louvain algorithm has been reported to achieve partitions with higher modularity.

Traag et al. [66] have noted that the Louvain algorithm may yield internally
poorly connected clusters or even clusters that are internally disconnected. The
Leiden algorithm is an extension to the Louvain algorithm fixing this problem among
other advantages such as better performance and better partitions. Among other
adjustments, the biggest difference is the introduction of a new phase between local
movement of the vertices and creating super-vertices. In this refinement phase, each
cluster is split in single vertices and clustered again. This may create multiple clusters
where previously only one cluster was created and ensures well-connected clusters.
[66]

2.1.3 Dendrograms and Newick format

In this work, we refer to a rooted, binary, unordered, terminally-labeled tree as
dendrogram (see Section 2.1.1). In case of trees where one vertex has more than two
children, we refer to it as a non-binary dendrogram. We represent dendrograms in
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the Newick format1. We use one of the most basic versions which is self-explanatory:
Leaves are represented by an identifier and grouped together in brackets. For example,
"((A,B),C);" stands for a dendrogram with an inner vertex with children A and B
(see Figure 1). When used in the text, we omit the final semicolon.

Figure 1: Visualization of an example dendrogram. Leaves are labeled. The only
possible split is indicated with an orange line.

A split is a bipartition of the set of leaves according to the structure of the tree
which can be thought of as cutting the dendrogram at an edge. For a dendrogram,
each inner vertex corresponds to a split. The leaves under the inner vertex belong
to one set of the split and all the other leaves belong to the other set. For the
dendrogram above (see Figure 1), the only split is: (A,B)|C.

Staircase and modular topology

We informally define a topology of a dendrogram as staircase if only one inner vertex
exists whose two children are leaves. This means that all other inner vertices have
exactly one inner vertex and one leaf as children. A staircase-like topology is when
a sub-dendrogram of the dendrogram but not the whole dendrogram exhibits a
staircase topology. The opposite of the staircase topology is a modular topology,
where multiple inner vertices exist whose children are leaves, and these inner vertices
do not exhibit a staircase topology if they were treated as leaves. We give no exact
definition and instead use these labels to describe features of a dendrogram’s topology
which can be seen visually with an appropriate layout.

Number of different dendrograms

For the number BTn of possible dendrograms with n distinct leaves, we refer to
Lapointe and Legendre [67]. Please note that Lapointe and Legendre use the term
dendrogram in different way than us. In their sense, what we call dendrogram
in this work is an unweighted binary tree hence the abbreviation "BT". Lapointe
and Legendre refer to Felsenstein [68] and Phipps [69] giving the formula BTn =
(2n− 3)!/2n−2(n− 2)! for the number of possible dendrograms of n distinct leaves.

Comparison of dendrograms

Different approaches can be used to compare dendrograms quantitatively. The goal
is assigning a score, similarity or distance to a pair of dendrograms.

The Robinson-Foulds (RF) distance [70] is a classic metric for the comparison of
dendrograms. The RF distance is the symmetric difference between the splits of both

1https://evolution.genetics.washington.edu/phylip/newicktree.html

https://evolution.genetics.washington.edu/phylip/newicktree.html
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trees. The normalized Robinson-Foulds (nRF) distance is obtained by normalizing the
RF distance to a value between zero and one, where zero means that the dendrograms
are equal.

Smith [71] has introduced three generalized RF metrics. Smith calls two splits,
one of each dendrogram, a pairing. While the RF distance only assesses if a pairing
is equal or not, the generalized RF metrics assign a similarity score to a split. A
set of pairings, where each split of each tree occurs exactly once, is called matching.
The score of a matching is the summed scores of its pairings. A matching is called
optimal if there is no other matching with higher score.

The mutual clustering information (MCInf) interprets a split as a partition (see
Section 2.1.2), where the sets of leaves of the split are clusters. The MCInf assigns a
score to a pairing based on information theory:

ICI(S1;S2) = PCI(A1, A2)log PCI(A1, A2)
PCI(A1)PCI(A2)

+PCI(A1, B2)log PCI(A1, B2)
PCI(A1)PCI(B2)

+PCI(B1, A2)log PCI(B1, A2)
PCI(B1)PCI(A2)

+PCI(B1, B2)log PCI(B1, B2)
PCI(B1)PCI(B2)

(3)

where S1 = A1|B1 is a split of the one dendrogram, S2 = A2|B2 is a split of the
other dendrogram and PCI = |A1∩A2|

|X| . [71]
The idea is, to find how much knowing the partition inferred from one split helps

correctly identifying the partition of the other split. The MCInf is defined as the score
of the optimal matching using the scores of ICI . The clustering information distance
(CID) is obtained by subtracting the MCInf from half the entropy of all the splits in
both trees, which is defined for one split as −PCI(A)logPCI(A)− PCI(B)logPCI(B).
The CID is a number between zero and one, where zero means that the dendrograms
are equal. [71]

Smith has compared the generalized RF metrics regarding different properties of
distances for comparing dendrograms. The CID has performed best among the three
generalized RF metrics and other state-of-the-art methods. [71]

Generating random dendrograms

Furnas [72] has presented a method to uniformly draw a terminally labeled den-
drogram from all existing dendrograms with n leaves. The method starts with an
unrooted dendrogram of two vertices connected by an edge. An edge is randomly
drawn from the dendrogram with uniform distribution. The edge is replaced by
a new vertex vi that is connected to the vertices to which the edge was adjacent.
Next, a new leaf li is added to vi. This is repeated until the dendrogram contains n
leaves. The unrooted dendrogram is rooted at an randomly drawn edge with uniform
distribution by replacing the edge with the root vertex and connecting it to both
vertices that were adjacent to the edge.
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2.1.4 Agglomerative hierarchical clustering

The following sub-subsection is based on Murtagh and Contreras [73]. We refer to
agglomerative hierarchical clustering simply as agglomerative clustering.

Agglomerative clustering is a bottom-up clustering technique. At the beginning,
all data points start in their own clusters (singleton clusters). In each step, two
clusters are merged until only one cluster remains.

Before clustering, a similarity, dissimilarity or distance needs to be inferred from
the attributes of the data to decide which data points should be grouped together.
The choice of a similarity, dissimilarity or distance influences the outcome. Typical
examples are the Manhattan distance, Euclidean distance and Chebyshev distance
[74].

To decide which singleton clusters are merged, the similarity, dissimilarity or
distance can be directly applied. To compare clusters with multiple data points, the
user needs to choose a linkage method. The linkage method decides how similarity,
dissimilarity or distance are computed between non-singleton clusters. Typical
examples are single, complete, average and centroid linkage [62].

Typically, agglomerative clustering is applied greedily. In a greedy approach, only
the information that is available up to the step is used to make the decision how to
proceed. For agglomerative clustering, the decision is which clusters are merged at a
given step. In a greedy approach, a score is optimized, such as choosing the highest
edge weight. As a consequence, a greedy method may yield a solution that is not
optimal. For example, a better result may be achieved when deciding non-greedily
at a step enabling an overall better choice at a later step.

The output of agglomerative clustering can be interpreted as a dendrogram (see
Section 2.1.3). The leaves of the dendrogram correspond to the singleton clusters,
inner vertices to merged clusters and the root to the cluster containing all data points.
Agglomerative clustering can be used to hierarchically structure the data in groups
of similarity.

The dendrogram represents the hierarchy of the data points. To retrieve clusters,
the dendrograms needs to be cut horizontally at a given stage. The position of the
cut determines the number of clusters, which can be any number from 1 to n, where
n is the number of data points. There is no straightforward method that can be
applied to find the best cut, as it depends on what the user is interested in. Thus,
finding a cut is a challenge when using agglomerative clustering to identify clusters.
[62]

Another characteristic, to keep in mind, is that agglomerative clustering excels
in grouping together similar data points, but needs to put distant data points to
a cluster at some point. This means, that early merges of data points along the
clustering represent trustworthy similarities, while later merges may add data points,
which are only loosely connected to the group. [62]

2.2 Resolving the structure of proteins

Proteins are too small to be observed with the naked eye. Therefore, experimental
techniques are required to elucidate the structure of proteins. Over the past, many
different techniques have been applied. Here, we shortly present the most important
ones with a special focus on large protein complexes. The following subsection is
based on Miyaguchi [75].

X-ray crystallography is a technique that has been widely used to determine the
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structure of molecules. Multiple copies of a molecule are crystallized in solution
and frozen afterwards. The crystallization ensures that the molecules have the same
orientation.

The crystal is exposed to an X-ray beam. The electrons of the molecules scatter
the beam producing a diffraction pattern. The crystal is rotated to observe the
diffraction pattern from all angles. As a last step, an electron-density map is built
computationally based on the diffraction patterns. Based on the electron-density
map, the structure is modeled.

The need for a crystal is one of the biggest limitations of X-ray crystallography.
Some molecules may adopt unnatural conformations during crystallization or do not
crystallize at all. An advantage of X-ray crystallography is that the technique is able
to produce high-resolution structures and resolve structures of any sizes.

Electron microscopy (EM) is being used in different techniques, such as trans-
mission EM with negative staining, rotary shadowing or freeze-etching. For high-
resolution structure determination of large complexes mostly single-particle cryo-
electron microscopy with image reconstruction (cryo-EM) is relevant. Multiple copies
of the molecule in solution are put into a frozen-hydrated state. In contrast to X-ray
crystallography, the molecules are in arbitrary orientation. The molecules in this
context called particles are photographed using EM. All the two-dimensional (2D)
images of the particles in different orientations are merged into a 3D structure.

A disadvantage of cryo-EM is the ’initial model problem’ when no model for the
structure is present which can be used to determine the orientation of the particles.
However, cryo-EM can be used where crystallization is not possible. Cryo-EM is
able to achieve near-atomic resolution and excels especially for large complexes.

2.3 Molecular dynamics simulation

The following subsection is based on a review by González [76].
MD simulation is a computational method to analyze the dynamics of an atomic

system. The input is an atomic system where a position and velocity is assigned to
each atom. The user needs to set system parameters, such as temperature, pressure
and box size, and choose a force field when not applying ab initio MD simulation.
The output are the trajectories of the atoms over the simulated time.

In the context of structural biology, usually a resolved protein structure is taken as
input for MD simulation. Because the protein structure is the result of an experiment
for structure determination, the system may be in a different configuration than
desired for the simulation. For example, the structure might be crystallized for X-ray
crystallography (see Section 2.2). The system is energetically minimized first and
equilibrated before performing the simulation.

During simulation, the next time step is computed by solving Newton’s equation
of motion. The equation is solved numerically, because exact solutions cannot be
achieved. Typically, the used force fields incorporate bond lengths, angle bending,
dihedral torsions, improper torsions, electrostatic interactions and Van der Waals
interactions.

MD simulations can be thought of as treating atoms as connected by springs. The
springs allow to be stretched, which increases the energy. Atoms can be attracted to
each other, but are repelled if they come too close. Based on these considerations of
energy, the position and the velocity, the trajectory of an atom is computed.

Classical force fields do not allow breaking bonds between atoms. In MD sim-
ulations, neither electrons nor transfers of charges are modelled. Therefore, MD
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simulations cannot simulate chemical reactions. Parameters are mostly based on
empirical observations and differential equations are solved numerically. Therefore,
MD simulations are approximations and require experimental validation.

The computation of MD simulations is far from trivial and demands software
solutions. Software to perform MD simulation is, for example, CHARMM [77],
NAMD [78] and Gromacs [79]. A software to analyze MD simulations is, for example,
VMD [51].

Despite these limitations, MD simulations enable observing dynamics, for example,
for protein complexes. With the development of runtime-saving methods and modern
hardware, simulations of hundreds of thousand atoms over a timescale of microseconds
are possible.

2.4 Assembly pathway

Most proteins function together with other proteins forming complexes. Complexes
built by multiple copies of the same subunit are called homomers and complexes
of different subunits are called heteromers. For a complex, an assembly pathway
describes the order in which the subunits assemble for all subunits of the complex.
It has been proposed that complexes assemble along an ordered pathway. If the
pathway was unordered, testing all possible pathways until the right one occurs by
chance would take too much time analogous to Levinthal’s paradox of protein folding
[80]. There does not necessarily need to be exactly one pathway, but it has been
proposed that energetically favorable intermediates exist that ensure fast assembly
and reduce the risk of misassembly. Levy et al. have shown that assembly is linked
to evolution of protein complexes [59]. As a consequence, if pathways are conserved
it seems to be more likely that they are ordered. [60]

An assembly pathway can be represented as dendrogram (see Section 2.1.3). The
root corresponds to the final assembly product, inner vertices to subcomplexes and
leaves to subunits. The order of assembly is inferred from the leaves to the root.

Experimental determination

Many techniques have been developed to elucidate the assembly of protein complexes.
We just name a few and refer to the respective articles for details. Usually, multiple
experimental techniques are combined to infer the assembly pathway.

Co-immunoprecipitation (Co-IP) can be used to find stable intermediates [81].
Electrospray mass spectrometry (MS) allows a detailed analysis of the assembly order
[82]. Recently developed, complexome profiling identifies intermediates and assembly
factors in a bottom-up approach [83, 84].

Computational prediction

Levy et al. [59] and Marsh et al. [60] have predicted the assembly pathway for
homomers and heteromers, respectively, based on the number of contacts between
subunits of the final complex. Both approaches have used the definition of contacts
of the database 3D Complex [50]. They inferred the order of assembly from the
highest to lowest number of contacts.

Peterson et al. [61] have adopted the method by Levy et al. [59] and Marsh et al.
[60]. Instead of the number of contacts, Peterson et al. have used the buried surface
area (BSA). For two subcomplexes, the BSA is computed as the sum of the solvent
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accessible surface area (SASA) of the unbound subcomplexes minus the SASA of
the bound subcomplexes. Effectively, the BSA is the area of the interface between
subunits of the final complex similar to using contacts between subunits of the final
structure. The SASA has been computed with Naccess by Hubbard and Thornton2

[85].
Peterson et al. have applied two different approaches of inferring the assembly

order from the BSAs. In the first approach which they termed pairwise BSA, they
compute the BSA between all pairs of subunits. In the second approach which they
termed subcomplex BSA, they compute the BSA between all possible subcomplexes
of two to n subunits where n is the number of all subunits. For subcomplex BSA,
multiple subunits or subcomplexes can assemble at one step compared to pairwise
BSA where exactly two subunits or subcomplexes assemble at a step. For both
approaches, they infer the order of assembly from highest to lowest BSA.

Peterson et al. have developed a new method called Path-LZerD3. Path-LZerD
performs multi-docking of the subunits predicting the subunits in a complex. Along
the multi-docking, Path-LZerD predicts the assembly order. Path-LZerD comes with
different parameters for selecting a strategy and scoring function which have been
tested by Peterson et al. Because the input of Path-LZerD are the structures of the
single subunits, Path-LZerD can be used to predict an assembly pathway where the
structure of the final complex is unknown.

According to Peterson et al., computational methods for the prediction of an
assembly pathway can be either classified as blind or non-blind. Blind methods do
not need the structure of the final assembly product as input for the prediction while
non-blind methods do. The method by Levy et al., Marsh et al. and the method
using the BSA by Peterson et al. are considered non-blind. For Path-LZerD, there
are non-blind as well as blind strategies.

2.5 Respiratory chain

This entire subsection about the respiratory chain is based on Vercellino and Sazanov
[31] if not cited differently.

2.5.1 Overview

The respiratory chain refers to the protein complexes and electron transporters taking
part in the electron transport chain of cellular respiration. All aerobic organisms
making use of cellular respiration have some sort of the respiratory chain. Variations
of the respiratory chain and the single protein complexes exist, but core principles
and proteins are conserved across species.

The main principle is the chain-like transport of electrons via reduction and
oxidation to the final acceptor oxygen. During transport of electrons, a proton
gradient is built. The proton gradient is used to produce ATP as energy equivalent
to be used by the cell.

In eukaryotes, mitochondrial oxidative phosphorylation comprises four protein
complexes located at the inner mitochondrial membrane that participate in the
electron transport chain: NADH:ubiquinone oxidoreductase, succinate dehydrogenase,
cytochrome bc1 oxidoreductase and cytochrome c oxidase. In this thesis, following
the literature, we will refer to them as (respiratory) complexes I to IV.

2http://bioinf.manchester.ac.uk/naccess
3https://kiharalab.org/proteindocking/pathlzerd.php

http://bioinf.manchester.ac.uk/naccess
https://kiharalab.org/proteindocking/pathlzerd.php
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The electrons stem from reduced nicotinamide adenine dinucleotide (NADH) and
succinate which are oxidized by complex I and complex II, respectively. Complexes
I, III and IV build a proton gradient by different mechanisms. ATP synthase uses
this proton gradient to produce ATP and is often referred to as complex V.

For the respiratory chain, it is notable, that one part of each complex is encoded
in the mitochondiral deoxyribonucleic acid (DNA) while the other part is encoded in
the nuclear DNA. Because of the different places of translation, the complexity and
built-in ligands of some complexes, many assisting assembly factors are required for
a correct assembly. Furthermore, it has been discovered that the complexes assemble
to larger complexes, for example, I1III2, III2IV1, I1III2IV1. Please note that numbers
in subscripts stand for the number of copies of a complex.

2.5.2 Complex I

Complex I is the first complex of the respiratory chain. The complex is shaped
like an "L" with a membrane arm and a matrix arm. In the matrix arm, NADH
is oxidized and quinone reduced. In the membrane arm, four protons are pumped
across the membrane. Complex I is the largest complex of the respiratory chain.

Complex I can be divided into four modules: the N and Q module of the matrix
arm as well as the PP and PD module of the membrane arm. The subunits A12 and
S6 are shared between the N and Q module. [86]

2.6 Databases

2.6.1 Protein Data Bank

The PDB is an archive of structural data of large biological molecules that has
been first announced in 1971 [87]. The PDB is organized by the worldwide PDB
organization4 [88]. The Research Collaboratory for Structural Bioinformatics (RCSB)
PDB5 is one member of the worldwide PDB [89].

The PDB is the one open-source database for the deposition of structural data
of biological macromolecules. The PDB provides tools for validation, search and
analysis of structures. Currently, the PDB holds 191.328 biological macromolecules
(June 14, 2022).

Each structure uploaded to the PDB is assigned a PDB ID. A PDB ID consists
of one number and three alphanumeric characters. In this thesis, we refer to protein
structures from the PDB by their name the first and by their PDB ID the following
times. A PDB ID followed by one or multiple capital letters refers to the chain of
this structure.

Since its announcement in 1971, the PDB used a file format which today is called
legacy PDB format. The legacy PDB format is based on punch cards meaning that
for each column it is defined which data the column holds. This limits the data,
a legacy PDB file can hold. For historic reasons, a legacy PDB file can contain
structures up to 99,999 atoms or 62 chains. Structures that contain more than either
99,999 atoms or 62 chains are termed large structures. [90, 91]

Because of its limitations, the legacy PDB format has been superseded by the
mmCIF format in 2007. In 2012, the development of the legacy PDB format has
been ended. Since July, 2019, the PDB only accepts depositions in mmCIF. [91]

4https://wwpdb.org
5https://rcsb.org/

https://wwpdb.org
https://rcsb.org/
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The mmCIF format is theoretically able to hold structures of any size. mmCIFs
are self-organizing meaning they contain meta information describing the file itself.
The format can easily be extended allowing adoptions to new experimental features
and techniques. [92]

For deposited structures, the asymmetric unit and at least one biological assembly
is available. For some structures, asymmetric unit and biological assembly are different
from each other, and it depends on the motivation which to use. The asymmetric unit
is the smallest portion of a crystal from which the whole crystal can be constructed
by symmetry operations, such as rotations and translations. The authors of the PDB
entry derive the biological assembly by applying symmetric operations, duplications
or deletions to the asymmetric unit in order to produce the complex that is believed
to be biologically functional. This means that the biological assembly may contain
less, the same number of or more subunits than the asymmetric unit.6

2.6.2 DSSP

The original computer program for assigning SSEs to residues has been called Define
Secondary Structure of Proteins (DSSP) [93]. DSSP has been re-implemented [94].

DSSP takes a PDB structure as input and assigns an SSE type to each residue
based on H-bond energy of placed hydrogens of the backbone. DSSP version 3 is
not able to read mmCIFs. We used DSSP version 4.0.07 if not mentioned otherwise.
We used the assignment of SSEs by DSSP for visualizations of structures in cartoon
style if not mentioned otherwise.

2.7 Software tools

Git

Git8 is a version control system and GitHub9 a hosting site for version control [95].
Any commit to the system can be uniquely identified by its hash code (also called
SHA) helping in referencing the state of a software at a given time.

PyMOL

All visualizations of 3D structures in this work are created with PyMOL10 [96]. The
assignments of SSEs is done by DSSP (see Section 2.6.2) if not marked otherwise.

igraph

igraph11 is a software package for the analysis, manipulation and visualization of
graphs. We used igraph version 0.9.11 for Python for the computation of the
modularity (see Section 2.1.2). [97]

6https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/
biological-assemblies

7https://github.com/PDB-REDO/dssp
8https://git-scm.com/
9https://github.com/

10https://pymol.org/
11https://igraph.org/

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/biological-assemblies
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/biological-assemblies
https://github.com/PDB-REDO/dssp
https://git-scm.com/
https://github.com/
https://pymol.org/
https://igraph.org/
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Leiden algorithm

We used the Python package leidenalg12 for applying the Leiden algorithm (see
Section 2.1.2). leidenalg is based on a C++ implementation and uses the Python
package igraph.

Environment for Tree Exploration (ETE)

Environment for Tree Exploration (ETE) [98] is a software for the visualization,
analysis and manipulation of trees. ETE is mostly used for phylogenetic trees, but
can be applied to dendrograms representing assembly pathways as we do in this work.
We used Python’s ete313 version 3.1.2.

TreeDist

TreeDist14 [71] is an R package for the computation of metrics such as the CID
(see Section 2.1.3) comparing the similarity of trees. TreeDist is mostly used for
phylogenetic trees, but can be applied to dendrograms representing assembly pathways
as we do in this work.

2.8 Protein Topology Graph Library

2.8.1 Overview

The PTGL is a database of graphs of topologies of proteins and a web server for
their analysis. The underlying methods of the PTGL have been developed decades
ago [99, 100, 101, 102]. PTGL has first been implemented by May [103, 104] and
has been published later [105, 106]. PTGL has been re-implemented by Schäfer [107]
and Schäfer et al. [108].

The database and web server are available online15. The website offers a search
engine for finding the desired graphs or, for example, finding structures similar to a
given pattern. The graphs are presented as images and can be downloaded.

The software PTGLtools does all the computations generating the graphs and is
publicly available at Github16. The main part is PTGLgraphComputation (formerly
labeled Visualization of Protein Ligand Graphs (VPLG)) which computes the graphs
of topology. PTGLgraphComputation is an object-oriented Java program.

2.8.2 Definition of contacts

Atoms

The positions of the atoms in 3D space is read from a PDB file. Each atom is
assigned a sphere. Atoms of proteins and ribonucleic acids (RNAs) are assigned a
sphere of 2 Å radius. Atoms of ligands are assigned a sphere of 3 Å radius. An atom
contact is defined if two atom spheres overlap. For a contact between two atoms of
proteins, the contact can be either backbone–backbone, backbone–sidechain (or vice
versa) or sidechain–sidechain.

12https://github.com/vtraag/leidenalg
13https://pypi.org/project/ete3/
14https://ms609.github.io/TreeDist/
15https://ptgl.uni-frankfurt.de/
16https://github.com/MolBIFFM/PTGLtools

https://github.com/vtraag/leidenalg
https://pypi.org/project/ete3/
https://ms609.github.io/TreeDist/
https://ptgl.uni-frankfurt.de/
https://github.com/MolBIFFM/PTGLtools
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Molecules

Residues, ligands and nucleotides of RNA are treated as molecules. A molecule
contact is defined if two molecules share an atom contact.

Secondary structure elements

The assignment of residues to SSEs is based on DSSP (see Section 2.6.2) with a few
variations. All types of helices are treated as helix regardless of their type. Extended
strands and adjacent isolated beta bridges are treated as strand. SSEs are merged if
there is one residue between them with a different assignment of secondary structure.
SSEs shorter than three residues are neglected.

An SSE contact is defined if two SSEs share contacts of molecules based on the
types of the SSEs according to a rule set (see Table 1). An SSE contact is assigned
an orientation inferred from the N- to C-terminus: parallel, antiparallel or mixed
(see Section 2.8.5).

Table 1: Rule set for the definition of a contact between secondary structure elements
(SSEs). For a contact, at least the noted number of contacts of at least one type of
atom contacts needs to be present. For some contact types, no rule is defined (-).

No. of contacts per type of atom contact
SSE 1 SSE 2 Backbone–backbone Backbone–sidechain Sidechain–sidechain
Helix Helix - 4 4
Helix Strand 2 4 4
Strand Strand 2 3 -

Chains

Polypeptide or RNA chains are identified by a chain ID assigned by the authors of the
PDB file. Please note that we use the term chain in the context of implementation
or to differentiate specific chains of a PDB file and the term subunit in a biological
context or when we generally refer to a protein of a complex which might contain
multiple copies of a subunit. A chain contact is defined if two chains share a molecule
contact. A chain contact is assigned the number of contacts of molecules.

2.8.3 Graphs of topology

Amino-Acid Graph

We explain Amino-Acid Graphs (AAGs) only shortly, because AAGs are not used
in this work. We define an AAG where vertices are amino acids of a chain and
edges are spatial contacts between residues (see Section 2.8.2). AAGs apply the most
fine-grained level of abstraction, because treating atoms is no abstraction anymore.

Protein and Folding Graph

We define a Protein Graph (PG) where vertices are SSEs and edges are contacts
between SSEs (see Section 2.8.2). Each vertex is labeled with the type of SSE:
helix, strand or ligand. Each edge is labeled with the orientation between the SSEs:
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parallel, antiparallel or mixed. We define six types of PGs that differ in the labeled
vertices they include (see Table 2).

Table 2: Overview of graph types of Protein Graphs. Each graph type includes (3)
or excludes (7) helices, strands and ligands.

Graph type Vertices include
Helix Strand Ligand

Alpha 3 7 7

Beta 7 3 7

Albe 3 3 7

Alphalig 3 7 3

Betalig 7 3 3

Albelig 3 3 3

A PG shows the topology of one protein chain. A complex-level PG contains
the vertices of all chains of a complex. This is more than just collecting all SSEs of
a complex in one graph, because the complex-level PG can contain edges between
SSEs of different chains that are not visible in single PGs.

We define a Folding Graph (FG) as a connected component of a PG. This can
be the whole PG or as little as a single vertex. An FG can be completely described
by a linear notation. A linear notation is a string enumerating all edges of an FG.
There are four types of notation types: sequence (SEQ), adjacent (ADJ), reduced
(RED) and KEY.

For this work, only the graph visualization of the KEY notation is of relevance. An
FG in KEY notation visualizes the topology of the SSEs in a 2D scheme that draws
SSEs next to each other if they are structural neighbors. Strands are drawn as arrows
and helices as boxes. SSEs are connected by a line from N- to C-terminus. Because of
this, a crossing over where two neighboring SSEs have a parallel orientation becomes
visible. An example can be seen for 3α,20β-hydroxysteroid dehydrogenase, chain A
[6] (2hsdA) (see Figure 4d).

Complex Graph

We define a Complex Graph (CG) where vertices are protein or RNA chains and
respectively labeled. Edges are introduced for chain contacts (see Section 2.8.2) and
weighted by the number of molecule contacts. Each chain is assigned a molecule ID
(ML in the graph visualization). Homologous chains are assigned the same molecule
ID.

2.8.4 User interface

On its first execution, PTGLgraphComputation writes a file PTGLgraphComputation_
settings.txt to the users home directory. The setting’s file contains lines of key-
value pairs in the format <key>=<value>. For example, PTGLgraphComputation_B_
use_mmCIF_parser is the setting to invoke the mmCIF parser (see Section 2.6.1).
All values are initialized as the default values. The user can change a setting by
changing the value in the setting’s file. Settings by the user will always overwrite the
default values during execution of the program.
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PTGLgraphComputation is executed from the command line. The user can pass
command line arguments along the program call. There is one positional argument,
the PDB ID (see Section 2.6.1), and many optional arguments. Optional arguments
will always overwrite the default values or values from the setting’s file.

2.8.5 Implementation

Computation of contacts

In theory, the distance between each possible pair of atoms needs to be checked to
find all contacts of atoms. For N atoms, these are N ∗ (N − 1)/2 checks. For the
largest protein structure of the PDB, capsid of human immunodeficiency virus [9]
(3j3q) with 2,440,800 atoms, this means 2,978,751,099,600 checks. Technically, pairs
of atoms, where both atoms are part of the same molecule, are not of interest for this
question. Nevertheless, regarding the runtime, checking all possible pairs of atoms is
not feasible. PTGLgraphComputation applies two methods to skip checking atom
pairs that cannot be in contact. The methods are shortly explained here based on
Kaden et al. [99] as well as Schäfer and Koch [109]. Both methods speed up the
computation by skipping unnecessary checks, but reliably find all residue contacts.

Check of the spheres of molecules A sphere is assigned to each molecule. The
center of the sphere is the Cα for residues and the atom with the minimum distance
to any other atom for ligands and RNA nucleotides. The radius of the sphere is
the maximum distance from its center to any other atom. For protein and RNA
nucleotide atoms, 2 Å and for ligand atoms 3 Å are added to account for the contact
definition of atoms. As a consequence of the construction of the spheres, a contact
can only exist between any pair of atoms of two molecules if the spheres of the
molecules overlap. If the spheres do not overlap, the check for atom contacts is
skipped for this pair of atoms.

Neighbor skipping If a pair of residues rn and rm has a large distance, this
means that residues rn+1, rn+2, rn+... sequentially following after rn must have a
large distance to rm, too. It is possible to skip the check of the spheres of the molecules
for these residues. To find the number of residues that can be skipped, we need to
find the largest distance between sequential neighbors dmax in a pre-processing step.

Let rn and rm be residues and dn,m the minimum distance between any pair of
atoms of rn and rm (see Figure 2). We can skip checking the spheres of the molecules
between the next b(dnm − threshold − J)/dmaxc residues after n or m. threshold
is the contact threshold and J is a small value to account for rounding errors. For
PTGL, J is set to 0.2 Å. Even if the skipped residues formed a straight line to either
rn or rm, each sequential distance could only be dmax at most. This means that of
the skipped residues, none could have been in contact with rm.

Orientation of secondary structure elements

Rationale The orientation of SSEs is determined by computing the double distance
(DD). Each residue is assigned an integer identifier incrementing from N- to C-
terminus. For SSEs in contact, the identifiers of the residues in contact are compared.
For each pair of residues in contact, the sum and the difference of their identifiers
are computed. Over all pairs of residues in contact, the maximum sum Smax, the
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Figure 2: Schematic example of the neighbor skipping. Circles represent residues
and are labeled. Peptide bonds between residues are indicated by a straight line.
The largest distance between sequential neighbors is marked with an orange line and
labeled dmax. The distance between residues rn and rm is indicated by a dashed
line. The green part of the line accounts for the value of threshold+ J . The arrows
illustrate how the computation allows skipping the contact checks of the neighbors
after rn.

minimum sum Smin, the maximum difference Dmax and the minimum difference
Dmin are determined. The DD is defined as DD = (Smax − Smin)− (Dmax −Dmin).
[99, 109]

The rationale becomes clear when looking at an example. Let us consider two
ideal antiparallel SSEs of same length where each residue of one SSE has exactly
one contact to a residue of the other SSE (see Fig. 3). The sums of all the residue
pairs are the same which results in Smax − Smin = 0. The differences are above
zero, because the residue with the lowest identifier in one SSE is in contact with
the residue with highest identifier in the other SSE. Dmax −Dmin becomes positive
resulting in a negative DD. For two ideal parallel SSEs, the Smax − Smin becomes
larger than zero, Dmax −Dmin becomes zero and the DD becomes positive.

Generally, a DD of or around zero stands for a mixed, a negative DD for an
antiparallel and a positive DD for a parallel orientation. Depending on the types of
the involved SSEs, the orientation is assigned based on a rule set for the value of the
DD (see Table. 3).

Table 3: Rule set for the assignment of orientations of secondary structure elements
based on the Double Difference (DD). A mixed orientation for an interaction of two
strands is never assigned (-).

Strand–Strand Strand–Helix Helix–Helix
antiparallel DD ≤ 0 DD ≤ −6 DD ≤ −8
parallel DD ≥ 1 DD ≥ 6 DD ≥ 8
mixed - −5 ≤ DD ≤ 5 −7 ≤ DD ≤ 7



20 2 MATERIAL AND METHODS

Figure 3: Visualization of an example for the computation of the Double Distance
for the assignment of the orientation of secondary structure elements. Residues are
depicted as white circles and labeled with a number according to the position in
the sequence. A straight black line connecting residues represents peptide bonds.
A dashed black line connecting residues represents multiple residues connected by
peptide bonds that are not visualized. A yellow dashed line represents residues in
spatial contact. The N- and C-terminus are labeled. Arrows represent residues that
form a strand.

Implementation In PTGLgraphComputation, all contacts on the level of residues,
ligands and RNA are saved in a list of molecule contact infos (MCIs). To compute
the DD, the contacting residues of two SSEs need to be iterated through. Iterating
through the whole list of all contacts for each pair of contacting SSEs is costly, so in
a pre-processing step, the list of MCIs is iterated through to build up a map (see
Algorithm 1). The key of the map is the number of the SSE and the value is a list
of the MCIs for which one residue is part of the SSE. PTGLgraphComputation
iterates through all contacting pairs of SSEs in a nested loop. For each pair of SSEs
in contact, PTGLgraphComputation iterates through all MCIs of the respective
SSEs. If an MCI is a contact between the pair of SSEs, PTGLgraphCompuation
computes the sum and difference of the identifiers of the residues. The maximum
and minimum of the sum and the difference of the identifiers of residues is updated
if necessary. After iterating all MCIs, PTGLgraphComputation computes the DD.
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Algorithm 1 Computation of Double Distance
1: iterate through all MCIs and build a map M : SseId → MCI
2: for SSEA in all SSEs do
3: for SSEB in all SSEs do
4: if contact between SSEA and SSEB then
5: for MCI in M [SSEA] or M [SSEB] do
6: if MCI is contact between SSEA and SSEB then
7: compute sum and difference of residues from MCI
8: update summax, summin, diffmax, diffmin if necessary
9: end if

10: end for
11: DD = (summax - summin) - (diffmax - diffmin)
12: assign an orientation based on the DD
13: end if
14: end for
15: end for
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2.9 Data sets

Statistics of contacts

We compiled a data set to investigate the statistics of checked and skipped checks
of contacts for different implementations of PTGLgraphComputation. The imple-
mentations are sensitive to the number of chains, number of residues and whether a
ligand is part of the structure. At the time of application, PTGLgraphComputation
was able to only process protein data so we confined the data set to structures that
contain only proteins.

We decided to test structures of 1, 3, 28 and 40 chains. Most structures of the
PDB contain one, two or three chains, so we covered these typical structures. The
focus of our work are complexes that are larger, so we included structures of 28 and
40 chains. Structures of many more chains exist, but we assumed that structures
containing 28 or 40 chains are representative of typical enzymes and molecular
machines.

For each number of chains, we chose four arbitrary structures. Two structures
contained at least one ligand and two did not. Of the two structures containing a
ligand and of the two structures without ligand, one had a large number of residues
and one a low number in relation to the number of chains.

We note here, that there are three structures of 28 chains that contain a ligand
and only one structure of 40 chains that contains a ligand. As a consequence, there is
no representation of a structure of 28 chains containing no ligand and a large number
of residues and of a structure of 40 chains containing a ligand and a large number of
residues. We discuss in the results, that the influence is neglectable. The list of all
PDB IDs, whether it contains a ligand, the number of chains, residues and atoms is
available in section 3.1.1 (see Table 7).

Runtime comparison

We compiled a data set to investigate the runtime of PTGLgraphComputation. The
main criteria was to include structures representative of different levels of difficulty
regarding the expected runtime. For structures, the runtime mainly depends on
the number of atoms, because of the checks for contacts. Since we tested different
implementations that interact with the number of chains, we applied the number of
chains as a main criterion.

The data set is based on the PDB from April 18, 2019. For each number of chains
for which structures are present, we included a representative structure with an
average number of atoms and with maximum number of atoms. Because structures
of a low number of chains are overrepresented in the PDB and therefore play an
important role for running any application using data from the PDB, we included
up to eight representatives for the number of chains from one to 16.

If there is only one structure present for a number of chains, we included this
structure. Note that this is the case especially for large structures (see Section 2.6.1).
With increasing number of chains, there are less structures available. For example,
above 270 chains per structure, there were only structure available with 360, 480,
862, 1,176 and 1,356 chains.

In total, the data set contains 178 structures of 77 different numbers of chains
between one and 1,356 (see Table A1).
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Prediction of assembly of small protein complexes

Peterson et al. [61] have compiled a data set of 21 protein complexes of three to
seven subunits and the complexes’ assembly pathways. Peterson et al. have based
the assembly pathways on experimental evidence, biological inference, structural
inference and the model of assembly.

The pathways are represented in a string format that successively enumerates the
subcomplexes. For example, "BG > BGP" means that subunits B and G assemble
before P joins the subcomplex. We transformed the pathways to the Newick format
(see Section 2.1.3). The Newick format reduces redundancy, because it contains
each subunit exactly once instead of possibly repeating it in every subcomplex.
For example, "DD’ > DD’D” > ADD’D” > AA’DD’D” > AA’A”DD’D”" becomes
"(((((D,D’),D”),A),A’),A”)". The Newick format also shows more clearly which
subunit is added in a step, which can be difficult to retrieve from a long list of
subunits of a subcomplex. The full list of all structures and assembly pathways is
shown in Table 14.

It is important to note that the order is uncertain or not proposed where more
than two subunits or subcomplexes assemble at one step. For example, "AA’BB’
> AA’BB’I" means that there is no order proposed for the first subcomplex. This
means that there may be a varying number of substeps for complexes of the same
number of subunits. We addressed this by using non-binary dendrograms.

2.10 Use cases

2.10.1 Short-chain dehydrogenase/reductase

Short-chain dehydrogenase/reductases (SDRs) are proteins that have been inten-
sively analyzed already since the 70’s [110]. The SDR superfamiliy includes over
46,000 deposited sequences and 300 structures in sequence databases and the PDB,
respectively [111]. SDRs exhibit many different functions resulting in a subdivision
into over 200 families [111]. SDRs have low sequence similarities reported as low as
15 % for some pairs of proteins [110].

The structure of SDRs is highly conserved. The central conserved element across
different classes of SDRs is a Rossmann-fold. The Rossman-fold consists of a sheet
of six to seven parallel strands with the topology: 3-2-1-4-5-6-7. As a consequence,
there is a large cross-over from strand three to strand four. The cross-over is done by
helices which surround the sheet making the SDR fold a α/β fold by definition. [112]

An example of the classic SDR is 2hsdA. 2hsdA is a perfect example for the
alternating strands and helices (see Figure 4a) as well as the strand topology (see
Figure 4b). The strand topology is represented in the PG (see Figure 4c). The
cross-over can easily be spotted in the KEY FG (see Figure 4d).

Because of the clear topology of the beta strands that is visible in both the
visualization of the structure and PGs, we used SDRs as a use case.

2.10.2 Data of simulations of molecular dynamics

We received MD trajectories (see Section 2.3) from the group of Vivek Sharma at the
Department of Physics at the University of Helsinki. Sharma et al. have simulated
the dynamics of rCI of Thermus thermophilus over 2000 µs. They provided two data
sets: one data set without ubiquinone (noQ) and one data set with ubiquinone (Qox).
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(a) Whole structure in cartoon represen-
tation. Helices are depicted as red spirals,
strands as black arrows and loop regions
as green ribbon.

(b) Structure of sheet in cartoon repre-
sentation. Strands are depicted as black
arrows. Strands are labeled by occurrence
in the sequence from N- to C-terminus.

(c) Beta Protein Graph created with PT-
GLgraphComputation version 3.7.0. Ver-
tices are labeled by occurrence in the Pro-
tein Graph (PG) and in the sequence
(SQ).

(d) KEY beta Folding Graph created with
PTGLgraphComputation version 3.7.0.
Strands are labeled by occurrence in the
Folding Graph (FG), Protein Graph (PG)
and in the sequence (SQ).

Figure 4: Visualization of structure (a,b) and graphs of the topology (c,d) of protein
3α,20β-hydroxysteroid dehydrogenase [6] (PDB: 2hsdA). Where applicable, N- and
C-terminus are labeled.
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The noQ has been based on a previous MD simulation by Sharma et al. [113].
Djuranekova et al. have modeled missing parts of respiratory complex I from
Thermus thermophilus [12] (4hea) (see Section 2.10.3) using MODELLER [114] and
placed the system in a 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membrane
using the Orientations of Proteins in Membranes (OPM) database [115] for the
orientation of rCI. Djuranekova et al. have surrounded the system with transferable
intermolecular potential with 3 points (TIP3) water molecules and Na+/Cl- ions
to establish physiological conditions. The Qox has been created with the same
parameters as the noQ but with the additional ubiquinone placed in its tunnel. [116]

For each data set, we received 2,000 files, one per microsecond. Each file contains
the atomic coordinates of the protein subunits and the ligands. The ligands are
flavin mononucleotide (FMN), iron-sulfur (Fe-S) clusters and, in the case of the Qox,
Ubiquinone. The Fe-S clusters are assigned to subunits and share their chain ID.
FMN and ubiquinone are not assigned to a subunit and have their own chain ID,
respectively. The full list of subunits and their chain IDs can be found in Table 4.

The files are formatted according to the legacy-PDB style (see Section 2.6.1),
but differ in some points from the legacy-PDB format. Because of this, we call it
pseudo-legacy-PDB style from now on. The differences are described in detail by
Nurhassen [117].

2.10.3 Respiratory complex I of Thermus thermophilus

rCI (see Section 2.5.2) of Thermus thermophilus consists of 16 subunits. We used
the structure 4hea as a use case. We refer to the subunits by their abbreviated gene
name for NADH-quinone oxidoreductase (Nqo). The subunit with ID W is not part
of the Nqo operon and has been referred to as TTHA1528 [12]. The matching of
chain IDs, gene names and modules can be found in Table 4. A visualization of the
structure and the position of all subunits can be found in Figure 5a.

2.10.4 Respiratory complexes of Homo sapiens

The following structures have been determined by Guo et al. [20].

Respiratory complex I

rCI (see Section 2.5.2) of Homo sapiens consists of 45 subunits. 14 subunits are
conserved "core subunits" and 31 are supernumerary subunits. The subunits are
labeled according to their genes and can be abbreviated by omitting the prefixed
"NDU" or "MT-" (see Table 5). [86]

Human respiratory complex I [20] (5xtd) contains all 45 subunits (see Table 5
and Figure 6) and a total of 66,789 atoms at a resolution of 3.7 Å.

Assembly Guerrero-Castillo et al. [84] have investigated the assembly pathway of
human rCI using complexome profiling (see Section 2.4). They have proposed an
assembly pathway that is based on experimental data for 44 of 45 subunits. They
have been able to assign 17 assembly factors to the pathway.

Guerrero-Castillo et al. have proposed a modular assembly in which the known
modules Q, N, PP and PD assemble into premature modules (pre-module). The
pre-modules assemble with each other completing the final rCI. Guerrero-Castillo
et al. have proposed two alternative pathways which differ in the order in which
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Table 4: Matching of the chain IDs and names of the subunits of respiratory complex
I of Thermus thermophilus [12] (PDB: 4hea). Chains with an asterisk mark ligands
that have been placed in separate chains by Sharma et al. [116]. For each protein
chain, the name of the module is given.

Chain ID Name Module
1 Nqo1 N
2 Nqo2 N
3 Nqo3 N
4 Nqo4 Q
5 Nqo5 Q
6 Nqo6 Q
9 Nqo9 Q
7 Nqo15 N
W TTHA1528 Q
A Nqo7 PP
J Nqo10 PP
K Nqo11 PP
L Nqo12 PD
M Nqo13 PD
N Nqo14 PP
H Nqo8 PP
F* Flavin mononucleotide -
U* Ubiquinone -

the pre-modules assemble. In one pathway, pre-PP-b and pre-Q/pre-PP-a assemble
first. In the other pathway, pre-PP-b and pre-PD-a assemble first. We refer to the
pathways from now on as reference pathway 1 and 2.

We depicted the proposed assembly pathways as dendrograms (see Section 2.4 and
Figure 7). Note that the assembly pathways contain steps, in which more than two
subunits or subcomplexes assemble. Because of this, the dendrograms are non-binary
(see Section 2.1.3).

In the scheme of the proposed assembly pathways (see Figure 7 of Guerrero-
Castillo et al. [84]), subunits C1 and C2 are drawn as a single block assembling with
subunit ND2. In the text, Guerrero-Castillo et al. mention a "complex composed
of ND2, NDUFC1, and NDUFC2" without proposing that C1 and C2 might be
assembled before assembly with ND2. Because of this, we do not impose an order on
these three subunits, but discuss the possibility of prior assembly of C1 and C2.
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(a) Missing parts and ubiquinone modelled by Djurabekova et al. [116]. Each chain is colored
individually and labeled. The ligands that are placed in separate chains, ubiquinone and
FMN, are colored in magenta.

(b) Subunits are colored by modules: N (red), Q (yellow), PP (dark blue) and PD (lavender).

Figure 5: Structure of respiratory complex I of Thermus thermophilus [12]. Subunits
and ligands shown in cartoon style and as balls, respectively.
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Table 5: Overview of the subunits of respiratory complex I of Homo sapiens [20]
(PDB: 5xtd). Length is given in number of residues.

Gene name 5xtd
Full name Abbreviated name Chain ID Length Module
NDUFA2 A2 F 83

N

NDUFS1 S1 M 687
NDUFS4 S4 L 118
NDUFV1 V1 A 431
NDUFV2 V2 O 212
NDUFV3 V3 K 33
NDUFA12 A12 N 143 N/QNDUFS6 S6 T 95
NDUFA5 A5 H 112

Q

NDUFA6 A6 E 113
NDUFA7 A7 I 95
NDUFA9 A9 J 337
NDUFAB1 AB1 G 85
NDUFS2 S2 Q 430
NDUFS3 S3 P 208
NDUFS7 S7 C 156
NDUFS8 S8 B 176
NDUFA1 A1 S 70

PP

NDUFA10 A10 w 320
NDUFA11 A11 V 140
NDUFA13 A13 W 138
NDUFA3 A3 U 83
NDUFA8 A8 u 169
NDUFC1 C1 f 47
NDUFC2 C2 g 119
MT-ND1 ND1 s 318
MT-ND2 ND2 i 347
MT-ND3 ND3 j 115
MT-ND4L ND4L k 97
MT-ND6 ND6 m 174
NDUFS5 S5 h 104
NDUFAB1 AB1 X 85

PD

NDUFB1 B1 n 56
NDUFB10 B10 d 171
NDUFB11 B11 e 97
NDUFB2 B2 Y 59
NDUFB3 B3 Z 80
NDUFB4 B4 o 128
NDUFB5 B5 a 138
NDUFB6 B6 b 124
NDUFB7 B7 v 111
NDUFB8 B8 c 153
NDUFB9 B9 p 172
MT-ND4 ND4 r 459
MT-ND5 ND5 l 603
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Figure 6: Visualization of the structure of human respiratory complex I [20] (PDB:
5xtd). Residues shown in transparent cartoon style and ligands as sticks or balls.
Ligands are colored in magenta and subunits according to their modules: N (red), Q
(yellow), PP (dark blue), PD (lavender).

(a) Reference pathway 1.

(b) Reference pathway 2.

Figure 7: Proposed assembly pathways by Guerrero-Castillo et al. [84] for human
respiratory complex I represented as dendrograms. Leaves that correspond to subunits
are labeled with the abbreviated gene names and colored according to the modules
they are assigned to: N (red), Q (yellow), PP (dark blue) and PD (lavender). The
subunits that are shared between the N and Q module are colored white. Inner
vertices correspond to subcomplexes and the root to the final protein complex.
Selected inner vertices are labeled with the names of the pre-modules.
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Respiratory supercomplex I1III2IV1

Human respiratory supercomplex I1III2IV1 [20] (5xth) contains one copy of complex
I, two of complex III and one of complex IV (see Figure 8) as indicated by the
numbers in subscript. In total, 5xth contains 80 subunits and 115,642 atoms at a
resolution of 3.9 Å.

Figure 8: Visualization of structure of respiratory supercomplex I1III2IV1 of Homo
sapiens [20] (PDB: 5xth). Residues shown in cartoon style and ligands as sticks
or balls. Complexes are colored individually: III-1 (mint), III-2 (brown) and IV
(magenta). The modules of complex I are colored individually: N (red), Q (yellow),
PP (dark blue), PD (lavender).

The subunits of rCI are named and abbreviated the same as in 5xtd (see Section
2.10.4) and the chain IDs match, too. The subunits of complex III are abbreviated
by omitting the prefixed "UQCR" or "MT-" (see Table 6). The subunits of complex
IV are abbreviated by omitting the prefixed "COX" or "MT-CO".

Respiratory megacomplex I2III2IV2

Human respiratory megacomplex I2III2IV2 [20] (5xti) contains two copies of each
complex I, III and IV (see Figure 9). 5xti consists in total of 138 subunits and
196,753 atoms at a resolution of 17.4 Å. The subunits are named and abbreviated as
for 5xtd and 5xth.
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(a) Aligned x-axis and membrane

(b) Rotated by 90° along the x-axis

Figure 9: Visualization of structure of respiratory megacomplex I2III2IV2 of H.
sapiens [20] (PDB: 5xti). Residues shown in cartoon and ligands as ball-and-stick
style. Complexes are colored individually: III (mint) and IV (magenta). The
modules of complex I are colored individually: N (red), Q (yellow), PP (dark blue),
PD (lavender).
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Table 6: Overview of the subunits of the two copies of complex III and one copy of
complex IV of the respiratory supercomplex I1III2IV1 of Homo sapiens [20] (PDB:
5xth). Length is given in number of residues. SP stands for single peptide according
to Table S2 of Guo et al. [20].

Gene name 5xth
Full name Abbreviated name Chain ID Length
UQCR10 10 AD 62
UQCR11 11 AG 51
UQCRB B AF 106
UQCRC1 C1 AL 446
UQCRC2 C2 AK 416
MT-CYB CYB AJ 378
CYC1 CYC1 AH 241
UQCRFS1 FS1 AC 196
UQCRFS1(SP) FS1(SP) AB 57
UQCRH H AE 74
UQCRQ Q AA 81
UQCR10 10 AQ 62
UQCR11 11 AT 51
UQCRB B AS 106
UQCRC1 C1 AY 446
UQCRC2 C2 AW 419
MT-CYB CYB AV 378
CYC1 CYC1 AU 241
UQCRFS1 FS1 AP 196
UQCRFS1(SP) FS1(SP) AO 57
UQCRH H AR 74
UQCRQ Q AN 81
MT-CO1 1 x 514
MT-CO2 2 y 227
MT-CO3 3 z 261
COX6A2 6A2 3 84
COX4I1 4I1 0 144
COX5A 5A 1 109
COX5B 5B 2 98
COX6B1 6B1 4 75
COX6C 6C 5 73
COX7A1 7A1 6 56
COX7B 7B 7 49
COX7C 7C 8 47
COX8B 8B 9 43
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3 Results and discussion

3.1 Implementation

This work aims to analyze the topology of large complexes. To be able to automatically
analyze large complexes efficiently, we need feasible runtimes. The runtime will always
scale with the size of the input data when analyzing contacts of atoms, but we can
aim to achieve a linear or near-linear scaling. In the following subsection, we present
our extension of the PTGL that produces more accurate results and is considerably
faster in computing graphs of topologies than before.

3.1.1 Computation of contacts

Observations

The check of the spheres of the molecules and neighbor skipping (see Section 2.8.2)
have been implemented for single protein chains without ligands. The inclusion of
ligands to the computation of contacts and the processing of multiple chains in one
execution for the creation of CGs have diminished the potential of the neighbor
skipping. The pre-processing of the neighbor skipping to find the maximum distance
dmax between sequential neighbors has been applied to the whole list of molecules.
Thereby, ligands are treated as molecules of the polypeptide chain that are joined in
sequence after the last residues at the C-terminus of a chain. Additionally, chains are
stitched together meaning the first residue of a chain is treated as joined in sequence
with the last residue of the previous chain. This results in a large dmax, because
molecules are joined sequentially that are not really consecutive in sequence and can
have large spatial distances. A large dmax results in few skips up to the point where
the pre-processing is not worth the saved runtime.

The check of the spheres of the molecules still functions as intended, but for large
complexes of many chains, the runtime still becomes quite large demanding a speedup
optimized for many chains. We also observed that the spheres of the molecules are
often larger than necessary. The reason lies in taking the Cα as midpoint. For most
side chains, there are atoms spatially far away from Cα creating a large sphere. This
results in unnecessary checks between the pairs of atoms of two molecules.

Centroid for spheres of molecules

The smaller the sphere of a molecule the less spheres overlap where there is no contact
possible preventing unnecessary checks of the atoms of two molecules. Ideally, the
smallest sphere of a molecule results in skipping the most checks saving runtime.
The sphere is smallest if it is centered at the geometric median of the atoms. The
geometric median minimizes the maximum distance to any atom. The difference to
the centroid of points becomes clear when thinking of a heavily skewed distribution
of n points where n− 1 points are close to each other and one point is far away. The
centroid will almost be at the center of the n−1 points whereas the geometric median
will be approximately halfway between the n− 1 and the one far away point. It is
obvious that for this case, the geometric median produces a smaller and therefore
better sphere.

Finding the geometric median in 3D space is not trivial. Algorithms for finding
the geometric median in feasible runtimes have been proposed [118]. We decided
to use the centroid, because it is easier and faster to compute. Also, the centroid
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should not differ too much from the geometric median for atoms in Euclidean space,
because they cannot occupy the same spaces.

We implemented a function to compute the centroid and the radius of the sphere
of a molecule. The centroid and the radius are saved for each molecule so that they
are computed only once. The computation takes extra time, especially in the case
of residues where previously simply the Cα has been taken as center. But using the
centroid and the maximum distance to any of the molecule’s atoms ensures a smaller
sphere of the molecule.

This can be seen for the Arginine at position two of chain A in triosephosphate
isomerase-phosphoglycolohydroxamate complex [22] (7tim) (see Figure 10). The
maximum distance from Cα to any atom is 6.2 Å, because of the long sidechain. The
maximum distance from the centroid to any atom is 3.8 Å.

Figure 10: Stick representation of arginine of chain A at position two in triosephos-
phate isomerase-phosphoglycolohydroxamate complex [22] (PDB 7tim). The atoms
are colored and labeled by their type. A grey orb marks the centroid. Distances
regarding the centroid are shown as grey and regarding the Cα (CA) as yellow dashed
lines. Distances are labeled in Ångström.

Check of the spheres of chains

Similar to the check of the molecules’ spheres, we implemented a check of the chains’
spheres. We compute the centroid of all atoms of the chain. We compute the radius
of the sphere centered in the centroid as the maximum distance between the centroid
and any atom. The geometric median would probably be better than the centroid,
but we discarded the idea and refer to the previous discussion. We save both the
centroid and radius per chain in order to compute them only once. Previously, the
contacts between all molecules have been computed by iterating over all molecules of
the structures. Instead we iterate chain by chain. For each pair of chains, we check
if the chain’s spheres plus the contact threshold overlap. If not we can skip checking
any pair of molecules of the two chains.

Neighbor skipping optimized for ligands and multi-chain complexes

Previously, all molecules of the structure, i.e. molecules of all chains and all ligands,
have been treated as one chain for the neighbor skipping (see Section 2.8.2). Since
we iterate through each chain individually for the check of the chain’s spheres, we
also compute and save the maximum distance of sequential neighbors dmax per chain.
It is important to note that we exclude ligands and only consider residues as part of
the polypeptide and nucleotides as part of the RNA chain.
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To enable skipping even when ligands are involved, we make use of the following
fact. When computing the distance between two molecules m1 and m2, only one
of the molecules needs to be part of a chain for neighbor skipping to apply. Let us
consider that m1 is a ligand and m2 is either a residue or nucleotide of a chain c.
Let dmax be the maximum distance between sequential neighbors of chain c. We
compute the distance between m1 and m2. If the distance is larger than dmax, we
can skip comparing the molecules following after m2 in the sequence according to
neighbor skipping. Note that m1 does not need to be part of a chain for this to work.

Concluding from this, we can apply neighbor skipping for contact checks within a
chain, between chains and between a ligand and a chain. We cannot apply neighbor
skipping to contact checks between ligands. This does not pose a problem, because
the number of ligands can be expected to be much smaller than the number of
molecules that are part of a chain.

From the above, a special conclusion can be drawn for the case of contact checks
between chains. We only use neighbor skipping on one chain. This means we can
decide which chain we want to use it for. Currently, we apply neighbor skipping on
the longer chain, because we expect more skips to happen there. This becomes clear
when thinking of the edge case where one chain has length one and can be thought
of as a ligand. We apply the neighbor skipping to the other chain and can facilitate
the shorter runtime.

For the implementation we can deduct that we have multiple loops (see Algorithm
2). We iterate all intra-chain pairs and all inter-chain pairs differentiating between
non-ligand molecules and ligands. These iterations give us all possible contacts
between molecules and we facilitate neighbor skipping wherever possible. From now
on, we refer to the neighbor skipping optimized for ligands and multi-chain complexes
as improved neighbor skipping.

Statistics of contact checks

We tested the check of the chains’s spheres and improved neighbor skipping on
a data set of proteins (see Section 2.9). We compared the improved neighbor
skipping, the check of the chain’s spheres and the combination of both to the
previous implementation. In the worst case, all possible pairs of residues need to
be checked for a contact. The number of skipped checks of pairs of residues and
the proportion to the number of possible pairs is the measure of quality. The main
comparison of the combination of improved neighbor skipping and check of the
spheres of chains to the previous implementation can be found in Table 7. The
complete statistics evaluating the methods can be found in Table A2.

For the improved neighbor skipping, we differentiated between skips where both
molecules are part of the same chain (intra) and where they are not (inter). For
structures with a single protein chain, there are only intra skips possible. Interest-
ingly, the improved neighbor skipping shows slightly less skips than the previous
implementation for three structures with one chain: geranyltransferase from Agrobac-
terium tumefaciens (unpublished) (2h8o), L polymerase of vesicular stomatitis virus
[14] (5a22) and transcription-associated protein 1 of Saccharomyces cerevisiae [18]
(5ojs). The differences in proportion to the number of pairs of residues are as little
as 0.59 %, 0.13 % and 0.14 %. We thoroughly evaluated the implementation of the
improved neighbor skipping and found one case where the previous implementation
missed one residue contact, because of a rounding error occurring during the check
of the residues’ spheres and taking Cα as center of the sphere. As a consequence, we
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Algorithm 2 Computation of contacts using extended neighbor skipping
1: for c1 in all chains do . intra-chain contacts
2: for all pairs of non-ligand molecules of c1 do
3: apply neighbor checking
4: end for
5: for all pairs of a ligand and a non-ligand molecule of c1 do
6: apply neighbor skipping
7: end for
8: for all pairs of ligands of c1 do
9: do not apply neighbor skipping

10: end for
11: for c2 in all chains that have not been assigned to c1, yet do . inter-chain

contacts
12: for all pairs of a non-ligand molecule in c1 and a non-ligand molecule in

c2 do
13: apply neighbor checking
14: end for
15: for all pairs of a ligand in c1 and a non-ligand molecule in c2 as well as

all pairs of a non-ligand molecule in c1 and a ligand in c2 do
16: apply neighbor checking
17: end for
18: for all pairs of a ligand in c1 and ligand in c2 do
19: do not apply neighbor skipping
20: end for
21: end for
22: end for

increased J from 0.2 to 0.4 (see Section 2.8.2) fixing this error. This only has a small
effect on the neighbor skipping, but might explain the slightly lower number of skips.
Because the difference is so small, we did not investigate any further.

Noteworthy is the increase for serine protease EspP N1023D mutant [10] (3slo)
from 3 % skips of the previous implementation to 50.16 % skips. 3slo and 5a22 both
contain a ligand. It seems that for 3slo, the ligand drastically hampers with dmax of
the neighbor skipping. This seems not always to be the case with ligands as can be
seen with 5a22, but the improved neighbor skipping successfully fixed this limitation.

For the structures with three chains, the improved neighbor skipping clearly
outperforms the previous implementation. The percentage of total skips is higher for
all structures. The biggest difference occurs for tailspike protein 1 from Escherichia
coli [13] (4oj5) where the previous implementation applied no skip compared to
76.9 % skips of the improved neighbor skipping. For all four structures, for the
previous implementation, this seems to be the negative effect of treating all molecules
as one chain. For 4oj5, this may be even worse, because 4oj5 contains a ligand.

Interestingly, compared to structures with one chain, the intra skips alone were
consistently higher than the skips of the previous implementation. This emphasizes
how negative the effect of treating all molecules as a single chain is, because for the
structures with one chain, the number of skips of the previous implementation is
slightly higher. Moreover, inter skips are now possible that could not be applied to
single chains. The number of inter skips is higher than the number of intra skips for
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Table 7: Number of skipped checks for contacts of residues. Structures with an
asterisk (*) contain a ligand. Neighbor skipping treating all molecules as one chain
(previous implementation) is compared to neighbor skipping treating chains and
ligands individually combined with check of chain spheres (combined method). For
each method, the percentage of skipped checks for contacts is given.

Number of ... Total skips [%]

PDB ID Chains Residues Atoms Pairs of
residues

Previous
method

Combined
method

2h8o

1

283 2,468 39,903 30.07 29.48
3slo* 313 2,469 48,828 3.00 50.16
5a22* 2,004 32,188 2,007,006 10.91 10.78
5ojs 3,473 28,407 6,029,128 30.75 30.61
2adv

3

683 5,749 232,903 28.99 61.32
2gvz* 714 5,754 254,541 7.33 57.18
4oj5* 2,272 36,274 2,579,856 0.00 76.90
5x5b 3,139 24,543 4,925,091 0.24 62.18
1pma*

28

5,936 56,321 17,615,080 0.25 90.21
3h6i* 6,159 48,568 18,963,561 8.07 86.87
4r3o 6,243 47,859 19,484,403 18.59 88.51
5da8* 14,030 99,580 98,413,435 10.27 90.03
5im4

40

5,302 40,577 14,052,951 2.55 93.32
5mx2* 5,442 50,447 14,804,961 0.16 85.46
3zlp 6,543 52,731 21,402,153 10.81 93.38
4ro0 8,840 68,787 39,068,380 1.81 93.44

three out of four structures showing the importance of inter skips for multi-chain
structures.

For structures with one chain, skips cannot occur because of the check of the
chain’s spheres. For structures with three chains, the check of the chain’s spheres did
not take effect. It would be possible in theory if one of possibly three chain contacts
is not present. Examining four structures is too little to draw a final conclusion, but
it seems plausible that complexes as small as consisting of three chains are likely to
be intertwined such that all chains interact with each other preventing skips due to
the check of the chain’s spheres.

The observations for structures with 28 and 40 chains are comparable which is
why we discuss both together. Therefore, we think that the mistake in compiling the
data set (see Section 2.9) is neglectable.

Structures containing a ligand allow nearly no skips in the previous implementation
with proportions of 0.25 %, 8.07 %, 10.27 % and 0.16 % compared to proportions
of 18.59 %, 2.55 %, 10.81 % and 1.81 %. In general, the proportion of skips is
low for the previous implementation with a maximum of 18.59 %. The improved
neighbor skipping achieves a maximum of 88.35 % and all proportions are above
79 %. Whether a structure contains a ligand or not does not seem to play a role for
the improved neighbor skipping.

The proportion of intra skips is less than 2 % for all structures. The majority
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of skips are inter skips. This behaviour was expected, because with an increasing
number of chains there are more contacts possible between chains than within.

For all structures with 28 and 40 chains, the check of the chain’s spheres took
effect. The number of intra skips is not affected by the check of the chain’s spheres.
The number of inter skips is affected, because there are no checks for inter contacts if
the chain’s spheres do not overlap. Consequently, the number of inter skips is lower
for the combined method with proportions between 17.91 % to 61.96 %.

In some cases, the chain sphere-check seems to supersede the improved neighbor
skipping. For example, for designed two-component self-assembling icosahedral cage
[15] (5im4), 77.85 % of the checks of the residue pairs are skipped because of the
chain sphere-check compared to 87.7 % of skipped inter checks for improved neighbor
skipping. However, there are also cases where the improved neighbor skipping still
contributes to a large number of skips. For example, for photosystem II depleted
of the Mn4CaO5 cluster [16] (5mx2), 80.65 % of checks of residue pairs are skipped
in inter checks of the improved neighbor skipping. Using the combined method,
there still occur 61.96 % skips due to inter neighbor skipping. This means that both
methods go hand in hand. The chain sphere-check skips large proportions where it
is possible and the neighbor skipping takes effect where it is not possible.

Overall, the total proportion of skips increases for the combined method to up
to around 90 %. To give an example, the combined method skips 36,505,280 pairs
of residues of MthK gating ring in a ligand-free form (unpublished) (4ro0) in the
contact computation of the combined method which accounts for 93.44 % of all
residue pairs. In the previous implementation, 706,779 pairs were skipped which
accounts for 1.81 %.

We conclude that the improved neighbor skipping is not able to achieve more skips
for structures with one chain. With an increasing number of chains, the improved
neighbor skipping clearly outperforms the previous implementation. The improved
neighbor skipping makes no difference between structures with or without ligands
and excels for both. The chain sphere-check takes effect for structures with many
chains, such as 28 and 40. The combined method is most effective for these structures
and allows skipping the check for a contact in the majority of cases.

Runtime

Skipping checks for contacts saves runtime, but the question arises if this is made
up to the runtime of the additional computations, such as the computation of the
chain’s spheres. We tested the runtime of the combined method against the previous
implementation on a data set of representative structures with all numbers of chains
and different numbers of atoms (see Section 2.9). We ran all computations on the
same machine. We ran non-large structures ten times and large structures between
two and eight times to account for fluctuations of the runtime. We measured the
runtimes with the Linux program time and summed up the times for user and sys.

The summed up average runtimes for all structures was 876,728 s for the previous
implementation and 48,576 s for the combined method. The combined method saved
828,152 s of runtime with an average of 4,652 s per structure. We computed the
speedup factor s as runtimecombined∗s = runtimeprevious for the average runtimes. A
speedup factor less than one means the combined method was slower as the previous
implementation and higher than one means it was faster. The speedup factor was
less than one for three structures, exactly one for two structures and higher than one
for the remaining 173 structures. The average speedup factor is 4.52.
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Judging by the speedup factor, the combined method is considerably faster in
nearly all cases. Interestingly, the speedup factor increases with the number of chains
(see Figure 11). While the speedup factor is around one for structures consisting of a
few chains, it rises linearly with an increasing number of chains up to 200. There
are not enough structures with more than 200 chains to see whether the speedup
increases linearly here, too.

Figure 11: Speedup factor of combination of check of the chain’s spheres and improved
neighbor skipping versus previous implementation against number of chains. A
horizontal black line at 1 marks where both implementation have equal runtimes.
Plot created with Matplotlib [119].

The speedup factor is clearly higher for large structures up to 1,356 chains than
for structures with a few chains. The highest speedup factor is 53.95 for capsid
of human immunodeficiency virus (186 hexamers + 12 pentamers) [9] (3j3y). 3j3y
contains 1,176 chains and 2,116,800 atoms and is the second largest structure of the
data set regarding the number of chains and atoms. The previous implementation
took on average 225,982.5 s and the combined method 4,189 s.

We plotted the runtime per atom in seconds against the number of atoms (see
Figure 12). This visualizes that the combined method scales differently with the
number of atoms than the previous method. The runtime per atom increases with
the number of atoms for the previous implementation. The runtime per atom of
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the combined method on the other hand is around the mean of 0.0025 s per atom
independent of the number of atoms.

Figure 12: Scatterplot of runtime per atom in seconds against number of atoms
for multiple runs of different structures. Results are presented for the previous
implementation (blue) and the combination of chain sphere-check and improved
neighbor skipping (green). A black horizontal line marks the mean of the combined
method at 0.0025. Plot created with Matplotlib [119].

This means that the combined method scales linearly with the number of atoms.
Considering that the number of pairs of atoms that in theory need to be checked for
a contact scales exponentially, this is a great achievement.

We decided to use the previous implementation for structures with one chain
where no chain sphere-check is possible anyway. The combined method can take
slightly longer for structures with a few chains, because of the additional computations.
Structures with a few chains do not cause long runtimes. For example, structures
with two chains took between three and 150.1 s for the combined method. The latter
runtime was caused by motor domains from human cytoplasmic dynein-1 in the
phi-particle conformation [17] (5nug) which consists of two chains with 46.234 atoms
in total and is representative for the maximum number of atoms for structures with
two chains. We think that the combined method can be used in general for structures
with two or more chains and will not cause relevant longer runtimes for edge cases,
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but will save runtime for most structures. The improvements in runtime open up
exploring protein complexes in feasible runtimes no matter how large they become.

3.1.2 Orientation of secondary structure elements

Observations for the Double-Distance method

We noticed that the previous computation of the orientation of SSEs can take the
majority of computation time for large structures. The computation is done twice
per pair of SSEs: once for PGs and once for the complex-level PG, because the
orientation is not saved. For small structures, such as 7tim, the computation of the
orientation between SSEs for the complex-level PG takes a few seconds which is only
a small portion of the total runtime of one to two minutes. For large structures,
such as 3j3q, the computation takes 22 hours which is more than half of the total
runtime of 43 hours for the combined method (see Section 3.1.1). Computationally
determining the orientation of SSEs for the complex-level PG takes longer than
parsing the input files, computation of contacts and creation of all other graphs
together.

We also noticed wrong orientations, for example, for 17β-hydroxysteroid dehydro-
genase [2] (1jtv). 1jtv is a SDR (see Section 2.10.1) which clearly exhibits the α/β
fold (see Figure 13a) and the typical strand topology (see Figure 13c). PTGLgraph-
Computation assigns an antiparallel orientation to strands six and seven (see Figure
13d). Strand seven is short, consisting of only three residues compared to strand six
consisting of eight residues. For short SSEs, it can be difficult to visually impose an
orientation. Nevertheless, structurally, strands six and seven clearly have a parallel
orientation (see Figure 13b).

The residue-level contacts between the strands (see Figure 14) differ much from
the ideal example (see Figure 3). Notably, the last residue of strand six that has
any contacts with strand seven, residue 184, is in contact with all residues of strand
seven. This impacts the DD (see Section 2.8.5) of strand six and seven:

DD = (Smax − Smin)− (Dmax −Dmin)
= (438− 434)− (72− 68)
= 0

For a DD of zero, an antiparallel orientation is assigned to these strands (see
Figure 1). Zero is exactly the threshold at which an antiparallel orientation is
assigned. This makes 1jtv an edge case where the assignment of orientations for
SSEs using the DD does not work.

Vector method

Rationale We wanted to find a method that is faster to compute and more accurate
in the assignment of orientations of SSEs. For each SSE, we place a 3D vector that
starts at the N-terminal beginning of the SSE and ends at the C-terminal end. We
compute the centroids of the first and last cl residues where cl is a positive integer that
is not zero. SSEs are defined by the arrangement of the backbone atoms. Sidechains
can point away from the SSE, such as in all directions for helices. Because of this, we
only use the backbone atoms for the computation of the centroid per residue. The
start point of the vector is the centroid of the centroids of the cl N-terminal residues
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(a) Visualization of the structure in cartoon
representation. Helices are depicted as red
spirals, strands as black arrows, loop regions
as green ribbon and ligands as magenta
sticks. Unresolved structures are visualized
as dashed ribbons.

(b) Strand six (yellow) and seven (blue) in
transparent cartoon representation and stick
representation. First and last residue of
strand six as well as all residues of strand
seven are labeled with their three-letter code
and position in sequence.

(c) Visualization of the sheet in cartoon rep-
resentation. Strands are depicted as black
arrows. Strands are labeled by occurrence
in the sequence from N- to C-terminus.

(d) Beta Protein Graph created with PT-
GLgraphComputation version 3.0.0. Ver-
tices are labeled by occurrence in the Pro-
tein Graph (PG) and in the sequence (SQ).

Figure 13: Visualization of the structure (a,b,c) and Protein Graph (d) of 17β-
hydroxysteroid dehydrogenase [2] (PDB 1jtv). Where applicable, N- and C-terminus
are labeled.

and the end point of the cl C-terminal residues. For SSEs of length l with l < cl,
the first and last l − 1 residues are used for the computation of the centroids. The
geometric median would probably be better than the centroid, but we discarded the
idea and refer to the previous discussion (see Section 3.1.1).

We determine the angle between the vectors of contacting SSEs. Based on the
angle, we assign an orientation. For an angle of 0° to thresholdbottom° we assign
a parallel orientation. For an angle of thresholdbottom° to thresholdtop° we assign a
mixed orientation. For an angle of thresholdtop° to 180° we assign an antiparallel
orientation.

Implementation The implementation is a straightforward application of linear
algebra. For all contacting SSEs, the angle between the SSEs is computed. Whenever
an angle is to be computed, the vectors of the SSEs are computed based on the
setting for cl. The computation of the vector for each SSE is done only once and its
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Figure 14: Visualization of residue-level contacts of 17β-hydroxysteroid dehydrogenase
[2] (PDB 1jtv). Residues are depicted as white circles and labeled with a number
according to the position in the sequence. A straight black line connecting residues
represents peptide bonds. A dashed black line connecting residues represents multiple
residues connected by peptide bonds that are not visualized. A yellow dashed line
represents residues in spatial contact. The N- and C-terminus are labeled. Arrows
represent residues that form a strand.

value is saved. This way, a vector for an SSE is only computed when the SSE has at
least one contact and the vector is saved for upcoming computations of angles so that
it does not need to be computed a second time. The values for cl, thresholdbottom and
thresholdtop can be defined by the user in the settings of PTGLgraphComputation
(see Section 2.8.4).

Application We examined 1jtv for differences between the vector and the DD
method. As parameters for cl, we tested 1, 3, 4 and 10. We chose 1 as smallest
possible and 10 as large value. Note that for a cl of 10, most SSEs will be shorter
meaning the method will fall back to use all residues for the computation of the
centroid except for the first and last one, respectively. The values 3 and 4 account
for the number of residues per turn for different helix types. Theoretical α-, 310, and
π–helices have 3.6, 3.0 and 4.4 residues per turn, respectively [120, 121]. The idea
behind choosing integer values in accordance with the number of residues per turn
for a helix is to centrally place the start and end points of the vector along the length
axis of a helix.

Strands six and seven that are misclassified as antiparallel by the DD method
have angles between 29.04° and 30.45° depending on cl (see Table 8). All angles are
close to the ideal value of 0° for a parallel orientation. The vector method is able to
correctly classify the orientation of strands six and seven. This enables detecting the
SDR fold in 1jtv.

There are more edges that can be interpreted differently using the vector method.
Two examples are the edges between a strand and a helix where the DD method
assigns a mixed orientation, but the angles can be interpreted as antiparallel. Helix
three and strand three have angles between 164.7° and 172.6° depending on cl

(see Table 8). Strand six and helix eleven have angles between 155.65° and 163.2°
depending on cl. Structurally, both orientations can clearly be classified as antiparallel
(see Figure 15).

These examples show that the angles between the vectors of the SSEs match
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Table 8: Angles between the vectors of chosen secondary structure elements of
17β-hydroxysteroid dehydrogenase [2]. The number (no.) of a secondary structure
element refers to its occurrence ordered from N- to C-terminus. The number in
brackets refers to the occurrence of the secondary structure element regarding its
type: helix or strand. The angles are given in degree for different values of the
number of residues taken for the computation of the start and end point of the vector
(cl).

SSE 1 SSE 2 Angles for cl [°]
No. Type No. Type 1 3 4 10
5 (3) Helix 6 (3) Strand 164.70 172.60 170.18 164.76
14 (6) Strand 17 (11) Helix 155.65 159.98 159.06 163.20
14 (6) Strand 18 (7) Strand 30.45 29.04 29.97 29.35

(a) Helix three (yellow) and strand three
(blue).

(b) Strand six (yellow) and helix eleven
(blue).

Figure 15: Visualization of the structure of chosen secondary structure elements of
17β-hydroxysteroid dehydrogenase [2] (PDB 1jtv) in stick and cartoon representation
(transparent). First and last residue of each secondary structure element are labeled
with its three-letter code and its number in sequence.

angles that can be expected by visual inspection of the structure. Because of this, the
vector method is more suitable for the assignment of orientations between SSEs. The
only question is what values for the parameters cl, thresholdbottom and thresholdtop
should be chosen.

We investigated all contacts between SSEs of 1jtv, antigen-presenting glycoprotein
CD1d1, chain A [7] (3au1A), dihydrodipicolinate synthase, chain A [8] (3denA) and
endothiapepsin, chain A [19] (5p4kA). The largest difference of an angle between
the four values of cl was 15.19° between helix 7 and 9 of 3denA. The helices are
exceptionally long with a length of eight and ten residues. The angle for cl = 10
differs by 11° to 13° from the other values for cl. For shorter SSEs, cl = 10 works
the same as if it was set to a lower value. It makes sense that cl = 10 only can take
effect for SSEs longer than five. Overall, the maximum difference of the angles for
the different values of cl was 4.34° on average with a median of 3.63°.

From the results (see Appendix A.3), we decided to use cl = 4, thresholdbottom =
65 and thresholdtop = 115 as default parameters for PTGLgraphComputation. These
parameters reproduced the assignment of orientations between SSEs from the DD
method, but fixed the presented errors. The differences between the angles for
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different values of cl were not too big and notably never caused a different assignment
of the orientation based on thresholdbottom = 65 and thresholdtop = 115.

Note that unlike the DD method, the vector method does not differentiate
between helices and strands. The DD method never assigns a mixed orientation to
two strands. The vector method assigns mixed orientations to two strands with the
same threshold for the angle as for two helices or a strand and a helix. The thresholds
are set to prefer parallel and antiparallel orientations for a wider range of degree
than mixed orientations, because parallel and antiparallel orientations are relevant
for many biological motifs such as the up-and-down barrel. A mixed orientation can
be thought of as a contact that clearly is neither parallel nor antiparallel.

Computing the DD takes a long time, because all MCIs with one of the residues
being part of one of the contacting SSEs are iterated through for each contact of
SSEs (see Section 2.8.5). The vector method creates a vector once for each SSE
that has a contact and computing the angle between vectors is computationally
cheap. The runtime stays the same for small structures, such as the use cases for the
optimization of the parameters of the vector method. This is expected as for small
structures, the DD method does not take much time.

For large structures, such as 3j3q, the runtime decreases immensely from 43 hours
to eight and a half hours. The computation of the complex-level PG (see Section
2.8.3) decreases from 22 hours to 90 seconds. It is important to note that this massive
decrease is expected, because the vectors are created during computation of the PGs
and reused for the computation of the complex-level PG.

A limitation of the vector method in its current implementation may be long,
bent SSEs. We experienced such a case in 5p4kA where two of such SSEs are in
contact: strand 68-78 and 99-112. Both are exceptionally long with 10 and 13
residues. Both are also exceptionally bent (see Figure 16a). The constructed vectors
cannot describe the bend and distort the angle of the SSEs. To overcome this,
for long SSEs, multiple vectors may be constructed for different parts of the SSE.
However, we noticed that these two long SSEs may be special for the assignment by
DSSP. For example, SCOT [122] differently assigns SSEs: strand 68-69, 75-78 and
105-112. PTGLgraphComputation ignores the strand of two residues, because it is
too short. The remaining strands are shorter and not bent (see Figure 16b) fixing
the unrepresentative vector.
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(a) Strands assigned according to DSSP. Black dashed arrows indicate possible vectors for
each strand.

(b) Strands assigned according to SCOT.

Figure 16: Visualization of the structure of residues 68-78 and 99-112 of endothia-
pepsin [19] (PDB 5p4k) in stick and cartoon representation (transparent). First and
last residues of each secondary structure element are labeled with its three-letter
code and its number in sequence.
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3.2 Analysis of dynamics

3.2.1 Introduction

Rationale of the method

MD simulations enable exploring the dynamics of macromolecular systems in silico
(see Section 2.3). MD simulations produce large amounts of data, because all atoms’
coordinates are simulated for each time step. The structures of all time steps can
be thought of as time-resolved point clouds. Points correspond to atoms and the
resolution of time to the movements of the atoms over simulation time. Analyzing
time-resolved point clouds in the biological context of structures is not trivial.

We aim to explore how graphs of topology can assist in the analysis of MD
simulation data. We produce graphs of topology for the structural data of each time
step. This allows analyzing how the graphs change over time. Graphs abstract the
topology of structures and are easier to compare than point clouds.

We did not know beforehand if changes during MD simulations can be captured
by PTGL’s graphs of topology. If the changes of coordinates are too subtle to affect
the contact threshold (see Section 2.8.2), PTGLgraphComputation will not compute
different contacts resulting in no differences between the graphs. We decided to use a
top-down approach starting on the level of subunits to see at which level differences
in the graphs occur.

Collaboration

We tested our rationale on two data sets of Sharma et al. (see Section 2.10.2). The
data set is based on 4hea. Sharma et al. discussed the results with us and guided
our work.

The following subsection contains work by other group members. Please refer to
Nurhassen [117] for a first analysis of the data set and intitial scripts for the analysis.
Please refer to Sons [123] for the implementation of the pipeline. Please refer to
Wolnitza [124] for the implementation of the heat maps and their detailed analysis.
I developed the main ideas, supervised the work and helped programming. In the
following, I present an overview of our analysis of dynamics and embed the analysis
in a greater context.

3.2.2 Implementation

We implemented a pipeline called PTGLdynamics. PTGLdynamics comprises a
variety of scripts for different functions. The main input are coordinate files of each
time step of an MD simulation. The main output are statistics on changes of contacts
and the visualization of these changes of contacts.

PTGLdynamics bases its analysis on the computations of PTGLgraphCompu-
tation for each time step. Before PTGLgraphComputation can be run, the input
coordinate files are pre-processed. The input coordinate files are parsed from pseudo-
legacy-PDB style (see Section 2.10.2) into legacy-PDB style (see Section 2.6.1). For
each legacy-PDB file, a DSSP file is computed by DSSP version 2.0.4. PTGLgraph-
Computation computes all PGs and CGs.

During the implementation of PTGLdynamics, we ended our support for legacy-
PDB files by PTGLgraphComputation. A new version of DSSP running on mmCIFs
was not available at this time, so we use a version of PTGLgraphComputation that
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works with legacy-PDB files. The versioning scheme of PTGLgraphComputation
was outdated then and does not help identifying the correct version of PTGLgraph-
Computation, so instead we refer to its SHA key of git (see Section 2.7): 57d87d1.

PTGLdynamics generates the following output:

• Line plot of the number of contacts throughout the simulation for all edges

• Line plot of the total number of contacts throughout the simulation

• Statistics of the number of changes of contacts throughout the simulation for
all edges

• Structural visualization in PyMOL (see Section 2.7) with heat map showing
changes of contacts throughout simulation

PTGLdynamics is invoked from the command line and its execution can be
adjusted by command line parameters. Unlike PTGLgraphComputation, PTGLdy-
namics is a pipeline calling multiple single scripts. As a consequence, the user needs
to pass PTGLdynamics all command-line arguments of the underlying scripts so that
PTGLdynamics can pass them on. This makes the initial call of PTGLdynamics
long comparatively. PTGLdynamics can also be invoked executing single sub-scripts
one after another. Notably, the results of single steps of the pipeline are saved and
the user can (re-)start the pipeline from any point saving runtime.

3.2.3 Heat-map visualizations

One main goal of PTGLdynamics is the analysis of changes of contacts between
subunits and residues throughout the simulation. We define a change of contact if for
consecutive time steps, a previously not existing residue contact is established or a
previously existing residue contact disappears. In the following, we present different
Heat-map visualizations highlighting the number of changes. We explored different
approaches of how to measure and count the number of changes. We explain the
approaches in detail in this subsection. We provide an overview of the approaches in
Table 9. In total, there are eight different approaches for the visualization of changes
as heat map per data set (see Section 2.10.2).

In the Heat-map visualizations, we color the structure visualized with PyMOL
[96] according to the number of changes. We either color chains or residues. We
assign the entity with the lowest and the highest number of changes of contacts a
deep blue and a deep red, respectively. Entities of a medium number of changes are
colored white. This means we always use the extremes for setting the scale for the
colors.

Unlike the other visualizations of structures in this work, the following visual-
izations are not based on mmCIFs annotated by DSSP (see Section 2.6.2). The
mmCIFs produced by the pipeline are post-processed files based on the pseudo-legacy
PDB files. They contain exactly what is needed for our purpose, but did not produce
correct results when fed to DSSP4. Instead we use the default classification of SSEs
by PyMOL [96].

The following visualizations show the structure at 1 µs of simulation time for
noQ and Qox, respectively. The position of the subunits can be seen in Figure 5a.
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Table 9: Applicable settings for the computation of changes of contacts for the data
set without (noQ) and with (Qox) ubiquinone. Changes can be computed based on
the Complex Graph and coloring chains (chain-CG), based on residues and coloring
chains (chain-res) and based on residues and coloring residues (res-res). Changes
can be computed for contacts between chains (inter) or between and within chains
(intra-inter). Changes can be treated as absolute changes (abs) or divided by the
length of the chain (div). A checkmark (3) marks applicable and a cross (7) marks
not applicable settings. Settings are not applicable when the division by the lengths
of chains cannot be applied (*) or when no contacts within a chain are defined (**).

noQ Qox

chain-CG
intra-inter inter intra-inter inter
abs div abs div abs div abs div
7** 7** 3 3 7** 7** 3 3

chain-res
intra-inter inter intra-inter inter
abs div abs div abs div abs div
3 3 3 3 3 3 3 3

res-res
intra-inter inter intra-inter inter
abs div abs div abs div abs div
3 7* 3 7* 3 7* 3 7*

Coloring chains based on Complex Graphs

We started by comparing the CGs of the different time steps. We did not know
beforehand whether the simulation leads to changes of contacts in CGs. We quickly
noticed that the weights of the edges of the CGs changed during the simulation. We
visualized the changes as a heat map on the structure (see Figure 17).

The results of the two data sets do not differ much so the following remarks apply
to both. We expected less changes in the membrane than in the matrix arm, because
the membrane arm consists mostly of densely packed helices. However, one part
of the membrane arm accounts for the most and another for the least number of
changes (see Figures 17a and b). In the matrix arm, there is one part that accounts
for the most and another for the least number of changes, too. A clear difference
between both arms could not be observed.

We counted the absolute number of changes. Long subunits have more residues
and therefore more possibilities for contacts and changes of contacts. We created
another heat map where we accounted for the length of a subunit by using a
normalization dividing the absolute number of changes by the number of residues of
a subunit (normalized) (see Figures 17c and d). In the normalized heat map, the N
and PD module have the least changes. Emphasis is put on the subunits Nqo7 and
Nqo11 which are the only ones clearly visualized as flexible.

We did not further analyze the changes of contacts coloring chains based on CGs,
because they are not accurate. If x contacts appear between two time steps and x
different contacts disappear, the change of contacts in the CG would be zero, but we
would expect it to be 2x. To achieve the accurate number of changes, we needed to
track the contacts of each residue individually.
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(a) Data set without ubiquinone. Absolute
number of contacts.

(b) Data set with ubiquinone. Absolute num-
ber of contacts.

(c) Data set without ubiquinone. Number of
contacts divided by lengths of chains.

(d) Data set with ubiquinone. Number of
contacts divided by lengths of chains.

Figure 17: Heat-map visualization of changes of contacts of MD simulation of
respiratory complex I of Thermus thermophilus. Changes shown coloring chains and
based on Complex Graphs. The structure is depicted in cartoon style. The number
of changes of contacts is color-coded from blue to white to red depicting lowest to
highest number of changes.

Coloring chains based on residues

Inter-chain changes For each residue, we tracked the contact partners during
the simulation and counted whenever a new contact partner appeared or an existing
contact partner disappeared. In the CGs, only contacts between subunits are
considered, so here we just focused on contacts between residues of different subunits
(inter), at first. We visualized the number of changes as a heatmap on the structure
(see Figure 18).

The differences between the data sets are neglectable just like for the heat map
coloring chains based on the CGs. The heat map of the absolute number of changes
(see Figures 18a and b) differs from the heat map coloring chains based on CGs (see
Figures 17a and b). In general, more parts of the complex are neither flexible nor
rigid. This means that less extremes of comparably low or high number of changes
are present. There do not appear such extreme gradients as, for example, in the
membrane part of the heat map coloring chains based on CGs, where rigid subunits
are adjacent to flexible subunits. Here, flexible subunits can be found in the PP
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(a) Data set without ubiquinone. Absolute
number of contacts.

(b) Data set with ubiquinone. Absolute num-
ber of contacts.

(c) Data set without ubiquinone. Number of
contacts divided by lengths of chains. Ex-
cluded FMN and ubiquinone.

(d) Data set with ubiquinone. Number of con-
tacts divided by lengths of chains. Excluded
FMN and ubiquinone.

Figure 18: Heat-map visualization of changes of inter-chain contacts of MD simulation
of respiratory complex I of Thermus thermophilus. Changes shown coloring chains
and based on residues. The structure is depicted in cartoon style. The number
of changes of contacts is color-coded from blue to white to red depicting lowest to
highest number of changes.

and Q module, such as, FMN that is treated as separate chain (see Section 2.10.2),
TTHA1528 and Nqo15.

The normalized heat map allows almost no differentiation between the subunits
(see Figures A2a and b). The ligands FMN and ubiquinone are treated as chains
of length 1 which means their number of changes is the same for the absolute and
normalized number. The number of changes for ubiquinone is 17,257. The highest
absolute number of changes for Qox occurs for Nqo10 with 260,989. After dividing
by the length of Nqo10, these are 1,631 changes. The difference between the ligands
of length 1 and much longer protein chains distorts the normalized numbers.

Since the heat maps do not allow differentiation, we excluded the ligands FMN
and ubiquinone from the heat maps (see Figures 18c and d). This leads to more
differentiation within the color scale. Interestingly, almost the whole complex is
defined as rigid, meaning only a comparably low number of normalized changes
occurs. Depicted as flexible are Nqo11, Nqo7 and Nqo10 in descending order of the
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number of normalized changes. The heat map is similar to the heat map coloring
chains based on the CGs for normalized changes. It is possible that the case of
inaccuracy in the number of changes based on CGs does not have as big of an impact
as expected. Nevertheless, tracking the number of changes on residues ensures correct
results and allows for the inclusion of changes of contacts within a subunit, as well.

Intra- and inter-chain changes The heat maps of the absolute number of changes
between chains and within chains (intra) of noQ and Qox (see Figures 19a and b)
differ only slightly and will be discussed together. The heat maps of the intra-chain
and inter-chain changes differ from the heat map of the inter changes (see Figure
18). In the inter-changes heat map, the largest part of the complex is between little
flexible or flexible. In the inter-changes and intra-changes heat map, the largest part
of the complex is neither rigid nor flexible. Emphasis is put on a few subunits that
are clearly rigid or flexible.

The highest number of changes occurs for Nqo3 of the N module which is clearly
visible in the heat map. The second highest number occurs for Nqo12 of the PD
module which is visible as slightly flexible. Low numbers of changes occur for different
subunits of the N, Q and PP module which are depicted as very rigid.

The heat map of the normalized number of inter-chain and intra-chain changes
allowed no real differentiation, because of the ligands FMN and ubiquinone (see
Figures A2c and d). Excluding the ligands allows for a more meaningful color scale
(see Figures 19c and d).

Almost the whole membrane arm is rigid whereas the matrix arm is completely
flexible. The flexibility of the membrane arm has been linked to its function as a
proton antiporter [12, 125], but this is not detectable in an MD simulation. Over
the last decades, transmembrane helices have been identified as more flexible than
initially thought [126, 127]. It seems that the flexibility is either not captured by the
MD simulation at all or not as well as in the matrix arm. For an MD simulation it
makes sense that the helices of the membrane arm are relatively densely packed and
less mobile than the matrix arm.

An exception is Nqo11 of the PP module which is the only subunit of the matrix
arm depicted as flexible. For Nqo11, we detected 300,276 changes of contacts in the
noQ which is the lowest number except for 4,143 changes for FMN. Nqo11 has 95
residues which is the lowest number of all protein subunits. After normalization,
Nqo11 has the third highest number of changes. Considering its length, Nqo11 has a
large number of changes of contacts and stands out from the rest of the membrane
arm.

Coloring residues based on residues

Tracking the contact partners of each residue resulted in the exact number of changes
of contacts for each chain and enabled us to include intra-chain contacts. As a next
step, we also visualized the changes by coloring residues. Instead of coloring subunits,
each residue is colored individually. Normalization for the number of residues of a
chain cannot be applied here (see Table 9).

Inter-chain changes We visualized the number of changes of inter-chain contacts
as a heat map on the structure (see Figure 20). Note that not all residues are colored
blue to white to red in the heat map scheme. We merely count inter-chain contacts.
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(a) Data set without ubiquinone. Absolute
number of contacts.

(b) Data set with ubiquinone. Absolute num-
ber of contacts.

(c) Data set without ubiquinone. Number of
contacts divided by lengths of chains. Ex-
cluded FMN and ubiquinone.

(d) Data set with ubiquinone. Number of con-
tacts divided by lengths of chains. Excluded
FMN and ubiquinone.

Figure 19: Heat-map visualization of changes of intra-chain and inter-chain contacts
of MD simulation of respiratory complex I of Thermus thermophilus. Changes shown
coloring chains and based on residues. The structure is depicted in cartoon style.
The number of changes of contacts is color-coded from blue to white to red depicting
lowest to highest number of changes.

Residues that are buried inside a subunit may have no changes of contacts over the
whole simulation. These residues are colored grey.

Most of the residues that have changes of contacts are depicted as rigid, because
of the high number of changes for single residues that stretch the color scale. For
noQ, these are, for example, residues from the subunits Nqo11, Nqo7, Nqo14 and
Nqo10 from the PP module (see Figure 20c). For Qox, the only molecule depicted as
flexible is ubiquinone, which is treated like a residue by PTGL (see Figure 20d).

The number of changes for ubiquinone is 17,257 and the second-highest number
of changes is 6,418 of residue 59 of subunit Nqo11. For the normalized number of
changes, we excluded the ligands, because they stretched the color scale, not allowing
differentiation among the other molecules. Here, the case might be different, because
the difference really is due to the higher number of changes and not only because
of normalization. The heat map directly shows that the highest number of changes
of contacts over the simulation occurs for ubiquinone, which might be the desired



54 3 RESULTS AND DISCUSSION

(a) (b) Ubiquinone labeled in red.

(c) Zoom-in on PP module. (d) Zoom in on ubiquinone (red).

Figure 20: Heat-map visualization of changes of inter-chain contacts of MD simulation
of respiratory complex I of Thermus thermophilus. Data set without (a and c) and
with ubiquinone (b and d). Changes shown coloring residues based on residues.
The structure is depicted in cartoon style. The number of changes of contacts is
color-coded from blue to white to red depicting lowest to highest number of changes.
Residues without changes of contacts are colored grey.

result. However, ubiquinone with its 63 non-hydrogen atoms is a larger molecule
than residues of 4 to 14 non-hydrogen atoms. This allows for more contacts and
changes of contacts. Moreover, all contacts of ubiquinone are counted as inter-chain
contacts, because ubiquinone is treated as a separate chain. For residues, on the
other hand, only contacts and their changes to residues of different subunits are
counted. We also excluded ligands for the Qox which allowed more differentiation.
This resulted in a heat map more similar to the heat map of noQ (see Figure A3).

Inter-chain and intra-chain changes We visualized the number of changes of
intra-chain and inter-chain contacts as a heat map on the structure (see Figure 21).
Opposite to only visualizing inter-chain contacts, here, every residue and ligand is
assigned a color from blue to white to red.

For the noQ, most of the complex is depicted rigid or neither rigid nor flexible,
and some residues are highlighted as flexible (see Figure 21a). The residue with the
highest number of changes of intra-chain and inter-chain contacts is phenylalanin at
position 63 of TTTHA1528 (see Figure 21c). This residue is in a loop region which
seems to be flexible as many contacts change during simulation.

Interestingly, the visualization matches the expectation that residues that are
close to other residues generally have a higher number of changes of contacts, for



3.2 Analysis of dynamics 55

(a) (b) Ubiquinone labeled in red.

(c) Zoom-in on TTHA1528 phenylalanin at
position 63. (d) Zoom-in on ubiquinone (red).

Figure 21: Heat-map visualization of changes of intra-chain and inter-chain contacts
of MD simulation of respiratory complex I of Thermus thermophilus. Data set without
(a and c) and with ubiquinone (b and d). Changes shown coloring residues based
on residues. The structure is depicted in cartoon style. The number of changes of
contacts is color-coded from blue to white to red depicting lowest to highest number
of changes.

example, for helices. Residues that point towards other SSEs are more likely flexible
or neither rigid nor flexible while residues pointing away are more likely rigid. In
strands, there are parts which are more flexible or less flexible as well.

For the Qox, ubiquinone is the only molecule or residue depicted as flexible (see
Figures 21b and d), just like the inter-chain contacts. A difference is that the gap
between ubiquinone and the residue with the second-highest number of changes is
lower, so that there are residues that are depicted as neither rigid nor flexible. This
is likely, because we now count all contacts and their changes for residues, too, not
only for ubiquinone due to the fact that it is placed in it a separate chain.

We excluded ligands during testing. The heat map was similar to the noQ (data
not shown). This was expected, because, for example, for both data sets the residue
with the most changes is residue 63 of TTHA1528.

Discussion of the approaches We presented a plethora of different approaches
(see Table 9) visualizing dynamics within a complex during MD simulation. Different
questions can be addressed using heat maps of changes of contacts. Common to all
is to highlight the parts of the complex that are flexible so that contacts appear and
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disappear more frequently, colored in red, and inflexible parts, colored in blue. The
heat maps help to quickly identify outstanding regions.

The heat maps coloring chains based on CGs were produced as a first impression
of whether such visualizations can be created by the definition of contacts of PTGL.
They showed rigid or flexible parts allowing a quick overview of flexibility in a
complex. The normalized heat maps put emphasis on a smaller number of subunits
that were depicted as flexible. It is important to note that only inter-chain contacts
are counted, which may or may not be desired, depending on the intentions of the
visualization. This approach should not be used further, because basing the number
of changes on the CGs is inaccurate.

The remaining approaches were based on contacts of residues and reflected the
accurate number of changes. The inter-chain heat maps of absolute contacts differed
from the heat maps based on the CGs and can be considered as more accurate. Here,
the rigid parts were less frequent and more outstanding than the flexible parts. For
the normalized heat maps, we excluded the ligands that were placed in separate
chains to allow differentiation. Interestingly, the normalized heat maps without
ligands were similar to the heat maps based on the CGs: Three subunits of many
changes are highlighted as flexible while the rest is rigid. It is unclear whether this is
a desired result or an undesired consequence of the normalization.

Basing the heat maps on contacts of residues, allowed us to treat intra-chain
contacts, as well. Depending on what is of interest, this provides a more accurate
picture of general flexibility. The absolute heat maps make it easy to spot flexible
and rigid regions while the majority of the complex is depicted neither rigid nor
flexible. The normalized heat map indicated that the membrane arm is less flexible
than the matrix arm, with one exception. This could mean that the normalization
makes sense only when treating intra-chain and inter-chain contacts.

Basing the heat maps on contacts of residues also allowed us to visualize the
changes of contacts coloring residues. The inter-chain heat maps allow the identifica-
tion of flexible regions in interfaces of subunits. The intra-chain and inter-chain heat
maps allow the identification of flexible regions in general. For the Qox, ubiquinon
was outstandingly flexible. It might be desirable to normalize against the number of
atoms of a molecule to account for the larger size of ligands, such as ubiquinone.

The approaches based on residues can all be useful depending on what the focus
of the visualization should be. Then, the visualizations help to quickly identify
interesting subunits and molecules, for example, around the ubuquinone tunnel.

3.2.4 Line plots of number of contacts

The heat maps allow instant spotting of regions of low or high changes of contacts.
They contain the information of all time steps in one visualization. We created
line plots of the number of contacts between subunits to analyze the course of the
simulation. This enables spotting interesting time steps for contacting subunits, for
example, for Qox at 828 and 1,245 µs for the contacts between subunits Nqo3 and
Nqo5 (see Figure 22).

The number of contacts fluctuates around 10 to 15 contacts for consecutive time
steps (see Figure 22a). We visualized the mean of respectively 50 time steps with the
windowing technique. The mean starts at around 37 and drops with fluctuations to
its lowest at around 800 µs. The absolute low point is at 828 µs with an edge weight
of eight. The number of contacts increases after that up to the maximum turning
point of 48 contacts at 1,245 µs.
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There is a difference of 40 contacts between the time steps 828 and 1,245 µs.
The difference is caused by a large loop region of Nqo5 that engages in much more
contacts at 1,245 µs (see Figures 22b and c). The visualization as a line plot allows
the analysis of the course of the edge weight during the simulation and instantly
spotting both prominent time points.

3.2.5 Comparison of both data sets

The discussed heat maps and plots included information about one data set. The
following plot and heat map shows a direct comparison of noQ and Qox. We
implemented scripts for automated comparison of multiple data sets, but did not
add them to the standard run of the pipeline, yet.

We implemented a script to visualize the sum of changes per residue of a subunit,
for example, Nqo7 (see Figure 23). We compared the two data sets, noQ and
Qox. The line plot contains the same information as the heat maps, but enables a
direct comparison of both data sets and inspection of the changes of each residue
independent of the structure and color.

For many residues, the line plot shows a comparable trend, for example, the
residues 78 to 114. We can see that for the noQ, there are spikes higher than for
Qox, for example, at residues 54, 62 and 69. And there are spikes lower, for example,
at the residue 59.

We embedded the comparison of both data sets in a heatmap, too (see Figure 24).
We visualized the number of changes coloring residues based on residues. For each
residue, we subtracted the number of changes for noQ by the number of changes
for Qox. We assigned a color from blue to white for numbers less than zero, white
for zero and from white to red for greater than zero. This heat map does not show
which residues have low or high number of changes over the simulation within one
data set but between the data sets.

We can see that most residues have comparable numbers of changes (see Figure
24a). A few residues exist, which have a higher number of changes in one data set.
The only difference between the simulations is the placement of ubiquinone in its
tunnel (see Section 2.10.2). Close to ubiquinone, we can see rather many differences
between the data sets (see Figure 24b). There are residues with a higher number of
changes in both noQ and Qox
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(a) Number of contacts per time step (light blue) and as mean of 50 time steps with windowing
technique (dark blue). Plot created with Matplotlib [119].

(b) 828 µs

(c) 1,245 µs

Figure 22: Line plot of the number of contacts of Nqo3 and Nqo5 across the simulation
(a). Structural visualization of the interface of Nqo3 (blue) and Nqo5 (orange) (b
and c). Structure depicted as cartoon and lines with ligands as balls. Distances
between atoms of the subunits are represented as red dashed lines.
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(a) Whole complex.

(b) Zoom-in on ubiquinone.

Figure 24: Heat-map visualization of changes of intra-chain and inter-chain contacts
of MD simulation of respiratory complex I of Thermus thermophilus. Comparison
of the data set without (noQ) and with ubiquinone (Qox). Changes shown coloring
residues based on residues. The structure is depicted in cartoon style. The number of
changes of contacts is color-coded from blue to white to red, depicting more changes
in noQ, equal changes and more changes in Qox, respectively. Ubiquinone is depicted
as sticks in magenta.
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3.2.6 Limitations of the pipeline

Implementation

The pipeline reads in and post-processes coordinate files, computes PGs and CGs,
counts changes based on CGs and residues’ contacts, and visualizes the results in
line plots and heat maps. The computation is fully automated with some restrictions.
Executing the full pipeline, the program call can become long, because all the
parameters need to be passed to the subscripts at once. Using different version of
PTGLgraphComputation makes it even more difficult.

The recent version is used for creating the lists of contact partners of residues
and getting the lengths of the chains for normalization. This version uses the user’s
PTGLgraphComputation_settings.txt in the home directory while the old version
still uses the hidden settings file .plcc_settings.txt. It may be confusing for the
user which setting file is used for which task.

Running the full pipeline once to create all the results shown here is not possible, at
the moment. After some steps, the pipeline needs to be split to apply different settings
and continue with the respective output. For example, the intra-chain and inter-chain
contacts need to be computed with different settings of PTGLgraphComputation.
The absolute and normalized changes are also computed with different calls of the
subscript calculateChanges.py.

This alone might be acceptable if splitting the pipeline was easy. Currently,
either all or no arguments can be passed by PTGLdynamics to a subscript. Ideally,
PTGLdynamics only overwrites the settings passed by the user and uses the default
values of the pipeline for the rest. Some settings of the pipeline cannot simply be
overwritten by the user, for example, some input directories. The pipeline assumes
the correct input directories when everything is run at once, but does not allow to
pass the correct input directories for some of the subscripts.

Content

PTGLdynamics is based on PTGLgraphComputation concerning what can be parsed
and computed. For some molecules, a different interpretation might be desired. For
example, placing some ligands in separate chains has a huge impact on inter-chain
heat maps. Also, the interpretation of large ligands and their number of contacts in
the context of residues’ contacts is not trivial. It might be useful to enable different
scales of the color scheme to allow better differentiation, for example, by identifying
and differently coloring outliers.

PTGLgraphComputation is currently able to handle polypeptide chains, RNA
chains and ligands, such as metals or ions. The program lacks an interpretation of
membranes. For considering the flexibility of residues of rCI, the membrane might
play an important role. The program also lacks an interpretation of water. For rCI,
it has been found that water molecules play an important role for function [128].
Treating these cases differently would give a more complete view of what happens
with the complex during MD simulation.

The changes of contacts described above throughout the simulation are based on
the CGs and residue-wise contacts. We also shortly explored how the PGs of the
single subunits change over the course of the simulation. We noticed that the PGs
can drastically change over the simulation. One thing we noticed are appearing and
disappearing contacts between SSEs. Another thing is that based on the assignment
of DSSP, SSEs can become shorter, longer, break up or merge. To analyze changes of
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contacts coloring SSEs, we need to track exactly, which residues are part of a certain
SSEs to correctly interpret contacts. Currently, the pipeline is not able to do this.

3.3 Normalization of edge weights of Complex Graphs

The edge weights of CGs correspond to the number of contacts of molecules between
subunits (see Section 2.8.3). Long chains (either protein or RNA) contain more
molecules (either residues or nucleotides) and have therefore more possibilities for
contacts of molecules. Edge weights are an expression of how close or intertwined
the subunits are spatially. We introduce normalizations to normalize the number of
contacts by the number of the molecules of the participating chains in different ways
(see Table 10).

Table 10: Name, short name (tag) and equation of all types of normalization of edge
weights of Complex Graphs. The equations output the respective normalized weight
between two chains i and j, and use the number of contacts between the chains (ci,j)
and the lengths of the participating chains, li and lj .

Name Tag Equation

Absolute abs ci,j

Additive add ci,j

li+lj

Multiplicative mult ci,j

li∗lj

Square root sqrt ci,j√
li+lj

Logarithm log ci,j

log10(li+lj)

Minimum min ci,j

min(li,lj)

The normalizations are implemented in PTGLgraphComputation (see Section 2.8)
in a class called ComplexGraphEdgeWeightTypes. ComplexGraphEdgeWeightTypes
contains the enum EdgeWeightType. Edge weight type refers to the absolute edge
weight and all normalizations. For each edge weight type, a function for the computa-
tion is deposited as case of a switch-case block. This enables an easy adjustment
and addition of normalizations at one place. The weights are stored as BigDecimal
allowing an arbitrary precision and lossless computations. By default, we use a
precision of 35.

In the following subsections, we apply and evaluate the normalized weights in
the context of the detection of modules (see Section 3.4) and the prediction of the
assembly pathway (see Section 3.5).

3.4 Prediction of modules

Rationale of the method

Large multimeric protein complexes can be devided into modules. Modules can
be seen as functional and structural units and units of the assembly pathway. We
applied graph clustering to the CG of a protein complex to investigate how clusters
relate to modules.
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We used the Leiden algorithm [66] (see Section 2.1.2), as it successfully extends
the widely used Louvain algorithm [65]. An important feature of any algorithm for
our purpose is the treatment of edge weights, because they carry the information of
how extensive an interface between subunit is. We tested different normalizations of
the edge weights (see Section 3.3) to account for different lengths of subunits. The
algorithm is unsupervised, meaning it does not need the number of requested clusters
as input. This way, the detection of modules can be applied without prior knowledge
and solely relies on the topology of the subunits of the complex.

The Leiden algorithm is one of many algorithms that clusters by optimizing
the modularity of the partition. The underlying assumption of applying such an
algorithm for our purpose is that the partition where each cluster corresponds to
one module (partition according to the modules) has the optimal modularity. When
comparing the different normalizations of edge weights, we favor the normalization
where the modularity of the partition according to the modules is the optimal or
closest to the optimal modularity. We assume that such a normalization is better
fit to identify the modules using a graph clustering algorithm optimizing for the
modularity.

Collaboration

The following subsection is based on the work of Zunker [129]. I developed the main
idea of identifying modules by graph clustering of CGs and supervised the work. In
the following, I present an overview of our detection of modules as well as a deeper
analysis and embed the analysis in a greater context.

3.4.1 Complex I of Thermus thermophilus

We applied graph clustering to the CG of Thermus thermophilus (see Section 2.10.3)
using no edge weights, absolute, additive and multiplicative edge weights (see Figure
25). The partition was the same for the absolute, additive and multiplicative weights
(see Figure 25b) and will be simply referred to as partition using weights.

Three clusters were assigned using the edges without weights and four clusters
using weights. The N module was identified for both using the edges without and
with weights. Cluster 2, using the edges without weights, contains all vertices of
the Q module and one vertex of the PP module. Cluster 3 contains the remaining
vertices of the PP module and the two vertices of the PD module.

The partition using weights correctly identified all the chains belonging to the Q
module, because the cluster did not contain the single vertex from the PP module.
However, this vertex forms a separate cluster with another vertex from the PP module.
The remaining vertices are part of cluster 3. Clusters 3 and 4 do not correspond to
the PP and PD module, but together they contain all vertices of the membrane arm.

The partition using the edges without weights was surprisingly good at identifying
one module, almost another module and all but one subunits of the matrix arm.
Edge weights of a CG contain the information on the intensity of the contact between
two subunits, which is important information for detecting modules in a structure.
It seems that the topology of the CG alone is already a good indicator for modules.

The partition using edge weights was even better as it contained two out of four
modules correctly. Here, vertices of the membrane arm and of the matrix arm are
not mixed together in the same clusters. It seems to be more challenging to detect
the clusters corresponding to the membrane arm than to the matrix arm. The two
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(a) Partition without edge weights. (b) Partition for absolute, additive nor-
malized and multiplicative normalized edge
weights. The edge label and width corre-
spond to the absolute edge weight.

Figure 25: Visualization of the partition of the Complex Graph of respiratory complex
I of Thermus thermophilus [12] (PDB 4hea). Vertices correspond to subunits and
edges to spatial neighborhoods. Vertices are labeled with the abbreviated gene names
of the subunits. Vertices belonging to the same module are grouped together and
labeled (N, Q, PP, PD). Vertices belonging to the same cluster are colored the same
and labeled with numbers.

vertices of the PD module are assigned to the cluster of the PP module, and two
vertices, Nqo6 and Nqo7, form a separate cluster.

Placing Nqo13 and Nqo12 in the same cluster as Nqo14 is favorable for the
algorithm, because of the high edge weights of {Nqo13,Nqo14} and {Nqo12,Nqo14}
of 42 and 36, respectively, for absolute weights. Additionally, Nqo12 is connected
to Nqo10 and Nqo11 through edges with lower edge weights of 6 and 19. Nqo7 and
Nqo8 are placed in a separate cluster, because they are connected by an edge of
one of the highest weights of the whole graph. The edge has an absolute weight of
96 which is the fourth highest edge weight in the graph. At the same time, both
have edges to vertices of the Q and the PP module. For the modularity, it is more
beneficial to place Nqo7 and Nqo8 in a separate cluster than placing them in the
cluster that corresponds to the Q or the PP module.

The question arises if a clustering algorithm optimizing the modularity can
correctly identify the modules. We ensured that the resulting partition exhibits the
maximum modularity with the function partition_opt_modularity of igraph (see
Section 2.7). The modularity of the partition according to the modules is lower than
for the partition of the clusterings for all weight types (see Table 11). This means that
an algorithm optimizing the modularity will not output a partition corresponding to
the modules.
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Table 11: Modularities and differences of modularities for different partitions and
weight types for respiratory complex I of Thermus thermophilus [12] (PDB 4hea).

Edge Weight Type Predicted Clusters Modules Difference
No weight 0.36906 0.29750 0.07156
Absolute 0.45856 0.43416 0.02440
Additive 0.43905 0.43672 0.00233
Multiplicative 0.41805 0.32375 0.09430

The difference between the modularity for the modules and for the clusters is
lowest for the additive and largest for the multiplicative normalization. This indicates
that edge weights and a suitable normalization help to achieve the goal that a high
modularity corresponds to biologically motivated modules. In this case, the additive
normalization seems to work best even though the partitions of the absolute edge
weight and all normalizations are equal.

3.4.2 Complex I of Homo sapiens

We applied graph clustering to the CG of rCI of Homo sapiens (see Section 2.10.4)
using no edge weights, absolute, additive and multiplicative edge weights (see Figure
26). The subunits S6 and A12 are shared between the N and Q modules (see
Section 2.10.4). For the computation of the modularity for the modules, we need a
partition. If a non-overlapping matching of the subunits to modules exists which is
just unresolved so far, there are four possibilities: Both S6 and A12 are either part of
the N or the Q module or each of them is part of one of the modules and vice versa.
Because all partitions of all types of edge weights put S6 and A12 to the vertices of
the Q module, we consider both as part of the Q module for the computation of the
modularity.

The partitions without edge weights, for additive and multiplicative edge weights
were not able to reproduce modules. The partitions for additive and multiplicative
edge weights differ only in one vertex: ND2 (see Figure 26c and 26d). For both edge
weight types, cluster 1 contains all but three vertices from the N and Q module. V1,
V2 and V3 form a separate cluster due to high edge weights between them.

Cluster 2 contains vertices only of the PP module and cluster 5 only of the PD
module. Both do not contain all vertices of the respective modules, because for each
module, some vertices are part of cluster 3.

The clustering using the additive and multiplicative weights did not work well. It
is remarkable that no vertices of the matrix arm and the membrane arm are mixed.
Beside that, the N and Q module are unresolved and the N module is further split.
As seen for rCI of Thermus thermophilus, the detection of modules belonging to the
membrane arm seems to be more difficult by clustering, because the modules are
completely unresolved.

The partition without edge weights performed better, because all vertices of the
matrix arm are aggregated in cluster 1 without splitting up the N module (see Figure
26a). Cluster 2 contains vertices only of the PP module and cluster 3 contains all
vertices of the PD module. Cluster 3 contains vertices that should be part of cluster
2 according to the modules.

The partition for absolute edge weights (see Figure 26b) performed best. Three
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of four modules are correctly identified: N, Q and PD. The PP module is split across
the two clusters 3 and 4.

Once again, the difference between the modularity of the partitions according to
the modules and the clusters is highest for the multiplicative and in this case lowest
for the absolute weight (see Table 12). Ideally, the difference is zero meaning the
partition according to the modules produces the highest modularity. The partition
for the absolute weight is the best and the difference of the modularities is the lowest.
This suggests that the absolute weight is the best choice for identifying modules, so
far.

Table 12: Modularity and difference of modularity for different partitions and weight
types for human respiratory complex I [20] (PDB 5xtd).

Edge weight type Predicted clusters Modules Difference
No weight 0.46043 0.41349 0.04694
Absolute 0.54159 0.53872 0.00287
Additive 0.57890 0.54698 0.03192
Multiplicative 0.62161 0.57026 0.05135

We computed the modularity of the partitions according to the modules for the
different possible assignments of A12 and S6 to the Q and N module (see Table
A3). The modularity is highest for the assignment of A12 and S6 to the Q module
for all types of edge weight. The biggest difference occurs for the multiplicative
normalization with a modularity of 0.57026 for assigning A12 and S6 to the Q module
and 0.53668 for assigning A12 to the N and S6 to the Q module. Structurally, it
makes sense that both subunits are shared between the two modules (see Figure 27).
Considering the modularities justifies assigning both subunits to the Q module for
the comparison of partitions and underlines the clustering for the absolute weight
where both were assigned to the Q module.

The subunits V1-3 were put in a separate cluster for the additive and multiplicative
edge weights (see Figures 26c and 26d). The edges between these vertices have high
edge weights and considerably lower edge weights to the vertices of the remaining
N module. Splitting the N module in these two parts makes sense, because the
submodules can be seen well in the structure (see Figure 27). Using clustering
algorithms, it is always important to consider the resolution of clusters. The algorithm
may split or merge desirable clusters, in our case the modules N, Q, PP and PD. The
result may not be wrong only because it is not desired as can bee seen for splitting
the N module, which makes sense structurally. The clustering using absolute edge
weights identified the N module as a whole. We did not further investigate the
resolution of clusters for different algorithms or types of edge weights.
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(a) Partition without edge weights.

(b) Partition for absolute edge weights.
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(c) Partition for additive edge weights.

(d) Partition for multiplicative edge weights.

Figure 26: Visualization of the partition of the Complex Graph of respiratory complex
I of Homo sapiens [20] (PDB 5xtd). Vertices correspond to subunits and edges to
spatial neighborhoods. Vertices are labeled with the abbreviated gene names of the
subunits. Vertices belonging to the same module are grouped together and labeled (N,
Q, PP, PD). Two vertices are shared between the N and Q module (N/Q). Vertices
belonging to the same cluster are colored the same and labeled with numbers. The
edge label and width correspond to (b) absolute, (c) additive and (d) multiplicative
edge weights.
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Figure 27: Visualization of the structure of human respiratory complex I [20] (PDB
5xtd). Protein chains are depicted in cartoon style and ligands as ball-and-stick
representation. Subunits V1-3 (green) and A2, S1 and S4 (cyan) form the N module.
Subunits A12 and S6 (blue) are shared between the N and Q module (orange).
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3.4.3 Supercomplex I1III2IV1 of Homo sapiens

5xth contains coordinates of multiple complexes, I, III and IV. Moreover, two copies
of complex III are present. Complex I can be further split into modules (see Section
2.10.4). In the context of clustering, it is unclear which clusters to expect for 5xth.
One expectation is that each cluster corresponds to one complex. In this case, the
cluster of complex I would be larger with its 45 subunits compared to 13 subunits of
complex IV and 11 of complex III. Another expectation is that complex I is split
into clusters corresponding to its modules. For splitting complex I into modules, we
treated S6 and A12 as part of the Q module as a consequence of the analysis of the
clustering of the CG of complex I (see Section 3.4.2).

We applied graph clustering to the CG of 5xth using no edge weights, absolute,
additive and multiplicative edge weights. As for 4hea and 5xtd, we computed
the partitions of the optimal modularity additional to the partitions produced by
the Leiden algorithm using the function partition_opt_modularity of igraph (see
Section 2.7). Surprisingly, the partitions of the Leiden algorithm for absolute, additive
and multiplicative edge weights did not yield the best modularity. For the absolute
weight, one vertex was assigned to a different cluster, for the additive weight three
vertices and for the multiplicative six vertices.

The partition with optimal modularity achieved a modularity higher by 0.00058,
0.00019 and 1 ∗ 10−16 than the partition of the Leiden algorithm for the absolute,
additive and multiplicative edge weight, respectively. The differences are extremely
small considering the range of the modularity of [-0.5,1]. With such small differences,
both partitions and possibly more with comparable modularities might be considered
as interesting candidates and could be further investigated. We focused on the
partitions with the optimal modularity (see Figure 28).

In the partition using the edges without weights, only complex IV is identified as
a cluster, cluster 4 (see Figure 28a). Cluster 5 contains both copies of complex III.
Complex I is split across three clusters. The partition of complex I in 5xth equals
the partition of 5xtd using the edges without weights. This is not surprising but
also not necessarily to be expected. Theoretically, vertices of other complexes can
be assigned to clusters of complex I. Aside from that, differences in the structure
that can occur between different experiments may lead to different edges. In this
case, the only difference between the set of edges is that an edge between A5 and
A10 is present for 5xtd and not for 5xth. Despite the difference in the edge and the
additional vertices of the other complexes in 5xth, the partition of complex I is the
same.

The CG shows that the reason that complex IV is correctly identified is that it is
connected only to complex I and only by three edges. The vertices of complex IV
are internally well connected. From the two copies of complex III, only complex III-1
is connected to other complexes and only to complex I by four edges. The copies
of complex III are connected with each other by twelve edges. Because of this, the
copies of complex III can be separated from the other complexes, but seem hard to
distinguish from each other using no edge weights.

The partitions for the absolute and additive edge weights are the same (see
Figure 28b). Complex IV and both copies of complex III are correctly identified as
separate clusters, respectively. This indicates that edge weights help distinguishing
the two copies of complex III suggesting that the intra-complex edges have higher
edge weights than the inter-complex edges.

Once again, complex I is split in the three clusters, but this time, only A11 is
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falsely assigned to the cluster of the PD module instead of to the PP module. As
for using the edges without weights, the modules of the matrix arm, N and Q, are
aggregated in the combined cluster 1. While the partition of complex I using the
edges without weights is identical between 5xth and 5xtd, the partitions for absolute
and additive edge weights differ. For 5xtd, the clustering using absolute edge weights
worked best, as it was able to identify the N, Q and PD modules. Interestingly, we
did not obtain such a good result for complex I of 5xth. Differences in the structure
caused differences in the weights of the CG resulting in a different partition. The
well-known resolution limit of the modularity might be another factor. We need a
deeper analysis of the clustering and the partition to give a conclusive answer.

The partition for the multiplicative edge weights performed worst in identifying
complexes or the modules of complex I producing a total of nine clusters when seven
were expected. It is the only partition where complex IV is not identified as one
cluster but split into two. The copies of complex III are distinguished making the
partition better in this aspect than when using the edges without weights.

Complex I is split into five clusters with no cluster corresponding to a module.
The vertices V1, V2 and V3 form a separate cluster as we observed for the clustering
of 5xtd using additive and multiplicative edge weights. Cluster 8 contains vertices
of the PP and PD module which is similar to the cluster 3 of the partition using
additive and multiplicative edge weights for 5xtd.

We investigated the modularity of the predicted partitions compared to the
desired partitions (see Table 13). We investigated both approaches where all clusters
correspond to one complex and where complex I is further split into modules. The
differences of the modularity between the predicted clusters and the approach focusing
on complexes is much higher with values between 0.16647 and 0.18171 compared to
the approach of splitting complex I with values between 0.00921 and 0.07046. This
makes it much more likely to identify modules as well instead of only complexes when
clustering the CG of such a large supercomplex. Ideally, the difference becomes zero
which would allow us to identify the desired partition by graph clustering using the
modularity. For this goal, the additive edge weight performs best, but only slightly
better than the absolute edge weight.

Table 13: Modularity and difference of modularity for different partitions and weight
types for human respiratory supercomplex I1III2IV1 [20] (PDB 5xth). Modularity of
predicted clusters is compared to the partition where each cluster corresponds to
one complex and where complex I is additionally split into modules.

Modularity Differences
Edge weight type Predicted clusters Complexes Modules Complexes Modules
No weight 0.64018 0.45848 0.56972 0.18171 0.07046
Absolute 0.71120 0.54349 0.70099 0.16771 0.01021
Additive 0.72378 0.54425 0.71457 0.17953 0.00921
Multiplicative 0.7548 0.58833 0.73889 0.16647 0.01590

Conclusion

From the partitions and modularities, we draw the conclusion that we can expect
clustering algorithms to identify the complexes III and IV as well as the modules
of complex I as clusters. This should be taken into account when performing
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clustering on structures where single complexes or modules are unknown. The
partition might contain a mix of clusters that correspond to complexes or to modules
of a complex. After all, subunits are building blocks that assemble for different
tasks. Different hierarchies such as module and complex are assigned by scientists
based on experiments. Breaking it down, graph clustering of a CG identifies clusters
that may or may not fit into this hierarchy. Our goal was to investigate if graph
clustering is able to identify modules and complexes in principle and how different
edge weight types perform. From our limited analysis, we can say that using edge
weights improves the performance and that the absolute edge weight consistently
produced the partition we deemed best. Another consequence from our analysis is
that the Leiden algorithm may fail to find the partition with the optimal modularity,
even though only by a small deviation. However, CGs are small enough to compute
the partition with the optimal modularity in a few seconds.
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(a) Partition without edge weights.

(b) Partition for absolute and additive edge weights.



74 3 RESULTS AND DISCUSSION

(c) Partition for multiplicative edge weights.

Figure 28: Visualization of the partition of the Complex Graph of human respiratory
supercomplex I1III2IV1 [20] (PDB 5xth). Vertices correspond to subunits and edges
to spatial neighborhoods. Vertices are labeled with the abbreviated gene names of
the subunits. Vertices belonging to the same complex (III-1, III-2 and IV) or module
in the case of complex I (N, Q, PP, PD) are grouped together and labeled. Two
vertices are shared between the N and Q module (N/Q). Vertices belonging to the
same cluster are colored the same and labeled with numbers. The edge labels and
widths correspond to the (b) absolute and (c) multiplicative edge weights.
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3.5 Prediction of the assembly pathway

3.5.1 Agglomerative clustering

Rationale of the method

Protein complexes assemble along an ordered pathway (see Section 2.4). Experimen-
tally determining the assembly pathway demands time-consuming and ressource-
consuming experiments. Computational methods can help narrowing down the search
space by creating hypotheses of the assembly pathway.

During assembly, subunits form a subcomplex and share an interface. We propose
that the order of the assembly can be inferred from the interfaces of the final assembly
product. Subunits that share a large interface assemble earlier in the pathway. We
use the Euclidean distances formalized in the edge weight of an edge between two
subunits in a CG (see Section 2.8.3) as a measure of the interface. We apply a
normalization of the edge weights to account for different lengths of subunits (see
Section 3.3).

Method

We apply agglomerative clustering (see Section 2.1.4) to predict the assembly pathway
of a protein complex. The vertices of a CG are the clusters containing single chains
at the start of the clustering. The edge weight, either absolute or normalized, is the
measure of similarity of two vertices. Higher edge weights lead to an earlier merging
of clusters.

We did not use a typical linkage function, because when modelling edge weights
as contacts between subunits they behave differently than could be expected when
using typical linkage functions. Linkage functions define which distance is assigned
to two non-singleton clusters, depending on all distances of the single members of
the respective clusters. In our approach, we merge vertices adjacent to the edge with
highest edge weights. After merging, multiple edges may exist between two vertices.

Consider the following example: Vertices A and B are merged, because they have
the highest edge weight. There are two edges, {A,C} and {B,C}, with absolute edge
weights 1 and 2, respectively. After merging, there are two edges between C and
the newly merged cluster, {{A,B},C}, which are merged to one edge with weight
3. If normalized edge weights are applied, the normalization is recalculated after
merging. For the lengths of subunits of merged clusters, the summed-up lengths of
the individual subunits is used.

In short, merged clusters correspond to subcomplexes. The measure of similarity
between subcomplexes is the summed-up number of contacts between the individual
subunits of the respective subcomplexes so that the complete interface between
the subcomplexes is considered. The output of the agglomerative clustering is a
dendrogram representing the assembly pathway (see Section 2.4).

Implementation

We implemented the agglomerative clustering in PTGLgraphComputation (see Sec-
tion 2.8) in the class AgglomerativeClustering. At each step, the merged two
clusters are added to an object of the class ClusteringResult. The implementation
is straightforward following the steps of the described methods (see Algorithm 3).
We focused on an implementation that is fast and does not need much memory.
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Algorithm 3 Agglomerative clustering of the vertices of a Complex Graph
1: E ← list of edges
2: while E is not empty do
3: Sort E by decreasing edge weight
4: merge_edge← E[0] in case of greedy method
5: Add vertices v1 and v2 of merge_edge to clustering result
6: for e in E do
7: if v1 or v2 adjacent to e then
8: Update chain length as sum of chain lengths of v1 and v2
9: Merge edge if duplicate

10: end if
11: end for
12: end while

The time-consuming steps are finding the highest edge weight at each step as
well as possibly merging edges and recomputing the normalization after merging
two clusters. Because of merging edges, finding the highest edge weight needs to be
performed at each step instead of just sorting once and iterating through the list.
With overriden functions compareTo, hashCode and equals, we could use Java’s
pre-implemented and well-performing function Collections.sort.

The data structure of the clustering result is the memory-intensive part. We
saved memory by using a list as the most basic data structure for this purpose. We
simply save the indices of the representatives of the two clusters merged at a step.
The representative of a cluster is always the vertex with the lowest ID. For n vertices,
we have n− 1 steps of agglomerative clustering. For each step, we save two integers.
To output the clustering result as a Newick string (see Section 2.1.3), we need to
backtrack from the root to the leaves and build the string. The backtracking costs
runtime, but runs in linear time and the basic data structure helps reducing the
required memory.

We tested the runtime for the largest protein structure deposited in the PDB:
3j3q. For protein 3j3q, we tested the runtime twice on one core of an Intel i5-9500
at 3 GHz. The runtimes for the assembly prediction for all weight types and the
output as Newick String were 4,065 and 7,527 ms. Compared to the total runtime of
PTGLgraphComputation for protein 3j3q of eight and a half hours (see Section 3.1),
the additional runtime is neglectable. Because the runtime is already quite low for
the largest structure of the PDB, we did not further investigate runtimes for different
structures.

3.5.2 Comparison to state-of-the-art methods

Introduction

We tested our assembly prediction by agglomerative clustering of the vertices of the
CG against state-of-the-art methods (see Section 2.4). We computed all CGs of the
proteins of the data set (see Section 2.9). If the asymmetric unit was incomplete, we
used the biological assembly (see Section 2.6.1). If the asymmetric unit contained
multiple copies of the subunits, we ignored the additional copies. We predicted the
assembly pathways by agglomerative clustering using additive edge weights in the
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CG (see Table 14). We only used additive edge weights, because of the experience
from previous results.

Table 14: Overview of the data set of Peterson et al. [61]. For each PDB structure,
the number of subunits (#s) is given. For each structure, the assembly pathway
proposed in the literature and predicted by agglomerative clustering is described in
Newick format. The subunits are referred to by their PDB chain IDs or by their
protein names (*). Homologous subunits are indicated by a prime (′) or numbers in
superscript. An arrow (←) indicates that the predicted pathway exactly matches the
proposed pathway. For non-binary pathways (**), all possible binary pathways are
considered to be correct. The predicted assembly pathway is considered as partially
correct if at least one subcomplex was correctly predicted.

PDB ID
(superseded) #s Proposed assembly pathway Predicted assembly pathway Correct No. of correct

subcomplexes
Partially
correct

1a0r

3

((B,G),P); ← yes 1/1 yes
1ikn ((A,C),D); (A,(C,D)); no 0/1 no
1vcb ((A,B),C); ← yes 1/1 yes
2aze ((A,B),C); ← yes 1/1 yes
1es7

4

(((A,A′),B),B′); ← yes 2/2 yes
1gpq (((A,A′),C),C′); ← yes 2/2 yes
2e9x (((B,D),A),C); ((A,C),(B,D)); no 1/2 yes
1kf6 (((C,D),B),A); ← yes 2/2 yes
2bq1 ((E,E′),(I,I′); ← yes 2/2 yes
2qsp ((A,B),(A′,B′)); ← yes 2/2 yes
3fh6 ((A,A′),F,G); ** ((F,G),(A,A′)); yes 2/2 yes
1hez 5 ((A,B),((A′,B′),E)); ← yes 3/3 yes
1w88 ((A,A′,B,B′),I); ** (((A,(B,B′)),A′),I); yes 3/3 yes
1du3

6

(((((D,D′),D′′),A),A′),A′′); ← yes 4/4 yes
1rlb (((A,A′),(A′′,A′′′),E),E′); ← yes 4/4 yes
1s5b (((((B1,B2),B3),A),B4),B5); * (A,((B3,(B1,B2)),(B4,B5))); no 2/4 yes
3vyt ((C,D),((C′,D′),(E,E′))); * ← yes 4/4 yes
4hi0 ((F,H),(F′,H′)),(G,G′); * (((F,H),(G,G′)),(F′,H′)); no 3/4 yes
4igc (4yg2) ((((A,A′),C),(D,E)),X); * (((A,A′),((C,D),X)),E); no 1/4 yes
3uku 7 (((C,G),(D,F),A),B,E) ((((A,(D,F)),(B,G)),C),E); no 3/5 yes
4gwp ((A,B,D),C,G),(E,F)); ** ((A,D),((B,(C,(E,F))),G)); no 2/5 yes
Total 14/21 45/58 20/21

Some of the assembly pathways proposed in the literature are non-binary. For the
comparison, we deemed all assembly pathways correct that agree with the non-binary
pathway. For example, for pyruvate dehydrogenase E1 bound to binding domain
of E2 [4] (1w88), the proposed pathway was "((A,A′,B,B′),I);". This meant that all
possible binary dendrograms, such as "((A,A′),(B,B′)) or "(((A,B),A′),B′)", for the
non-binary part "(A,A′,B,B′)" were considered as correct. An incorrect pathway
would be, for example, if A and I assemble first, because based on the proposed
pathway two copies of A and two copies of B need to assemble before I joins. If
multiple copies of a subunit exist, the copies are not differentiated. For example, A
and A′ are interchangeable. If necessary we transformed the output and relabeled
chain IDs according to the copies.

Peterson et al. [61] have applied three different measurements to evaluate a
prediction and the proposed pathway. A straightforward approach was to look for
a correct prediction and assign right or wrong. Counting the number of correct
subcomplexes allowed more differentiation. For a complex of n subunits, there
are n− 2 subcomplexes in total. For non-binary pathways, it was not intuitive to
understand how correct subcomplexes are counted. For example, for the mediator
head module bound to the carboxy-terminal domain of RNA polymerase II [11]



78 3 RESULTS AND DISCUSSION

(4gwp), Peterson et al. have described the proposed pathway with the string "ABD
> ABCDG + EF > ABCDEFG". One could assume that the subcomplexes are
"ABD", "ABCDG" and "EF", resulting in a total of three subcomplexes but for seven
subunits, there are five subcomplexes according to the formula above. The difference
can be seen in dendrograms by resolving non-binary parts (see Figure 29). The step
"ABD", for example, accounted for two subcomplexes instead of a single one. In a
dendrogram, a subcomplex refers to an inner vertex. The last measurement assigned
a pathway whether it is partially correct. A pathway is deemed partially correct if at
least one subcomplex is correct.

Figure 29: Possible assembly pathways that agree with the proposed assembly
pathway of the mediator head module bound to carboxy-terminal domain of RNA
polymerase II [11] (PDB 4gwp). The subunits are labeled according to their chain ID.
Arrows indicate which subunits assemble from top to bottom. All subcomplexes are
enumerated. Cyan boxes group together subcomplexes, where multiple subcomplexes
are possible which together count as one subcomplex for the number of subcomplexes.

Results

Correct prediction Our predictions are correct in 14 out of 21 cases. We achieved
no correct prediction for any of the two complexes of seven subunits. For the complexes
of three to six subunits, we achieved both correct and incorrect predictions with the
exception of five subunits where the assembly pathways for both complexes were
correct. The success rates, regarding the number of subunits from two to seven, are
75 %, 85.74 %, 100 %, 50 %, 0%. The sample is too small to draw a final conclusion,
but it seems that the success rate drops with an increasing number of subunits.

This is not surprising, because the number of possible dendrograms increases
with the number of subunits. For example, for three distinct subunits, there are
three possible dendrograms while there are 10,395 possible dendrograms for seven
distinct subunits (see Section 2.1.3). It is much more likely to predict the correct
pathway by chance for smaller complexes.

According to Peterson et al. [61], subcomplex BSA has performed better than
pairwise BSA. Subcomplex BSA has achieved 13 correct predictions. From the
different tested strategies for Path-LZerD, the low root mean square deviation
(RMSD) decoy with the scoring function Shape, and the lowest RMSD with the
scoring function OPUS-PSP have performed best, achieving eleven correct predictions.
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Number of correct subcomplexes Our predictions were correct for 45 of 58
subcomplexes, overall. The number of subcomplexes increases with the number of
subunits per complex. While for three subunits, the pathway is either correct or
not resulting in one or zero correct subcomplexes, for seven subunits, there are five
subcomplexes where each might be the correct one. This allows for a nuanced analysis
of the result for complexes of more than three subunits besides just assigning correct
or incorrect. For complexes of three, four and five subunits, most predictions were
correct, thus, resulting in the maximum number of correctly predicted subcomplexes.
For three subunits, IκBα/NF-κB complex [1] (1ikn) was not correct resulting in zero
of one correct subcomplexes. For four subunits, human GINS core complex [5] (2e9x)
was not correct, but one of two subcomplexes was correctly predicted. Therefore, 2e9x
is the first case for our method, where the measurement of subcomplexes provides
further insights than just checking if a pathway is correct or not.

For six subunits, there are three correct predictions resulting in four of four
correct subcomplexes. Three of the predictions are not correct, but have two, three
and one correct subcomplexes, respectively. The two complexes of seven subunits
have three and two of five correctly predicted subcomplexes, respectively.

Peterson et al. have reported 42 subcomplexes as correct for subcomplex BSA. For
Path-LZerD, the consensus strategy with the scoring function GOAP has performed
best achieving 37 correct subcomplexes.

Partially correct prediction Considering the last measurement, our predictions
were partially correct in 20 of 21 cases. The only complex, in which our prediction
was not partially correct, is 1ikn, because the only one subcomplex was wrongly
predicted. It is not surprising that our method scores almost 100 % considering
partial correctness which is a rather weak measurement. One correctly predicted
subcomplex per complex would be sufficient to score 100 %, but would still mean a
poor performance for larger complexes with more subcomplexes.

Peterson et al. have reported 18 partially correct predictions for subcomplex BSA.
Again, the best strategy and scoring function for Path-LZerD has been consensus
and GOAP, respectively. Path-LZerD has been partially correct in 17 cases.

Comparison of methods Our prediction of the assembly pathway, using agglom-
erative clustering of the CG with additive weights, outperformed the other methods
in all three measurements: we achieved the most correct predictions, the highest
number of correct subcomplexes and the most partially correct predictions. Please
note that, we always compared our method to the best performing strategy and
scoring function per measurement, if applicable. This means that the gap between
the methods may be higher when comparing with a certain strategy and scoring
function. For a user of a software, it is usually unknown beforehand which strategy
or scoring function would work best.

Peterson et al. have differentiated between strategies that need the structure of
the final complex (non-blind) and those that do not (blind) (see Section 2.4). The
advantage of blind strategies is that they can be applied when the structure of the
final complex is unknown. The consensus strategy is blind while low RMSD decoy,
lowest RMSD and subcomplex BSA are non-blind. Our approach can be considered
non-blind, because the structure of the complex is required to compute the CG.

Peterson et al. have reported runtimes for eight selected structures of three,
four, five and six subunits. The runtimes range between 364.6 and 1,816.4 central
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processing unit (CPU) hours on an Intel Xeon-E5 CPU with 126 or 96 GB. For the
same structures, our runtimes range from 3 to 15 seconds using one core of an Intel
i5-9500 at 3 GHz and by default up to 1 GB of memory. Note that, Path-LZerD can
be run in parallel on multiple cores reducing the runtime. For our runtimes, we did
not measure the CPU time but the actual runtime. The actual runtime for serialized
jobs is greater than or equal to the CPU time, because of time for input, output and
waiting time. The difference can be neglected, because of low runtimes in the range
of seconds.

With runtimes of multiple days even when parallelized, it becomes unfeasible
to run Path-LZerD for large protein complexes of more than seven subunits. We
optimized PTGL to run fast even for large structures (see Section 3.1). Predicting
the assembly pathway of a much larger structure than eight subunits will be explored
in the next subsection (see Section 3.5.3).

Exploring examples

IκBα/NF-κB complex (1ikn) 1ikn is the only structure where our prediction
was not partially correct. The proposed pathway is "((A,C),D)", whereas our method
predicted that subunits C and D assemble first. We noticed that the additive edge
weights are extremely close to each other (see Table 15). We also noticed that some
of the residues are missing in the structure (see Figure 30) [130].

Table 15: Absolute, additive and additive corrected for missing residues edge weights
of the Complex Graph for IκBα/NF-κB complex [1] (PDB 1ikn).

Vertex 1 Vertex 2 Absolute Additive Corrected additive
A C 27 0.06818 0.06666
A D 34 0.06814 0.06513
C D 23 0.06991 0.06479

Figure 30: Visualization of the structure of IκBα/NF-κB complex [1] (PDB 1ikn).
Protein chains are depicted in cartoon style. Chains A, B and D are colored green,
cyan and magenta, respectively. Unresolved residues inside a chain are depicted as
dashed lines and marked with a red circle.

When we corrected the additive edge weights with the number of unmodeled
residues, the weight between subunits A and C was the highest. This means that
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the assembly would be correct if the residues were modeled. However, while some
unmodeled residues are clearly in parts, where they would not cause new contacts,
some residues at the N- and C-termini of the chains may exhibit new contacts. It is
unclear how this would influence the edge weight and, finally, the assembly. This
shows again how important complete structures are.

Human GINS core complex (2e9x) 2e9x is the only complex of four subunits,
where our prediction was not correct. The proposed pathway is "(((B,D),A),C)", and
our prediction is "((A,C),(B,D))". The subcomplex "(B,D)" is correct in that our
prediction is partially correct. Because the edge between A and C has the highest
edge weight (see Table 16), these two vertices are clustered in the first step making it
impossible that A assembles with a subcomplex of B and D. If the vertices B and D
are clustered manually in the first step, A has the chance to be added next. Since B
and D are merged, the absolute number of contacts between the merged vertex {B,D}
and A increases. At the same time, the length is combined and used for the additive
normalization, effectively decreasing the edge weight. In the end, the subunits A and
C are still predicted to assemble next.

Figure 31: Visualization of the structure of human GINS core complex [5] (PDB
2e9x). Protein chains are depicted in cartoon style and ligands either in ball-and-stick
representation. Chains A, B, C and D are colored green, cyan, magenta and yellow,
respectively. Black lines approximately cut the complex in its subunits.

When taking a look at the structure (see Figure 31), it became clear what could
already be seen in the edge weights of the CG: The subunits arrange in a circular way.
This means that each subunit has a strong interface with the left and right neighbor
but only a weak interface with the diagonal neighbor. This leads to just a moderate
increase of the absolute number of contacts with subunit A, when subunits B and D
are merged, because the majority of contacts still comes from the interface of A and
D. For complexes with a circular arrangement, it is possible that our method favors
balanced dendrograms in contrast to the proposed pathway which is unbalanced. It
seems that the rationale of our assembly prediction does not hold for this complex,
because the assembly order cannot be inferred from the number of contacts in the
final complex.
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Table 16: Absolute and additive edge weights of the Complex Graph for human
GINS core complex [5] (PDB 2e9x).

Vertex 1 Vertex 2 Absolute Additive
A B 3 0.0094
A C 67 0.203
A D 56 0.1642
B C 57 0.1579
B D 70 0.1882
C D 6 0.0157
A {B,D} 59 0.1143

Cholera holotoxin with an A subunit (1s5b) Cholera holotoxin with an A
subunit [3] (1s5b) is one of the complexes of six subunits where our prediction was
not correct. 1s5b consists of five homologous subunits (B subunits) forming a ring
and one additional subunit (A subunit) piercing the ring (see Figures 32a and 32b).
1s5b is an interesting example, because it has been reported that three copies of the B
subunit assemble first with subunit A joining afterwards and only then the remaining
two copies of the B subunit assemble [61, 131]. In Newick format, the representation
of the pathway is: "(((((B1,B2),B3),A),B4),B5)". In our prediction, all copies of the
subunit B assemble before subunit A joins: "(A,((B3,(B1,B2)),(B4,B5)))".

The interfaces of the homopentamer ring are identical (see Figure 32c). With
identical interfaces, it seems intuitive that the rest of the complex is predicted to
assemble either before or after, but not in between the assembly of the B subunits.
However, this is not necessarily the case, because the interface between subunits of B
and subunit A increases once subunits of B assemble. It is possible that three copies
of subunit B assemble first and consequently the interface between them and subunit
A is larger than between them and another copy of B. Three copies of subunit B,
the chains E, F and G, have a stronger interface with A than the other two copies of
subunit B, the chains D and H (see Table 17).

Table 17: Absolute and additive weights of selected edges of the Complex Graph
for cholera holotoxin with an A subunit [3] (PDB 1s5b). Vertices are labeled by the
name of the subunit and their chain ID in the case of copies of the B subunit.

Vertex 1 Vertex 2 Absolute Additive
A B (D) 2 0.0064
A B (E) 12 0.0386
A B (F) 15 0.0482
A B (G) 17 0.0547
A B (H) 7 0.0225
B (D) B (E) 53 0.2573
B (D) B (H) 53 0.2573
B (G) B (H) 56 0.2718
A B3 (E,F,G) 44 0.0851

In the greedy agglomerative clustering using additive weights, chains E and F are
assembled first, joined by D afterwards. Using absolute weights, the order matches
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the proposed assembly pathway: chains E and F assemble first joined by G after that.
Subunit A is still not added to {E,F,G} neither for absolute nor for additive weights,
because the edge weight is too low (see Table 17). For the B3 subcomplex, the effect
of the additive normalization becomes visible. The combined length influences the
weight and decreases it much more compared to the other copies of the B subunit.

During visual inspection, we noticed that 17 contacts between subunit A and
chain with ID G seemed lower than expected (see Figure 32d). Note that, "contacts"
refers to the number of residue contacts. This means that there might be many atom
contacts, but if they are all established between two residues, they count as only one
residue contact. The helix of subunit A goes right through the ring of B subunits and
should have a considerably higher number of contacts with the surrounding subunits.
This raised the question of whether the contact threshold of 4 Å (see Section 2.8.2)
is suitable to correctly capture the interfaces.

To predict the proposed pathway with our method, the edge weight of {E,F,G}-
{A} needs to be higher than any other edge weight after assembly of the chains E,
F and G. We tracked the edge weight of {E,F,G}-{A} and competitive edges while
increasing the distance threshold in steps of 0.2 Å (see Figure 33). At 4 Å, the default
setting, the edge {E,F,G}-{A} has a lower weight than the competitive edges. With
the distance threshold increasing, the edge weights increase because more contacts
are defined.

The relation between the edge weights stays the same for the additive edge
weight (see Figure 33b). This means that the assembly order is independent of the
distance threshold. Interestingly, the relation between the edge weights changes for
the absolute edge weights (see Figure 33a). At 6 Å, the absolute edge weight of
{E,F,G}-{A} is even or greater than all the competitive edge weights for the first time.
From 6.6 to 6.8 Å, the absolute weight jumps from 169 to 195 while the competitive
edge weights increase by less than 20. At 7 Å, the absolute weight of {E,F,G}-{A} is
higher by 11 than any of the competitive edge weights.

With a threshold of 7 Å and using absolute edge weights, finding the proposed
assembly pathway with our method is possible. Interestingly, the number of contacts
rises differently for different interfaces, when increasing the distance threshold.
However, a threshold of 7 Å is so large that contacts exist with residues that are
spatially behind another residue. It remains unclear if this makes sense in general.
Optimizing parameters to get the desired outcome is generally not a good idea,
because the user cannot know what parameters to apply beforehand. Nevertheless,
we could show that our method, in principle, could find the correct assembly pathway
even for an example this hard.

Mediator head module bound to the carboxy-terminal domain of RNA
polymerase II (PDB 4gwp) 4gwp is one of the two complexes of seven subunits,
for which our method could not predict the correct assembly pathway. In the
proposed assembly pathway, subunits A, B and D assemble in no specific order
followed by the joining of subunits C and G in no specific order. Subunits E and F
assemble separately and join the other subunits in the last step. In our prediction,
two subcomplexes are correct: the assembly of A and D as well as the assembly of E
and F. In the next steps, first subunit C and then B join the subcomplex {E,F}.

In the complete structure (see Figure 34e), the helix bundle formed by the
subunits A, B and D can be seen. It makes sense that the subunits assemble, because
they are congregated. One question is why subunit B was not predicted to assemble
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with subcomplex {A,D} and another why subunit C was predicted to assemble with
subcomplex {E,F}.

We visualized the course of the predicted assembly (see Figure 34 a-e). The
subunits E and F assemble first which makes sense looking at their extensive interface
(see Figure 34a). However, the next step is already problematic: C assembles with
the subcomplex of E and F. This cannot be explained with the interface between
these subunits (see Figure 34b). The only region in contact is a helix of subunit C
and a loop of subunit E. Despite an extensive local interface (see Figure 34f), the
subunits do not interact globally. Note that, we discuss the assembly based on the
final structure and cannot include the formation of substructures during the assembly
process that differ from the final structure.

The small interface between subunit C and E is enough to make the edge weight
the highest one (see Table 18). To get the prediction right, subunit C could either
assemble with the subcomplex {A,B,D}, which is not yet assembled at this point in
time of the assembly prediction, or with subunit G. The edge weight between C and
{E,F} is higher than between C and G for the absolute and additive weight. This is
interesting, because usually the additive weight of subcomplexes decreases due to the
increasing lengths of the participating subunits. From the experience with 1s5b, we
tested increasing the contact threshold to 7 Å. The edge weights flipped such that,
now, the weight between the subunits C and G was higher, at least for the additive
normalization. At a contact threshold of 7 Å and when using the additive edge
weight, the assembly prediction became correct fixing not only the case of subunits
C and G but also of A, B and D.

Table 18: Absolute and additive weights of selected edges of the Complex Graph for
the mediator head module bound to carboxy-terminal domain of RNA polymerase
II [11] (PDB 4gwp). Edge weights are shown for a contact threshold of 4 and 7
Ångström (Å). Vertices are labeled by the chain ID of the subunit. One edge indicated
by a dashes instead of weights that is not existing is included to highlight that the
edge is not present.

4 Å 7 Å
Vertex 1 Vertex 2 Absolute Additive Absolute Additive
C E 34 0.0778 153 0.3501
C F - - - -
C {E,F} 34 0.0526 153 0.2368
C G 14 0.0395 126 0.3559
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(a) Whole complex.
(b) Whole complex with transpar-
ent ring.

(c) Ring of B subunits.
(d) Interface between chains A and G. Atoms
shown in line style. Orange dashed lines depict
distances between the subunits less than or
equal to 4 Å.

Figure 32: Visualization of the structure of cholera holotoxin with an A subunit [3]
(PDB 1s5b). Protein chains are depicted in cartoon style. Chains A, D, E, F, G and
H are colored green, cyan, magenta, yellow, grey and orange, respectively.
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(a) Absolute edge weights.

(b) Additive edge weights.

Figure 33: Plot of the edge weights of selected edges of the Complex Graph of cholera
holotoxin with an A subunit [3] (PDB 1s5b) against an increasing distance threshold.
The vertices are labeled according to their chain IDs. For merged vertices, all single
chain IDs are enumerated. Distance threshold is given in Ångström.
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(a) (b)

(c) (d)

(e)

(f) Interface between subunits C and E. Atoms shown in line style. Orange dashed lines
depict distances between the subunits less than or equal to 4 Å.

Figure 34: Visualization of the structure of the mediator head module bound to
carboxy-terminal domain of RNA polymerase II [11] (PDB 4gwp). Protein chains
are depicted in cartoon style. Chains A, B, C, D, E, F and G are colored green, cyan,
magenta, yellow, grey and salmon, respectively. The subfigures a-e show the course
of a predicted assembly. In each subfigure a-e, the subunits that recently joined the
assembly are labeled.
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Conclusion

Predicting the assembly pathway by agglomerative clustering of the CG using additive
edge weights gave promising results. For the data set of 21 complexes, 14 pathways
were predicted correctly. The method achieved higher accuracies than the methods
BSA and Path-LZerD for different strategies and scoring functions we compared with
for all three measurements.

However, we doubt that the three measurements Peterson et al. [61] applied are
all equally suitable to rate methods for the assembly prediction against each other. A
correct prediction becomes harder the more subunits a complex contains. A partial
prediction on the other hand becomes easier the more subunits a complex contains.
In our opinion, the number of correctly predicted subcomplexes works best. The
number of correctly predicted subcomplexes still has drawbacks. For example, for
1w88, a method scores all subcomplexes if it simply adds subunit I in the end (see
Table 14). The order of the other subunits does not matter, because there is no order
proposed for them. So if the assembly is predicted to initiate with subunit I, the
method scores zero correct subcomplexes. In such a case, the measurement acts in a
binary way just like assigning correct or partially correct to the pathway.

Computing the CG of a complex and performing the agglomerative clustering is
extremely fast compared to the docking approach of Peterson et al. and takes only a
few seconds per complex. Path-LZerD can be run blindly without the structure of
the final complex. The fast runtime of the agglomerative clustering makes up for the
fact that a CG can only be computed for a resolved complex, because the complex
could be computationally predicted beforehand. We showed that completely modeled
structures are important and may influence the outcome. Modeling missing residues
may improve the prediction. We showed that increasing the contact threshold helped
in certain cases correcting the prediction, but want to point out that more insights
are needed.

3.5.3 Respiratory complex I of Homo sapiens

We used 5xtd (see Section 2.10.4) as a case study. We computed the CG (see Figure
A4) and predicted the assembly pathway by agglomerative clustering of the vertices
of the CG (see Figure 35). We computed an assembly pathway for each edge weight
type (see Section 3.3). We compared our predictions to two reference pathways that
have been proposed by Guerrero-Castillo et al. [84] (see Section 2.10.4).

In the following, we refer to a dendrogram based on a given edge weight type of
the CG as, for example, the absolute dendrogram. The subcomplexes of the reference
assembly pathways are labeled according to the structural modules even if the module
is not completely assembled at a given step. We differentiate between the completely
assembled modules of the structure (N, Q, PP and PD) and the subcomplexes of
the reference assembly pathway by prefixing "pre-" for subcomplexes of the assembly
pathway where ambiguity exists. For example, we refer to the N subcomplex in
the proposed assembly pathway as pre-N, but do not change the label of the PD-a
subcomplex, because the postfix "-a" already indicates that the PD-a subcomplex
does not refer to the complete module. We labeled inner vertices of the predicted
dendrograms with the names of the modules they correspond to, but this does not
mean that all subunits of the module are present in the labelled subcomplex. We did
not consider that the subunits with chain IDs G and X are copies of subunit AB1,
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because of the additional effort and neglectable influence on the number of existing
dendrograms and the CID.

Quantitative analysis

We compared the predicted assembly pathways using the different edge weight types
with the reference pathways using the nRF distance and CID (see Section 2.1.3).
The nRF distances between a prediction and reference 1 or 2 are the same for all
edge weight types, which allows no differentiation between the reference pathways.
The nRF distance is lowest for the additive dendrogram with a distance of 0.8276.
The next highest distance occurs for the square root dendrogram with a distance of
0.9310. The dendrograms of the remaining edge weight types have equal distances of
0.9655. The gap between the additive and the other dendrograms is considerably
higher, making this prediction the best considering the nRF distance.

Table 19: The normalized Robinson-Foulds (nRF) distance and clustering information
distance (CID) between predicted assembly pathways for different edge weight types
and reference pathways. A left arrow (←) indicates that the value is the same for
reference 1 and 2.

nRF CID
Ref. 1 Ref. 2 Ref. 1 Ref. 2

Absolute 0.9655 ← 0.8704 0.8732
Additive 0.8276 ← 0.6666 0.6777
Multiplicative 0.9655 ← 0.7173 0.7164
Square Root 0.931 ← 0.7639 0.7720
Logarithm 0.9655 ← 0.8833 0.8903
Minimum 0.9655 ← 0.7774 0.784

The CID allows differentiating between the reference pathways, because the
distances are different when comparing to reference 1 or 2. All differences comparing
to reference 1 are lower than comparing to reference 2 for a given edge weight type.
This may indicate that our assembly prediction tends to favor reference 1. However,
the differences are subtle, changing a digit at the second or third decimal place.

The lowest difference of 0.6666 occurs between the additive dendrogram and
reference 1. The highest difference occurs between the logarithm dendrogram with
a distance of 0.8833 compared to reference 1 and 0.8903 compared to reference 2.
Again, the additive dendrogram has a large gap to the other distances and can be
considered the best prediction.

It is remarkable that we only encountered four different nRF distances for six
different edge weight types, and that no differentiation is possible between reference
1 and 2. The nRF distance can only adapt n− 2 distinct values for n leaves. The
nRF distances assign one of the highest possible distances for five of six edge weight
types. The CID is much more sensitive allowing differentiation between all edge
weight types and the reference pathways.

Using the distance metrics, we were able to identify the best performing edge
weight type, but we could not evaluate the quality of the predicted pathway. Con-
sidered naively, the lowest CID of 0.6666 is closer to the maximum of 1 than to the
minimum of 0. This depends, however, on the landscape of the CID.
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(a) Absolute edge weight.

(b) Additive edge weight.

(c) Multiplicative edge weight.

(d) Square root edge weight.
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(e) Logarithm edge weight.

(f) Minimum edge weight.

Figure 35: Predicted assembly pathways using different edge weight types for human
respiratory complex I [20] (PDB 5xtd) represented as dendrograms. Leaves that
correspond to subunits are labeled with the abbreviated gene names and colored
according to the modules they are assigned to: N (red), Q (yellow), PP (dark blue)
and PD (lavender). The subunits that are shared between the N and Q module are
colored white. Inner vertices correspond to subcomplexes and the root to the final
protein complex. Selected inner vertices are labeled.
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Evaluation of the value of the clustering information distance

Random dendrograms To put the value of 0.6666 into perspective, we generated
random dendrograms with the leaf labels of 5xtd and compared these dendrograms
to the reference pathways using the nRF distance and the CID. We used the
method by Furnas [72] (see Section 2.1.3) to generate random dendrograms, because
the method draws uniformly from all existing dendrograms with the leaf labels of
5xtd. By drawing uniformly, the whole landscape of possible dendrograms is equally
represented. We implemented Furnas’ method in PTGLgraphComputation in a new
class RandomTreeGenerator.

We generated three million random dendrograms. Checking for duplicates either
demands high runtimes comparing each pair of dendrograms or large memory using
a data structure to organize already seen dendrograms. In theory, 3.9 ∗ 1066 different
dendrograms are possible (see Section 2.1.3). We did not check for duplicates, because
of the demands for resources and the low probability of duplicates.

We computed the nRF distance and the CID between each random dendrogram
and each of the reference pathways. There are only four different values of the
nRF distance comparing the random dendrograms to reference 1 or 2: 1.0, 0.9655,
0.931 and 0.8966. This shows the low sensitivity of the nRF distance that has been
reported [71].

There are random dendrograms with a higher nRF distance than any of the
predicted dendrograms and random dendrograms with the same distance as the
absolute, multiplicative, square root, logarithm and minimum dendrogram. The
additive dendrogram has a lower nRF distance than any of the random dendrograms.
Because of the low sensitivity of the nRF distance, we did not use it for further
analyses.

The CID on the other hand has a much better sensitivity with 583,770 distinct
values. The minimum, maximum and median of the CIDs vary only slightly when
comparing to reference 1 and 2 (see Table 20). The mean is the same. Because of
the similarity of the two, we focus on the discussion of reference 1 for simplicity.

Table 20: Statistics of the clustering information distances of three million random
dendrograms compared to reference 1 and 2. The clustering information distance is
a value between zero and one. A value of zero indicates equal dendrograms.

Minimum Maximum Mean Median
Reference 1 0.8169 0.9687 0.9269 0.9283
Reference 2 0.8161 0.9682 0.9269 0.9282

Three million random dendrograms are only a small fraction of 3.9 ∗ 1066 different
dendrograms. We used two approaches to monitor if the number of generated random
dendrograms is meaningful for investigating the landscape of the CID or if we should
generate more dendrograms. The first approach consecutively computes the mean
and the second the minimum. Thus, we computed the mean and minimum for all n
dendrograms using the dendrograms from d0 to di for the dendrogram di. For the
first approach, the idea is to stop when the mean does not change anymore. For
the second approach, the idea is to stop when the gaps between newly encountered
minima become larger.

The first approach was of limited use considering how many random dendrograms
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are enough (see Figure 36a). The consecutive mean ranges from 0.9249 to 0.9319.
This is only a small window of values. The consecutive mean reaches the mean of all
values, 0.9269, at dendrogram 270 the first time. At dendrogram 13,573, there is a
local high point of 0.9271. After that, the consecutive mean drops below the mean
of all values and approaches it from there on. According to this approach, a few ten
thousand random dendrograms would have been enough, because the consecutive
mean did not change considerably anymore.

(a) Consecutive mean plotted on the y-axis.

(b) Consecutive minimum plotted on the y-axis.

Figure 36: Consecutive statistics of the values of the clustering information distance
comparing three million random dendrograms to reference 1. The number of the
dendrogram is plotted on the x-axis divided by one million (1e6).

We found the second approach more useful to decide when to stop generating
dendrograms (see Figure 36b). The vertical lines of the plot show how much lower the
CID of the new minimum is and the horizontal lines how long the gaps are until a new
minimum is encountered. As expected, the gaps are extremely small at the beginning
with 2, 1, 36 and 16 required new dendrograms, for example, until a new minimum is
encountered. The gaps become larger quite fast with, for example, 139,544 required
dendrograms for a new minimum. For the last 1.9 million dendrograms, no new
dendrogram achieved a CID less than the minimum of 0.8169. The gap before that is
671,191 dendrograms. The CID decreased by 0.0075 from the second-last to the last
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minimum. If the newly encountered CID always decreased by 0.0075 from there on,
we would need to find a new minimum 20 times in order to encounter a dendrogram
with the same CID as the additive dendrogram compared to reference 1. We decided
to stop at three million random dendrograms.

We refer to the dendrogram with the highest and lowest CID to reference 1 as
worst and best random dendrogram, respectively. The worst random dendrogram
(see Figure 37a) shows no aggregation of modules as opposed to reference 1 (see
Figure 7a). Most of the subunits assemble successively with the largest subcomplex
which creates a staircase-like topology (see Section 2.1.3). Interestingly, both the
worst random dendrogram and the absolute dendrogram exhibit a staircase-like
topology. The worst random dendrogram has a CID of 0.9687 to reference 1 which is
higher by 0.0983 than the CID of the absolute dendrogram. The larger difference
is most likely caused by the different arrangement of the subunits, because the
topology looks similar. In the absolute dendrogram, subunits of the same module
often assemble one after the other, while in the worst random dendrogram subunits
assemble independently of their assignment to modules.

The best random dendrogram (see Figure 37b), on the other hand, shows a
more modular topology. Subunits do not assemble with the largest subcomplex but
assemble in subcomplexes that later merge with other subcomplexes. The subunits
are not as unordered as in the worst random dendrogram considering the assignment
to modules. In fact, certain features of the reference pathway 1 can be observed. For
example:

• Subunits V1 and V2 assemble, and S1 is added in the next step

• Subunits C2, ND4L, ND3 and ND6 form a subcomplex

• Subunits A5 and S2 assemble, and S7 is added in the next step

The worst random dendrogram does not share many similarities with reference 1
while the best random dendrogram contains features of reference 1. We concluded
that the CID is a suitable measurement to assess how good a prediction is compared
to the reference. The CID of the best random dendrogram to reference 1 is higher
by 0.1502 than the CID of the additive dendrogram. Thus, none of the three million
random dendrograms comes even near the additive dendrogram considering the CID.

The standard deviation of the CIDs of the random dendrograms is 0.0129. The
CID of the additive dendrogram is twenty times the standard deviation less than
the mean of the CIDs of the random dendrograms. We concluded that the additive
dendrogram is a prediction of the assembly much closer to the reference than can
be expected by chance. Even for a much larger data set of random dendrograms an
equally or better performing dendrogram than the additive dendrogram cannot be
expected.

Comparing non-binary and binary dendrograms We considered another
property of the comparison using the CID: the reference pathway is non-binary in
contrast to the predicted or generated pathways. We transformed the non-binary
dendrogram of reference 1 to a binary dendrogram by imposing a binary order for
each non-binary part. We imposed the binary order by greedily clustering the vertices
(see Section 2.1.4) using additive edge weights (see Figure 38). We implemented an
interactive agglomerative clustering, in which the user is presented with the table of
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(a) Highest clustering information distance to reference 1.

(b) Lowest clustering information distance to reference 1.

Figure 37: Visualization of randomly generated dendrograms representing the assem-
bly pathway of human respiratory complex I. Leaves that correspond to subunits
are labeled with the abbreviated gene names and colored according to the modules
they are assigned to: N (red), Q (yellow), PP (dark blue) and PD (lavender). The
subunits that are shared between the N and Q module, and the two duplicates of
subunit AB1 that can be assigned either to the Q or PP module are colored white.
Inner vertices correspond to subcomplexes and the root to the final protein complex.
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all edges sorted by weight at each step and can choose which edge should be used for
clustering. We refer to the dendrogram as greedy binary reference 1.

Figure 38: One proposed assembly pathway by Guerrero-Castillo et al. [84] for
human respiratory complex I represented as dendrogram. Leaves that correspond to
subunits are labeled with the abbreviated gene names and colored according to the
modules they are assigned to: N (red), Q (yellow), PP (dark blue) and PD (lavender).
The subunits that are shared between the N and Q module are colored white. Inner
vertices correspond to subcomplexes and the root to the final protein complex. We
imposed an order to steps, where more than two subunits or subcomplexes have been
proposed to assemble creating a binary dendrogram.

The greedy binary reference 1 has a CID of 0.4362 to reference 1. It is possible
that the greedy binary reference is not the binary dendrogram inferred from reference
1 that achieves the lowest CID because of the greedy approach. Still, we can see
that an obviously very well matching dendrogram has a CID far from zero. This is
probably a side effect of comparing a binary dendrogram to a non-binary dendrogram.
If we aim for a CID of around 0.4362, because lower values cannot be achieved, the
additive dendrogram with a CID of 0.6666 seems to have performed better than the
value initially suggested.

Worst interactive dendrogram With the ability to interactively choose an edge
for the agglomerative clustering, we produced a dendrogram by choosing the edge
with the lowest edge weight at each step for the additive weight (see Figure 39). We
refer to this dendrogram as worst interactive dendrogram.

The worst interactive dendrogram exhibits a staircase-like topology just like the
worst random and the absolute dendrogram. In the worst interactive dendrogram,
not all subunits assemble with the one largest subcomplex but assemble in three
modules. For two modules, there is a perfect staircase-like topology. Regarding the
structural modules of rCI, some parts seem to be ordered such as the subcomplex of
B11, ND5 and AB1, which all belong to the PD module.

The worst interactive dendrogram has a CID of 0.9308 to reference 1. This CID is
0.0379 smaller than the CID of the worst random dendrogram and 0.0604 higher than
of the absolute dendrogram. However, an interactively created dendrogram is always
bound to the edges that exist in the CG. The randomly generated dendrograms, on
the other hand, are detached from the CG and can have subcomplexes with vertices
that are not connected in the CG. We can infer from the high CID to the reference
of the worst interactive dendrogram that greedily choosing the highest edge weight
during the agglomerative clustering relates to the reference assembly pathway.
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Figure 39: Assembly pathway of respiratory complex I of Homo sapiens [20] created
by choosing edge with least additive weight in interactive agglomerative clustering.
Leaves that correspond to subunits are labeled with the abbreviated gene names and
colored according to the modules they are assigned to: N (red), Q (yellow), PP (dark
blue) and PD (lavender). The subunits that are shared between the N and Q module
are colored white. Inner vertices correspond to subcomplexes and the root to the
final protein complex.

Contacts transitive by ligands The following passage is based on work by Möller
[132]. I developed the idea of contacts transitive by ligands (CTLs) and supervised
the work. In the following, I present the results of applying CTLs to the prediction
of the assembly pathway.

The PTGL treats ligands as parts of the subunit the authors have assigned the
ligand to. Contacts between a ligand and another subunit are added to the number
of contacts of subunits in a CG. Biologically, this is questionable, because ligands are
separate molecules and not part of the subunit. Moreover, the assignment of ligands
to subunits is up to the authors and may be unreasonable. For example, a ligand
may be assigned to a subunit that is spatially distant. This would lead to undesired
contacts in the CG between this and other subunits because of the ligand. Neglecting
contacts with ligands is no real solution. Ligands may be embedded between subunits,
and completely neglecting the contacts causes an undesired representation of the
interface of subunits.

The concept of CTLs tries to include contacts of ligands in a more desirable way.
The goal is that the edge weights in CGs only refer to contacts between residues
or nucleic acids, but include contacts of ligands implicitly. If a ligand is embedded
between subunits, it mediates the contact between the molecules of the different
subunits. Therefore, a CTL is a contact between molecules mediated by a ligand. A
ligand mediates a contact between two atoms of different molecules if a ligand atom
has a contact to both the atoms of the molecule.

We predicted the assembly pathway for 5xtd using CTLs (see Figure A5). The
CID to reference 1 is 0.6938 and thus higher than without using CTLs. Möller has
shown that the ligands are assigned well to subunits by the authors of the structure
[132]. This may be the reason why including CTLs does not improve the prediction.
We did not further investigate the pathway using CTLs, because the CID was lower
without CTLs.
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Conclusion We investigated the landscape of the CID with the use of randomly
generated dendrograms. The additive dendrogram has a much lower CID to reference
1 than expected by chance. We showed that the greedy binary reference 1 does not
achieve a CID near zero. Thus, the additive dendrogram is not that far away from
the minimum reachable value as initially thought. We concluded that the additive
dendrogram can be considered a prediction close to the reference. We showed that
the CID can be used to measure the quality of a prediction compared to a reference
and that choosing the edge with the highest normalized weight during agglomerative
clustering is a suitable method for predicting the assembly pathway.

Qualitative analysis

Staircase-like versus modular topology The reference clearly exhibits a mod-
ular topology (see Figure 7). There are non-binary parts of the dendrogram, which
may be resolved as staircase topology, for example, AB1, B2, B3, B7-9 and ND5.
But even if these non-binary parts were resolved as a staircase topology, overall the
dendrogram would exhibit a modular topology, because pre-N, pre-Q, Q/PP-a, PP-b,
PD-a, and PD-b assemble separately.

The absolute and the logarithm dendrogram (see Figures 35a and 35e) exhibit a
staircase-like topology. For both, there are modular parts, but from inner vertex 1,
respectively, on to the root, there is a staircase topology. The square root dendrogram
(see Figure 35d) exhibits a weaker staircase-like topology. From inner vertex 1 on to
the root, with the exception of A6 and AB1, there is a staircase topology.

The minimum dendrogram is difficult to classify with our informal definitions.
There are parts exhibiting a staircase topology, such as, inner vertex 1, with the
exception of the subcomplexes {B4,B8}, {B11, ND4} and {C1,C2}. The assembly of
the whole complex is divided into two modules, inner vertices 1 and 2, that assemble
during the last step. Interestingly, all but one of the leaves under inner vertex 2
belong to the PD module and five of 14 subunits of the PP module. Thus, inner
vertex 1 has leaves of only the membrane arm. Structurally, the two modules can be
seen really well (see Figure 40).

The additive dendrogram (see Figure 35b) only exhibits a staircase topology in
small parts and the multiplicative dendrogram (see Figure 35c) almost none at all.

The different normalizations of the edge weights have a huge impact on the
topologies of the dendrograms. If no normalization is applied, which is the definition
of the absolute weight, the topology of the dendrogram is mostly staircase-like. We
concluded from this that the normalizations help produce a modular topology which
is desired in correspondence with the reference.

The reason for more modular topologies can be seen in the multiplicative den-
drogram. If two clusters are merged in the agglomerative clustering, the lengths of
the subunits are added. Next, the edge weights are recalculated and the summed-up
length is multiplied with the length of the other subcomplex. The factor in the
denominator decreases the edge weights after two clusters are merged.

For example, in the first step of the greedy agglomerative clustering using mul-
tiplicative weights, subunits B2 and B3 with an edge weight of 0.0059 are merged.
The weight of the edge between AB1 and B3 decreases from 0.0034 to 0.0022 after
recalculation. As a consequence, mostly subcomplexes with the same or a similar
number of subunits assemble. This example also shows how greedily choosing the
edge of highest weight changes the course of the agglomerative clustering. The
multiplicative edge weight clearly favors a modular topology.
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Figure 40: Visualization of the structure of human respiratory complex I [20] (PDB
5xtd). Residues shown in cartoon style and ligands as ball-and-stick model. The
structure is colored according to the inner vertices 1 (blue) and 2 (yellow) of the
dendrogram of the assembly prediction using minimum edge weights.

The effect seems to be lower for the additive edge weight. This is because the
chain lengths are summed up and not multiplied in the denominator. But still, the
lengths increase with each merge as opposed to the minimum weight, for example.

Pre-N module In the reference, V1, V2, S1 and A2 of the N module assemble
pair-wise as subcomplexes {V1,V2} and {S1,A2}. The two other subunits of the N
module, V3 and S4, join the assembly in the last step along with other subunits
in no particular order. The pair {V1,V2} is assembled in the absolute, additive,
square root and logarithm dendrograms. In the multiplicative dendrogram, V2 first
assembles with V3. In the minimum dendrogram, V1 first assembles with V3. In
this regard, the multiplicative and the minimum dendrogram are not in accordance
with the reference.

In the additive, multiplicative and minimum dendrogram, S1 and A2 assemble.
In the minimum dendrogram, the subcomplex {S1,A2} is multiple steps away from
the subcomplex {V1,V2}. In the additive dendrogram, V3 joins V1 and V2 before
the subcomplex {A2,S1} joins. After that, S4 joins the subcomplex which produces
the final N module. Subunit V3 joins in a different order than in the reference, but
still the additive dendrogram is most similar to the reference.

It is important to note that in the last step of the reference pre-N, pre-Q/pre-P
and eight more subunits assemble in no proposed order. This means that, if V3 and
S4 are predicted to assemble with the rest of the N module, this agrees with the
reference. The additive dendrogram is the only dendrogram, where the subunits of
N module assemble before subunits of another module are added. This means, the
subunits of the N module are not scattered across the dendrogram as opposed to, for
example, the multiplicative dendrogram, where subunit S4 assembles with subunits
of the Q and later the PP module, before it joins the pre-N module. Such a pathway
does not match the reference.
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Pre-Q module In the reference, A5, S3 and S2 assemble in no proposed order
joined by S8 and S7 in no proposed order producing the pre-Q module. After that,
subunits of the PP-a module join. The subunits A7, A6 and AB1 of the Q module
join the assembly in the last step. The subunits A12 and S6 that are shared between
the N and Q module join in the last step as well.

Interestingly, subunit A12 assembles with S8 in all predictions. This means, for
A12, none of the predictions matches the reference. Subunits A12 and S8 have an
extensive interface that stretches almost across the length of the whole subunits (see
Figure 41). Loop and helix regions align next to each other resulting in 75 residue
contacts.

Figure 41: Visualization of the structure of human respiratory complex I [20] (PDB
5xtd). Residues are shown in cartoon style and ligands as ball-and-stick model.
The subunits A12 and S8 are colored blue and yellow, respectively. The rest of the
complex is colored cyan and depicted transparent. Distances between A12 and S8
less than four Angstrom are depicted as dashed orange lines.

The absolute weight between A12 and S8 is the third highest, and the additive
weight the second highest of all edge weights. Because of this high edge weight, the
subunits are assembled before S8 is assembled with the other subunits of the Q module
in the greedy agglomerative clustering. This raises the question if S8 assembles with
the subcomplex {A5,S3,S2} and possibly S7 if these subunits assembled first. The
vertices in the neighborhood are well-connected (see Figure 42).

There are two ways for S8 to assemble according to the reference. In each case,
subunits A5, S2 and S3 assemble first (Q1). Next, S8 joins either directly or after S7.
Both ways compete with the edge between S8 and A12 with an absolute weight of
75 and an additive weight of 0.2351. For both ways, the edge between A12 and S8
has a higher additive and lower absolute weight (see Table 21).

When {Q1, S7} assembles first, the absolute weight between {Q1, S7} and S8
becomes considerably higher than between A12 and S8. This is not unexpected,
because it is likely that the absolute weight is higher when more and more subunits
are assembled, which leads to the staircase topology for the absolute weight. The
additive weight normalizes for the chain lengths. It is expected that the additive
weight is less for S8 and {Q1, S7} consisting of four subunits. Maybe the lengths
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Figure 42: Visualization of the neighborhood of A12 in the Complex Graph of
respiratory complex I of Homo sapiens [20] (PDB 5xtd). Only selected vertices and
edges are shown. Vertices correspond to subunits and edges to spatial neighborhoods.
Vertices are labeled with the abbreviated gene names of the subunits and colored
according to modules: N (yellow) and N/Q (white). Edges are labeled with the
absolute and additive edge weight. The width of edges corresponds to the additive
weight. The vertices, assembling first for the pre-Q module (Q1) and next (Q), are
labeled and encircled.

of the single subunits of a subcomplex still have an impact too big for the additive
normalization. Even a non-greedy approach cannot assemble the pre-Q module
according to the reference.

We investigated how the contacts can be differentiated by the type of secondary
structure into the classes: SSE-SSE, SSE-loop and loop-loop. Note that, the order
is of no interest meaning SSE-loop is the same as loop-SSE. The high number of
contacts between A12 and S8 is mainly attributed to loop-loop contacts as opposed
to the contacts between {Q1,S7} and S8 which are mainly attributed to SSE-loop
contacts (see Table 21). Loop regions are more flexible and contacts may be less
reliable in the sense whether they consistently exist or are just resolved for this
state of the complex. The results indicate that contacts involving SSEs are more
meaningful in the context of the prediction of the assembly pathway.

In the additive, multiplicative and minimum dendrogram, A12 and S6 assemble
with subunits of the Q module. This suggests both subunits are more likely part of
the Q than of the N module. This is the same result as for the prediction of modules
(see Section 3.4).

Large Interface Score We defined the Large Interface Score (LIS) for two reasons.
First, to help with cases, where the greedy approach does not find the desired assembly
order, such as A12 and S8. Second, to have a measure of quality for a dendrogram,
for which no reference is available.

We define the LIS as ∑v
wi
li
, where v are all inner vertices, wi is the edge weight

of the edge that is merged during the agglomerative clustering leading to vi and
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Table 21: Absolute and additive weights of selected edges of the Complex Graph
for human respiratory complex I [20] (PDB 5xtd). Absolute edge weights are
differentiated in classes according to whether a secondary structure element (SSE) is
involved: SSE-SSE, SSE-loop and loop-loop. Vertices are labeled by the abbreviated
gene names of the subunits.

Vertex 1 Vertex 2 Absolute Additive
Total SSE-SSE SSE-loop loop-loop

S8 A12 75 3 33 39 0.2351
{S2,S3,A5} S8 77 18 39 20 0.0832
{S2,S3,S7,A5} S8 120 18 64 38 0.1109

li is the number of leaves under vi. Thus, the LIS increases when large interfaces
expressed as high edge weights are merged early in the agglomerative clustering (see
Figure 43). The LIS can be computed for each edge weight type independent from
the edge weight type that was used for the agglomerative clustering. For example,
the additive dendrogram can be assigned a LIS based on the absolute weights of the
CG.

(a) Complex Graph
(b) Greedy (c) Optimum

Figure 43: Example for the Large Interface Score (LIS).

The case of A12 and S8 (see Figure 42) is similar to the example for the LIS
(see Figure 43a). The LIS cannot be trivially computed for A12 and S8, because
the sub-dendrogram of the additive and reference dendrogram differ not only in the
order of the subunits but in the composition. The LIS of two dendrograms can only
be compared between dendrograms that are based on the same CG.

We computed the LISs for all edge weight types for the additive and greedy
binary dendrogram (see Table 22). The LISs are higher for the additive dendrogram
than for the greedy binary dendrogram for all weight types. This means that the
LIS cannot be used to globally refine the dendrogram making it more similar to the
reference.
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Table 22: Large interface scores of additive and greedy binary dendrogram for
different edge weight types.

Edge weight type Additive dendrogram Greedy binary dendrogram
Absolute 792.6 657.4
Additive 1.71 1.37
Multiplicative 0.025 0.0205
Square root 34.6 27.8
Logarithm 125.49 102.81
Minimum 5.95 4.88

pre-Q/PP-a module In the reference, pre-Q assembles with ND1. Next, subcom-
plex {Q, ND1} and subunits A3, A8 and A13 assemble in no proposed order. Two
aspects are important for the comparison with the predicted pathways: the subunits
of the PP module, ND1, A3, A8 and A13 assemble and they join the pre-Q module.

The additive and the square root dendrogram are the only dendrograms where
A3, A8 and A13 assemble. In the other dendrograms, the subunits are separated.
For example, in the absolute dendrogram, A3 joins the subcomplex right after A8,
but A13 is assembled much earlier.

Subunit ND1 is separated from A3, A8 and A13 and assembles with other subunits
of the PP module for all but the absolute and square root dendrogram. For example,
in the additive dendrogram, ND1 assembles with ND3, ND4L and ND6 before joining
the subcomplex of A3, A8 and A13 forming PP-a. In the absolute dendrogram, ND1
and in the square root dendrogram, subcomplex {ND1,ND3} join a subcomplex of
S8, A12, A7, S3, S2 and S7, which contains all but one subunit of the pre-Q module.

Considering both aspects, the square root dendrogram is most similar to the
reference, with the additive dendrogram being second.

PP-b module In the reference, ND2, C1 and C2 assemble. It is unclear if C1 and
C2 assemble prior in the reference (see Section 2.5.2). Next, subunit ND3 joins the
subcomplex. The subcomplex {ND2, C1, C2, ND3} and the subunits ND4L and
ND6 assemble in no proposed order forming the PP-b complex.

The subunits C1 and C2 assemble in the additive, multiplicative and minimum
dendrogram. Only in the additive dendrogram, ND2 joins the complex of C1 and C2.
In the multiplicative dendrogram, for example, the subcomplex {C1,C2} assembles
with a subcomplex of the PD module composed of B1, B5, B10 and B11.

In the additive dendrogram, subunit A10 joins the subcomplex {C1, C2, ND2} dif-
fering from the reference. The subunits ND4L and ND6 assemble in all dendrograms.
In the additive dendrogram, the subcomplex of ND4L and ND6 assembles with a
subcomplex of ND3 and ND1. This subcomplex assembles with a subcomplex of A3,
A8, A13 and S5. So there is a subcomplex of ND4L and ND6, but the subcomplex
and subunit ND3 are in a different spot compared to the reference. The additive
dendrogram is still the most similar to the reference, because there is no subcomplex
of C1, C2 and ND2 in the other dendrograms.

PD-a module In the reference, subunits B5, B10 and B11 assemble in no order
joined by B6 afterwards. The subcomplex {B5, B10, B11, B6} and subunits B1 and
ND4 assemble in no proposed order forming PD-a.
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Only in the additive and the square root dendrogram, subunits B5, B10 and B11
assemble. The order is the same for both dendrograms: first B10 and B11 assemble.
The multiplicative, logarithm and minimum dendrogram share some similarities with
the reference dendrogram, because two of three subunits assemble directly or right
after another, but the third subunit is separated.

In the additive dendrogram, B6 assembles with the subcomplex of B5, B10 and
B11. In the next step, ND4 joins the subcomplex. However, subunit B1 is separated
and joins in the last of all steps of assembly of rCI. Nevertheless, the additive
dendrogram agrees with the reference in all but one subunit regarding assembly of
the correct subunits and the order.

PD-b module In the reference, subunits B2, B3, B7-9, AB1 and ND5 assemble
forming the PD-b module without an order proposed among them. Seven subunits,
assembling without proposed order, makes this the second-highest number of children
of an inner vertex. Comparing the reference to the predictions, only the composition
of subunits but not the order can be discussed.

In the absolute and logarithm dendrogram, most of the subunits are scattered
across the dendrogram. Some subunits are close to each other, but because of the
staircase-like topology, they do not form a separate subcomplex, but successively join
the largest existing complex. In the square root dendrogram, there is a subcomplex
of B2, B3 and AB1, which joins a large assembly and is joined by B7 after that. The
subunits B8, B9 and ND5 are scattered over the remaining dendrogram.

In the multiplicative and minimum dendrogram, there is a subcomplex of all
subunits of the PD-b module and two additional subunits: B4 and B6. In the additive
dendrogram, there is a subcomplex of AB1, B2, B3, B9 and ND5 (PD-b1) and a
subcomplex of B4, B7 and B8 (PD-b2). Both subcomplexes assemble after PD-b1
assembles with PD-a.

The multiplicative, minimum and, aside from splitting the module, additive
dendrogram contain a subcomplex of the subunits of the reference. For all three, the
subcomplex additionally contains subunits B4 and B6 disagreeing with the reference.
In the reference, B6 is part of the PD-a module and B4 joins the subcomplex after
the assembly of PD-b.

Assembly of modules into the final complex In reference 1, pre-Q/PP-a, PP-
B and subunits A1 and A9 assemble without proposed order forming pre-Q/PP.
Next, pre-Q/PP, PD-a, PD-b and subunits A10, S5 and B4 assemble in no proposed
order forming the module pre-Q/pre-P. In the final step, pre-N, pre-Q/pre-P, V3,
A12, S6, A7, S4, A6, AB1 and A11 assemble in no proposed order. Because of the
single subunits, this is the step with the highest number of assembling subcomplexes
in no proposed order.

All dendrograms contain a subcomplex similar to the pre-N module. The ab-
solute and the logarithm dendrograms show no further modules besides the pre-N
module because of the staircase-like topology. The minimum dendrogram contains
a subcomplex similar to the PD-b module. The minimum dendrogram contains no
further modules, but instead assembles into two large subcomplexes (vertices 1 and
2).

The square root dendrogram contains a subcomplex similar to the pre-Q module.
The subcomplex assembles with ND1, ND3, A3, A8 and A13. The resulting subcom-
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plex is similar to the pre-Q/PP-a complex. Further subcomplexes cannot be clearly
identified and the dendrogram becomes staircase-like towards the root.

The multiplicative dendrogram exhibits a modular topology, but not all of the
subcomplexes clearly correspond to modules of the reference. The dendrogram
contains a subcomplex similar to the pre-Q module and one similar to the PP-a
module. Both assemble forming a subcomplex similar to the pre-Q/PP-a module. A
subcomplex corresponding to the PP-b module cannot be clearly identified, because,
for example, the subunits C1 and C2 assemble with subunits of the PD module. This
is why the PD-a module cannot be clearly assigned to vertex 1. The dendrogram
contains a subcomplex similar to the PD-b module. No vertex corresponds to the
pre-Q/pre-P module, because the pre-N module assembles with the pre-Q/PP module.

Considering the assembly of modules, the additive dendrogram is most similar to
reference 1. There is a subcomplex similar to the pre-Q/PP-a module that assembles
with a subcomplex similar to the PP-b module. The PD-b module is split across two
subcomplexes one of which assembles with a subcomplex similar to the PD-a module.
With the assembly of the pre-Q/pre-PP and the pre-PD module, a subcomplex
similar to the pre-Q/pre-P module is formed. The pre-N and the pre-Q/pre-P
module assemble followed by single subunits producing the final complex similar to
the reference 1. The single subunits do not match exactly, but A6 and A11 match
between the additive and the reference 1 dendrograms.

Conclusion

We discussed the dendrograms of the agglomerative clusterings for the different edge
weight types. We only discussed reference 1, because the CID suggested that the
predictions are more similar to reference 1. We deduced from the staircase-like
topology of the absolute dendrogram that normalizations of the edge weights are
necessary. The logarithm and minimum dendrogram were more similar to the absolute
dendrogram than to the reference. The square root dendrogram contained inner
vertices that can be compared to modules of the reference, but showed a staircase-like
topology towards the root. The multiplicative one showed a rather modular topology
and similarities with the reference in many cases.

The additive dendrogram was most similar to the reference. All modules of the
assembly of reference 1 could be assigned to inner vertices of the additive dendrogram.
From the assigned modules, most subunits were correctly assembled. Together with
the results from the analysis of the CIDs we concluded that the additive normalization
worked best for the agglomerative clustering of 5xtd predicting the assembly pathway.

3.5.4 Respiratory super- and megacomplexes of Homo sapiens

We extended the use case of 5xtd to 5xth and 5xti (see Section 2.10.4). Just like
with the detection of modules (see Section 3.4), we wanted to investigate how the
agglomerative clustering performs for multi-complex structures. We addressed the
question if the agglomerative clustering produces stable results, for example, for
the prediction of the assembly of rCI if the complex is encompassed by subunits of
other complexes. We computed the CGs (see Figures A6 and A8) and predicted the
assembly pathways using agglomerative clustering.

We discuss only the additive dendrograms (see Figure 44), because the additive
dendrogram of 5xtd performed best considering the comparison to the reference
using the CID and visual inspection. We present the dendrograms for the other edge
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weight types in the Appendix (see Figures A7 and A9). We compare the predictions
only to reference 1, because of the learnings from 5xtd.

In the additive dendrogram of 5xth (see Figure 44a), complex I and IV assemble
separately. The two copies of complex III assemble partly together. Two large parts
of III-1 and III-2 assemble separately before assembling together (pre-III2). UQCR10
and UQCR11 of III-1 assemble with UQCRB of III-2 joined by UQCRH of III1-1.
This subcomplex joins the pre-III2 subcomplex. Only in the multiplicative (see
Figure A7b) and logarithm (see Figure A7d) dendrograms, the copies of complex III
assemble separately. In the additive dendrogram, complex I assembles with III2 and
this subcomplex assembles with subcomplex IV.

In the additive dendrogram of 5xti (see Figure 44b), the copies of the complexes
I and IV assemble separately. The copies of complex III assemble mostly separately
before assembling together. Only subunit UQCRB joins after assembly of pre-III2.
Complex I-1 assembles with III2. Complex I-2, IV-2 and IV-1 join sequentially.

We considered complex I isolated from the rest of the predicted assembly pathway
and computed the CID to reference 1 (see Table 23). In the absolute dendrogram of
5xti, the subunits of complex I are scattered across the dendrogram. The CID cannot
be computed in this case, because no connected dendrogram with the same leaf
labels as complex I can be retrieved. In the logarithm dendrogram of 5xti, complex
I-1 is scattered, because AB1 assembles with complex I-2. We did not compute the
CID between CI-2 and the reference, because we used complex I-1 for the other edge
weight types and wanted to retain comparability.

Table 23: Clustering information distance of predicted assembly pathways for different
edge weight types of human respiratory supercomplex I1III2IV1 (PDB 5xth) and
human respiratory megacomplex I2III2IV2 [20] (PDB 5xti) to reference pathway
1. Values of respiratory complex I (PDB 5xtd) given for comparison. A dash
indicates that complex I cannot be isolated from the dendrogram and the clustering
information distance cannot be calculated, because its subunits are scattered across
the dendrogram.

Edge weight type 5xtd 5xth 5xti
Absolute 0.8704 0.8168 -
Additive 0.6666 0.6996 0.672
Multiplicative 0.7173 0.7076 0.687
Square root 0.7639 0.7352 0.7783
Logarithm 0.8833 0.8785 -
Minimum 0.784 0.7163 0.7743

The additive dendrogram of 5xtd remains the dendrogram with the overall lowest
CID to reference 1. Interestingly, the CID is lower for 5xth than for 5xtd per edge
weight type except for the additive edge weight. For example, the CID for the
minimum weight is 0.784 for 5xtd and 0.7163 for 5xth. For 5xti, there are examples
where the CID is higher or lower than for 5xth or 5xtd.

In the computation of the CID, we neglected that the copies of AB1 are inter-
changeable just like for 5xtd. The resolution of 5xti of 17.4 Å is far too high to draw
final conclusions with respect to every atom or residue contact. We assume that
contacts are plausible on a large scale for discussing the assembly pathway of the
agglomerative clustering.
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We conclude that the agglomerative clustering is able to differentiate between
different complexes for multi-complex structures depending on the edge weight type
used. The additive edge weights do not perform ideally in this matter, because
the copies of complex III do not assemble separately. When looking at complex I
only, for neither 5xth nor 5xti independent of the edge weight type, the prediction is
closer to the reference than for 5xtd using additive edge weights. This suggests that
the agglomerative clustering should be applied separately on subcomplexes that are
known to assemble separately.
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4 Conclusion and outlook
Conclusion

The aim of this work was to analyze protein complexes up to large sizes computa-
tionally, because they are almost impossible to analyze manually. But they also pose
problems for computational analyses because of long runtimes. We implemented a
fast contact check and a computation of orientations between SSEs using vectors.
Both enabled us to run even large complexes in a feasible time of a few minutes.

The feasible runtimes enabled us to implement a pipeline that computes the
contacts and CGs for all steps of an MD simulation. We compared different ap-
proaches to count contacts and changes of contacts. We visualized changes of contacts
during the simulations as heat maps put onto the structure and as line plots. The
visualizations helped spotting interesting time steps and structural regions.

We introduced five normalizations for edge weights of a CG. We normalized
the number of residue contacts by the lengths of the participating subunits. We
compared the normalizations against each other in the following methods.

We applied graph clustering to CGs using the normalizations to identify structural
and functional modules of a protein complex. As use cases we examined rCI of
Thermus thermophilus, rCI of Homo sapiens and the respiratory supercomplex of
Homo sapiens. The clustering using no normalization performed best, successfully
identifying, for example, three out of four modules of rCI of Homo sapiens.

We applied agglomerative clustering to the vertices of a CG to predict the assembly
pathway of a protein complex. We compared our method to two state-of-the-art
methods on a data set of 21 protein complexes with known assembly pathways. Our
approach was correct in more cases for all three defined measurements of quality. It
ran in seconds to minutes compared to a runtime of multiple days of Path-LZerD
even when parallelized.

We predicted the assembly pathways of rCI, the respiratory supercomplex and
the respiratory megacomplex of Homo sapiens, using the different normalizations of
the edge weights. We compared the predictions to a proposed assembly pathway of
rCI that has been experimentally determined. We quantified the difference between
our predictions and the reference using the nRF distance and the CID. The CID
proved to be more sensitive and therefore fit for the analysis. We examined the
landscape of the CID using randomly generated dendrograms. We discussed in detail
the differences between the predicted pathways and the reference. We concluded that
the predicted pathway using the additive edge weight performed considerably well,
as it achieved a much better CID than expected at random and contained important
features of the reference pathway, such as the modular assembly.

We used dendrograms defined as non-binary and binary trees to represent assembly
pathways. Dendrograms structure the assembly pathway by grouping the subunits
of the subcomplexes. Dendrograms are versatile allowing both the assembly of two
or an arbitrary number of subunits per step. We represented dendrograms in the
Newick format, which is human-readable and can be handled by many software tools.
We showed advantages of the Newick format compared to a string representation
of the steps of the assembly pathway as, for example, in Peterson et al. [61]. Most
importantly, dendrograms represented as Newick strings are defined and can be
interpreted and manipulated by software. Dendrograms can be visualized by existing
software tools and the visualizations are easy to read. We conclude that dendrograms
are a suitable representation of assembly pathways.
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Currently, ligands are either counted as part of a subunit or treated as a separate
subunit. Both approaches have strengths and weaknesses. In the heatmaps of
PTGLdynamics, the ligands that are treated as a separate subunit distort the range
of the coloring scheme. In the agglomerative clustering, contacts of ligands are
counted as contacts between protein subunits. We tested a different approach with
the implementation of CTLs. The assembly prediction did not benefit from the
inclusion of CTLs. Still, we need a way to treat ligands that is motivated by the role
they play in protein complexes.

The normalizations have proven to be necessary for the assembly prediction,
because the absolute weight did not produce convincing results. For the detection of
modules, the absolute weight performed best. It is possible that different methods
require different normalizations. We believe that normalizing the number of contacts
by the length of the participating subunits makes sense and should be further explored.
We tested intuitive normalizations, but in the end, more elaborate normalizations
could produce better results.

We showed how graphs, representing the topology of protein complexes, can be
used for analyses of time-resolved data of dynamics, predict structural and functional
modules, and predict the assembly pathway. We tried different approaches for each
method, validated the results and compared them to references from the literature.
We showed the strengths of the graph-theoretic methods and that they can be reliably
applied for research.

Outlook

The current implementation of PTGL is considerably fast. Nevertheless, the imple-
mentation should be optimized wherever possible to ensure feasible runtimes for even
larger structures and for the increasing number of structures deposited to the PDB.
We suggest to identify the parts of the code that take longest and investigate how they
could be optimized. We showed that the computation of contacts is already mostly
optimized, but also seemingly small parts of the software, such as the assignment of
orientations to contacts of SSEs, can take longer than necessary.

We showed that the vector method produces desirable results for the assignment
of orientations to SSEs. Finding the best fitting line through all backbone atoms of
an SSE in 3D space may capture the orientation of an SSE even better. In general,
we need more research to identify the best parameters such as the threshold of the
angles. To allow for different thresholds, the angles between SSEs could be saved in
the database of PTGL. A user could then choose the desired thresholds and assign
the orientations based on them. A differentiation between helices and strands might
be favorable, as well.

We presented an example, where the SSE assigned by DSSP was unusually long
and bent. This interfered with the correct assignment of an orientation to the
contacts of the SSE. A solution would be to break up long SSEs for the computation
of an angle. Using a different tool for the assignment of SSEs, such as SCOT [122],
might also be advisable.

The pipeline PTGLdynamics allows automatic analyses of MD simulation data.
The program call should be simplified to be more user-friendly. The user interface
could be extended by a setting’s file. A setting’s file would allow moving arguments of
the program call to a file without the need to pass the arguments with each call. The
setting’s file would also allow providing more specific settings that can currently only
be applied by changing the code of the software, such as some paths to directories.
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The pipeline could be extended by several features. Adding the possibility to
automatically investigate and compare two data sets of MD simulations might open
up the possibility for interesting analyses. Comparing the changes of SSEs and PGs
is not trivial, because the assignment of residues to SSEs may change with each step,
but would be quite interesting. More graph-theoretic approaches could be applied
and mapped back to the structure such as the betweeness centrality of subunits
or residues to find subunits or residues that are important for the stability of the
protein.

Tracking the contact partners of each residue made it possible to see the flexibility
of each residue during simulation. The information could be used to investigate
the flexibility per residue type. It might be interesting to normalize the number of
changes for the typical number of changes of the residue type. This way, outstanding
residues per type could be identified.

We showed that graph clustering is able to identify modules within a complex.
We learned that the Leiden algorithm finds the optimum or a comparably good
partition, but may fail to find the optimum partition for large CGs. We suggest
to use algorithms that ensure finding the optimum partition and noticed that the
runtime for this is feasible for the typical sizes of CGs. It might be interesting,
however, to investigate not only the best but also comparably good partitions. From
these partitions, a consensus partition could be derived and the vertices could be
assigned a score based on how certain the vertex is placed in this partition. The
analysis may be repeated with more recent structures, such as respiratory complex I
from Thermus thermophilus [21] (6y11) instead of 4hea, because they might be more
complete or have a better resolution.

The partition using absolute and additive edge weights differed between 5xtd
and 5xth. We suggest a detailed analysis to find the reason. In general, we need
more use cases to draw a final conclusion on which normalization performs best or
excels for which case.

For complexes, where the modules consist of only a few subunits, the clustering
may fail to reproduce this, because it merges modules into one cluster, for example,
as seen with the RNA polymerase II [129]. Such graphs are just not fit to find
the modules with graph clustering, because of the resolution limit of modularity.
Applying the graph clustering on a lower level of abstraction might help. One
approach could be dividing the subunits into domains which become the vertices of
the graph.

The partition of a CG could be used to predict the turnover rate of subunits
or groups of subunits. We hypothesize that groups of subunits, for example, corre-
sponding to a cluster in the CG, are replaced together. The definition of a cut of a
graph could be used to identify subunits that are loosely connected to the remaining
complex. This could be investigated using rCI as a use case for which different
turnover rates have been reported [133].

The agglomerative clustering of the vertices of a CG performed best compared to
two state-of-the-art methods on a data set of 21 protein complexes. The prediction
was not correct for all cases and could be further improved. In the style of subcomplex
BSA, we could consider all possible interfaces even involving multiple proteins at
one step instead of greedily merging two subcomplexes. The effect of important
parameters, such as the type of normalization and the contact threshold, should be
investigated. The goal is to present the user the best set of parameters that most
likely results in the correct prediction.
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The data set of Peterson et al. [61] proved to be useful for the comparison of
methods for the assembly prediction. The data set could be further extended to create
a benchmark data set for computational assembly prediction. We suggest adding
complexes of more than seven subunits, for example, up to rCI with 45 subunits.
This poses the problem that the assembly pathway for larger complexes might not
be as reliably verified as for small complexes. We also discussed the strengths
and weaknesses of the three applied quality measurements for the comparison of
predictions. We suggest a deeper investigation which might yield a more consistent
and reliable quality measurement.

We discussed the case of 1s5b which is an assembly of five B subunits and
an A subunit. We propose to integrate concentrations of subunits in some form.
Stochastically, there is a higher chance that two B subunits encounter each other in
the beginning. Over the course of the assembly, the number of available B subunits
decreases making it more probable that an A subunit assembles with the existing
subcomplex of B subunits. This might help in the case of 1s5b, where three B
subunits assemble first before an A subunit joins. The idea marks a step in the
direction of integrating rates and kinetics.

For the comparison of our prediction of the assembly pathway of rCI to a reference,
we used the CID. The CID has proven to be a good choice, but according to Smith
"[s]ubtracting the similarity score from the information content of all splits in the
‘correct’ tree" [71] might be better if one dendrogram is considered correct. The
reference dendrogram might be considered correct for this purpose.

We created random dendrograms to investigate the landscape of the CID. We
used a method by Furnas [72], which uniformly draws from all possible dendrograms.
This gives an unbiased view on the landscape of the CID, but this might not be
desired. Assembly pathways are usually modular as can be seen for rCI, so we
might want a bias towards dendrograms with a low depth. A naive approach
would perform an agglomerative clustering and choose two random clusters at each
step. This yields symmetric dendrograms, which have a low depth, with a higher
probability. The approach by Orsini et al. [134] starts from the original dendrogram
and applies random changes preserving different graph properties defined by the user.
Applying the method to dendrograms representing assembly pathways requires a lot
of theoretical work that is out of the scope of this thesis, but may yield interesting
insights.

We presented the LIS as a quality measure for a dendrogram representing an
assembly pathway. We could not show that the LIS is higher for a dendrogram of
rCI based on the reference than for a predicted dendrogram. Nevertheless, the LIS
is a quality measure that can be applied to guide the assembly pathway and might
be useful for examples where no reference pathway exists. A possibility to make use
of the LIS for refining the dendrogram of a prediction is, for example, simulated
annealing. The greedily predicted dendrogram could be changed optimizing the LIS
yielding an overall better prediction in the end.

Even when no complete and reliable reference pathway is available for a protein
complex, there is often prior knowledge on parts of the assembly. For example, it
might be known that two subunits assemble first or two subunits definitely do not
assemble before a specific subcomplex is formed. A good computational assembly
prediction should be able to take prior knowledge in consideration. The interactive
agglomerative clustering we implemented can be used to apply prior knowledge by
choosing the edge of highest weight that complies with the prior knowledge. To



113

reduce manual steps, prior knowledge could be read in as pre-conditions that the
agglomerative clustering will comply with.

There are two major aspects that are untreated in the agglomerative clustering
of the CG of the final structure: dynamics during the assembly and assembly factors.
Once structures of assembly intermediates have been resolved, the assembly pathway
for the intermediates could be predicted and used as prior knowledge for the prediction
of the assembly of the final structure. Prior knowledge of assembly factors could be
applied by inserting new edges between subunits that are connected via an assembly
factor during assembly.

Both the detection of modules and the prediction of the assembly pathway are
based on the contacts defined by PTGL. In the assessment of the assembly prediction,
we saw that the numbers of contacts of SSE-SSE, SSE-loop and loop-loop may vary
between interfaces. We are sure that contacts involving SSEs are more reliable and
should be favored. We propose investigating interfaces for the classes of contacts and
testing weighting contacts involving SSEs differently.

Our main use cases were complexes from the respiratory chain. We propose
investigating more use cases to gain a broader view of how the agglomerative clustering
performs. Candidates are the assembly of plant complex I [135] or photosystem II
[136, 137].

We used dendrograms as a representation of assembly pathways. The visual-
izations are easy to read, but could be further improved upon. Biologists usually
visualize assembly pathways as a flow chart with cartoons of the structures, for
example, in Guerrero-Castillo et al. [84]. In dendrograms, the leaves are nicely
visible, but subcomplexes are more interesting as they correspond to the steps of the
assembly pathway. In flow charts with cartoons of the structures, the subcomplexes
can be spotted more nicely, because the cartoons of the structures become bigger
towards the final product. An automatic visualization of dendrograms as flow charts
with cartoons of the structure might be beneficial.

PTGLgraphComputation could be extended to treat more classes of molecules.
For example, lipids [138] and water [139, 140] play a role as contact partners for rCI.
Zunker [129] has implemented the treatment of RNA and has analyzed RNA-protein
complexes. Next, DNA could be included, too. Because of cryo-EM, an increasing
number of structures contains carbohydrates, which could be included, as well [141].

We showed how CGs can be analyzed and used to gain insights on protein
complexes. The field of graph theory is wide and more approaches could be applied.
For example, graph properties, metrics and centralities could be investigated in the
context of CGs. We think that this would provide a deeper understanding of the
topology of protein complexes. This may lead to a classification like CATH and
SCOP for SSEs or extend the work of 3D Complex.

We showed that graphs of topology are a useful abstraction of protein structures.
We expect that biologists greatly benefit from graph-theoretic methods and applica-
tions that can visualize, analyze and guide experiments. Much work is still needed to
place these methods and applications on validated foundation and provide reliable
and user-friendly tools.
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Appendix

A.1 Data set for runtime comparison

Table A1: Data set for runtime comparison in four columns. For each structure, the
PDB ID, number of atoms (#a) and number of chains (#c) is given.

PDB ID #a #c PDB ID #a #c PDB ID #a #c PDB ID #a #c
3slo 2,469 1 3cmv 71,769 8 5jxt 40,421 23 5luf 74,555 62
2l5y 2,470 1 5xlo 15,421 9 5lcw 72,097 23 5tcr 128,658 63
5uad 2,470 1 4gyv 15,742 9 4gxu 38,436 24 4v9g 38,108 64
5w1r 25,559 1 5ue6 43,091 9 1hto 97,896 24 5gjr 142,753 64
5ojs 28,407 1 2pff 71,870 9 2wss 54,974 25 4wz7 35,169 67
5a22 32,188 1 3sja 15,883 10 3iyl 81,010 25 3jc1 92,106 68
5dg5 4,719 2 5j5h 17,290 10 2jes 39,286 26 4v7o 158,904 68
1tm0 4,720 2 3qlv 59,290 10 1o1f 76,897 26 4v8k 50,862 72
3hf1 4,720 2 2vyc 62,912 10 2x53 59,769 27 5b5n 51,893 72
3vkh 45,976 2 5o5k 18,930 11 5gai 98,069 27 5ler 36,539 75
5nug 46,234 2 5nzr 18,980 11 3h6i 48,568 28 5lfb 36,600 75
4w8f 84,824 2 3jc7 40,309 11 5da8 99,580 28 5j8k 55,850 76
2gvz 5,754 3 3jbl 80,134 11 5xtc 38,864 29 4v96 118,740 78
3g82 5,758 3 4wxy 22,179 12 1o1c 85,947 29 3jc9 78,216 79
1r5k 5,759 3 4mhh 22,796 12 4wjg 47,822 30 5leg 41,355 80
4oj6 35,718 3 5u6y 87,208 12 1o18 92,745 30 5gup 109,982 80
4oj5 36,274 3 2vdc 89,640 12 4wl1 57,535 32 5gpn 75,545 84
5vlj 49,791 3 1vf7 23,667 13 3oaa 99,605 32 4yuu 92,765 84
1lbi 8,875 4 5uz9 24,377 13 5afu 55,985 33 5j4z 64,743 89
3l49 8,876 4 4ayb 54,903 13 4cr3 80,171 33 5j7y 64,743 89
3f6x 8,876 4 5vsw 57,656 13 4y8g 50,035 34 4v7g 102,534 90
5j8v 73,619 4 5vj6 26,472 14 5mpa 67,917 34 4wiz 203,250 90
4uwe 81,603 4 3gzt 26,550 14 5lzp 46,591 35 4nwr 88,858 96
4uwa 81,643 4 5jzw 83,432 14 5a5b 83,782 35 5iv7 312,210 96
4lw5 9,416 5 5jzh 90,803 14 3f9k 46,776 36 6ek5 165,959 110
2y7y 9,467 5 2wzp 27,662 15 3whe 88,188 36 5cod 48,030 114
4afg 9,498 5 3rhw 29,212 15 3wu2 54,074 38 3jc8 107,640 115
3j6q 42,580 5 5wq9 56,354 15 5a9q 95,921 38 4v46 79,720 120
4au6 43,709 5 5wq8 56,474 15 5ws5 52,584 39 5xti 196,753 138
5lki 55,419 5 1kiu 29,673 16 5nw4 66,335 39 4v6b 187,090 144
4tle 11,463 6 3ab4 30,986 16 5mx2 50,447 40 5iv5 549,576 145
4tlb 12,061 6 1gq2 71,535 16 4ro0 68,787 40 4v98 121,990 160
5t0d 12,076 6 5cx1 74,604 16 3von 51,491 42 6ekc 321,799 160
1sfy 12,079 6 2o01 29,863 17 4u0g 81,782 42 5mq3 143,640 180
5g4f 69,215 6 5fj9 38,697 17 1yce 28,145 44 4ctg 311,940 180
2vkz 85,965 6 5xtb 27,980 18 5lc5 51,763 45 5vlz 96,897 181
2uv8 85,968 6 3zif 94,394 18 5xtd 66,834 45 4ctf 321,060 240
3hmj 88,836 6 5fl7 30,138 19 3j6d 65,999 48 4udf 326,520 240
5msk 11,552 7 5vhh 55,299 19 3j9q 99,695 48 5v74 215,283 270
5jzc 11,941 7 2a06 33,910 20 5mdx 78,374 50 5mq7 286,920 360
5vy9 38,744 7 3kic 83,540 20 5xnm 92,896 54 5y6p 1,234,811 862
3ala 39,110 7 5a1y 39,977 21 3hf9 90,499 56 3j3y 2,116,800 1,176
5ybb 15,465 8 5g04 65,502 21 3unb 99,292 56 3j3q 2,440,800 1,356
4zxa 16,282 8 4qrm 22,798 22 5mpp 70,619 60
5c1b 69,393 8 4qiw 51,091 22 4y5z 86,982 60
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A.3 Inspection of use cases for parameters of vector mode

In this subsection, we present the angles of the vector mode (see Section 3.1.2) for
all contacts of SSEs of different proteins. The contacts of SSEs may differ from
the current version of PTGLgraphComputation, because the results are based on a
previous version of PTGLgraphComputation. This does only affect whether or not
there is a contact between two SSEs, but not the angles. The results are still valid
for considering suitable parameters for the vector method.

We present the angles for the following structures:

• 1jtv (see Figure A1a)

• 3au1A (see Figure A1b)

• 3denA (see Figure A1c)

• 5p4kA (see Figure A1d)



A.3 Inspection of use cases for parameters of vector mode 117

(a
)
17
β
-h
yd

ro
xy

st
er
oi
d
de
hy

dr
og
en
as
e
[2
](
PD

B:
1j
tv
)



118 Appendix

(b)
A
ntigen-presenting

glycoprotein
C
D
1d1

[7](PD
B:3au1)



A.3 Inspection of use cases for parameters of vector mode 119

(c
)
D
ih
yd

ro
di
pi
co
lin

at
e
sy
nt
ha

se
[8
](

PD
B:

3d
en
)



120 Appendix
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A.4 Additional output of PTGLdynamics

In this subsection, we present additional heat maps produced with PTGLdynamics
(see Section 3.2). We present the following heat maps:

• Chain-level based on residues including ligands (see Figure A2)

• Inter-chain residue-level based on residues excluding ligands (see Figure A3)

(a) Data set without ubiquinone. (b) Data set with ubiquinone.

(c) Data set without ubiquinone. (d) Data set with ubiquinone.

Figure A2: Heat map visualization of changes of contacts of MD simulation of
respiratory complex I of Thermus thermophilus. Inter-chain (a and b) and inter-
and intra-chain changes (c and d) shown on chain-level and based on residues. The
number of contacts is divided by the length of the chain. The structure is depicted
in cartoon style. The number of changes of contacts is color coded from blue over
white to red depicting lowest to highest number of changes. Ubiquinone is labeled in
red (b and d).
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(a)

(b) Zoom in on PP module

Figure A3: Heat map visualization of changes of contacts of MD simulation of
respiratory complex I of Thermus thermophilus. Inter-chain changes shown on
residue-level and based on residues. The structure is depicted in cartoon style. The
number of changes of contacts is color coded from blue over white to red depicting
lowest to highest number of changes. The ligands FMN and ubiquinone are excluded.



A.5 Prediction of modules 123

A.5 Prediction of modules

Table A3: Modularity of partitions according to modules for human respiratory
complex I [20] (PDB: 5xtd). All variants of assigning A12 and S6 to the Q and N
module and all edge weight types are presented.

Edge Weight Type A12 assigned to S6 assigned to Modularity

No weight

Q Q 0.41349
N N 0.41220
Q N 0.41336
N Q 0.40307

Absolute

Q Q 0.53872
N N 0.51915
Q N 0.52812
N Q 0.51761

Additive

Q Q 0.54698
N N 0.51795
Q N 0.53056
N Q 0.51504

Multiplicative

Q Q 0.57026
N N 0.53986
Q N 0.55096
N Q 0.53668
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Additive dendrogram using contacts transitive by ligands

Figure A5: Assembly pathway of respiratory complex I of Homo sapiens using
additive weights and contacts transitive by ligands visualized as dendrogram. Leaves
correspond to subunits, are labeled with the abbreviated gene names and colored
according to the modules they are assigned to: N (red), Q (yellow), PP (dark blue)
and PD (lavender). The subunits that are shared between the N and Q module are
colored white. Inner vertices correspond to subassemblies and the root to the final
protein complex.
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Dendrograms of other edge weight types than additive

(a) Absolute

(b) Multiplicative

(c) Square root
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(d) Logarithm

(e) Minimum

Figure A7: Predicted assembly pathways using different edge weight types other than
additive for respiratory supercomplex of Homo sapiens [20] (PDB: 5xth) represented
as dendrograms. Leaves correspond to subunits, are labeled with the abbreviated
gene names and colored according to the complexes or modules they are assigned
to: N (red), Q (yellow), PP (dark blue), PD (lavender), III-1 (mint), III-2 (brown)
and IV (magenta). The subunits that are shared between the N and Q module are
colored white. Inner vertices correspond to subcomplexes and the root to the final
protein complex. Selected inner vertices are labeled.
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