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Whether you can observe a thing or not depends on the theory which you use. 

 It is the theory which decides what can be observed. 

Albert Einstein,  
objecting to the placing of observables 

 at the heart of the new quantum mechanics, 
 during Heisenberg's 1926 lecture in Berlin. 
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1 Thesis motivation and objectives 

Protein-ligand docking is a widely used tool in basic and applied pharmaceutical 

research. The appearance of the first three-dimensional structures of proteins 

immediately sparked the interest in developing methodologies that theoretically predict 

the binding mode and the interaction energy of putative ligands of them. Since the 

beginning of the 80s (Kuntz, et al., 1982), docking remains a field of intense research 

(Kitchen, et al., 2004; Cavasotto and Orry, 2007). This has already crystallized in a 

significant number of success stories in both Virtual Screening (VS) applications, aimed 

at identifying new binders to a target (Kitchen, et al., 2004; Cavasotto and Singh, 2008), 

and in ligand optimization efforts, the most popular among them being the 

commercialized drug imatinib (Gleevec) (Capdeville, et al., 2002). Yet docking is not 

perfect and there is still room and need for improvement. 

Docking comprises both generating good protein-ligand geometries and properly 

estimating of the interaction energy of the binding partners. For the first task, reported 

success rates reach 80% of the cases (Warren, et al., 2006). The second, more 

challenging, translates in variable success that range from 10 to 70% in discriminating 

native complex structures from decoys and almost inability to correctly rank-order 

series of ligands according to their binding potency (Warren, et al., 2006). These figures 

have led to the commonly held view that in docking, the geometry problem has been 

resolved to a sufficient extent and the scoring problem remains the open question. 

However, Velec et al. have recently shown that both problems are so intimately related, 

that good geometries are indeed a pre-requisite for improving scoring functions (Velec, 

et al., 2005). Along these lines, the authors argued that the commonly accepted 

geometric accuracy limit of 2 Å root-mean-squared-deviation (RMSD) to the native 

crystal structure is far too large for subsequently performing a reliable scoring, and thus 

focus must be still kept in generating better geometries. An analogous observation has 

been made in an experimental study of a series of matrix metalloproteinases inhibitors, 

where “correct” docking solutions were not “good enough” for explaining 

experimentally observed differences in affinity (Bertini, et al., 2007). 

The need for improvement in docking (Leach, et al., 2006a) is augmented from recent 

developments in two fields. First, advances in molecular and systems biology have lead 
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to the identification of more and more biochemical pathways and signaling routes that 

explain the physiology of the cell and the organisms. Specifically, this has crystallized 

in the emerging therapeutic class of protein-protein interfaces (PPI). The structural 

characterization of these PPI, key for rational exploitation, represents a challenge for 

both, experimental (NMR and X-ray crystallography) and theoretical techniques 

(Pagliaro, et al., 2004; Russ and Lampel, 2005; Gonzalez-Ruiz and Gohlke, 2006; 

Imming, et al., 2006; Weigelt, et al., 2008). With respect  to the latter, it has been 

argued, that success of current docking approaches has been largely facilitated by the 

steric constraints imposed by well-defined deep cavities that exist in enzymatic targets 

(Ferrara, et al., 2004), which contrasts sharply with the observation that PPI are 

typically flat and devoid of deep binding sites for small molecules (Pettit and Bowie, 

1999) as exemplified in Figure 1.1.  

 

Figure 1.1 Comparison of the “deep” and well-defined binding pocket of a typical 
enzymatic target (A) (Dihidrofolate reductase complexed with methotrexate; PDB 
ID: 1df7) to the “rather flat” interacting surface involved in a protein-protein 
interaction (B) (X-linked inhibitor of apoptosis protein complexed with a Smac 
mimetic; PDB ID: 2jk7). 

The second field longing for substantial improvements in protein-ligand docking is 

fragment-based VS. Fragment-based techniques are a rather young approach, but which 

has already gained deserved attention from the medicinal chemistry community (Hajduk 

and Greer, 2007; Congreve, et al., 2008). However, there is an open debate whether 

current docking tools are appropriate for dealing with fragments, due to the 

comparatively larger binding site regions given the size of the ligand and the supposed 
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“over-training” of current tools for more “drug-like” ligands (Hubbard, et al., 2007; 

Marcou and Rognan, 2007; Chen and Shoichet, 2009). 

Together with the continuing effort to improve docking by better treatment of target 

flexibility and prediction of water molecules mediating in the interaction, there is an 

attempt at improving the physical description of the interaction by considering scoring 

functions with more sophisticated entropic and electrostatic treatments. Meanwhile, 

while progress in this “general docking” approach happens slowly, practical alternatives 

solutions for specific problems start to emerge. Among such alternatives, probably the 

most interesting are “tailored scoring functions”. Here, the idea is to harness and 

integrate readily available information for a given target either from a collection of 

known binders (Fradera and Mestres, 2004; Jansen and Martin, 2004; Radestock, et al., 

2005), or from directly measured experimental data for the complex under study (van 

Dijk, et al., 2005a) to guide/restrain docking. This present work falls in the second 

category. 

The synergy between directly measured experimental data and theoretical docking 

methods made possible to study biological systems that were considered intractable or 

very challenging before. Remarkably, they have given a boost to the challenging field of 

protein-protein docking (van Dijk, et al., 2005a). Not surprisingly, now efforts are also 

being put in the protein-ligand docking field, specially in connection with NMR data 

(Carlomagno, 2005; Powers, 2007). There are many NMR observables that provide 

information about the structure of a biomolecular system. Chemical shifts (CS) are the 

most fundamental ones, and key for assigning NMR spectra, but not considered 

optimum for deriving structure (Szilagyi, 1995). On the one hand, the CS of a nucleus 

in a magnetic field reflects the chemical environment surrounding the nucleus. On the 

other hand, the CS results from a combination of numerous and complex effects. This 

means that different chemical environments can lead to similar CS which makes 

structure elucidation based on CS alone a difficult or unaccomplishable task. But the 

situation has changed recently. More data about CS in proteins have accumulated in 

public data bases (Ulrich, et al., 2008) thus improving our understanding and modeling 

accuracy. Together with the increasing availability of computer power, CS find 

increasingly more applicability in structural characterization of biomolecules (Wishart 
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and Case, 2001; Hunter, et al., 2005). I will focus on their use in for the study of 

protein-ligand complexes. 

If the CS of a nucleus is an expression of its chemical environment, a change in that 

environment produced by the binding of a ligand to a protein results, consequently, in a 

chemical shift perturbation (CSP). CSP of isolated atoms in a protein do not provide 

much structural information, but taken all CSP measured on the protein side upon 

ligand binding it is possible to precisely define binding site regions. Such simple idea is 

the principle of SAR by NMR, a successful fragment-based ligand design approach 

established in the last decade (Shuker, et al., 1996). The qualitative approach 

(perturbation observed or not), nicely circumvents the aforementioned difficulties to 

interpret and model CSP. But at the same time, it does not provide information about 

the relative orientation of the ligand to the protein, a task which can be deferred to a 

standard docking program. The logical step forward for better exploiting structural 

information contained in CSP was to consider them semi-quantitatively or fully 

quantitatively. Among the first approaches, which consider the absolute magnitude, but 

not its sign (i.e. whether the CSP reflects an upfield or a downfield) are the one by 

Schieborr et al. (Schieborr, et al., 2005) and the one by Stark and Powers (Stark and 

Powers, 2008). I will discuss, that such approaches still fail to directly orient the ligand 

in the binding site. They keep the ligand in the binding site, but if this is large or flat 

enough or the ligand has internal symmetries, the way CSP information is incorporated 

does not contribute to properly placing it. The fully quantitative approach, by its side, 

can exploit the ring current effect as a unique feature to properly orient the ligand. Ring 

current effects leave a pattern of down- and upfields in their vicinity, depending on 

relative ring orientation and distance. This has been already acknowledge and 

prospectively explored by McCoy and Wyss (McCoy and Wyss, 2000) and later by 

Cioffi et al. (Cioffi, et al., 2008) In both cases CSP were, however, used for post-

filtering or optimizing docking generated solutions, with the drawback that the docking 

algorithm itself is, in some cases, unable to generate a good solution at all. As stated 

above, this is a likely situation for PPI and in fragment screening attempts. My aim has, 

therefore been to incorporating CSP information directly into a docking simulation, by 

means of a new hybrid scoring function (QCSPScore) that actively drives solutions 

towards native-like poses. 
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This leads to the following specific goals: 

 Evaluate different models for the prediction of CSP upon protein-ligand 

complex formation. 

 Develop an objective function to measure the agreement between observed and 

back-calculated CSP, taking into account experimental and theoretical accuracy 

limits and efficiency considerations. 

 Combine this objective function with DrugScore, resulting in a hybrid scoring 

scheme directly applicable to standard protein-ligand docking with AutoDock. 

Establish a weighting factor for both contributions in the hybrid scoring scheme. 

 Extend AutoDock by implementing QCSPScore.  

 Test and validate the QCSP-driven approach, comparing results and 

performance to standard docking and similar approaches recently published. 
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2 Structure-based ligand design 

The discussion about aiding ligand design with information from structural biology 

began more than 40 years ago as the first three-dimensional (3D) structures of globins, 

enzymes and polypeptides were published (Beddell, et al., 1976). However, it took still 

20 more years until the first success stories following the new paradigm of “structure-

based ligand design” (SBLD) were reported (Erickson, et al., 1990; Roberts, et al., 

1990). SBLD builds on the observation that small molecules (from now on, the ligands) 

can modulate the activity of bio-macromolecules (from now on the target, normally a 

protein) through binding to specific regions of the latter. Nowadays potent binders are 

rationally designed by optimizing structural and chemical complementarity of the ligand 

to the target. Selective binders, for those cases where several targets have similar 

binding sites, can be also designed if the structural nuances of the involved structures 

are spotted and exploited alternatively to prevent and/or enhance the interactions, 

respectively (Beddell, 1992; Perutz, 1992). 

The value of detailed information about protein structures is widely recognized not only 

in SBLD applications, but also in more basic biological research areas. For example, in 

the study of the proteome, a newly discovered protein can be attributed a function if a 

structurally similar one is already known, following the paradigm “structure explains 

function”. The success of such approach has fuelled ambition to obtain more high-

resolution structures in a faster way. Policies have been adopted worldwide and a 

number of consortia have been established to promote research in improving the 

throughput (and eventually reducing the high costs) of the traditional experimental 

methods for solving protein structures, i.e., X-ray crystallography and NMR (Stevens, et 

al., 2001). The outcome of such initiatives has not only resulted in an acceleration of the 

number of structures deposited in public databases in the last years (Figure 2.1), but also 

more interestingly in the development of a substantial number of experimental and 

computational methods and variations available for producing structural information in 

a cost-effective way (Blundell, et al., 2002). SBLD benefits directly from these 

developments in structural genomics, because even if the particular protein-ligand 

complex structure of interest is not available, another structure of the target (free or 

bound to a different ligand) can be used for predicting the binding of a ligand of interest 

(Weigelt, et al., 2008). 
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Figure 2.1 Number of biomolecular structures released from the protein databank 
(PDB) per year. Source: http://www.rcsb.org/ 

SBLD is nowadays an integral component of ligand design efforts in general. A recent 

review by Scapin illustrates this fact by recounting that 25-30% of the articles in a 

typical issue of the Journal of Medicinal Chemistry report a structure-based approach to 

inhibitor discovery and/or development (Scapin, 2006). But perhaps more compelling is 

the fact the increasing number of marketed drugs that have originated from SBLD, like 

for example, aliskiren (Rasilez) (Jensen, et al., 2008), oseltamivir (Tamiflu) (von 

Itzstein, 2007) and imatinib (Gleevec) (Capdeville, et al., 2002). More examples can be 

found in ref. (Congreve, et al., 2005). One can find SBLD in all stages of the drug 

design process (Figure 2.2), and research groups try to incorporate this valuable piece of 

information as soon as possible to every project when feasible. This provides a major 

strategic change, as the technique was almost exclusively used for ligand optimization. 

In ligand optimization, one tries to leverage the information provided by a known 

protein-ligand complex. By studying such structure, one tries to find unexploited 

binding features. For example, should there be a lipophilic sub-pocket or a potential 

hydrogen-bond donor or acceptor group in the binding site not yet exploited by the 

known ligand this would be a clear opportunity to consider for the next generation of 
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molecules to be synthesized. This simple but powerful idea has opened an avenue to the 

development of so called “structure-based compound library design” methodologies for 

a specific target. Focused libraries substantially reduce the number of compounds that 

need to be experimentally tested in search of potent and selective binders, thus saving 

resources (Orry, et al., 2006). 

Another application of SBLD has been to understand drug resistances as a consequence 

of mutations (Wong and Witte, 2004). It is possible to obtain protein-ligand complexes 

of an inhibitor with wild-type proteins, for which the inhibitor was active, and mutated 

ones. The comparison of the binding modes can reveal what are the specific protein-

ligand interactions responsible for the loss of binding affinity. A new generation of 

binders should be designed by targeting conserved interactions only, which are less 

likely to mutate. 

Finally, progress in high-throughput NMR and X-ray crystallography, along with 

increasingly available computer power and new algorithmic developments promoted 

SBLD to the front of the ligand design pipeline: hit finding, which applies to those cases 

where no known binders exist or totally new compound classes are sought. Soaking 

protein crystals in cocktails of chemical fragments (Hartshorn, et al., 2005), multiple 

NMR methodologies for screening (Coles, et al., 2003), and computer approaches such 

as de novo design approaches (Schneider and Fechner, 2005) and structure-based virtual 

screening techniques (Shoichet, 2004) are all recent and sophisticated developments that 

illustrate the willingness to harnessing structural information for aiding in the design of 

new ligands. Including structural information is certainly rewarding: in a recent review 

on fragment-based ligand design, Hajduk and Greer reported that “the ability to produce 

potent inhibitors (IC50 < 100 nM) after initiating lead optimization on fragment leads 

nearly triples with the aid of structure-based design, increasing from 33% to 93%” 

(Hajduk and Greer, 2007). 
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Figure 2.2 Schematic representation of the ligand design process. Structural 
information of the target has been traditionally used at the final lead optimization 
phase; nowadays, thanks to developments in X-ray crystallography, NMR, and 
high-throughput computational docking, structural information of protein-ligand 
complexes plays a role as early as in hit finding. Bringing rational design to the 
front of the pipeline has translated in increased success rates in obtaining potent 
and selective ligands. 

Although knowing the free structure of the target is advantageous, the full power of 

SBLD comes from the study of complex structures. This is particularly true for those 

cases where, for example, the binding site is only revealed by a conformational change 

of the protein to accommodate the bound ligand (Arkin, et al., 2003). Binding of a 

ligand to its target protein results from a very delicate balance between attractive and 

repulsive forces, and the bound conformation is not straightforwardly inferable by just 

observing both unbound structures (Gohlke and Klebe, 2002). In spite of that, the 

amount of publicly available data concerning “free” structures outweighs by large that 

of complexes. In addition, if one analyzes the available complex structures, an 

immediate realization is that many targets are “overrepresented”. The “Binding 

MOAD” data base (Hu, et al., 2005), a curated subset of the PDB focused on protein-

ligand complexes, contains a total of ~10000 protein-ligand complexes relating to 

~1800 non-redundant targets (http://www.bindingmoad.org/). This underlines once 
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more, first, how difficult it is to obtain protein-ligand complex structures and, second, 

how target-dependently current X-ray and NMR methodologies perform. 

Particularly challenging for current techniques are proteins involved in molecular 

signaling through direct interaction with other proteins, the modulation of which is seen 

as a great opportunity to expand therapeutic possibilities (Arkin and Wells, 2004; 

Gonzalez-Ruiz and Gohlke, 2006). All this translates in an urgent need for 

methodological developments that can expand the applicability and the throughput of 

techniques aimed at solving protein-ligand complexes. Developing one of such methods 

is the focus of this thesis. Below an overview of the state-of-the-art and current trends 

and developments in the field is given, in order to properly frame the niche and 

relevance of the approach herein developed. 

2.1 Protein-ligand complex structure solved by experimental 

methods 

Despite rapid and impressive progress in other techniques such as cryo-electron 

microscopy (Jiang, et al., 2008), X-ray crystallography and NMR remain reference 

experimental techniques for characterizing macromolecules and their complexes at 

atomic resolution (Figure 2.3). 

In X-ray crystallography, crystals of proteins are irradiated with an X-ray beam, which 

due to the different electron densities it encounters in its way, scatters after crossing the 

crystal. By rotating the crystal, multiple scatters from different perspectives can be 

collected and assembled so that a 3D picture of the internal structure of the crystal is 

inferred. The aminoacidic sequence of the protein must be known, so that the structure 

of the protein can be elucidated by fitting the protein atoms to the template generated 

from the observed electron densities (Ilari and Savino, 2008). X-ray crystallography is 

commonly acknowledged as a superior technique for obtaining high-quality structures, 

however, finding the optimal conditions for crystallization is typically challenging. By 

its side, NMR is a more versatile technique (Jahnke, 2007), since it can produce a larger 

number of observables from which to infer the structure of the macromolecule, among 

which J-couplings, NOEs, chemical shifts, relaxation rates, residual dipolar couplings 

are the most relevant (Clore and Gronenborn, 1998). The clear advantage is that finding 
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the right experimental conditions is considerably less demanding in NMR (Wider, 

2000). However, two critical limitations of NMR are first, the requirement of relatively 

high sample concentrations at which the protein must not aggregate. And second, due to 

the high number of signals, traditional NMR is limited to the study of proteins smaller 

than 10 kDa; larger ones (30-40 kDa) require different isotope labeling schemes to 

simplify the spectra. 

But despite the aforementioned current limitations, NMR for structural characterization 

of biomolecules is still a young technique, subject to intense research in its different 

components. In order to simplify the crowded spectra that typically big molecules 

produce, selective labeling strategies have been developed to alternatively switch on or 

switch off specific nuclei (Goto and Kay, 2000; Wider, 2005). A better physical 

understanding of nuclear spin dynamics has permitted the development of new pulse 

sequences, increasing the control on the generated NMR signal. A remarkable 

breakthrough in this sense has been the advent of TROSY spectroscopy (transverse 

relaxation-optimized spectroscopy (Fernandez and Wider, 2003)) which has 

significantly surpassed the protein size limitations (Fiaux, et al., 2002). Also, 

experimental developments have permitted the practical exploitation of residual dipolar 

couplings, which are useful for the study of relative orientations of large domains of 

macromolecules (Bax and Grzesiek, 1993). Additionally, NMR not only has profited 

from experimental advances, but also from algorithmic developments: for example, in 

the tedious stage of sequential assignment of the observed signals (Guntert, 2003) or at 

the final stage of structural characterization, where the sometimes limited experimental 

data can be supplemented with refinement procedures based on modern force-fields and 

advanced sampling techniques (Chen, et al., 2004). 

This picture renders both techniques complementary rather than competing: both yield 

high quality structures, but each one observes different aspects of the structures. Most 

importantly, different experimental conditions requirements leave only one of the two 

techniques applicable, as will be described below. 
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Figure 2.3 X-ray crystallography (A) and NMR (B) are the main tools for solving 
biomolecular structures. X-ray methods fit the structure of the molecule to the 
observed diffraction pattern. NMR relies on a large collection of observed NOE, 
which subsequently is used with distance-geometry methods.  

2.1.1 Protein-ligand X-ray crystallography 

X-ray crystallography is the predominant and preferred method for solving structures of 

proteins and protein-ligand complexes. Approximately 85% of the structures deposited 

in the PDB at the time of writing have been solved by this technique (Berman, et al., 

2000). X-ray crystallography can be applied to macromolecules in a large range of 

sizes, providing high structural resolution and even the position of ordered water 

molecules that in many occasions mediate protein-ligand interactions (Scapin, 2006). 

Traditionally, protein-ligand complexes have been solved by co-crystallization, which 

typically yields a good-quality picture of the complex, but requires producing robust 

crystals with good diffracting properties (Leach, et al., 2006b). This is the most 

challenging step of the whole process, particularly if the experimental conditions to 

obtain the protein-ligand crystals differ from the ones in which the crystal of the protein 

alone crystallizes, or the ligand is not soluble in the crystallization medium (Jhoti, et al., 

2007). In summary, a tedious, not always successful, series of trial-and-error attempts 
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results for each new protein-ligand system to be studied. Challenged by these 

limitations, the worldwide structural genomics community has pushed research towards 

the development of robotics and liquid handling procedures, which eventually permitted 

an increased throughput in the crystal production (Kuhn, et al., 2002; Sharff and Jhoti, 

2003; Weigelt, et al., 2008) by parallel testing of large numbers of conditions. The 

synergy of these technological advances with a technique called “soaking” constitutes 

the big success in bringing protein-ligand crystallography to a high-throughput level. 

In the soaking technique compounds (as single species or in mixtures) are incubated 

with pre-formed crystals of the protein, free or in complex with another ligand to be 

displaced by the binding of the new one. This permits that, once the crystallization 

conditions for a given protein have been optimized, large compound libraries can be 

tested in parallel, in principle. High-throughput crystallography by soaking has been key 

in the development and adoption of X-ray aided fragment-based techniques for hit 

finding and ligand design. This is a very young approach to ligand design but already 

counts with a remarkable number of successes reported in the literature (Jhoti, et al., 

2007). 

One limitation though, is that the crystal form must be compatible with the binding of 

the ligand, i.e., the binding of the ligand should not break the crystal. Also, the binding 

site must be accessible for the ligand. As a further concern, it has been argued that in 

some cases the binding mode of the soaked ligands does not accurately correspond to 

the native binding mode, as the constraints of the pre-formed crystal prevent it (Zhu, et 

al., 1999; Hiller, et al., 2006). 

Apart from the above described experimental limitations, X-ray crystallography in 

general is not free from being affected by artifacts. Crystal preparation, data collection, 

or coordinate placement during refinement can affect and condition the final results 

(Shoichet and Bussiere, 2000; Davis, et al., 2003; Acharya and Lloyd, 2005). If the 

system under study happens to be crystallization-resistant, NMR or theoretical methods 

are appealing alternatives for structural investigations. 
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2.1.2 Traditional (NOE-based) NMR for studying protein-ligand 
complexes 

As discussed in the introduction to this section, the study of protein-ligand complexes 

by NMR methods is nowadays seen as complementary to X-ray, rather than competing. 

“Traditional NMR” for structural characterization of biomolecules relies on the 

geometric information that can be derived from through-space proton-proton 

correlations as measured via the nuclear Overhauser effects (NOE) (Wider, 1998) The 

NOE is the phenomenon by which spin polarization is transmitted from one spin 

population to another via cross-relaxation (Levitt, 2001). It has been established that for 

molecules with a molecular weight of more than 5 kDa, the intensity of a NOE between 

two protons is proportional to the inverse of the sixth power of the distance separating 

them (Neuhaus and Williamson, 2000). Accordingly, NOEs are usually observed 

between protons which are not further than ~5 Å from one another. Observing and 

assigning an adequate number of NOEs with their relative intensities, suffices to 

generate highly determining number of distance restraints as to accurately define the 

structure of the protein (Wuthrich, 2001). In the case of protein-ligand complexes, 

despite the examples reported (Gargaro, et al., 1998; Moy, et al., 1999; Polshakov, et 

al., 1999a; Moy, et al., 2000), two limitations appear: first, observing and assigning 

NOEs in protein-ligand complexes does not provide the throughput required in drug-

design efforts; second, intermolecular protein-ligand NOE are not observed for ligands 

that bind weakly to the protein (Reibarkh, et al., 2006; Cavanagh, et al., 2007). 

The limitation of the throughput yield early attempts to simplify the standard method 

(Polshakov, et al., 1999b), but the real improvement in this respect comes when the 

structure of the target protein (unbound, or in complex with other ligands) is known. For 

example, in the NMR-DOC protocol (Pellecchia, et al., 2002), the idea is to apply the 

knowledge of the aminoacidic content of the binding site region to selectively label it 

for the NMR experiment. Assignment of residues in the binding site is subsequently is 

achieved by monitoring chemical shifts perturbations due to ligand binding or by 

directly measuring observing protein-ligand NOEs. Another approach is based on 

generating a large number of candidate ligand poses, then back-calculating the 

theoretical intermolecular NOE they would produce on protein amide groups (simple 

distance-dependence) and compare these with the experimentally observed ones 
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(Bertini, et al., 2005). A further refinement of this idea overcomes the necessity of 

assigning all observed NOEs (Constantine, et al., 2006). From the generated ligand 

poses the corresponding theoretical 3D 13C-edited, 13C/15N-filtered HSQC-NOESY 

spectrum is calculated and by using a fast, deterministic bipartite graph matching 

algorithm the prediction is compared and scored with respect to the experimental 

spectrum.  

With respect to complexes in the weak binding regime, the most interesting in lead 

finding and optimization stages, instead of NOE, attention has gone to other NMR 

observables, including chemical shifts, line broadening, transferred NOE, 

intermolecular magnetization transfer or change in relaxation properties (Carlomagno, 

2005) These observables play the most important role in the study of protein-ligand 

complexes by NMR (Jahnke, 2007). However, since structures cannot be inferred as 

straightforwardly from them as in the case of complete NOE collections, they must be 

substantially supplemented with theoretical methods that automatically generate 

plausible poses. Most typically, such a conformation generator is a docking program. 

Since the approach described in this Thesis falls in exactly that category, it is 

convenient to first present what docking is and what current docking approaches are 

capable of. It is from that perspective that this work has been done. Consequently, 

NMR-based methods for structural studies of protein-ligand complexes binding in the 

weak regime are reviewed afterwards, under the appellative of “hybrid NMR-driven 

docking approaches”. 

2.2 Theoretical methods for predicting protein-ligand complex 

structures: docking and scoring 

2.2.1 Definition of protein-ligand docking 

While solving the structure of a protein-ligand complex fully by experimental method is 

the preferred way, it comes together with high costs in time and resources. This is 

particularly true when a relatively large number of ligands needs being studied. In 

addition, it is not always possible to for example obtain good diffracting crystals of a 

protein-ligand complex. However, if the structure of the target protein (or a very close 

homologue) is known, solving the structure of a protein-ligand complex using 
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computational methods is nowadays a widely accepted alternative and, in the case of 

large libraries, definitely a more efficient one. A very popular technique for such a task 

is the “docking and scoring” methodology. Given the structure of the protein and the 

putative ligand, the docking program samples millions of likely interacting modes 

between the two partners and scores them according to a defined objective function 

aimed at predicting the interaction energy. Eventually, the best scored pose corresponds 

to the best theoretical binding energy and, if the simulation went right, to the native 

structure of the complex in biological conditions. Reported docking programs amount to 

more than 60, combined with more than 30 scoring functions, according to a very recent 

review (Moitessier, et al., 2008). On average, they achieve up to 80% success rate in the 

task of placing a ligand back into its binding site (re-docking) when dealing with typical 

enzymatic targets, i.e., proteins with deep and well-defined binding sites. Such a rate 

deteriorates sharply in the case or flatter binding sites (Ferrara, et al., 2004; Warren, et 

al., 2006). 

Despite imperfections, docking has been applied with remarkable success in the past in 

the context of structure-based virtual screening (SBVS) approaches. There, large virtual 

compound libraries are docked to a given target, and the energy of the interaction is 

estimated. According to the interaction energies, compounds can be prioritized, thus 

orienting and concentrating the efforts of medicinal chemists on the most interesting 

compounds for actual synthesis and biochemical/biological testing. Precious time an 

resources are saved, this way, as illustrated, for example in a SBVS campaign in search 

of protein tyrosine phosphatase 1B. There, the prioritized set of ligands resulted in a 

1700-fold enhancement of the hit rate over random screening (Doman, et al., 2002). 

Some other success docking stories have been collected in a number of reviews 

(Kitchen, et al., 2004; Mohan, et al., 2005; Klebe, 2006). Together with hit-finding, 

docking has another relevant application in the ligand optimization step. Once an 

interesting binder is found, efforts concentrate on proposing new one with larger 

potency or better selectivity profile or simply easier chemistry. By analyzing the 

interaction predicted by docking of proposed virtual compounds, informed decisions 

can be made with respect to which compounds must be synthesized first. It can become 

apparent that some candidates do not fit in the binding site or that others do not fulfill 

required specific interactions (Choong, et al., 2002). 
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A docking experiment requires four elements: the structure of the protein, the structure 

of the ligand, an automatic generator of conformations and an evaluator of those 

conformations (Figure 2.2). 

 

Figure 2.4 Docking consists of predicting how a ligand binds to its target protein and 
the energy of such interaction. Here, the binding of inhibitor Dmp323 to HIV-1 
protease is illustrated (PDB code: 1BVE). Adapted from ref (Kitchen, et al., 2004) 

The first docking programs considered both the protein and the ligand as rigid bodies 

(Kuntz, et al., 1982), which permitted a complete systematic search of ligand 

orientations with respect to the protein, or even manual docking if one had sufficient 

experimental data supporting the proposed solution. Now, ligands are always 

considered flexible and even some implementations allow introducing flexibility 

considerations of the protein. For example, version 4 of AutoDock (Morris, et al., 2009) 

as well as GOLD (Verdonk, et al., 2003) allow for explicit side chain flexibility. Other 

typical implementation of flexibility involves considering ensembles of protein 

conformations, experimental or theoretically simulated, as is the case of DOCK 3.5.54 

(Wei, et al., 2004). For a recent review on dealing with target flexibility see reference 

(Cozzini, et al., 2008). 

Considering both interacting partners as flexible generates a combinatorial explosion of 

possible mutual orientations that renders the exhaustive search as impossible. These 

methods include stochastic search as Montecarlo sampling or simulated annealing and 

heuristics such as genetic algorithms or swarm-based optimization algorithms. The 

optimization typically occurs on the hypersurface that the guiding objective function 

describes: the energy landscape. To every relative orientation, corresponds a binding 

energy and the task of the algorithm is to find the global minimum. The aforementioned 

stochastic methods have proven useful in surmounting likely energetic barriers that 

surround the global minimum (Morris, et al., 1998). 
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Objective/scoring functions are simplified attempts to efficiently evaluate the 

interaction energy of a given protein-ligand configuration. Rigorous energetic 

considerations of the interaction such as free-energy simulation techniques (Simonson, 

et al., 2002) are not practical for the purposes of docking. This results in docking 

solutions which are plausible, in terms of steric and chemical complementarity, but not 

native-like since important effects such as desolvation or translational and rotational 

entropy are neglected. And here is precisely where the subtle difference between 

docking and scoring emerges. The difficulties in properly modeling the binding energy 

of interaction is reflected in the discrepancy between the relatively high success rates in 

docking and the limited ability of docking programs to correctly rank-order series of 

inhibitors according to their potency (Warren, et al., 2006). But both problems are not 

disconnected, and it is accepted that better docked structures provide better results in 

terms of binding energy prediction (Velec, et al., 2005; Bertini, et al., 2007). 

Consequently it is worth revisiting the idea that the docking problem is solved and that 

most efforts must be put in improving scoring: even small further improvements in 

docking, will translate in a benefit to the scoring problem. 

2.2.2 Scoring functions for protein-ligand docking 

Scoring functions fall typically into three categories: force-field-based, empirical and 

knowledge-based. 

In a force-field based function, the interaction energy between the ligand and the protein 

is decomposed as a sum of physics-based terms such as van der Waals and electrostatic 

contributions, at a molecular mechanical level, that is, simulating atoms as single 

particles that interact pairwise. 
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Where Aij  and Bij are van der Waals parameters for the combination of atom type of i 

and atom type of j, atoms respectively from the protein and the ligand. d is the 

interatomic distance and (dij) is the distance-dependent dielectric function. 
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Variations of such scoring functions are implemented in popular docking packages such 

as AutoDock (Morris, et al., 1998), ICM (Abagyan, et al., 1994) and DOCK (Meng, et 

al., 1992). The parameters describing each atom type are typically obtained from fitting 

to experimental quantum mechanics data. Unfortunately, these parameters were 

originally formulated to model the systems in gas-phase, neglecting solvation and 

entropic effects. Finally only one protein conformation is considered, so that the score 

of a given ligand pose boils down to considering the internal energy of the ligand 

(energy of the conformation) and the intermolecular energy of interaction, neglecting 

the internal energy of the protein. All these simplifications, although rendering a quite 

efficient and to some extent accurate description of the protein-ligand interaction, 

translates into a limited applicability. The challenge to describe intermolecular 

interactions efficiently only with physics-based terms has been underlined by one 

simple estimation: the free energy difference between the best ligand that one might 

reasonably expect to identify using virtual screening (potency, ~50nM) and the 

experimental detection limit (potency, ~100 M) is only about 4.5 kcal/mol. The free 

energy contribution due to conformational factors alone for typical druglike ligands can 

be as large as this (Tirado-Rives and Jorgensen, 2006). In spite of that, this remains an 

active field of research (Huang and Jacobson, 2007), and has found interesting 

applicability not for docking itself but in re-scoring schemes which attempt to more 

finely understand protein-ligand interactions, once the structure of the complex is in 

hand (Wang, et al., 2001). 

Empirical scoring functions, pioneered by Böhm (Bohm, 1994), consist also on a 

weighted sum of terms, but these are not formally physically grounded.  
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Binding energy (Gbind) in this case is the sum of a hydrogen-bond (ionic and neutral) 

term, which has an angular () and a distance dependence (R), a hydrophobic effect 

term, as a function of the molecular surface area (Ahydrophobic) and an account for ligand 

rotational entropy, by means of considering the number of rotatable bonds in the ligand 
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(Nrotor). All terms are weighted (GH-bond, Gionic, Ghdrophobic, Grotor) empirically, from 

regression analysis against experimental data. G0 is a regression constant. 

These functions typically appear in popular docking packages such as GLIDE (Friesner, 

et al., 2004) and GOLD (Verdonk, et al., 2003). Although empirical scoring functions 

usually appear almost consistently amongst the most accurate ones at scoring, one 

should not forget that their accuracy is compromised by the experimental data used in 

the parameterization and that the training set of protein-ligand complexes is biased 

towards enzyme-inhibitor complexes where the ligand fits into a well-defined cavity. As 

discussed below, this indeed represent a serious drawback when dealing with small 

fragments or rather flat and large binding surfaces, as in protein-protein interfaces. 

The third class of protein-ligand scoring functions are the so called “knowledge-based” 

scoring functions. They build up on the classical statistical physics idea that the 

observed distributions of properties can be used to infer the potential that gave rise to 

the distribution. Their first uses have been described in protein folding studies 

(Miyazawa and Jernigan, 1985), and the growing number of protein-ligand complexes 

deposited in public databases permitted the development of also protein-ligand binding 

potentials that are nowadays used in docking, being the most representative examples 

PMF (Muegge, 2000) and DrugScore (Gohlke, et al., 2000). The DrugScore equation is: 
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where Wij is a distance dependent pairwise potential, SAS correspond to the surface 

accessible area terms and  is an adjustable weight factor. 

The main caveat for knowledge-based scoring function is that they have been developed 

to reproduce experimental structures, rather than binding energies, which somehow 

limits their applicability to that task. As empirical scoring functions, knowledge-based 

scoring functions circumvent the major limitations of force-field scoring functions, that 

is having to accurately describe the underlying physical phenomenon. 
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2.2.3 Current challenges and trends in protein-ligand docking 

In common docking benchmarking and evaluation, programs are presented with three 

already anticipated challenges of increasing difficulty: (1) binding mode prediction, (2) 

discrimination of binders from non-binders, and (3) binding energy prediction. As 

discussed above, the degree of success of state-of-the-art docking programs in each of 

these tasks deteriorates according to the respective difficulties. Furthermore, correctly 

predicting binding energy (3rd goal) heavily relies on having good starting structures (1st 

goal), that is, all three goals are interconnected, and deficiencies are carried on along the 

line. In a recent comprehensive evaluation of docking programs, it has been shown that 

for the first goal, success can range from 0% to 90% of the cases, depending on the 

program/protein target combination. With respect to the second goal, results vary from 

recovering 80% of active compounds in a SBVS campaign to consistent worse than 

random performance, which raises the question for the source of success when it 

happens. The last objective is “beyond all of the current docking methods” (Leach, et 

al., 2006a; Warren, et al., 2006). With this picture in sight the most sensible decision is 

probably taking docking for its merits as a tool for generating plausible protein-ligand 

complex structures. Later, those poses are considered as starting points for further 

refinement with more sophisticated techniques, depending on the stage and needs of a 

given project. Of course, this is assuming that a 0% to 90% success in generating 

native-like structures is a convincing figure. It is certainly not for the cases in the low 

end, which appear to be challenging to all standard docking approaches. 

Why docking fails, when it does? Noteworthy, the difficulty of the “challenging cases” 

has been attributed to characteristics of the target binding site. In particular, a rather 

large binding site surface, different from the typical enzymatic pockets on which most 

of the current docking methods have been trained (Warren, et al., 2006), seems to 

condition the success. In other words, success of current scoring functions appears to be 

highly dictated by well defined binding pockets, which effectively constrain the 

possibilities to place a given ligand inside. This reflects the limitations of current 

scoring functions and leaves docking out from what are nowadays probably the single 

two most promising developments in drug design: 1) modulation of protein-protein 

interfaces as valid therapeutic target (Arkin and Wells, 2004; Gonzalez-Ruiz and 

Gohlke, 2006) and 2) fragment screening (Hajduk and Greer, 2007). 
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As already advanced in the introduction, protein-protein interfaces are typically large 

and flat, compared to standard enzymatic binding pockets (Pettit and Bowie, 1999) (see 

Figure 1.1). By their side, fragments are in general too small for a binding site, thus 

providing few steric restraints for unambiguously docking them (Klebe, 2006) (Figure 

2.5). This thesis is focused on improving the ability of docking programs to generate 

native-like solutions, in particular in sight of these two particularly challenging cases. 

 

Figure 2.5. (a) Electron density showing multiple fragment-binding in an enzyme active 
site. (b) Core fragment chosen for synthetic elaboration showing possible growth 
vectors to two adjacent binding sites. Clearly, the fragment is not sterically 
constrained in the binding site, which for a docking program supposes a 
significant challenge. Adapted from (Ciulli and Abell, 2007) 

The difficulty to develop scoring functions that perform equally well across many 

different protein families, regardless of their complexity and sophistication, is nowadays 

widely accepted (Kitchen, et al., 2004). For this reason, researchers tend to wisely 

choose the tool that works best for the system under study. If none is accepted as such, a 

suggested alternative has been to use several programs, pool all solutions together, and 

re-score by “consensus”. A higher degree of refinement involves effectively tailoring 

the docking scoring function to the protein or protein family of interest. This can be 

done for example with ligand-based information. If a collection of known binders is in 

hand, a binding-model can be derived to bias the scoring function (Fradera and Mestres, 

2004; Jansen and Martin, 2004; Radestock, et al., 2005). The peril of such approaches is 

that the new ligand is somehow forced to bind in a known fashion or to match known 

interactions, which in many cases is an acceptable assumption, but not if, for example, 

the aim was finding new scaffolds. Finally, if no collection of ligands is available, an 

appealing alternative is to incorporate directly measured experimental information from 
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the complex under study to restrain, guide, or postfilter docking solutions. A wealth 

source of such information is NMR. NMR data and docking programs make an 

excellent partnership, provided that the experimental observations can be efficiently and 

accurately modeled. Such has been the strategy pursued in this study: to combine NMR 

chemical shift perturbations with docking to improve the success of the latter and 

expand its applicability. Approaches sharing the same principles are reviewed in the 

next section. 

2.3 Hybrid NMR-supplemented docking approaches 

In a recent perspective on NMR in drug discovery published by Nature Reviews in Drug 

Discovery, experts underlined the fact that NMR is not fully exploited in industrial 

settings as a complement to X-ray crystallography, given that it is not rapid. 

Interestingly, their opinion on a possible way to improve the situation was expressed as 

follows: “Our view is that the combination of molecular docking supported by limited 

NMR experimental constraints could represent an efficient way to rapidly gather 

information on ligand-target complexes without full structure determination” 

(Pellecchia, et al., 2008). This opinion is solidly supported by the significant number of 

improvements and success reports that we are witnessing in the field. Nowadays, NMR 

can be applied in almost any stage of the ligand design process, from ligand binding 

detection (screening) (Coles, et al., 2003) and quantification of binding affinities (Klein, 

et al., 1999) to the most informative structural resolution at atomic level (Takeuchi and 

Wagner, 2006). See scheme in Figure 2.6. 
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Figure 2.6 Role of NMR in the drug design process, once the target has been validated. 

There are many NMR observables change upon binding and consequently are markers 

of the protein-ligand interaction. For example signals from the ligands, which do not 

have limitations on the size of the system studied nor need labeled samples. At the most 

basic level, changes in diffusion and relaxation rates can be used as binding reporters, as 

these properties are different for small ligands tumbling free compared to being bond to 

a large macromolecule (Hajduk, et al., 1997; Lin, et al., 1997) A more comprehensive 

list is collected in Table 2.1. In principle, these signals are not as rich in terms of 

structural information as those from the protein-side, but they constitute the basis for 

many of NMR-based screening techniques currently available (Meyer and Peters, 2003). 
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Table 2.1 Comparison of NMR methods to obtaining structural clues about protein-
ligand complexes 
 Observable Main limitation Methods Provides 
Protein / 
ligand side 

NOE - Tight binders 
- Complex size limit 
- NOE observation  

- “Standard“ NMR 
-NMR-DOC 
 

Complex structure 

Ligand side Intermolecular 
magnetization 
transfer 

- Fast exchange regime - Transferred NOE 
- STD 
- WaterLOGSY 
- SAR by ILOE  
- CORCEMA 

Ligand binding 
epitope 
 
 
Complex structure 

 Cross-correlated 
relaxation rate 

- Fast exchange regime  - CCR rate Conformation of 
the ligand 

 
Chemical Shifts - Vast computational  

resources 
NMRScore Complex structure 

Protein side Chemical shift 
perturbations 

- Complex size limited 
- Assignments required 

- SAR by NMR 
- LIGDOCK 
- McCoy & Wyss’ 
approach 
-NMRScore 
 

Binding site 
location  / 
Complex structure 

Noteworthy, NMR-based screening compares favorably to biochemical screening, since 

no specific assay needs being developed and knowledge of the function of the protein is 

not needed. Even though NMR-screening is not the main focus of this work, it happens 

to be the case that some of the observables exploited there, have lately found application 

in structural characterization, when combined with computational tools (Meyer and 

Peters, 2003; Carlomagno, 2005; Takeuchi and Wagner, 2006). In particular, those 

based in the detection of intermolecular transfer of magnetization (transferred NOE) and 

chemical shifts perturbations. 

2.3.1 Uses of transferred intermolecular magnetization for structural 
characterization of protein-ligand complexes 

Molecules with low molecular weight have short correlation time and, consequently, 

show NOE values that range from very small negative to positive. Large molecules 

instead show strong negative NOEs. However, when the low-molecular-weight ligand 

binds to its target protein, it behaves as part of it and adopts the corresponding NOE 

behavior, thus showing strong negative NOEs. This phenomenon is called the 

transferred NOE (trNOE) and relies therefore on the differences in tumbling times 

between free and bound small molecules. In principle it is possible to observe both 
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inter- and intramolecular trNOEs: the former ones are useful for defining the 

conformation of the ligand in the bound state and the latter for determining its 

orientation in the binding site (Meyer and Peters, 2003). 

Magnetization transfer is the basis of STD (saturation transfer difference) and can be 

observed between target and ligand in short-lived complexes through the NOE (Meyer 

and Peters, 2003). In these experiments, appropriate pulses are used to selectively 

saturate signals from the target, so that ligand spins in close-contact with the target 

experience the transference of magnetization from those saturated spins. This is 

consequently reflected in a decrease of their line intensities in a 1D-spectrum, as 

depicted in Figure 2.7. Qualitatively, the technique has an unquestionable value for 

ligand screening. Additionally, some applications have been described where it has been 

shown that mixtures of ligands could be use likewise (Mayer and Meyer, 1999). 

 

Figure 2.7 Schematic representation of the STD experiment.  Ligand spins in close 
contact with the target receive part of the receptor spin saturation. Thus, ligand 
resonances that experience a decrease in intensity, following saturation of the 
target spins, identify the binding epitope of the ligand. Additionally, if the target 
has been selectively labelled, it is possible to establish distance restraints between 
specific ligand protons and residue types in the protein, which is the basis of the 
SOS-NMR approach (Hajduk, et al., 2004).  

The quantitative use of STD, that is, considering which ligand’s protons are more 

affected by the binding, reveals the binding epitope: that is the region of the ligand that 

is in closer contact to the protein (Maaheimo, et al., 2000; Haselhorst, et al., 2001). This 

information can be quite precious when the ligand is rather large, as in the case of 

polysaccharides or peptides. One can define distance restrains between specific atoms in 

the ligand and the surface of the binding site to restrain a docking simulation. 

Alternatively, those restrains can be employed in filtering out generated ligand poses 
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that violate them. Intramolecular ligand NOE, possibly combined with cross-correlation 

rates, serve also in the case of large ligands to fix it conformation (Carlomagno, 2005). 

Subsequently, rigid-body docking can be performed, which is a considerably less 

demanding task than fully flexible one. 

STD, combined with specific labeling schemes, resulted in the SOS-NMR approach 

(Hajduk, et al., 2004). There, different samples of the target protein are prepared, each 

perdeuterated in a specific residue. The magnetization transfer from each residue type to 

the ligand protons is revealed by the trNOE, which can be easily assigned to a given 

residue type. If the number of investigated residue types is enough, one can, first, define 

the binding site and, second, impose restraints between specific protons in the ligand 

and certain residue-types in the protein. This restrains are finally used for post-filtering 

docking-generated ligand poses to unambiguously define the structure of the complex. 

The most sophisticated use of STD data is presented by the CORCEMA (complete 

relaxation and conformational exchange matrix) approach (Jayalakshmi and Krishna, 

2004) STD data is used here to refine the structure of the complex. In brief, the method 

is capable of predicting the STD of a protein-ligand complex. Differences between 

experimentally measured intensities and predicted ones for the proposed complexes are 

minimized during the search of the structure. An additional advantage claimed by the 

authors is that protein flexibility could be easily incorporated into the refinement 

procedure. The development was done with theoretical data and concerns were raised, 

that experimental data would introduce more noise and thus additional degrees of 

freedom which ultimately would hamper the convergence to a single structure 

(Carlomagno, 2005). However, successful applications have already been reported in 

the literature (Jayalakshmi, et al., 2004; Wen, et al., 2005). 

If two ligands bind concomitantly to a protein in near-by regions, transference of 

magnetization can also be observed between them directly, or mediated through target 

protons. This is called the inter-ligand Overhauser effect (ILOE) (London, 1999). This 

information cannot only be used for detecting binding, but also to establish structure-

activity-relationships, since both ligands could be linked together in a new molecule, 

thus producing a more potent binder. The technique aiming at such end has been called 

“SAR by ILOE” (Becattini and Pellecchia, 2006). A quantitative interpretation of the 

ILOE can be also used to derive distance restrains between both ligands on the receptor.  
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Time-sequential protein-mediated ILOEs between competitive ligands that bind in the 

same binding site are exploited in the INPHARMA (interligand NOE for phamacophore 

mapping) approach. By analyzing the ligand areas that happen to be in contact with the 

binding site, it is possible to derive a pharmacophoric model (Sanchez-Pedregal, et al., 

2005), which in turn can be used to tailor a scoring function within a docking program.   

2.3.2 Methods using CSP for characterizing protein-ligand 
complexes 

Transferred magnetization discussed above can be applied to deduce structure provided 

a sufficient collection of observations from which to derive restraints. Thus they can be 

described as indicators of pairwise relative positions. By their side, chemical shifts 

perturbations (CSP) are very fine indicators of changes in the chemical environment of 

a nucleus as a whole, and therefore they are a more “genuine” parameter to be related to 

structure, despite difficulties to interpret them (Szilagyi, 1995). 

 The most popular application of CSP in SBLD is probably the SAR by NMR approach 

(Shuker, et al., 1996). Here, small molecular fragments that bind to the protein produce 

different patterns of CSP on this protein, depending on the place where they bind. This 

information is used to map the binding site: fragment A binds in subpocket S1, fragment 

B, chemically different, in subpocket S2 and so on. From here, fragments can be 

rationally combined through linkers into new compounds, which will be better binders 

by virtue of simultaneously targeting at least two favorable neighbor binding regions. 

Unfortunately, protein nuclei not directly involved in the binding do also experience 

CSP due to typical protein re-arrangements or flexibility, which introduces some noise 

in the detection. This, indeed, supposes a serious restriction to SAR by NMR: proteins 

must not undergo significant rearrangement and assignments must be sufficiently 

comprehensive. A possibility to overcome this limitation would be monitoring 

differences in CSP for closely related ligands, expected to produce similar re-

arrangements (Medek, et al., 2000). What the SAR by NMR lacks is the ability to 

provide specific structural information about the complex. 

Probably the most prominent example where CSP are used in complex structure 

elucidation is one coming from the more challenging protein-protein docking field. 
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Protein-protein docking is particularly challenging because the number of possible 

relative orientations between interacting counterparts is several orders of magnitude 

larger than in the case of protein-ligand docking. For this reason pre-filtering or a bias 

integrated into the scoring function are the best options to obtain good results (and not 

postfiltering). In version 2.0 (May 2007), the HADDOCK program (Dominguez, et al., 

2003) is able to incorporate various experimental data from NMR (chemical shifts, 

residual dipolar couplings (van Dijk, et al., 2005c), diffusion anisotropy (van Dijk, et 

al., 2006)) or from mutagenesis experiments. The approach has qualified successively 

amongst the most successful ones in the CAPRI competitions that evaluate the state of 

the art of protein-protein docking techniques (van Dijk, et al., 2005b). Technically, the 

restraints used by HADDOCK are ambiguous by definition. That is: it is known that a 

given residue must be in the interface (because their CS appear perturbed) but the 

specific counterpart is not known. These qualitative observations are modelled by 

means of ambiguous interaction restraints (AIR) (Nilges and O'Donoghue, 1998). An 

AIR is defined as an upper-bounded intermolecular distance that must be fulfilled upon 

complex formation. However, it does not require a particular residue pair to fulfill it, but 

a subset of pre-selected possible pairs. This definition effectively restricts the search of 

possible orientations to a more tractable number, increasing the chances of success. 
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Residues defined as “involved in the interaction” are taken as pairs (i, k), one from each 

counterpart A and B, respectively. The distance is computed for every atom m in residue 

i from the first protein to every atom n of residue k in the second protein. In this way, as 

soon as two atoms are in contact the restraint is satisfied.  

Coming back to the protein-ligand field, inspired by the ideas developed in 

HADDOCK, the group of Schwalbe has developed LIGDOCK (Schieborr, et al., 2005), 

which exploits CSP in a both ambiguous (Nilges and O'Donoghue, 1998) and semi-

quantitative fashion (weak, medium, strong, with only strong CSP being used) as 

restraints for docking, in combination with a force field. The assumption is that largest 

CSP must correspond to direct protein-ligand contacts, and this way, it is possible to 

define a scoring function that accounts for this situation. LIGDOCK relies on the 
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concept of AIRs as HADDOCK does, but in this case AIRs are defined unidirectionally 

from the ligand to the protein: every observed (large) CSP constitutes an AIR. 

Calculations of the structure are done using CNS (Brunger, et al., 1998), which flexibly 

permits defining the aforementioned AIRs, in the same fashion as in HADDOCK. 

Generated solutions are evaluated subsequently in terms of the AIR energy and van der 

Waals energy by means of a “selection plot”. Solutions that have either bad AIR energy, 

i.e. high number of distance violations, or bad interacting van der Waals energy are 

discarded. The approach manages to effectively keep the ligand in the binding site, 

although it does not incorporate any information for discriminating between ligand 

orientations that occur within that binding site region... 

The pioneering quantitative use of CSP for this problem, to the best of my knowledge, 

has been reported by McCoy and Wyss (McCoy and Wyss, 2000) (also implemented in 

SDILICON (Moyna, 2003)). Their method exploits the ring-current effects that ligand 

with aromatic rings produce on the protons of the protein.  Aromatic rings not only 

constitute the main source of the contribution to the total CSP when present, but also 

produce a well-defined pattern of up- and down-fields on the surrounding spins, 

depending on the relative position and orientation. Profiting from developments in the 

theoretical prediction of CS in proteins, such as the program SHIFTS (Osapay and Case, 

1991), the authors devised a protocol to align a ligand chemically similar to tryptophane 

to calmodulin. Consequently, they considered a probe tryptophane and generated a large 

number of bound poses of it to calmodulin. Using SHIFTS, they predicted the 

contribution to CS of the -carbon protons of the protein that each pose would produce, 

and compared those values with experimental ones. The largest agreement corresponded 

to the orientations closest to the native of the original complex. This demonstrated the 

usefulness of such an approach for aligning ligands to their target proteins on the basis 

of CSP. The method has been already successfully applied in the context of SBLD 

programs (Wyss, et al., 2004; Gorczynski, et al., 2007). A further development on the 

method has been presented recently, where the task of generating ligand conformations 

is passed to the protein-ligand docking program GOLD (Verdonk, et al., 2003). 

Subsequently these starting poses are optimized according to their agreement to CSP 

(Cioffi, et al., 2008). 
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Very recently, a new method using a crude distance-dependent model for CSP called 

AutoDockFilter (Stark and Powers, 2008) has been reported. The authors assume that 

large amide CSP, negative or positive, must correspond to residues in close contact to 

the ligand. In a first step, large CSP are used to define the binding site area on which 

AutoDock (Morris, et al., 1998) docking is be performed. Ligand poses so generated are 

post-filtered according to the distance-dependent score in an AIR fashion: residues with 

largest CSP must have ligand atoms in closer contact than residues with smallest CSP. 

As in the case of LIGDOCK, such an approach ensures that the ligand remains in the 

binding site area, but does not provide information about how it orients once in there. 

Upon binding, both ligand and protein proton resonance signals are affected, resulting 

in CSP. Arguably, ligand signals are easier to follow and assign, and do not present 

limitations on system size. This has been the kind of information exploited in the 

NMRScore approach (Wang, et al., 2004a; Wang, et al., 2004b; Wang, et al., 2007). 

There, selected CS of the ligand are computed at the semi-empirical MNDO level, 

speeded up by using a “divide and conquer” methodology for diagonalizing the Fock 

matrix. The authors have shown that such an approach is superior in recognizing native-

like conformations of protein-ligand complexes compared to standard docking and 

scoring approaches. Care must be taken in that symmetries in the ligand structure can be 

misleading, and for that additional experimental information from the protein side is 

required. All tests of this approach have been reported so far for one complex and, 

despite being promising, its applicability at the scale required in a SBLD program 

remains uncertain. Computational times are rather lengthy. Probably, ligand refinement 

and/or postfiltering would be, for the time being, the most appropriate application for 

this approach.  

The method to which this thesis is devoted shares many of the ideas of the previously 

presented, but taking them a step further in the approach. CSP are used quantitatively, 

so that not only protein binding regions are detected but also the actual orientation of 

the ligand with respect to the protein is directly obtained. The methods by McCoy and 

Wyss (McCoy and Wyss, 2000) or by Cioffi et al. (Cioffi, et al., 2008) do also use CSP 

quantitatively, but fail to acknowledge that the different CSP for different HN are 

predicted with uneven accuracy by empirical methods (Moon and Case, 2007). I will 

show that this has a relevant impact on the final result and requires an outlier-resistant 



Structure-based ligand design  32 

   

functional form for scoring. Additionally, it has been assumed that current docking 

engines are good enough at generating docking solutions, but as discussed above there 

are still significant gaps, particularly when dealing with large binding regions as in 

protein-protein interfaces or in fragment screening. This is a relevant issue to look at, 

considering that the large majority of the exposed methods use CSP information as post-

filtering, i.e. relying on the ability of the docking engine to generate good docking 

solutions beforehand. Here I will propose an implementation that incorporates CSP 

information at docking time, in order to enhance the probability of generating native-

like poses with respect to standard docking. I anticipate that some aspects of the 

problem are not going to be directly addressed in this work, as is the case of protein 

flexibility. However, the impact of not taking it into account will be evaluated. 
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3 Theory and methods 

In what follows, the theoretical fundaments supporting the use of CSP in a protein-

ligand context will be exposed, accompanied by a description of the methods and the 

dataset of protein-ligand complexes used in deriving our CSP-driven docking scheme. 

The semi-empirical model applied by Case et al. in the program SHIFTS for predicting 

CSP in proteins constitutes the foundation of our formulation (sections 3.1 and 3.2). 

Molecular visualization lies at the core of molecular modeling, and plays also a crucial 

role for the understanding of the problem on which this thesis is focused. In section 3.3 

I discuss different visualization solutions proposed so far for facilitating comprehension 

of CSP effects of a ligand on a protein. I will explain the specific solution suggested in 

this work and justify its election. Concerning the actual development of the scoring 

function, I will explore in a first step several candidate mathematical formulations for a 

CSP-based scoring function in a post-filtering scenario. The statistical tools used for this 

evaluation (ANOVA analysis and coverage-error-plots) are described in section 3.4. In 

a second step, I will target the appropriate formulation of the hybrid scoring function, 

for which brief account on current docking failures will be exposed in section 3.5. The 

theoretical reasoning on how to combine the knowledge-based scoring function 

DrugScore with CSP information is described in sections 3.6 to 3.8. Finally, the 

reference docking method, the different data sets used along this work and their 

preparation are described (chapter 4). 

3.1 Chemical shifts, chemical shifts perturbations, and their 

use in structure elucidation 

The chemical shift (CS) of an atom is the most fundamental NMR observable (Levitt, 

2001). Because atomic nuclei have spin, when an external magnetic field B0 is applied 

on them, their precession frequency w0 is affected, proportionally to that magnetic field 

and as a function of the atom’s gyromagnetic ratio. 

 00 B   Eq. ( 5 ) 

Because the external field also induces currents in the electron cloud surrounding the 

nuclei, these currents generate in turn also an induced magnetic field which effectively 
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modulates the originally applied field at a local level. Thus, nuclei at two sites in the 

same molecule provided they are surrounded by different electronic environments 

experience different changes in their respective precession frequencies, as is the case of 

protons in –CH3 group of ethanol and protons in –CH2 group of the same molecule. 

Since this effect is caused by the induced field that valence and bonding electron 

produce, precisely those implicated in the chemical properties of the molecule, thus the 

name of chemical shifts (Levitt, 2001).  

Practically, chemical shifts are expressed in terms of the ration between the difference 

in precession frequency of the target nucleus and a reference and the precession 

frequency of that reference, in parts per million: 

 60 10·
ref

ref
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

  Eq. ( 6 ) 

the typical references are protons of tetramethylsilane, Si(CH3)4 for experiments 

performed in organic solvents and for biomolecules those in the methyl groups of 2,2-

dimethyl-2-silapentane-5-sulfonic acid. 

Even if we consider the nucleus of a single isotope of an atom, the different 

magnetic/electronic environments in which this nucleus can be found give rise to 

differences in frequency of resonance, which are reflected in different CS. This 

phenomenon renders CS as an appealing parameter for studying the structure of matter. 

However, the challenge comes from the fact that the CS of a nucleus is a single number, 

and it is rather complicated to interpret it in geometrical terms when taking in isolation 

or as an absolute value. Fortunately, differences in CS to a reference state are easier to 

interpret. The phenomenon of a ligand binding to a protein causes a perturbation in the 

CS of the protein (also in those of the ligand). The unbound protein can be considered 

the reference state, to which CS in the complex can be compared, in order to deduce the 

orientation of the bound ligand. 

3.2 Empirical modeling of chemical shifts perturbations 

A change in the chemical environment of a nucleus results in a change in the field 

affecting it and therefore in the observed chemical shift . Empirical models 
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decompose the total observed perturbation in through-bond, due to covalently bound 

neighbor atoms, and through-space effects, due to close-by interacting atoms, non-

covalently bound (Szilagyi, 1995; Wishart and Case, 2001). 

 spacethroughbondthrough     Eq. ( 7 ) 

through-space contributions include magnetic (electron ring currents and other magnetic 

anisotropies) and electrostatic (electric field, hydrogen bonds, solvation) effects. Nuclei 

most affected by these contributions are 1H and 19F atoms, since they are only bound to 

one other atom, while observed  of nuclei such as 13C or 15N are mostly determined 

by the covalent structure. This particularity, makes these nuclei very interesting for 

deriving conformational restraints in biomolecular structure determination (Cornilescu, 

et al., 1999). In Table 3.1, adapted from reference (Wishart and Case, 2001), the 

different contributions that give rise to the observed CS for active nuclei in proteins are 

collected. 

Table 3.1 Determinants of chemical shifts in proteins*. 

Attribute 1HN 15N 1H 13C 13C 13CO 
Random coil 0 50 25 50 75 25 
Torsions (/) 0 0 50 25 10 50 
Torsions (/i-1) 25 25 0 0 0 0 
Side chain () 5 0 0 5 5 5 
Side chain (i-1) 5 5 0 0 0 0 
Hydrogen bonds 25 5 5 5 0 5 
Ring currents 10 0 10 0 5 5 
Local charges 10 0 0 0 0 0 
Miscellaneous 20 15 10 5 5 10 
*Data given as % of the total effect. The decomposition is done for average values. For 
example it is clear that not all atoms/groups are involved in hydrogen bonds or are in 
the vicinity of aromatic rings. 

In the case of a ligand binding to a protein, the  experienced by any nucleus on the 

protein side can be calculated as the difference between the  in the complex and the 

free state: 
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    Eq. ( 8 ) 

where L denotes effects coming from the ligand and P effects coming from the protein, 

either free and in complex. It comes down to the direct effect of the ligand in the 
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binding site as a source of perturbation plus effects coming from the protein itself, 

which arise due to conformational rearrangements. If we assume no significant protein 

rearrangement upon ligand binding then Pcplx equals Pfree, which leaves only the effect 

of the ligand. Additionally, as I am considering the case where the ligand binds non-

covalently, there is no L
t-bond contribution, yielding: 

 L
spacet   Eq. ( 9 ) 

This equation can now, as explained before, be decomposed into magnetic effects, 

coming from electron ring currents of aromatic rings and other magnetic effects 

originated by chemical groups containing double/triple bonds or amide groups and 

electrostatic contributions: 

 melerc    Eq. ( 10 ) 

Where rc is the ring current contribution, ele is the electrostatic contribution, and m 

accounts for other smaller magnetic contributions. 

3.2.1 Ring current effects 

The ring current contribution is typically segregated from other magnetic contributions 

since when it is present, it accounts for the largest part of the observed chemical shift 

perturbation (CSP). Indeed, there are approaches described in the literature that rely 

only on this contribution for orienting ligands with respect to their target proteins 

(McCoy and Wyss, 2000). 
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Figure 3.1 Ring currents around aromatic rings in solution induced by an external, 
static magnetic field. The shape of the ring current field is indicated by the red 
double-cone and by broken magnetic-field lines. The minus sign indicates that the 
NMR lines of hydrogen atoms located inside the cone in the three-dimensional 
protein structure are shifted “upfield”, whereas for atoms outside of the cone the 
shifts are “downfield”.  

The sign of the chemical shift affected by ring currents changes as a function of ring 

orientation, and the intensity of the shift does as a function of distance from the ring. A 

single ring on the surface of a protein produces significant perturbations (~0.1 ppm) for 

protons 7-10 Å from the ring (Case, 1995). Out-of-plane orientations with respect to the 

aromatic ring give rise to negative upfield shifts and in-plane orientations give positive 

downfield shifts (Figure 3.1). The change of the sign of the aromatic ring current as a 

function of ring orientation typically produces a pattern of positive and negative proton 

shifts when aromatic ligands interact with a protein surface. These patterns are very 

sensitive to translation and rotation of the ring. Formulas for computing each of these 

terms have been implemented in programs for CS prediction in biomolecules such as 

SHIFTS (Osapay and Case, 1991) or SHIFTX (Neal, et al., 2006), recently used in 

predicting full protein structures from chemical shifts (Cavalli, et al., 2007), or in small 

molecules (Abraham, et al., 2000). The ring current contribution is generally modeled 

as: 

 )(rIBGrc
  Eq. ( 11 ) 
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where r is the vector from the observed proton to the aromatic ring, )(rG  is a geometric 

factor B collects constants that would yield the expected contribution from a benzene 

ring and I is the “ring current intensity” factor. The latter represents the ratio of the 

intensity expected for the ring in question relative to that of a benzene ring. Intensity 

parameters for the aromatic systems for this work were taken from Abraham et al. 

(Abraham, et al., 2000; Abraham and Reid, 2002). The geometric factor, from the 

Haigh-Mallion theory (Haigh and Mallion, 1980), is expressed as : 
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Where ri and rj are the distances from ring atoms i and j to the proton and Sij is the area 

of the triangle formed by atoms i and j and the proton projected onto the plane of the 

aromatic ring, as depicted in Figure 3.2(A). The Haigh-Mallion model has proven its 

superiority to other empirical methods for calculating ring current effects, such as the 

Johnson-Bovey or the point-dipole approximation (Moyna, et al., 1998). 

 

Figure 3.2 Geometric definitions used for the CSP calculations. (A) Ring current 
effects, (B) electrostatic effects, and (C) magnetic effects from anisotropy 
generating groups. 

3.2.2 Electrostatic effects 

The electrostatic contribution is typically computed as the projection of the electric 

field E


 calculated in vacuum onto the N-H bond, )(N-HE


, as seen in Figure 3.2(B), 

where solvent effects are neglected. 

  iiiele rqAN-HEA  cos)/()( 2
 Eq. ( 13 )  
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A is an empirical constant, set it to -1.2·10-12 esu-1, as in reference (Osapay and Case, 

1991), qi is the partial charge of atom i. Distance ri and angle i between the proton and 

each source of charge are specified in Figure 3.2(B).  

3.2.3 Magnetic effects from other anisotropy-generating chemical 
groups 

The magnetic anisotropy effect (Figure 3.2(C)) from systems with -delocalized 

electrons (double / triple bonds in our case) is computed using McConnell’s equation: 
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where ii represents the axial component of the magnetic susceptibility tensor of the 

anisotropic group, R is the distance from the proton to the anisotropic group, L0 is 

Avogadro’s constant and i is the angle between the i-axis and the vector connecting the 

proton with the chemical group. 

3.3 Visualization of CSP 

Information visualization is defined as the use of computer-supported, interactive, 

visual representations of abstract data to amplify cognition (Card, et al., 1999). Its 

usefulness in biology was acknowledged early on since the very first models of 

Myoglobin and Hemoglobin were made available by Kendrew and Perutz, respectively 

(Kendrew and Perutz, 1948; Perutz, 1949), establishing the field of structural biology. 

Visual examination of the structural differences between the two molecules permitted 

an accurate understanding and interpretation at the molecular level of the observed 

functional differences. Visualization is nowadays routinely used, as long as molecular 

structures or models are available. Visualization helps in integrating, understanding and 

rationalizing biological abstract data and supports rational planning of new experiments. 

Probably the most important application of scientific visualization in general comes 

from the ability of human cognition to visually and instantaneously detect patterns and 

features in large datasets, which outperforms any known pattern recognition algorithm. 

Furthermore: integration of images with previous theoretical knowledge facilitates 
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thinking and hypothesis generation and serves as a quality control for detecting 

unexpected features. 

Approaches similar to ours which use structural information encoded in quantitative 

chemical shifts perturbations (QCSP) for structure elucidation have been already 

published. In all these approaches visualization has been used as supporting means to 

explain how QCSP serve in delimiting binding sites and/or orienting ligands in those 

binding sites. A summary of the most relevant of such visualization is presented in 

Figure 3.3. McCoy and Wyss (McCoy and Wyss, 2000) (Figure 3.3A) in describing 

their approach already discussed the drawbacks of the common CSP representation by 

surface mapping (Figure 3.3C) since SAR-by-NMR has been described. They pointed 

out that this kind of representation tends to overemphasize shifts of large, solvent 

exposed residues (Tyr, Lys, Arg, His) and under-emphasizes those of smaller residues 

such as Gly. Of course buried residues remained unseen. In addition, propagating the 

interaction to the whole surface of a residue is clearly misleading in those occasions 

where the interaction occurs only with the backbone of the protein. All this considered, 

they propose a visualization of the CSP as spheres centered on the actual atoms for 

which the CSP were measured. Up- and down-fields generated by the ligand, which can 

be structurally interpreted (e.g., relative orientation of an aromatic ring), translate in 

positive and negative CSP, represented by two different colors. Finally, differences in 

magnitude which reflect the distance from the source of the perturbation to the target 

atom are represented by proportional radii of the spheres. This kind of representation is 

also used by (Gorczynski, et al., 2007) (Figure 3.3B). The approach by Schieborr et al. 

(Schieborr, et al., 2005), focuses on a qualitative use of CSP, and, hence, only residues 

with the largest CSP are marked in red as in typical surface mapping. Surface mapping, 

despite the aforementioned inconvenience, has the advantage to show the steric 

constraints that the protein structure has and effectively defines the binding site. This 

information is not negligible, and combined with knowledge of the magnitude of the 

CSP can suffice for an expert to visually suggest or evaluate plausible binding modes of 

the ligand. 
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Figure 3.3 Different molecular visualization styles seen in methods published that use 
QCSP for docking ligands into their partner proteins. In A (McCoy and Wyss, 
2000) and B (Gorczynski, et al., 2007), positive and negative QCSP are 
distinguished with blue and red colors while the radii of the spheres are 
proportional to the respective QCSP magnitudes. In C (Cioffi, et al., 2008) protein 
surfaced is colored following a red-green-blue scale on a per-residue basis, 
mapping the absolute intensity (largest to lowest) of amide CS; D (Schieborr, et 
al., 2005) residues colored in red are those corresponding to the largest shifts.  

I propose to use the best ideas from both visualization styles to provide a more 

comprehensive view of all the information available: structural constraints and 

localization and magnitude of the observed perturbations at the same time. These ideas 

have been collected and are exposed in the following section.  

3.3.1 Visualization methodology 

In this study, visualization is done with PyMOL (DeLano). CSP values are mapped onto 

the B-factor field of the corresponding atom objects using a modified version of the 
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script data2bfactor.py from Dr. Robert L. Campbell (Campbell). The workflow is as 

follows: 

1. PDBs are loaded into a new object in PyMOL. 

2. Then, one creates a duplicate of the molecule (object called “exp”) to hold the 

experimental data.  

3. B-factor values and vdW radii of all atoms in the exp object are set to 0. 

Experimental data is loaded by means of the data2b_atom method, from 

data2bfactor.py script. I modified this script to not only assign data to the b-

factor property but also adjust the vdW radius, which is set to the absolute value 

of the CSP. Then vdW radii are empirically scaled for optimum visualization. 

4. Exp is then represented as spheres. Atoms with CSP larger than the pre-

calculated average are colored in blue and those with CSP lower than the 

average in red. Atoms set to the average CSPr are colored in green and their 

vdW radius is set to 0.2 Å. 

5. Finally, all bonds of amide protons are displayed as black lines, for better 

perception of the extent of the assignment. Figure 3.4 shows a screenshot of the 

visualization used for discarding CSP unrelated to the direct effect of the ligand 

binding for the case of 1ECV. 
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Figure 3.4 Visualization of experimentally measured QCSP for the complex 1ecv on 
the protein. Red spheres represent negative CSP and blue positive CSP. The size 
of the balls are proportional to the absolute value of the QCSP. Green balls are CS 
which have been assigned but do not change significantly. The accumulation of 
CSP around the central cavity is used to visually discard distant QCSP which are 
not likely to be consequence of the presence of the ligand in their direct vicinity. 
In this case Asp-22, Phe-30, Val-34, Asp-53, Lys-58, Ile-57, Leu-204, Asp-229, 
Asp-236 and Ser-242 could easily be discarded. 

Representing the structure of the protein as a transparent surface makes apparent the 

deepest crevices (i.e., candidate binding sites) and steric constraints to which the ligand 

has to adapt to in order to bind the protein. CSP are mapped in the same way McCoy 

and Wyss suggest, that is: positive and negative CSP with two different colors and the 

spheres relatively scaled according to the absolute magnitude of the CSP. In addition, 

those CS which have been assigned but do not change upon ligand binding are also 

mapped as small green balls. This is useful as it helps identifying “forbidden” areas for 

the ligand. This visualization helps, additionally, to filter out CSP which are large in 

magnitude but are segregated from the “largest patch” of CSP, as they can be attributed 

to protein re-arrangement effects. Finally, CSP that would not fit in any reasonable 

binding mode hypothesis can be easily spotted and considered for further inspection as 

they might be indicating a potential assignment error. 
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Even though a human expert can visually assess potential solutions and easily decide on 

their plausibility, envisioning these solutions from the unbound protein and ligand 

structures is a much more difficult and markedly low-throughput task. Automatic 

computational methods such as molecular docking can, on the other hand, generate and 

evaluate millions of potential protein-ligand orientations, selecting the ones that fit best 

in terms of chemical and geometrical complementarity. It will be discussed below that 

despite its efficiency, molecular docking is also not a definitive answer to elucidating 

protein-ligand complex structures, since its accuracy can vary from case to case. This is 

particularly true for those cases where the ligand does not occupy the binding site area 

completely (see section 3.5 below). 

3.4 Measuring agreement between experimental and back-

calculated CSP: assessment of candidate scoring 

functions 

There are several approaches in the literature aimed at scoring docking poses according 

to their agreement with experimentally observed CSP. Typically an objective function is 

required (EQCSP) to be minimized. The straightforward functional form is based on a 

least-squared-minimization: 

 
2

)(  calcobs
QCSPE   Eq. ( 15 ) 

where {calc,obs} stands for observed and calculated CSP respectively. McCoy and 

Wyss (McCoy and Wyss, 2000) already realized that such an expression could be 

affected by the fact that the ligand does not always bind 100% to the protein and 

proposed a normalized variation, which also emphasizes the “fit of a pattern”: 
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Later,  Gorczynski et al. (Gorczynski, et al., 2007), who used the SDILICON program 

by Moyna (Moyna, 2003), which uses the same model as McCoy and Wyss, evaluated 

the agreement between experimental and back-calculated CSP using Pearson’s 

correlation coefficient. Cioffi et al. (Cioffi, et al., 2008) suggested a similar approach, 
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based on the RMSD between observed and back-calculated CSP and defined their 

objective function as: 

 calc

obs

QCSPE






  Eq. ( 17 ) 

where calc is the root-mean-square difference between the calculated and observed 

CSP values normalized by the absolute value of the observed: 
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and obs is the root mean absolute observed CSP: 
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In addition, an association constant scaling factor was included as a variable to scale the 

experimental CSP values to allow for ambiguity in the extent to which the protein is 

bound in the NMR experiment. The authors remarked that this approach optimizes the 

structure based on the relative changes in chemical shift rather than absolute values. 

Either minimizing normalized least-squared-differences or Pearson’s correlation 

coefficient has the benefit of overcoming the problem of having to predict correct 

absolute CSP values. This is important since it does not make the assumption that the 

protein binds fully to the ligand in the NMR experiment. According to this, our first 

candidate objective function was Pearson’s correlation coefficient between observed 

and back-calculated CSP:  
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s stands for the standard deviations of observed and calculated CSP and N is the total 

number of pairs of CSP. 

A Pearson’s correlation based scoring scheme assumes that all CSP will be predicted on 

average with the same accuracy. This cannot be expected if an empirical model is used 
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for back-calculating CSP. Differences of exposure or localization in more rigid or 

flexible regions of the protein condition the individual accuracy of each predicted CSP. 

Most importantly, HN involved in hydrogen bonds with the ligand show a 

disproportionate error in prediction compared with the non-hydrogen bonded ones 

(Moon and Case, 2007). This renders a scoring function very sensitive to outliers, i.e., 

very large CSP will dominate the calculation. For this reason, I decide to also test 

Kendall’s  correlation (Kendall, 1938), which is a robust alternative to Pearson’s: 

 1
)1(

4





nn
P  Eq. ( 21 ) 

where n is the number of experimental and computed CSP pairs and P is the number of 

concordant pairs. A pair of experimental values (xi, yi) and a pair of computed values 

(xj, yj) is concordant if sign(xj – xi) = sign(yj – yi). The values of  go from -1 (perfect 

ranking disagreement) to +1 (perfect ranking agreement) and pass through 0, which 

denotes an independence of rankings. 

Both Pearson’s (Eq. 20) and Kendall’s correlation (Eq. 21 ) functional forms will be 

considered and assessed as candidate objective function for scoring ligand poses with 

respect to the agreement between experimental and calculated CSP. 

3.4.1 ANOVA analysis 

In order to assess the discriminatory power of the proposed scoring schemes (Pearson’s 

correlation and Kendall’s correlation) I performed an analysis of the variance 

(ANOVA). This kind of analysis for scoring functions evaluation has been described by 

Seifert (Seifert, 2006). As explained by this author, ANOVA is applied to determine the 

proportion of the variability within the observed scores that is due to the scoring method 

itself as opposed to variability caused by random errors. Figure 3.5 illustrates how 

native-like solutions score sufficiently differently from decoys in both an ideal and a 

realistic scoring function.  
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Figure 3.5 Score distributions for an ‘ideal’ scoring function (left) and a ‘realistic’ 
scoring function (simulated data). In the first case, native-like poses (‘ligands’ in 
the legend) score sufficiently differently from decoys. In a realistic scoring 
function there is some overlap in the scores, which results in false positives: 
identification of decoys as native-like solutions. Figure adapted from (Seifert, 
2006). 

The ANOVA analysis departs from the null hypothesis that there is no difference in the 

scores between native-like poses and geometric decoys. The rejection of this null 

hypothesis indicates that the scoring function is indeed able to discriminate between 

native-like poses and decoys, at a given significance level. The independent variable of 

the analysis is the assignment to the native-like pose group or the decoy group (p=2; 

i=1…p). N and ni denote the total number of poses (m) per group, respectively. I 

perform our analysis following the seven steps described (Seifert, 2006): 

1. First, I computed the following sums of scores (s): 
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2. Then, the total sum of squares Stot=S2-S1, and Streat=S3-S1, which measures the 

variability due to the scoring method is computed. Serror=S2-S3 accounts for the 

variability due to random errors. 

3. The degrees of freedom for each sum are dftot = N-1, dftreat = p-1, and dferror = 

N-p, respectively. 

4. The corresponding variances are calculated dividing the sum of squares by their 

corresponding degrees of freedom. 
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5. Finally, measures for the discrimination of the two groups by a scoring method 

are given by the coefficients 2=Streat/Stot and 2=(Streat-(p-1)·)/(Stot+error). 

Coefficient 2 is the fraction of the variance within the actual data set explained 

by the scoring function. A weak, medium and strong effect of the scoring 

function in discriminating between native-like poses and decoys is characterized 

by 2 values of  1%, ~6% and 14% respectively. 

3.4.2 Calculations framework 

The aforementioned analysis is done on a comprehensive set of decoys and native-like 

solutions, described below. The CSP scores for each pose are computed in using in-

house developed python scripts, which constitute an extension of the PDB libraries from 

the Biopython package (Hamelryck and Manderick, 2003). Statistical analysis are 

performed within R (Ihaka and Gentleman, 1996). 

3.5 Limitations of current protein-ligand docking approaches 

Protein-ligand docking, the problem of given the structure of a protein and a ligand, 

finding the right binding mode, has had a big impact in rational drug design, but is still 

an unsolved problem. There are three the main applications of docking: 1) binding 

mode prediction of known ligands, 2) identification of new ligands through virtual 

screening, and 3) predicting binding affinities of related compounds. These applications 

build on another, and thus constitute an increasing level of difficulty to get them right. 

This work is devoted to improve success with respect to the first application. 

Binding mode prediction has been the most successful docking application since the 

inception of the method. All three main classes of scoring functions (force field-based, 

knowledge-based and empirical ones) achieve success rates between 70 – 90%, but this 

is target dependent. This means that some combinations of scoring schemes work better 

for some targets (Stahl and Rarey, 2001; Schulz-Gasch and Stahl, 2003; Ferrara, et al., 

2004; Warren, et al., 2006). 

Docking involves two problems: searching and scoring. During the first years, docking 

was typically done considering a rigid receptor and a rigid ligand, which permitted an 

exhaustive enumeration of mutual orientations. Now this is not any more feasible, given 
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the combinatorial explosion that occurs even if only ligand bonds are treated rotatable. 

This is a more realistic assumption, since the bioactive conformation doesn’t need to be 

equal to the most stable of the free ligand. Needless to say that flexibility of the protein 

should also be accounted for, how to deal with it correctly remains a field of intense 

investigation (Cozzini, et al., 2008). For the case of a flexible ligand to be docked to a 

rigid target, the search problem is considered to be solved. That is, current algorithms 

and increasing computing power make it possible to sample relevant binding modes of a 

ligand to a protein, i.e., those which are geometrically and chemically complementary. 

But search is not absolutely decoupled from scoring: since the search is an optimization 

problem that occurs on the hyper-surface defined by the scoring function, a “rugged” 

landscape of it increases the challenge of the finding the global minimum. Therefore, 

the ideal scoring function should have 1) a global minimum that coincides with the 

native solution of the complex and 2) a funnel-like smooth shape that permits this 

solution to be found. 

The lack of correspondence of the energy function minimum with the native 

conformation gives raise to so-called “decoys” (false positives) (Graves, et al., 2005). 

These are solutions which are physically reasonable but incorrect, with respect to the 

known native structure. Interestingly, the existence of decoys does not prevent docking 

programs from sampling the native solution: the problem is typically that this solution is 

not located at the minimum. Decoys are useful for understanding the weaknesses of the 

scoring function, since they tell about critical contributions of the scoring function that 

are not being taken into account or have been overweighed. Consequently, they serve as 

the basis for further improvements. Such an analysis is presented in the next section. 

3.6 Reference method: Docking with DrugScore-only 

DrugScore is one of the most reliable scoring functions for identifying (Gohlke, et al., 

2000) and generating (Velec, et al., 2005) native-like docking solutions (Wang, et al., 

2003; Ferrara, et al., 2004), with success rates of about 75%. Still, docking based on 

only DrugScore may fail due to, e.g., not considering interactions to structural waters, 

wrongly assigned protonation states, or missing entropy terms. 
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Throughout this work the conformational search engine of AutoDock 3.0.5 (Morris, et 

al., 1998) was used as a framework for development to which DrugScore potentials 

grids were plugged-in for scoring. From the several search schemes available in 

AutoDock I chose the Lamarckian genetic algorithm (LGA), which is considered as the 

most efficient alternative (Morris, et al., 1998). DrugScore grids, with 0.375 Å spacing, 

were calculated and scaled as previously described (Sotriffer, et al., 2002). Grids are 

centered in the binding site and cover a volume that extends at least 7 Å beyond any 

ligand atom in the native bound conformation. In the cases where an iodine atom was 

present in the ligand, it was substituted by bromine, as no potentials for iodine atoms 

were available in DrugScore. 

3.6.1 Evaluation of docking success 

A standard docking job consisted on 100 independent docking runs for each protein-

ligand complex (initial population: 150; termination criterion: 1 million energy 

evaluations; mutation and cross-over rates: 0.8 and 0.02 respectively; elitism: 1; local 

search frequency: 0.06; maximum iterations: 300). After the 100 runs have been 

completed, ligand poses within 1.0 Å threshold are automatically clustered by the 

standard procedure implemented in AutoDock. That is, the best (lowest) scored 

conformation acts as a seed to construct the first cluster. All structures from the 

remaining 99 runs within 1.0 Å RMSD are clustered together with this one and removed 

from the starting pool of solutions. The process continues iteratively with the not-yet 

clustered until all 100 solutions have been assigned to a cluster. Solutions with RMSD 

smaller than or equal to 2.0Å to the native crystal conformation (reference) are 

classified as native-like (Cole, et al., 2005). Conformations with RMSD larger than 2.0 

Å are classified as non-native-like solutions. Docking is considered successful if the 

largest cluster of solutions contains at least one native-like solution. Additionally, 

unsuccessful dockings according to this criterion are further divided into two groups: 

those that generated native-like solutions and those that did not. 

3.7 Hybrid scoring: mixing DrugScore with CSP 

Once the most appropriate scoring scheme with respect to CSP is established, our aim is 

to linearly combine it with DrugScore so that it can be routinely applied in a standard 
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docking scenario. In order to combine both contributions a reasonable solution is to 

proceed as in biomolecular structure elucidation protocols (Jack and Levitt, 1978; 

Brunger and Nilges, 1993), defining a hybrid energy function that must be minimized: 

 QCSPQCsPDShybrid EEE   Eq. ( 22 ) 

In our case EDS (i.e., DrugScore) accounts for “general knowledge” about protein-ligand 

complexes, EQCSP for the specific data observed for the complex under study, and QCSP 

is an empirical weight to be determined. The weighting of the EQCSP contribution will 

reflect the user’s “confidence” on the experimental data and the accuracy of the model 

to back-calculate it. This will vary from situation to situation. In biomolecular structure 

elucidation, for example, the most rigorous quantitative method to determine the 

optimal weight is complete cross-validation (Brunger, 1992) or Bayesian-based 

methods (Habeck, et al., 2006), both incurring in large computing times and relying on 

rather complete experimental data collections. These approaches are thus not 

transferable to the case presented here since real data sets are typically not that complete 

and efficiency must be kept. 

Empirical scoring functions for docking, pioneered by Böhm (Bohm, 1994), share a 

similar spirit with the hybrid scoring presented here. There, the assumption is that the 

ligand binding energy can be decomposed as a weighted sum of uncorrelated 

physically-based terms (vdW term, electrostatics, hydrogen bond effects, etc.). In that 

case, the weights are determined from regression analysis using experimentally 

determined binding energies and, potentially, X-ray structural information. The 

resulting scoring functions depend on the molecular data sets used to perform regression 

analyses and fitting, which often yields different weighting factors for the various terms. 

This approach for finding the appropriate weighting cannot be applied to the hybrid 

scoring scheme because there is no experimental correlate to the pseudo-energy 

computed. 

The strategy followed departs from the analysis of the docking “failures”. I assume that 

the docking program is able to sample native-like solutions (Leach, et al., 2006a), but in 

some cases, due to a varied number of small inaccuracies, is unable to pick the right 

one. This yields a “likely” solution in terms of geometry and favorable chemical 

interactions. This solution has a better score than the native solution but is geometrically 
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different from it, which is why it is called a decoy (Graves, et al., 2005). This scenario 

is depicted in Figure 3.6, where the concept of the “inverse” energy gap, the scoring 

difference between a decoy and a native-like solution, is also illustrated. I anticipated 

that analyzing differences in EDS and EQCSP contributions between decoys and native-

like solutions, respectively, will lead to appropriate bounds for the weighting factor.  

 

Figure 3.6 The EDS inverse energy gap. Docking failures (decoys) typically occur in 
less accessible regions of the conformational space (continuous line). The 
expected effect of introducing the EQCSP contribution is to “close” the access to 
those solutions while leaving open the access to the native-like solutions. The 
challenge is to appropriately weight this latter contribution because a very low 
weight would not discard the DrugScore decoys and too high a weight could 
eventually discard the native-like solutions. 

I therefore studied the distribution of EDS and EQCSP gaps in a comprehensive data set, 

consisting of 70 protein-ligand complexes containing aromatic rings out of 85 

complexes of the Astex diverse set (Hartshorn, et al., 2007). As detailed below, I 

performed standard DrugScore docking, consisting in 100 simulations for each protein-

ligand complex. Out of each of these 100 simulations, according to the different results, 

complexes can be classified in three groups: those where the top-ranked solutions are 

native-like, those where native-like solutions were generated but these do not get the 

best score, and thus decoys are also present, and cases where only decoys and no native-

like solutions were generated. 

In order to analyze the respective EDS gap for each complex between decoys and native-

like solutions it is only possible to study those cases from the second group, where both 

species decoys and native-like solutions, were generated. 
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For analyzing the EQCSP gap, first I computed CSP of HN protons induced by the bound 

ligand, because no experimental CSP is available for the Astex diverse set. EQCSP is a 

correlation coefficient, and thus its values are limited between -1 and +1. This is a 

fundamental difference to EDS where such theoretical limits do not exist and each 

complex behaves differently. For this reason, in the case of the analysis of the EQCSP gap 

it is acceptable to consider all cases, including those where either no decoys or no 

native-like solutions were generated. 

Analyzing how EQCSP scores behave with respect to the RMSD to native-structures, 

provides and additional insight on the sensitivity of the scoring function to small 

conformational changes. 

From the differences in both gaps, different weighting regimes will be proposed and 

explored. 

3.8 QCSP-steered docking 

In order to test the different candidate scoring functions and weighting regimes, the 

original AutoDock code was extended to include the contribution from the experimental 

CSP (EQCSP) in a hybrid scoring scheme as in Eq. ( 22 ) (see Appendix I for 

implementation and usage). Practically, the docking proceeds as a standard AutoDock 

run (see below), generating and evaluating potential protein-ligand configurations. For 

efficiency, only if a generated configuration has a favorable EDS interaction energy, the 

EQCSP contribution is computed. The total time required for a docking with our hybrid 

scoring scheme increases linearly by a factor of ~ 3 with the number of aromatic rings 

considered. As an example, a single docking run of 1a9u (4 aromatic rings) takes 14 

minutes on an Intel Pentium D 2.80 GHz CPU, whereas docking without the CSP 

information requires ~ 1 min. 

Docking with QCSPScore was performed using the same grids as in DrugScore-only 

tests (see below).  
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4 Data set description and preparation 

Two different datasets were used in this study, the first one for the theoretical 

development of the scoring function and the second one for validation with real 

experimental data. 

4.1 CSP Theoretical data – training set 

The development data set I chose is the subset of the Astex diverse set (Hartshorn, et al., 

2007) that contains ligands with aromatic rings (70 out of 85 complexes). The Astex 

dataset has been assembled considering high quality structures from the PDB. Ligands 

are all drug-like, and proteins are all drug-discovery or agrochemical targets. No target 

is represented more than once. PDB codes for the 70 complexes are: 1gpk, 1hnn, 1hp0, 

1hq2, 1hvy, 1y6b, 1r58, 1sg0, 1sj0, 1t40, 1t46, 1tz8, 1u1c, 1unl, 1uou, 1v0p, 1v48, 

2br1, 1n46, 1v4s, 1vcj, 1w2g, 1p62, 1hwi, 1j3j, 1k3u, 1ke5, 1kzk, 1lpz, 1lrh, 1nav, 

1of1, 1of6, 1opk, 1oyt, 1p2y, 1q1g, 1q41, 1q4g, 1r1h, 1xoz, 1yqy, 1yv3, 1ywr, 2bsm, 

1uml, 1ygc, 1x8x, 1r9o, 1gm8, 1s3v, 1z95, 1xoq, 1ia1, 1l2s, 2bm2, 1meh, 1pmn, 1ig3, 

1t9b, 1xm6, 1jje, 1yvf, 1mzc, 1g9v, 1jd0, 1owe, 1tow, 1n2v, 1oq5. 

4.2 CSP Experimental data – test set 

The experimental set was limited to the three protein-ligand complexes already studied 

by Schieborr et al. (Schieborr, et al., 2005) (PDB: 1ecv, 1a9u and 1ydr) in the context of 

the development of a CSP-based method for solving protein-ligand complexes. Data 

was kindly provided by these authors. A crystal structure is available in the PDB for 

each case. The extent of CSP assignments in the binding site varies from 30 – 40% for 

1ydr and 1ecv to 75% for 1a9u. All three proteins experience some re-arrangement upon 

ligand binding. The RMSDs from free to bound structures range from 0.73 Å in the case 

of PTP1b to 2.11 Å in the case of PKA, where the enzyme changes between “open” and 

“closed” forms (Table 4.1). Additionally, DrugScore-only docking did not succeed in 

any of the three cases, making possible a better evaluation of the benefits of introducing 

CSP for guiding docking. 
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Table 4.1 Data set used for validation 
Ligand PDB code1 Rmsd2 

NH

O

OH

O

OH O

I

 

1ecv (PTP1b) 0.73 (1pty)  

N
H

N

N

F

S

CH3

O

 

1a9u (p38) 1.01 (1p38) 

N

S
O

O
N

N
H

CH3

 

1ydr (PKA) 2.11 (1cmk) 

1 The protein name is given in parentheses. 
2 Rmsd between holo and apo structure, computed for all atoms of residues within 7 Å 
from the ligand. In Å. The PDB code of the apo structure is given in parentheses.  

4.3 CSP data preparation 

From the set of available HN CSP for each complex, values within  1 standard 

deviation from the average were considered as noise arising from the digital resolution 

of the spectrometer. Yet, these signals still provide some relevant information with 

respect to the orientation of the ligand because they indicate areas not affected by the 

binding. Thus, they were not discarded but re-set to the average CSP value. Non-

transformed QCSP are visualized in the context of the protein structure (see below) in 

order to delimit the binding site area and discard isolated CSP presumably originating 

from protein re-arrangements. Table 4.2 summarizes the actual CSP used for each 

complex. 
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Table 4.2 Summary of HN CSP considered in the calculations with experimental CSP 
reference data 

PDB 
code 

Exp. 
CSP1 

Signifi
-cant 
CSP2  

CSP set 
to avg.3 Discarded CSP4 CSP finally 

considered5 
Binding 
site6 

1ecv 82 20 62 

Asp-22, Phe-30, 
Val-34, Asp-53, 
Lys-58, Ile-57, Asn-
68, Leu-204, Asp-
236, Ser-242 

72 7/21 

       

1a9u 193 20 173 
Gln-11, Phe-42, 
Arg-57, Asn-100, 
Gly-219, Ile-297 

187 17/22 

       

1ydr 137 14 123 
Glu-64, Gln-84, 
Lys-111, Ala-304, 
Glu-346 

132 11/30 

1 Total number of experimental HN CSP available. 
2 Number of experimental HN CSP that deviate by more than one standard deviation 
from the average CSP over all HN nuclei. 
3 Number of experimental HN CSP whose value was set to the average CSP over all HN 
nuclei. 
4 Number of experimental HN CSP that were not considered in the calculation, although 
they deviate by more than one standard deviation from the average CSP over all HN 
nuclei. See Materials and Methods section for further explanation. 
5 Number of CSP finally considered in the docking. 
6 Number of HN within 7 Å of the ligand in the native structure that have CSP assigned 
and total number of HN within 7 Å of the ligand in the native structure. 

4.4 Protein and ligand preparation for docking 

The Astex diverse set was obtained directly from 

http://www.ccdc.cam.ac.uk/products/life_sciences/gold/validation/astex_diverse/. 

Proteins in mol2 format were converted to PDB using Openbabel (Guha, et al., 2006). 

The ligand-bound protein complexes used for the experimental validation were obtained 

from the PDB. In both cases proteins were protonated with REDUCE (Word, et al., 

1999). This step is needed to determine the position of amide protons for the evaluation 

of EQCSP; DrugScore only considers heavy atoms. DrugScore grids were calculated 

using a grid spacing of 0.375 Å. The potential values were then scaled as previously 

described (Sotriffer, et al., 2002). Grids are centered on the binding site and cover a 
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volume that extends at least 7 Å beyond any ligand atom in the native bound 

conformation. 

Ligands were converted to mol2 format with PRDRG (Schüttelkopf and Aalten, 2004). 

Atom types and AM1-BCC partial charges were calculated and assigned using 

ANTECHAMBER (Wang, et al., 2006). In the case of 1ydr, an iodine atom in the 

ligand was substituted by bromine, as no potentials for iodine atoms were available in 

DrugScore. All rotatable bonds were defined as active torsions in the AutoDock 

context. Ligands were visually inspected to detect aromatic rings. These groups were 

listed together with their corresponding intensities (see empirical model for CSP 

computation above) in an additional input file by referring to the atom numbers in the 

final AutoDock ligand file. 
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5 Results and discussion 

5.1 General strategy 

The aim of this project is to develop and validate an improved scoring function for 

docking through the use of experimentally measured CSP. On the one hand, state-of-

the-art docking programs are able to sample native-like solutions. However, all scoring 

functions, on a target-dependent basis, may fail to prioritize these native-like solutions 

over non-native-like ones (Warren, et al., 2006). On the other hand, a fully experimental 

approach is too cost-ineffective, particularly in a setting where throughput is a concern. 

The approach presented here seeks a compromise between both scenarios of efficiency 

with low accuracy and accuracy with low efficiency. The goal is to improve docking 

success rate by supplementing it with easily obtainable sparse experimental data 

(QCSP). 

The proposed scoring function is a linear combination of QCSP data together with 

DrugScore in a straightforward hybrid scoring strategy QCSPQCSPDrugScorehybrid EEE  , 

which I call QCSPScore. There the global score of a given ligand pose Ehybrid is the 

original DrugScore score EDrugScore plus a weighted term accounting for the agreement 

between experimentally measured CSP and theoretical CSP that the pose would produce 

on the protein. This simple formulation opened up, however, two important questions: 

 how to measure the agreement between experimental and theoretical CSP? 

 how to weight the experimental data? 

In section 5.3 I address the first question. Using the data set of native-like and decoy 

geometries generated in a preliminary step (section 5.2) and the empirical model for 

back-calculating CSP described in the theory chapter, I tested two scoring schemes: 

Pearson’s and Kendall’s correlation. 

The weighting of the experimental contribution is established through an exhaustive 

evaluation of what I defined as the “DrugScore inverse energy gap” between decoys and 

native-like solutions, together with their average scoring differences in EQCSP terms. 

Results from this study are reported and discussed in sections 5.4 and 5.5. The resulting 
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candidate weighting schemes are applied in re-docking experiments performed on the 

Astex dataset, reported in section 5.6. 

The final step of the development consisted in translating the conclusions obtained from 

the training set to the evaluation set, comprised of the three cases for which 

experimental data was available (section 5.7). This final evaluation served not only to 

assess the transferability of results derived from theoretical data, but also to analyze and 

assess the impact of limitations one faces in a real case situation, such as: the limitations 

of the model used to compute CSP, receptor flexibility, and extent and distribution of 

CSP assignment on the docking success. 

An additional chapter compares results obtained with QCSPScore with the results that 

the method AutoDockFilter (Stark and Powers, 2008) would have produced the same 

data set. Finally, other methods are also considered for the discussion on the advantages 

that QCSPScore method represents and the aspects that require further study. 

5.2 DrugScore performance on the Astex dataset: generation 

of native-like and decoy poses 

DrugScore is one of the most reliable scoring functions for identifying (Gohlke, et al., 

2000) and generating (Velec, et al., 2005) native-like docking solutions (Wang, et al., 

2003; Ferrara, et al., 2004), with success rates of about 75%. Still, docking based on 

only DrugScore may fail due to, e.g., not considering interactions to structural waters, 

wrongly assigned protonation states, or missing entropy terms. As a consequence, 

docking decoys then obtain a more favorable DrugScore score EDS than native-like 

solutions, leading to an “inverse” EDS gap. To study this inverse EDS gap one needs to 

generate and characterize real native-like and decoy geometries, which was the 

preliminary step performed. Since this involved re-docking a large set of protein-ligand 

complexes with DrugScore only, it served as an additional internal validation of the 

appropriateness of DrugScore for the tasks I am aiming at. 

Developing a method as the one proposed in this study requires a sufficiently large and 

varied number of protein-ligand complexes with: a) known high-quality structure and b) 

available CSP data. Typically if the X-ray structure is known (high-quality) there is no 

need to attempt to observe and assign CSP. Otherwise, if CSP are available it generally 



Results and discussion  60 

   

means that crystallization was not possible and thus it is unlikely that a high quality 

structure for reference is available. The search public databases of structures (PDB 

(Berman, et al., 2000)) and NMR data (BMRB (Ulrich, et al., 2008)) for such 

complexes was unsatisfactory, since the few cases where both CSP and high-quality 

structures were available were also successfully re-docked by DrugScore alone. 

Recently Stark and Powers, who have developed AutoDockFilter, a method in a similar 

spirit to ours, faced the same difficulty in assembling a data set and they resorted to 

“simulate” the experimental data (Stark and Powers, 2008). The group of Professor 

Schwalbe, who developed LIGDOCK (Schieborr, et al., 2005), have kindly provided 

me with experimental data for three protein-ligand complexes. With these antecedents, 

the strategy was to develop QCSPScore by first simulating CSP data for a large and 

varied data set and in a second step testing that development on the three complexes for 

which I had experimental data. 

The training dataset consisted of 70 out of the 85 complexes from the “Astex diverse 

set” (Hartshorn, et al., 2007) that contain ligands with aromatic rings (see Materials 

section). I re-docked these protein-ligand complexes using DrugScore only, in order to 

generate representative native-like solutions and geometric decoys. Geometric decoys 

are those poses which are not native-like but receive better scoring than the native-like 

ones (Graves, et al., 2005). In the terminology of a classifier, they would be “false 

positives”. The re-docking exercise provides the necessary examples and counter-

examples for evaluating the candidate scoring schemes. Each docking consisted on 100 

runs, thus generating 100 protein-ligand conformations for every complex. These 100 

results for each complex are subsequently clustered by geometric proximity and 

classified as native-like if their RMSD to the native structure is < 2.0Å or non-native-

like otherwise. Finally, non-native-like solutions are classified as decoys if they obtain a 

better score than the native-like ones. This classifications result in three groups of 

complexes: I) complexes that generated only native-like solutions, i.e., the first ranked 

cluster corresponds to a native-like solution, II) complexes that generated only decoys, 

i.e., only non-native-like solutions, and III) complexes that generated both decoys and 

native-like solutions, i.e., the native-like solutions were not first ranked. Complexes, 

according to this classification, are collected in Table 5.1. 
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Table 5.1 Classification of cases according to the solutions generated by DrugScore-
only docking 

No decoys1 Decoys + native-
like2 

Only decoys3 

1gpk 1r58 1ia1 1g9v 
1hnn 1sg0 1ig3 1gm8 
1hp0 1sj0 1jje 1jd0 
1hq2 1t40 1l2s 1mzc 
1hvy 1t46 1meh 1n2v 
1hwi 1tz8 1pmn 1oq5 
1j3j 1u1c 1r9o 1owe 
1k3u 1uml 1s3v 1tow 
1ke5 1unl 1t9b 1yvf 
1kzk 1uou 1xm6  
1lpz 1v0p 1xoq  
1lrh 1v48 1z95  
1n46 1v4s 2bm2  
1nav 1vcj   
1of1 1w2g   
1of6 1x8x   
1opk 1xoz   
1oyt 1y6b   
1p2y 1ygc   
1p62 1yqy   
1q1g 1yv3   
1q41 1ywr   
1q4g 2br1   
1r1h 2bsm   

48 of 70 (69%) 13 of 70 (19%) 9 of 70 (13%) 
1 Cases where the first ranked cluster had an average RMSD < 2.0Å to the native 
solution. 
2 Cases where the first ranked cluster had an average RMSD > 2.0Å to the native 
solution but also some clusters with RMSD < 2.0Å were generated. 
3 Cases where no-native-like solution was generated 

Independently of this classification, as anticipated, I also re-evaluated DrugScore 

success rates for this data set. As discussed in the Theory chapter, docking is considered 

successful if the largest cluster of solutions contains at least one pose with a RMSD < 

2.0Å to the crystal native structure. Out of the 70 complexes 52 were re-docked 

“successfully” according to this criterion, which represents a 74% success rate, as 

expected for DrugScore from previous studies (Wang, et al., 2003; Ferrara, et al., 2004). 

Unsuccessfully re-docked complexes were: 1r58, 1yvf, 1mzc, 1g9v, 1jd0, 1owe, 1tow, 

1n2v, 1oq5, 1r9o, 1gm8, 1s3v, 1z95, 1xoq, 1l2s, 2bm2, 1xm6, 1jje. 
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This data set was also re-docked with Goldscore within GOLD (Jones, et al., 1997) in 

the original work where it was described (Hartshorn, et al., 2007). It is interesting to 

observe that despite fundamental differences in the nature of Goldscore and DrugScore 

scoring functions, the former empirical and the latter knowledge-based some of the 

unsuccessful re-docking cases are shared, namely those affected by the presence of 

structural waters mediating protein-ligand interactions (1g9v, 1gm8, 1xm6 and 1r9o). 

5.3 Measuring agreement between experimental and back-

calculated CSP: Pearson’s vs. Kendall’s correlation as 

candidates schemes for scoring according to QCSP 

Pearson’s correlation has been used before (Gorczynski, et al., 2007) for measuring 

agreement between experimentally observed CSP and theoretically back-calculated 

ones. Others relied on minimization of root mean squared errors for the same purpose 

(McCoy and Wyss, 2000; Cioffi, et al., 2008). Both are intuitive methods for such task. 

However, they both are inappropriate in those cases where outliers are present. 

Measured CSP on the protein side due to ligand binding do not distribute 

homogeneously: only the protons very close to the perturbation, i.e., those in the 

binding site, experience a very significant shift. In particular, given the rapid diffusion 

of the CSP effect with distance (~ r-3 for the ring current effect), sets of observed CSP 

typically comprise a large majority of “unaffected” CS and a few which are, 

comparatively, largely affected. Thus, if all data must be included into the calculation, 

largely perturbed CS and unperturbed ones, Pearson’s correlation or sum of squared 

differences is inappropriate, since they are largely dominated by those large shifts, 

whilst the non-changing CS provide structural information which is equally accurate 

and valuable. For this reason, I set to explore and compare the behaviour a rank-

correlation based scoring would have, in this case Kendall’s rank correlation (Kendall, 

1938). 

In order to compare Pearson’s correlation and Kendall’s correlation scoring schemes I 

performed a double analysis on the generated native-like and decoys: first an ANOVA 

analysis to assess the discriminatory power of both schemes; second an analysis of the 

energy landscapes generated by both schemes. 
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5.3.1 ANOVA analysis 

Recently, Seifert has proposed the coefficients 2 and F from ANOVA analysis as 

suitable parameters for guiding scoring function development efforts (Seifert, 2006). 

These coefficients measure respectively “explained variance” of the scores by the 

scoring method -discriminatory power- and signal-to-noise ratio of scoring functions 

with respect to native-like and decoy geometries. Following those ideas, I analyzed both 

Pearson’s and Kendall’s correlation based scoring schemes in order to find evidence 

that would favour one scheme over the other.  

The ANOVA analysis was performed as described in the Methods chapter. 2 and F 

values from the ANOVA analysis for Pearson and Kendall’s correlation based scoring 

schemes resulted, respectively, in 44%, 205.30 and 59%, 369.95. This results show the 

superiority of Kendall’s correlation based scheme over the Pearson’s correlation based 

one. Still, in absolute terms, both figures are good enough as to affirm, according from 

this analysis, that either scheme would be suitable for scoring ligand poses. This is 

according to the cut-offs described by Seifert, where a 2 > 14% represents a “strong 

effect” of the scoring function for explaining the variance in scores in both groups, 

native-like and decoys. The ANOVA analysis gave support to introducing Kendall’s 

correlation based scoring, but was inconclusive with respect to determining its 

superiority over Pearson’s correlation. Preliminary tests, however, showed that one 

obtains consistently better results when using Kendall’s based scoring. The next section 

is devoted to investigate the reasons explaining it. 

5.3.2 Advantages of robust correlation over non-robust for driving 
docking 

Preliminary tests not shown here indicated that Kendall’s based correlation scoring 

performs consistently better than Pearson’s correlation based. The little difference in 

performance showed by the ANOVA analysis between both schemes must then have a 

large influence when moving from a re-scoring exercise to a re-docking one, which I try 

to rationalize below. 

A first attempt to analyze the different impact of both scoring schemes can be done by 

looking at the number of false-positives that they generate. It is important to remember 
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that a decoy is indeed a false positive. If CSP contribution is expected to rescue native-

like solutions that score worst than decoys in DrugScore terms, then this contribution 

must introduce itself a low number of those false positives. In Figure 5.1 I have plotted 

all DrugScore native-like and decoy poses generated against their respective Pearson’s 

and Kendall’s correlation coefficient. The plots are divided in four quadrants by dotted 

lines. The top left quadrant comprises ligand geometries which are native-like and, 

accordingly, attain a high correlation. Bottom-right geometries are decoys, which 

correctly obtain also a low correlation. Bottom-left, despite of being geometrically 

“correct”, obtain correlations comparable to the ones obtained by decoys, i.e. they are 

false negatives. Finally, the top-right quadrant includes false positives. Clearly, in the 

case of Pearson’s correlation the number of false positives is larger than in the case of 

Kendall’s correlation (36 vs. 4). Already in a re-scoring setting, this test is telling us that 

bad solutions are much more likely to get a good score when evaluated in terms of 

Pearson’s correlation than when evaluated in terms of Kendall’s correlation. The next 

step is to explore why it is happening. 
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Figure 5.1 Pearson’s and Kendall’s correlation vs. RMSD for each ligand orientation 
considered in the training data set. Dotted vertical line divides native-like and 
decoy geometries. Horizontal dotted line divide “high”-score geometries from 
“low” score ones.  
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If a decoy pose gets a higher Pearson’s correlation than expected, the reason is the 

presence of outliers. It is worth considering that from the total pool of observed amide 

CSP of a protein-ligand complex, a few have considerably larger values than the 

majority. In this regard, non-robust statistics are strongly influenced by those large 

values. To exemplify and illustrate this situation I will study in the case of the complex 

1ygc. In Figure 5.2 I have plotted theoretical CSP for the native complex structure vs. 

the back-calculated ones corresponding to a decoy and a native-like solution generated 

by DrugScore, together with their respective Pearson’s and Kendall’s correlation 

coefficients. 

 

Figure 5.2 Scatterplot of theoretical CSP for the native conformation and back-
calculated CSP for one of the decoys generated by DrugScore for 1ygc (left-hand 
side) and a native-like solution (right-hand side), together with their corresponding 
Pearson’s and Kendall’s correlation coefficients. 

By observing both scatter plots in Figure 5.2 one can easily identify a substantially 

better correlation for the native-like pose than for the decoy, even though respective 

Pearson’s correlations differ only by 0.1 (0.94 vs. 0.84). Only one CSP, substantially 

larger than the others, is disproportionately influencing the correlation coefficient. On 

the contrary, Kendall’s correlation does not give a very high score to the native-like 

solution (0.49) but it is sufficiently different from the correlation in the non native-like 

case. In fact, in relative values, the difference between the score of the decoy and the 

native-like solution in Kendall’s correlation case is three times larger than in the case of 

Pearson’s correlation based. This makes Kendall’s correlation based scoring a more 
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appealing scheme, particularly for these cases where a single large CSP dominates the 

whole calculation. 

To study this phenomenon in a structural context, I have mapped the CSP onto the 

protein in Figure 5.3. 



 

 

 

 

Figure 5.3 Comparison of a decoy (A) and a native-like solution (C) to the native structure of 1ygc (B). Amide protons of the protein are 
represented as balls, scaled according to the magnitude of their theoretical CSP generated by the presence of the ligand. Red balls represent 
negative CSP (downfields) and blue positive (upfields). The CSP pattern generated by the native-like pose in C resembles more the one 
generated by the native structure in B than the decoy in A does, even though the geometry of both decoy and native-like pose does not 
differ much. 
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Figure 5.3A shows one of the decoys for 1ygc. The corresponding CSP it would have 

produced on the protein are depicted as balls, centred on the amide protons and scaled 

according to the absolute magnitude of the CSP. Compared to the native structure 

(Figure 5.3B), only the phenyl ring in the top is flipped, and the other two ones slightly 

tilted. With respect to the CSP pattern, two main differences between the decoy and the 

native structure are worth noting: 1) the difference in the magnitude of the CSP of Gly 

213, induced by the different tilting angles of two lower phenyl rings of the ligand and 

2) the different patterns in upfield CSP (blue balls) involving the residues in the upper 

part of the figure, caused by the different orientation of the phenyl ring at the top. A 

subjectively evaluation these two differences in the patterns suggests that the first one, a 

reduced magnitude of a single CSP, is not that critical than the second one, where some 

CSP disappear and new ones appear. However, the CSP of Gly 213 plays a greater role 

in computing Pearson’s correlation, just because of its absolute magnitude.  

Collected evidence from ANOVA analysis and the analysis of the sensitivity to outliers 

for both schemes points to Kendall’s correlation as superior scoring scheme for the 

purposes I am aiming at. I set thus -EQCSP to be Kendall’s . 

It is interesting to note that these results emerged even in the ideal setting where only 

theoretical data has been used. It is not unreasonable to expect new sources and classes 

of outliers in a scenario where calculations are done with real experimental data. These 

new outliers will appear from imperfections of the theory and will compromise even 

more the convenience of a Pearson’s correlation based scheme. 

In what follows, I study the energy gaps between decoys and native-like solutions, both 

in EDS and EQCSP terms, in order to establish the most appropriate weighting strategy for 

mixing both contributions. 

5.4 Energy gap analysis between native-like configurations 

and decoys 

From the QCSPScore equation, QCSPQCSPDrugScorehybrid EEE  , the weight for the 

experimental contribution QCSP must be established. To that end I started by studying 

the respective “energy gaps”, both in EDS and EQCSP terms, between native-like solutions 
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and decoys (see Theory). The rationale of mixing DrugScore with CSP has been that, 

while decoys score better than native-like solutions in EDS terms, they do otherwise in 

EQCSP terms. As a consequence, an appropriate weighting of EQCSP will compensate the 

“negative EDS gap”. And thus, finding out whether a general weighting scheme can be 

applied becomes a key point of this investigation. The strategy has been to start by 

analyzing differences in EDS and EQCSP contributions between decoys and native-like 

solutions, respectively. While DrugScore values are different for each protein-ligand 

system, EQCSP values, being a correlation coefficient are constrained between -1 and +1. 

The question is double: is there a typical DrugScore energy gap between decoys and 

native-like solutions, possibly reflecting known missing terms in the scoring function 

such as vibrational entropy loss? And do native-like solutions have a typical value for 

EQCSP, sufficiently different from non-native-like ones? 

For analyzing the EDS gap between decoys and native-like solutions it is only possible to 

study the group of 13 cases (group II, Table 5.1) for which both species were generated. 

Figure 5.4 shows the distribution of energy differences between the average energy of 

the best-scored cluster in each case containing decoys and the average energy of the 

cluster with the best average RMSD in the whole run. Interestingly, 46% of the cases 

have a low energy gap (< 0.5 DrugScore units), with an average energy gap of 0.61 

units and a maximum gap of 1.31 units. 
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Figure 5.4 Distribution of DrugScore energy gaps between decoys and native-like 
solutions for the 13 cases where DrugScore-only docking generated both native-
like solutions and decoys. In 46% of the cases, the energy gap is < 0.5 DrugScore 
units, with a maximum gap of 1.31 units. 

For analyzing the EQCSP gap, I used the computed CSP for HN protons described in 

section 5.2. Given that the EQCSP contribution is represented by the negative Kendall’s 

rank correlation coefficient, native-like solutions are expected to have high correlation 

values and thus, score values close to -1 whereas decoys should score zero or more. The 

analysis presented in section 5.3 has already disproved this hypothesis. Due to the 

sensibility of CSP to small geometric variations, very high scores are almost never 

obtained. In particular, the analysis of the complexes in the group II (both native-like 

solutions and decoys were generated) revealed an average gap of only 0.47, with large 

standard deviations for both decoys and native-like solutions of 0.22 and 0.23, 

respectively (Table 5.2). 

Table 5.2 EQCSP scores for decoys and native-like solutions and differences for 
those cases of complexes of the Astex data set where both decoys and native-like 
solutions were generated when using DrugScore-only docking. 

PDB -EQCSP decoy1 -EQCSP native-like Difference 
1ia1 0.60 0.56 -0.04 
1ig3 0.23 0.82 0.59 
1jje 0.01 0.79 0.78 
1l2s 0.17 0.72 0.55 

1meh 0.10 0.54 0.44 
1pmn 0.41 0.85 0.44 
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PDB -EQCSP decoy1 -EQCSP native-like Difference 
1r9o -0.07 0.85 0.92 
1s3v 0.21 0.63 0.42 
1t9b -0.10 0.85 0.95 
1xm6 0.19 0.86 0.67 
1xoq 0.45 0.47 0.02 
1z95 0.09 0.09 0.00 
2bm2 0.54 0.90 0.36 

Average: 0.22 0.69 0.47 
Standard Deviation: 0.22 0.23 0.33 
1 EQCSP is the negative Kendall’s rank correlation coefficient between computed CSP for 
a given ligand pose and CSP reference data computed for the native state.  

 A more representative analysis can be performed by expanding this sample to those 

cases where either no decoys or no native-like solutions were generated (groups I and 

III from Table 5.1). The distributions of the -EQCSP scores for these cases are shown in 

Figure 5.5: 79% of the native-like cases score over 0.7 while only 4% of the decoys 

obtain EQCSP contributions worse than that figure. This confirms an intuitive 

expectation: I) native-like solutions show poorer scores than expected; II) EQCSP scoring 

is more specific than sensitive, that is, it is better at rejecting decoys than favoring 

native-like solutions, which in line with the original goal for QCSPScore. As already 

stated,  the fact that some native-like poses show poor EQCSP scores reflects a “hard” 

scoring term character (Schulz-Gasch and Stahl, 2003), where slight changes in the 

orientation of a ligand with respect to the native state translate into large changes of the 

CSP pattern. 
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Figure 5.5 Distribution of the -EQCSP contributions for decoys and native-like poses, 
considering the subset of the Astex data set that contained ligands with aromatic 
rings. The CSP data for the bound ligand configuration was computed.  

5.5 Weighting of the EQCSP contribution 

The analysis of both the EDS and EQCSP contributions for decoys and native-like 

solutions leads us to suggest three alternative weighting factors: 

I) As EQCSP gap, I take the difference of the median values of decoys (0.29) and 

native-like solutions (0.82), which results in EQCSP  0.6. Since the sample 

for establishing the EDS gap is much smaller, I take the maximum EDS gap 

(1.31 units) plus one standard deviation (0.45), which results in EDS 1.80. 

The weighting factor to compensate an “inverse” EDS gap by EQCSP then 

results in QCSP = 3. 

II) I consider different cut-offs for the EQCSP gap, in order to include 75% of the 

decoys (lowest scores; 3rd quartile: 0.47) and 75% of the native-like cases 

(best scores; 1st quartile: 0.73), which results in EQCSP  0.2. Considering 

the same EDS gap as in I), I then set the weighing factor to QCSP = 10. 

III) For the sake of completeness, I also explore an intermediate weighting factor 

of QCSP = 5. 

I note, though, that this is still a theoretical framework of development. The weighting 

factor will be influence in a “real” case also by factors such as the quality and 
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completeness of the experimental data, the appropriateness of the model for back 

calculating CSP, etc. These and their effects on the weight I will evaluate and discuss in 

section 5.7 

5.6 Docking with computed CSP reference data 

 

Table 5.3 shows the percentage of docking successes for the 70 complexes from the 

Astex diverse data set, using the hybrid scoring function and considering each of the 

weighting factors proposed above. Again, CSP of HN protons computed for the native 

ligand configurations were used as reference to determine EQCSP. I considered docking 

results successful when the largest cluster of poses contains at least one solution with an 

rsmd to the native ligand pose of < 2.0Å. Compared to DrugScore-only docking (71% 

successful dockings) a large improvement in the docking accuracy is already achieved 

when QCSP = 3 is used for weighting the EQCSP contribution (87% successful dockings). 

Thus, for the additional 11 cases that can now be docked successfully, the “inverse” EDS 

gap between decoys and native-like solutions is sufficiently small so that a small EQCSP 

contributions suffices to compensate for it. All cases are recovered when QCSP = 10 is 

applied. Importantly, cases initially successfully docked with DrugScore-only did no 

suffer deterioration. Thus, the scoring optima coincide for both the EDS and EQCSP 

contributions in these cases. Finally, in the last column I have collected the number of 

cases that would have been successful under a more stringent RMSD cut-off of  1.0 Å. 

Such analysis is interesting to assess whether introducing CSP data also increases the 

native-likeness of the generated solutions. As discussed, such high-quality structures are 

a pre-requisite for subsequently performing more sophisticated binding energy 

calculations (Velec, et al., 2005; Bertini, et al., 2007). The impact of CSP in this respect 

is even higher than considering the standard success criterion. At the lowest weight 

QCSP = 3 the number of cases where solutions in the largest cluster had an RMSD  1.0 

Å to the native structure increased a 48% with respect to the DrugScore-only case, 

which indirectly shows that the sampling is more concentrated around native-like 

structures. 
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Table 5.3: Docking results for the 70 complexes of the Astex diverse set containing 
ligands with aromatic rings as a function of the weighting factor QCSP. 

 Successful1 Unsuccessful, 
native-like2 

Unsuccessful, 
no native-

like2 

L.C.  1.0 Å3 

No QCSP 50 (71%) 13 (19%) 7 (10%) 33 (47%) 
QCSP = 3 61 (87%) 8 (11%) 1 (2%) 49 (70%) 
QCSP = 5 65 (93%)  5 (7%) 0 58 (83%) 
QCSP = 10 70 (100%) 0 0 60 (86%) 

1A case is considered successful when the largest cluster’s average RMSD to the native 
structure is < 2.0Å. 
2For the unsuccessful cases, I also distinguish those that at least generate a native-like 
solution from those that do not. 
3Number of cases where the largest cluster’s average RMSD to the native structure is  
1.0Å. 

5.7 Docking with experimental CSP reference data 

For the above results, I used computed HN CSP from ligand-bound complexes. That 

way, the problem is simpler than a real-case scenario where other factors such as 

conformational changes of the protein upon complex formation or other experimental 

uncertainties play also a role. Additionally, in an experimental setting, it is not always 

possible to observe and assign all HN CSP in the binding site region, which imposes an 

additional difficulty when trying to match theoretical patterns of interaction. In a sense, 

having neglected all those circumstances contributed to achieving the reported high 

docking success rates when using “theoretical” CSP information. The purpose of this 

section is then to study the transferability of the weighting schemes developed above for 

theoretical data and analyze in finer detail the behavior of QCSPScore “real-case 

scenario”, testing the assumptions made so far. 

To that end, and as announced in section 5.1, I used three protein-ligand complex for 

which there is experimental CSP data available (PDB codes: 1ecv, 1a9u and 1ydr). 

Results of standard re-docking with DrugScore are presented in Figure 5.6. 
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Figure 5.6 DrugScore results for 1ecv (A), 1a9u (B) and 1ydr (C). The largest cluster is 

represented by black dots. The dotted line divides native-like solutions from non-
native-like. The reference conformation from the crystal structure is shown in 
green. 

Out of these three cases, only for 1ecv standard DrugScore re-docking generated native-

like docking solutions. Additionally, in all cases DrugScore solutions are characterized 

by a tendency to maximally bury the ligand in the binding site, which is in agreement 

with the known fact that this scoring function lacks contributions from configurational 
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and vibrational entropy changes upon binding. Therefore, maximizing protein-ligand 

contacts improves the score. 

The results using QCSPScore, that is, introducing experimental CSP for each of the 

proposed weighting regimes, are collected in Table 5.4. 

Table 5.4 Docking results using the hybrid scoring scheme, for each of the tested 
weighting regimes 

Weight2 LC Size3 Rmsd4 5 % N. L.6 

1ecv     
0 37 2.13 0.10 57 
3 35 1.92 -0.07 60 
5 35 3.26 0.01 50 

10 53 3.27 0.01 39 
1a9u     

0 96 4.86 0.00 0 
3 77 4.80 0.11 0 
5 73 4.79 0.11 0 

10 45 4.99 0.19 5 
1ydr     

0 100 3.12 -0.16 0 
3 76 3.08 -0.04 18 
5 48 6.67 0.18 0 

10 51 10.11 0.24 0 
1 Results are presented for the proposed weighting factors QCSP = {3,5,10} in addition 
to DrugScore-only docking. 
2 The weighting factor QCSP. DrugScore-only docking corresponds to weight 0. 
3 Size of the largest cluster of solutions. 
4 Average RMSD of the poses of the largest cluster with respect to the native crystal 
structure. In Å. 
5 Average Kendall’s correlation coefficient of the poses in the largest cluster 
6 Percentage of native-like solutions among the whole pool of 100 generated solutions. 

The first and most striking observation is that only in one case, 1ecv with a QCSP = 3 I 

obtained better RMSD average of the largest cluster using CSP than when using 

DrugScore only. In all other cases, results were comparable to the DrugScore only case 

or worst, which is in sharp contrast with the results obtained for the simulated data, 

where eventually all complexes were correctly docked. Clearly, real data poses 

significantly different challenges than simulated and in what follows I will discuss the 

sources and interpretation of these discrepancies. 

A remarkable difference between theoretical and real cases is the average Kendall’s 

correlation values that native-like solutions obtain in both scenarios. Whereas in the 

theoretical cases these values concentrate around 0.8, in the real data cases studied do 
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not go beyond 0.2 at the highest tested QCSP = 10. Since the theoretical analysis proved 

that scanning up to that value of QCSP = 10 is enough for the CSP contribution to 

effectively drive the docking, an inappropriate weighting scheme can be ruled out as the 

cause for lack of success. What remains is: a) inaccuracies in the model for back-

calculating CSP and b) the influence of incomplete/asymmetrically distributed set of 

observed CSP, since in the theoretical case all HN in the binding site were considered 

but these cannot be always observed/assigned in an experimental scenario. 

A very illustrative example of the influence of incomplete/asymmetrical assignments is 

the case of 1ydr. At QCSP = 10, 1ydr resulted in solutions with an RMSD to the native 

structure >10Å, considerably worst than what DrugScore only, ~ 3 Å due to a change in 

the orientation of the quinoline ring (Figure 5.6 C). In Figure 5.7 the native structure of 

1ydr is represented together with one of the wrong solutions at 10 Å RMSD and the 

assigned CSP. The aforementioned asymmetry in the assignment of CSP is evident from 

the picture. The wrong solution corresponds to the next most buried one after the 

original decoy and the native structure, i.e. the following in decreasing order of 

DrugScore terms, but the best explored in terms of EQCSP. Indeed, the wrong ligand 

orientation, given the lack of restrains for example from Asn-171 or Glu-170 reproduces 

the CSP on the top right of the picture without interfering with other CSPs. 
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Figure 5.7 Binding site area of the native structure of 1ydr complex (ligand 
conformation green) and a wrong solution generated by QCSPScore at QCSP = 10 
(ligand conformation in yellow). Red spheres represent negative CSP and blue 
spheres positive CSP, cantered at HN and scaled according to their absolute value. 
Green spheres are observed CS that do not change upon ligand binding. The 
experimental data distributes asymmetrically: most of the observed CSP 
correspond to the upper part of the figure and in the lower part, residues for which 
no experimental data was available are labelled. 

With respect to the inaccuracies of the model, the effect on docking is apparent by 

means of an increase of indetermination. I.e., the restraints that CSP introduce, given 

that the errors in the calculations of specific HN are bigger than their relative 

differences, allow for an exchange of observations: an electrostatic effect can be 

compensated by a ring-current effect and vice versa. An example is what one can 

observe in the case of 1a9u. Assignments here are more complete than for the 

aforementioned 1ydr case. However, four aromatic rings give enough 

chance/indetermination for the molecule to accommodate better alternative orientations 

than the native one. Along this line, I considered alternatively to the full model for back 

calculating CSP, focus only on the ring current effects. Ring current effects are known 

to be the largest in proportion and more importantly define a specific pattern (McCoy 

and Wyss, 2000). The hypothesis was that the electrostatic contribution, the way is 

implemented here and considering how far apart from each other HNs are in a protein is 

more a source of noise than valuable information. For example, a very tight protein-

ligand electrostatic interaction, real or sample during a docking simulation, produces a 
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strong CSP. This strong CSP can be equal in magnitude to the one produced by an 

aromatic ring, and if the aromatic ring is not deeply bound in the protein and/or no 

sufficient CSP around it have been observed, ring-current and electrostatic effects can 

be interchanged. It is known that including electrostatics improves the global correlation 

between experimental and back-calculated CSP (Osapay and Case, 1991). However, 

this limited global improvement does not negate the fact that a model consisting of the 

effect of ring-currents only accounts for the largest part of that correlation. In what 

follows, I analyze the effect of neglecting electrostatics. 

5.7.1 Improved accuracy by neglecting electrostatics 

Table 5.5 summarizes the docking results with the hybrid scoring function, but now 

considering only ring-current effects. The results confirm the hypothesis that targeting 

only “well-defined” interaction patterns such as the ring-current effects, despite 

theoretically losing accuracy in the total CSP prediction, is at this time a better strategy. 

Table 5.5: Summary of docking results for three complexes where experimental 
CSP reference data was available 

Weight2 LC Size3 Rmsd4 5 % N. L.6 

1ecv     
0 37 2.13 0.10 57 
3 60 1.84 0.13 70 
5 37 1.80 0.14 78 

10 51 1.36 0.34 87 
1a9u     

0 96 4.86 0.00 0 
3 76 4.80 0.06 1 
5 59 4.80 0.07 1 

10 42 1.13 0.25 42 
1ydr     

0 100 3.12 -0.16 0 
3 72 0.75 0.07 72 
5 61 0.81 0.07 61 

10 56 10.10 0.24 0 
1 Results are presented for the proposed weighting factors QCSP = {3,5,10} in addition 
to DrugScore-only docking. 
2 The weighting factor QCSP. DrugScore-only docking corresponds to weight 0. 
3 Size of the largest cluster of solutions. 
4 Average RMSD of the poses of the largest cluster with respect to the native crystal 
structure. In Å. 
5 Average Kendall’s correlation coefficient of the poses in the largest cluster 
6 Percentage of native-like solutions among the whole pool of 100 generated solutions. 
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Now in all three cases native-like solutions were generated and in some of the 

weighting schemes these accounted for the largest cluster. Docking results with and 

without using CSP and the effects of them are also depicted in Figure 5.8. 

 
Figure 5.8 Comparison of docking solutions (magenta) with the crystal structure (cyan). 

In the first column (A, D, G), results using only DrugScore for scoring are 
presented; the second and third columns (B, C, E, F, H, I) display the best 
solutions obtained with QCSP-steered docking. Results for complex 1ecv are 
given in panels A, B, C; for 1a9u in panels D, E, F; for 1ydr in panels G, H, I. In 
the second column experimental CSP are mapped to the protein whereas in the 
third column calculated CSP corresponding to the docked pose using the ring 
currents-only model are displayed. Blue balls represent upfield shifts (positive 
CSP), red ones downfield shifts (negative CSP), and green balls are used to mark 
CSP that have been assigned but do not experience any perturbation. The size of 
the blue and red balls is proportional to the magnitude of the CSP.  
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With respect to the question whether an optimal weight exists, one can recognize that 

the docking experiments with computed CSP reference data already suggested that 

QCSP = 10 is an appropriate weighting factor in general. This scheme was appropriate 

also for 1ecv and 1a9u, which largest clusters had respectively 1.36Å and 1.13Å RMSD 

on average to the native structure. In contrast, for 1ydr, successful docking with RMSD 

~ 0.8Å required lower QCSP values of 3 or 5. The requirement to use lower QCSP 

values points to the problem of over-emphasizing the influence of imperfect 

experimental CSP reference data and/or neglecting shortcomings in the computational 

model used for back-calculating CSP from a given ligand pose. I thus set out to 

investigate in more detail factors that influence the performance of the hybrid scoring 

scheme in the case of experimental CSP reference data. I identify as the most important 

determinants hydrogen bond formation, extent and distribution of the CSP assignment, 

and flexibility of the target. The latter also includes structural differences of the NMR 

and X-ray determined protein structures. 

5.7.2 The hydrogen-bond effect 

In both the 1a9u and 1ydr cases, the ligand forms a hydrogen bond to an HN proton in 

the protein for which experimental CSP were available. The effect of a hydrogen bond 

formation cannot be modeled accurately with current empirical methods (Osapay and 

Case, 1991; Wishart and Case, 2001; Parker, et al., 2006; Moon and Case, 2007). 

Accordingly, following preliminary tests, I decided to omit this effect when back-

calculating CSP. In the case of 1a9u, the presence of the hydrogen bond formed 

between the pyridine N and HN of Met-109 did not deteriorate the final docking result 

(Table 5.5). This is because back-calculating the CSP of HN of Met-109 is successful 

(Figure 5.8E, F) even with the ring current-only model, if the pyridine ring of the ligand 

adopts a slightly tilted and displaced conformation compared to the native structure. A 

similar observation was already described by McCoy and Wyss (McCoy and Wyss, 

2002) who pointed out that the typical downfield shift of a proton in a hydrogen bond 

can also be generated by a properly oriented aromatic ring in the proton’s vicinity. I 

note, however, that such a fortuitous effect cannot occur in the case of a narrower 

crevice, which does not allow ring tilting and displacement. That situation compromises 

the docking accuracy, as demonstrated for 1ydr. Here, the ligand is forming a hydrogen 

bond with the HN proton of Val-123 (Figure 5.8G). At the same time it is tightly 
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constrained in the binding pocket. Thus, no evasive movements of the quinoline ring are 

possible allowing for a compensation of the missing hydrogen bond term when 

computing the CSP. As a result, a low EQCSP score is obtained even for native-like 

solutions. Following the idea that no CSP contribution at all must be better than a wrong 

contribution, I repeated the docking without considering HN of Val-123. Results for 

1a9u and 1ydr without their respective HN known to be involved in a hydrogen bond 

are collected in Table 5.6. With an average EQCSP score improving modestly but 

significantly from -0.07 to -0.12 for native-like solutions, a successful docking was now 

achieved with QCSP = 10. Thus, all three complexes with experimental CSP reference 

data were successfully docked using a uniform weighting factor QCSP = 10. 

Table 5.6 Docking results using CSP and neglecting HN involved in hydrogen 
bonds. 

Weight2 LC Size3 Rmsd4 5 % N. L.6 

1a9u – no Hbond     
0 96 4.86 0.00 0 
3 81 4.83 0.04 0 
5 70 4.82 0.04 1 

10 67 1.06 0.22 67 
1ydr – no Hbond     

0 100 3.12 -0.16 0 
3 80 0.76 0.11 80 
5 98 0.81 0.12 98 

10 54 0.84 0.12 54 
1 Results are presented for the proposed weighting factors QCSP = {3,5,10} in addition 
to DrugScore-only docking. 
2 The weighting factor QCSP. DrugScore-only docking corresponds to weight 0. 
3 Size of the largest cluster of solutions. 
4 Average RMSD of the poses of the largest cluster with respect to the native crystal 
structure. In Å. 
5 Average Kendall’s correlation coefficient of the poses in the largest cluster. 
6 Percentage of native-like solutions among the whole pool of 100 generated solutions 

The limitation in describing CSP due to hydrogen bond formation is well-known, and 

more work is needed on the theoretical side to improve on this. In the meantime, one 

possibility to circumvent this limitation is omitting CSP induced by hydrogen bond 

formation from the hybrid scoring scheme. These CSP can be identified by visually 

inspecting the experimental CSP pattern. Typically, a hydrogen bond is characterized by 

a large downfield perturbation, which can be of a similar magnitude as the one due to a 

nearby aromatic ring. However, a hydrogen bond-induced CSP usually appears isolated 
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and does not show the typical pattern of CSP on neighboring atoms that an aromatic 

ring would induce. 

5.7.3 Influence of the extent and spatial distribution of CSP 
assignment 

The extent of CSP assignment of HN protons in the binding site area of the three 

complexes is 33% and 37% for 1ecv and 1ydr, respectively, and 75% for 1a9u. Despite 

the comparable extent of HN CSP assignments, the highest EQCSP values found for 

native-like solutions of the first two complexes differ considerably (1ecv: -0.34; 1ydr: 

-0.11, omitting the HN involved in a hydrogen bond). This difference can be explained 

by the spatial distribution of the CSP assignment. In the case of 1ecv, the CSP distribute 

uniformly around the binding site and so capture the traits of the ring-current pattern 

(Figure 5.8B). On the contrary, for 1ydr, the assignment excludes a large part of the 

adenosine-binding pocket surface (Langer, et al., 2004), which leads to increased 

minimal EQCSP scores as the ring-current pattern lacks key reference points in space 

(Figure 5.8H). Thus, in the case of sparse experimental CSP data, it is the distribution of 

the CSP rather than the amount of data per se that determines the success of QCSP-

steered docking. 

5.7.4 Influence of the target flexibility 

In all three studied cases the proteins undergo re-arrangements upon ligand binding, 

with RMSD of the binding sites between bound and unbound conformations ranging 

from 0.73Å in the case of 1ecv and 1.0Å in the case of 1a9u to 2.1Å in the case of 1ydr. 

Protein re-arrangements are challenging for properly back-calculating CSP in a rigid-

protein docking scheme because aromatic ring movements in the protein can produce 

CSP as large as those induced by a ligand. Rearrangements of solvent molecules 

contribute to CSP, too. At present, QCSPScore assumes that most of the observed 

effects can be directly attributed to the ligand as a source and that this proportion 

suffices to orient the ligand in the native-like position. If the ligand is the major source 

of CSP, EQCSP scores should be approximately -1 for native-like poses, perfect 

correlation. In turn, an increase of the minimal EQCSP score is expected with increasing 

protein movement and this is what is observed for the three experimental cases studied 
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here). Too large protein movements will thus render the model for back-calculating CSP 

insufficient. Nonetheless, even movements up to 2.1Å RMSD are still tolerated in the 

case of 1ydr. In general, I note that target flexibility is not a limitation for the hybrid 

scoring scheme described here. I believe that using CSP information can be very helpful 

in a fully-flexible protein-ligand docking scenario, because protein refinement against 

such data has been shown to improve structural quality (Clore and Gronenborn, 1998), 

and one ought to expect the same for a complex structure. 

It is also interesting to note that not only protein movements upon ligand binding can 

deteriorate the accuracy of CSP computation but also structural differences of protein 

structures originating from different experimental sources or conditions. This point is 

illustrated by the HN proton of Lys-53 of 1a9u. The HN proton experiences a downfield 

shift in experiment, whereas the model implemented in QCSPScore predicts an upfield 

shift for the native-like solution. The latter corresponds to a position of the proton in or 

close to the plane of the aromatic ring. In the native structure, it can be seen that the 

proton is almost co-planar to the ring, too. Accordingly, the computed CSP for this 

structure also shows an upfield shift. The experimental downfield shift can be 

reproduced properly if an alternative crystal structure of the same complex (PDB id: 

2ewa) is used, which differs slightly in the mutual orientation of the ring and the HN of 

Lys-53 (Figure 5.9). Again, as in the case of the hydrogen bonds, local disagreements 

between experimental and computed CSP can be compensated by a complete and/or 

well-distributed CSP assignment. It is the global CSP pattern then that still allows 

finding native-like solutions (Figure 5.8E vs. Figure 5.8F). 
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Figure 5.9 Superimposition of p38 complexes 2ewa (model 1) (magenta) and 1a9u 
(cyan). The angle between the ring plane and a vector from the ring center to the 
HN of Lys-53 differs by 12º (2ewa: 31º; 1a9u: 23º). This difference is sufficient to 
predict a downfield shift for 2ewa (CSP: -0.18) and an upfield shift for 1a9u (CSP: 
0.07) using the empirical model implemented in QCSPScore. 

5.8 Comparison to related methods 

In the last years, there has been a growing interest in developing methods capable of 

harnessing structural information contained in protein CSP upon ligand binding for 

solving protein-ligand complexes. The methods published so far differ from one another 

mainly in two aspects: first whether they use CSP quantitatively or quantitatively and, 

second, whether CSP are employed for pre-/post-filtering (or refinement) or to drive 

docking. A more thorough review on these methods can be found in the Introduction 

chapter of this work. Here, a summary of the methods, attending to the aforementioned 

classification is presented in Figure 5.10.  
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Figure 5.10 Classification of methods that use CSP for protein-ligand docking. 

A “qualitative” use of CSP considers exclusively information regarding presence or 

absence of perturbation in a residue’s CS. In “semi-quantitative” methods CSP are only 

considered in absolute magnitude, thus neglecting the sign of the perturbation and not 

making a difference upfield or downfield effects. QCSPScore, the method described in 

this work, belongs to the “quantitative” category. In what follows I compare directly the 

semi-quantitative use of CSP vs. the quantitative use done in this work and CSP-driven 

approaches vs. post-filtering strategies. 

5.8.1 Semi-quantitative vs. quantitative scoring 

Both AutoDockFilter and LIGDOCK share common principles. They rely on the idea of 

ambiguous restraints which can be defined from the observed CSP. In AutoDockFilter it 

is assumed that the intensity of observed protein CSP upon ligand binding are linearly 

distant-dependent to any ligand atom. Thus, the authors have defined a violation energy 

ENMR as 



n

i
DistNMR kE

1

2)( , where Dist penalizes ligand poses as long as any of the 

“observed” CSP are not in close contact to at least one ligand atom. I have evaluated the 
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performance of such a scoring method on the same data set used in the theoretical 

development of QCSPScore. For that, I considered the subset of the Astex data set that 

generated both native-like and non-native-like solutions using standard DrugScore, as 

done in the initial scoring function assessment (see section 5.2, above). As the 

developers of AutoDockFilter did, I also simulated CSP for these complexes 

considering a simple linear relationship between residues in the binding site of the 

protein and the nearest ligand atom. Then, I calculated the corresponding ENMR for each 

pose in a post-filtering fashion. I considered a very relaxed criterion and accepted as 

“successful” those cases in which the native-like solutions obtained the lowest ENMR, 

independently if this lowest score was also shared by a non-native solution. 

Simplifying the relationship of observed CSP to a linear distance dependency to the 

source of the perturbation is a very crude approximation. On the one hand it 

circumvents the necessity of expensive calculations for predicting CSP, but on the other 

hand, that simplification can only provide information about the location of the binding 

site and anchor the ligand to it. Such approaches have a deep impact in protein-protein 

docking where possible relative orientations of the interacting partners are considerably 

larger than in the protein-ligand case (van Dijk, et al., 2005a). However, in the protein-

ligand docking case, the real problem comes when the ligand is properly placed in the 

binding site but two or more (symmetrically or not) alternative conformations are 

plausible, since CSP information used in that fashion does not provide additional clues. 

Schieborr et al. faced that problem when trying to re-dock 1a9u (Schieborr, et al., 2005). 

I have seen the very same effect in the cases analyzed here using AutoDockFilter as 

illustrated in Figure 5.11. 
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Figure 5.11 A decoy (left) and a native-like solution (right) for 1l2s complex. Both 
conformations are indistinguishable to AutoDockFilter, whereas Kendall’s 
correlation coefficient for decoy and native-like solutions are 0.13 and 0.70 
respectively. 

What happened to 1l2s complex is a clear example of the limitations of AutoDockFilter. 

Whereas for this scoring function both solutions shown in Figure 5.11 (decoy and 

native-like) are indistinguishable. As a matter of fact, the decoy gets a slightly better 

solution than the native-like solution. They both generate clearly different CSP patterns, 

properly captured by the Kendall’s correlation based scheme implemented in 

QCSPScore ( = 0.13 for the decoy and  = 0.70 for the native-like pose). 

In summary, despite the limitations discussed in the previous section, I believe these 

results show that quantitative CSP is a remarkable advantage towards successful 

docking results, compared to qualitative or semi-quantitative use. In fact, if semi-

quantitative data is used in a pre-filtering step in order to narrow the binding site 

definition, all structural data contained in it is already exploited. 

5.8.2 CSP-driven vs. post-filtering approaches 

The first approaches in which quantitative CSP data was used consisted of post-filtering 

methodologies (McCoy and Wyss, 2000). Arguably, such approaches are convenient as 

long as one is confident that the generator of conformations is going to sample and 

produce native-like solutions for the starting pool. In the case of rigid-ligand docking it 

is feasible to exhaustively enumerate the space of ligand orientations; however, rigid-
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ligand docking is not a common practice anymore, unless one is sure of the bioactive 

conformation of the ligand. Running a docking program in a standard-fashion, the most 

likely scenario does not ensure that pre-condition: for the data set analyzed here 9 out of 

70 cases (13%), no native-like solution was generated at all. Similarly, Stark and 

Powers reported that blind AutoDock calculations on 19 complexes resulted in 5 cases 

not generating any native-like poses (120 dockings runs for each complex) (Stark and 

Powers, 2008). 

But incorporating CSP at docking time imposes the challenge of defining how to weight 

the experimental information. Schieborr et al. (Schieborr, et al., 2005) resorted to a 

standard NMR-like methodology, switching on and off the contribution along the 

simulations, followed by a “selection plot” for scoring poses. The selection plot was 

necessary for example to evaluate 1ydr poses, where no single criterion, van der Waals 

interactions or matching experimental data, sufficed. Despite their success, the method 

incurs in very low efficiency. Cioffi et al. (Cioffi, et al., 2008) seem to acknowledge the 

aforementioned problems of post-filtering and resort to non-standard use of the docking 

program: first, only vdW contributions of the scoring function are left on; second, so 

generated poses are not re-scored but optimized in CSP terms. This also reflects that 

CSP alone do not suffice to orient protein and ligand starting from a given random 

orientation. QCSPScore is more efficient in since the whole simulation is done in a 

single step. 

5.8.3 QCSPScore vs. other quantitative approaches 

Probably, the most sophisticated method among the so far cited, and also more similar 

to QCSPScore, is the one by Cioffi et al., being a fundamental difference the functional 

form of the scoring function. As long as difficulties remain to model more correctly 

CSP (e.g. with respect to hydrogen formation) a Kendall’s correlation based scheme, is 

preferable, as I have shown here. Unfortunately, the authors did not report cases in 

which they re-docked protein-ligand complexes and hydrogen-bond effects were 

present, to properly evaluate the impact of such effect. Additionally, Cioffi et al. used a 

model for back-calculating CSP which included ring-current effects, electrostatic and 

other magnetic effects. I have shown that the ring-currents-only model works better in 

the current setting of crude electrostatic modelling and sparse experimental data. It is 
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difficult to evaluate differences also in this respect, since they have reported results only 

for one case. Additionally, it would have been also interesting to see whether their 

method really outperformed standard docking, without any CSP information, as is the 

case for QCSPScore.  
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6 Summary, conclusions and outlook 

In this work, I have presented the development of QCSPScore, a new computational 

method that exploits quantitatively observed chemical shifts perturbations of amide 

protons on the protein side to steer a protein-ligand docking engine. QCSPScore is 

implemented within AutoDock, which permits a convenient straightforward use. 

QCSPScore has been conceived as a hybrid scoring function that combines linearly 

DrugScore potentials with a measurement of the agreement between experimentally 

observed and back-calculated QCSP for a given docking pose. The back-calculation of 

CSP is done using an empirical model, in order to keep the whole approach efficient. 

The core of the work has therefore been devoted to study: a) how that agreement 

between experimental and back-calculated QCSP can be measured and b) determine 

how to relatively weight QCSP contribution with respect to DrugScore (Gohlke, et al., 

2000). 

Since large collections of experimental data were not available for developing and 

testing purposes, I have followed a two-step strategy. First, I considered a 

comprehensive data set of 70 protein-ligand complexes from the Astex diverse data set 

(Hartshorn, et al., 2007) for which I computed QCSP data for reference. Second, results 

obtained in this step were translated and re-evaluated using three protein-ligand 

complexes for which experimental QCSP data was available. 

In the theoretical development part, complexes were re-docked using DrugScore-only as 

scoring function, which produces correct docking results in 71% of the cases (section 

5.2). I used the structures of those correct cases and the incorrect ones (decoys) for 

establishing an appropriate functional form of the QCSP contribution. Kendall’s rank 

correlation coefficient proved to be appropriate (section 5.3). Using the rank correlation, 

it is not necessary to account for the degree of protein saturation by a bound ligand, 

which may vary from complex to complex and influence the magnitude of CSP. In 

addition, the rank correlation is a robust statistic measure, which compares favorably to 

scoring schemes based on minimizing squared deviations between experimental and 

computed CSP. I have ascertained that these latter scoring schemes show a high 

sensitivity to the presence of outliers in the back-calculated CSP data. 
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To establishing the weight of the QCSP contribution for linearly combining it with 

DrugScore I analyzed again DrugScore results to assess energy gaps between decoys 

and native-like docking solutions (section 5.4). For the data set under study, the 

maximum energy gap in DrugScore terms was rather low, 1.31 DrugScore units. 

Kendall’s rank correlation values for decoys spread around 0.29 and around 0.82 for 

native-like solutions, which suggested a weight scan between 3 and 10 (section 5.5). I 

note that in these ideal cases no inaccuracies occur upon back-calculating the CSP and 

all amide protons in the binding site have a CSP value assigned, which permits isolating 

the theoretical influence of the CSP contribution on the docking outcome. At the 

smallest weighting factor tested (QCSP = 3) a docking success rate of 87% was 

achieved, already 16% higher than DrugScore-only scoring. This rate improved to 

100% at the largest weighting factor tested (QCSP = 10). Additionally, results generated 

with QCSPScore have a higher native-likeness than the cases of DrugScore-only 

docking. This is also corroborated using as a more stringent criterion of success an 

RMSD to the native structure of  1.0 Å: 47% of the DrugScore-only cases would have 

been successful vs. 86% of the cases driven by QCSP at QCSP = 10 (section 5.6). In 

total, this part of the study revealed that, despite the QCSP contribution being a “hard” 

scoring term, global optimization performs satisfactorily on the combined EDS/EQCSP 

docking energy landscape. In particular, it increases the sampling of native-like 

conformations. 

Applying the hybrid scoring scheme with a weighting factor of 10 to the three cases for 

which experimental CSP reference data was available, resulted in successful docking if 

HN involved in hydrogen bonds with the ligand were discarded from the data pool, 

(section 5.7). This is a significant improvement with respect to DrugScore-only 

docking, which was unsuccessful in all three cases. In addition, only in the hybrid 

docking scheme, native-like solutions were generated for complexes 1a9u and 1ydr. 

This justifies the importance of including the experimental information at docking time, 

and not just as a pre-filter or a post-filter as has been typically done until now. 

Assessing QCSPScore with real experimental data gave the opportunity to gain some 

insight in possible limitations of the approach and how to overcome them. To start with, 

HN CSP involved in hydrogen bonds, when neglected, resulted in better performance of 

the calculation. This was expected since the empirical model implemented in 
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QCSPScore for back-calculating CSP does not explicitly model this effect. However, an 

a priori surprising result was that neglecting also the electrostatic contribution included 

in the model was necessary to obtain successful results. Since HN CSP in an 

experimental setting might distribute sparsely and asymmetrically, the appearance of 

clear patterns marking the appearance of the ligand in the binding site is hindered. For 

this reason, it can be rationalized that using a ring-current-only model for back-

calculating produced better results. Ring-current effects, when present, are the most 

significant components of the total observed QCSP. In addition, they produce a 

characteristic pattern of magnetic perturbation in their vicinity for which they can be 

used for effectively orienting ligands in their binding sites. When analyzing additional 

factors that influence the docking success, it was encouraging to see that binding site 

movements of up to 2 Å did not deteriorate the docking success when considering CSP 

information. Furthermore, an extent of CSP assignments of HN protons in the binding 

site region below 40% can still be tolerated, if the CSP are rather uniformly distributed. 

The limited experimental data set used in the development of QCSPScore, despite the 

successful results, does not permit making a definitive assessment of QCSPScore’s 

merits. However, it permitted discovering some limitations, from a theoretical and 

experimental point of view, that need being addressed in the future in order to refine and 

expand its applicability. 

The low accuracy in the prediction of protein HN only has a limited impact on the 

success of the approach, compared to incomplete and irregular patterns of HN CSP 

assignments. However, dealing with the specific case of hydrogen-bond formation, 

better understanding and modelling electrostatic effects on CSP would be desirable. 

Likewise, an extension to account for protein flexibility is needed. With respect to the 

problem of HN involved in hydrogen-bonds with the ligand, Moon and Case (Moon and 

Case, 2007) recently proposed an extended empirical model. It remains to be 

investigated how much the efficiency in the calculation is compromised by such an 

alternative. The same is true for more sophisticated treatments of the electrostatics. So-

called Generalized-Born models have become a popular alternative to more demanding 

explicit solvent models in recent years. The question is whether any of such models 

could be efficiently implemented into QCSPScore, and if the gain in accuracy will 

really compensate the computational effort in this respect. More accurate methods for 
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back-calculating CSP, in this case on the ligand site, have been recently reported.  

NMRScore(Wang, et al., 2007) uses quantum-mechanics for this task, which is useful in 

a structural refinement effort, but not in a medium-throughput docking campaign. 

Relying on ring-currents effects only effectively limits the number of small-molecules 

that can be studied. Yet, more than 95% of the compounds in the MDL Drug Data 

Report database (http://symyx.com) contain an aromatic ring and would thus be 

amenable. Finally, flexibility of the protein has not been considered. However, this is 

not a limitation of QCSPScore itself, but from the underlying docking engine. 

From an experimental point of view, relying on CSP permits studying complexes for 

which NOE cannot be seen, however observing and assigning CSP is still a demanding 

task. For this reason, approaches like QCSPScore will benefit from future developments 

in high-throughput assignment of proton chemical shifts and peak tracking 

methodologies (Fukui and Chen, 2007). 

Almost ten years ago McCoy and Wyss pioneered the use of QCSP for protein-ligand 

complex elucidation. They wrote: “We anticipate that ligand-induced chemical shifts 

perturbations can be used as restraints in structure calculations and can be energy 

minimized with NOEs, van der Waals and electrostatics to give more accurate 

protein/ligand structures” (McCoy and Wyss, 2000). Since then, increasing attention has 

been paid to ligand induced CSP. A very recent work by Cioffi et al. (Cioffi, et al., 

2008) describes how QCSP can be used for optimizing protein-ligand geometries, but, 

to the best of my knowledge, the present study is the first work in which QCSP are 

incorporated into a docking scoring function for effectively driving the simulation from 

the beginning. The relevance of the direction taken in this work has been already stated. 

First, simulations where CSP were used only qualitatively or semi-quantitatively do not 

effectively exploit the experimental data to orient the ligand in the binding site; rather, 

they only anchor it to that area. Second, there is a risk for quantitative approaches 

following a post-filtering strategy to work on a pool of solutions where a native-like 

solution is not present. 

I believe that the approaches like QCSPScore can have a relevant impact when dealing 

with challenging protein-ligand complexes, which nowadays coincide to represent 

appealing avenues to finding new therapeutic applications. I am referring to fragment-
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based drug-design (Congreve, et al., 2008), where small fragments are known to be a 

challenge for classical scoring functions (Hubbard, et al., 2007; Chen and Shoichet, 

2009), and protein-protein interfaces (Arkin and Wells, 2004), which typically present 

rather flat binding sites, difficult to address for current docking programs (Gonzalez-

Ruiz and Gohlke, 2006). 
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7 Zusammenfassung 

Das Docken von Liganden an Proteine ist ein in der Pharmaforschung routinemäßig 

angewendetes rechnerisches Verfahren. Eine beträchtliche Anzahl publizierter Studien 

zeigt den erfolgreichen Einsatz von Docking beim virtuellen Screening nach 

Wirkstoffkandidaten (Kitchen, et al., 2004; Cavasotto and Singh, 2008). Auch bei der 

Optimierung potentieller Wirkstoffe hat sich der Einsatz von Dockingverfahren 

bewährt. Als ein bekanntes erfolgreiches Beispiel ist der inzwischen kommerzialisierte 

Wirkstoff Imatinib (Gleevec) zu nennen (Capdeville, et al., 2002). Trotzdem besteht 

auch weiterhin Bedarf und die Notwendigkeit, Dockingverfahren weiter zu verbessern. 

Das Docking erfordert einerseits die Vorhersage der Konfiguration oder Geometrie des 

Protein-Ligand-Komplexes, andererseits die akkurate Bewertung oder Abschätzung der 

Wechselwirkungsenergie zwischen den Bindungspartnern, das so genannte Scoring.  

Was die erste Anforderung betrifft, so sind Erfolgsraten von bis zu 80% berichtet 

worden (Warren, et al., 2006). Für die zweite, schwierigere Anforderung liegen die 

Erfolgsraten bei der Unterscheidung einer nativen von einer nicht-nativen 

Komplexstruktur nur zwischen 10 und 70%. Bei der Reihung einer Serie von Liganden 

gemäß ihrer Wechselwirkungsenergie ist die Erfolgsrate sogar noch geringer (Warren, 

et al., 2006). Aufgrund dieser Tatsachen wird allgemein davon ausgegangen, dass das 

Problem der Geometrievorhersage weitestgehend gelöst sei, das Problem der Bewertung 

dagegen nicht. Velec und Kollegen haben kürzlich gezeigt, dass gute 

Geometrievorhersagen Voraussetzung für die Verbesserung von Bewertungsfunktionen 

sind (Velec, et al., 2005). 

Eine Tendenz bei der Verbesserung von Bewertungsfunktionen ist die Anpassung der 

Funktion an ein bestimmtes System, d.h. die Entwicklung so genannter 

maßgeschneiderter Bewertungsfunktionen. Dabei werden verfügbare Daten für eine 

Reihe bereits bekannter Liganden genutzt (Fradera and Mestres, 2004; Jansen and 

Martin, 2004; Radestock, et al., 2005). Alternativ können auch experimentelle Daten zur 

Verbesserung des Dockings benutzt werden, die im Rahmen der Untersuchung eines 

bestimmten Systems neu erzeugt wurden (van Dijk, et al., 2005a). Das Kombinieren 

theoretischer Dockingmethoden mit neu erzeugten experimentellen Daten hat die 

Untersuchung biologischer Systeme ermöglicht, die bislang als zu schwierig für eine 
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Untersuchung mit Dockingverfahren galten. Bemerkenswerterweise haben diese 

Ansätze der Erforschung und Entwicklung von Protein-Protein-Dockingmethoden 

neuen Auftrieb gegeben (van Dijk, et al., 2005a). Aber auch im Bereich des Protein-

Ligand-Dockings werden solche Methoden angewendet, insbesondere in Verbindung 

mit Kernmagnetresonanz (NMR)-spektroskopischen Daten (Carlomagno, 2005; Powers, 

2007). 

NMR-spektroskopischen Untersuchungen liefern Informationen über die Struktur eines 

biomolekularen Komplexes. Chemischen Verschiebungen (CS) kommt dabei eine 

Schlüsselrolle bei der Zuweisung von NMR-Spektren zu. Für die eigentliche 

Strukturaufklärung wurden sie bislang aber als weniger brauchbar angesehen (Szilagyi, 

1995), da ihre Interpretation hinsichtlich der Struktur schwierig ist. Seit einigen Jahren 

finden CS aber immer mehr Anwendung auch bei der Strukturaufklärung (Wishart and 

Case, 2001; Hunter, et al., 2005). Zudem hat sich die Beobachtung von Veränderungen 

der CS (CSP) bezüglich eines Referenzzustands zur Untersuchung biomolekularer 

Wechselwirkungen als sehr interessant herausgestellt. Die Messung von Veränderungen 

der CS sind auch Grundlage eines unter dem Namen „SAR by NMR“ bekannt 

gewordenen fragmentbasierten Ansatzes zur Entwicklung von Liganden (Shuker, et al., 

1996). Schwierigkeiten bei der Interpretation und Modellierung von CSP können 

umgangen werden, indem nur qualitative Aussagen getroffen werden. Dieser Ansatz 

liefert aber keine Informationen über die Konfiguration des Protein-Ligand-Komplexes, 

die von einem Dockingverfahren zur Geometrievorhersage genutzt werden könnten. 

Ich habe im Rahmen dieser Arbeit einen neuen rechnerischen Ansatz entwickelt, der 

quantitative CSP von Amidprotonen auf der Proteinseite zur Verbesserung eines 

Protein-Ligand-Dockingverfahrens benutzt. Die Methode nennt sich QCSPScore. Sie 

wurde in das AutoDock Softwarepaket implementiert, was eine komfortable Nutzung 

erlaubt. 

QCSPScore wurde als eine Hybridbewertungsfunktion entwickelt, die DrugScore-

Potentiale (Gohlke, et al., 2000) mit einem Maß für die Übereinstimmung zwischen 

experimentell gemessenen und vorhergesagten quantitativen CSP für eine Docking-

Pose linear kombiniert. Die Vorhersage der CSP erfolgt dabei mit Hilfe eines 

empirischen Modells, um die Effizienz des Ansatzes zu gewährleisten. Die vorliegende 

Arbeit konzentriert sich auf die Behandlung zweier Fragen. Erstens, wie die 
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Übereinstimung zwischen experimentell gemessenen und vorhergesagten QCSP 

erfolgen kann, und, zweitens, wie der QCSP-Beitrag gegenüber DrugScore-Potentialen 

gewichtet werden muss. 

Da für die Entwicklung und Testung der Methode keine großen Datenmengen zur 

Verfügung standen, habe ich eine zweischrittige Strategie verfolgt. In einem ersten 

Schritt habe ich mit 70 Protein-Ligand-Komplexen aus dem „Astex diverse“ Datensatz 

gearbeitet, für die ich CSP vorhergesagt habe. In einem zweiten Schritt habe ich die 

Ergebnisse der Untersuchung dreier Protein-Ligand-Komplexe ausgewertet, für die 

experimentelle Daten vorlagen. 

Während der Entwicklung der Methode wurden die untersuchten Protein-Ligand-

Komplexe auch mit herkömmlichen DrugScore-Potentialen bewertet. Dies führte in 

71% der Fälle zu korrekt vorhergesagten Geometrien (Abschnitt 5.2). Diese nativ-

ähnlich vorhergesagten Komplexe habe ich anschließend zusammen mit den falsch 

vorhergesagten Komplexen zur Ableitung der funktionellen Form des QCSP-Beitrags 

zur Bewertungsfunktion benutzt. Dabei stellte sich der Rangkorrelationskoeffizient nach 

Kendall als nützlich heraus (Abschnitt 5.3). Durch die Verwendung dieses 

Korrelationskoeffizienten muss die Sättigung der Signale auf Proteinseite nicht mehr 

berücksichtigt werden, die bei verschiedenen Protein-Ligand-Komplexen 

unterschiedlich sein und die Werte der CSP beeinflussen kann. Außerdem ist der 

Rangkorrelationskoeffizient ein robustes Maß, verglichen mit Bewertungschemata, die 

auf der Minimierung quadratischer Differenzen zwischen experimentellen und 

berechneten CSP beruhen. Meine Untersuchungen haben ergeben, dass die Sensitivität 

dieser Bewertungsfunktionen gegenüber Ausreißern in vorhergesagten Daten ein 

Problem darstellt. 

Um die Gewichtung des QCSP-Beitrags in der linearen Kombination mit DrugScore-

Potentialen zu bestimmen, habe ich die „Energielücke“ (energy gap) zwischen den mit 

herkömmlichen DrugScore-Potentialen nativ-ähnlich bzw. nicht korrekt vorhergesagten 

Komplexen untersucht (Abschnitt 5.4). Für den untersuchten Datensatz war die 

maximale Energielücke für DrugScore mit 1,31 DrugScore-Einheiten recht niedrig. 

Werte für den Rangkorrelationskoeffizienten nach Kendall lagen dagegen zwischen 

0,29 für die nicht-korrekt vorhergesagten Komplexe und 0,82 für die native-änlich 

vorhergesagten Komplexe, was auf einen Gewichtungsfaktor zwischen drei und zehn 
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hindeutete (Abschnitt 5.5). Die Tatsache, dass für diese idealen Fälle keine 

Ungenauigkeiten durch die Vorhersage von CSP auftreten und alle Amidprotonen 

zugewiesen werden können, erlaubt die alleinige Beobachtung des Einflusses der CSP 

auf das Dockingergebnis. Mit dem niedrigsten getesteten Gewichtungsfaktor 

(QCSP = 3) wurde eine Erfolgsrate beim Docking von 87% erzielt. Das bedeutet eine 

Verbesserung um 16% im Vergleich zum DrugScore-Ergebnis. Die Erfolgsrate konnte 

sogar auf 100% gesteigert werden, wenn der größte getestete Gewichtungsfaktor 

verwendet wurde (QCSP = 10). Hinzu kommt, dass die mit QCSPScore vorhergesagten 

Geometrien der nativen Komplexstruktur ähnlicher waren als die mit herkömmlichen 

DrugScore-Potentialen vorhergesagten. Dies wird deutlich, wenn ein RMSD  1,0 Å als 

ein strengeres Kriterium zum Beurteilen der Posen herangezogen wird. In diesem Fall 

wurden 47% der Komplexstrukturen mit herkömmlichen DrugScore korrekt 

vorhergesagt, aber 86% mit QCSPScore und dem Gewichtungsfaktor zehn (Abschnitt 

5.6). In der Schlussfolgerung hat dieser Teil der Arbeit gezeigt, dass die globale 

Optimierung auf der kombinierten EDS/EQCSP-Hyperfläche erfolgreich ist, was bei der 

Suche nach nativ-ähnlichen Lösungen zu besseren Ergebnissen führt. 

Die Anwendung der hybriden Bewertungsfunktion mit dem Gewichtungsfaktor zehn 

auf die drei Systeme, für die experimentell bestimmte Daten vorliegen, ist erfolgreich, 

wenn solche Amidprotonen unberücksichtigt bleiben, die bei der Ausbildung von 

Wasserstoffbrücken beteiligt sind (Abschnitt 5.7). Die Verbesserung gegenüber der 

Verwendung herkömmlicher DrugScore-Potentiale ist signifikant, da letzteres in allen 

drei Fällen nicht erfolgreich ist. Außerdem werden nur bei Anwendung der hybriden 

Bewertungsfunktion nativ-ähnliche Komplexstrukturen für 1a9u und 1ydr vorhergesagt. 

Das betont wiederum die Wichtigkeit, experimentelle Daten in das Docking mit 

einzubeziehen, und zwar nicht nur als ein Vor- oder Nachfilter, wie es in der 

Vergangenheit bereits praktiziert wurde. 

Der Vergleich der QCSPScore-Vorhersagen mit experimentell bestimmten Daten 

ermöglichte die Erkennung von Einschränkungen des Ansatzes und Überlegungen, wie 

diese Einschränkungen überwunden werden können. So führte beispielsweise die 

Nichtberücksichtigung von CSP von Amidprotonen, die an der Ausbildung von 

Wassersoffbrücken beteiligt sind, zu einer Verbesserung der Dockingergebnisse. Das 

war zu erwarten, da die Methode zur Vorhersage von CSP diesen Effekt nicht 
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modellieren kann. Interessanter war die Beobachtung, dass auch die 

Nichtberücksichtigung elektrostatischer Effekte notwendig für gute Ergebnisse war. Da 

CSP von Amidprotonen im Experiment breit und nicht symmetrisch verteilt sind, 

können nur schwer eindeutige Muster beobachtet werden, welche die Position des 

Liganden markieren. Die alleinige Berücksichtigung von Ringstromeffekten führt dabei 

zu besseren Ergebnissen: Ringstromeffekte (sofern vorhanden) liefern den größten 

signifikanten Beitrag zu den gesamten beobachteten CSP. Außerdem erzeugen sie ein 

charakteristisches Muster von Veränderungen der CS in ihrer Umgebung und können 

somit effektiv zur genauen Positionierung eines Liganden in der Bindetasche des 

Proteins genutzt werden. Bei der Untersuchung weiterer Faktoren, die das Ergebnis des 

Dockings beeinflussen könnten, stellten sich Bindetaschenbewegungen von bis zu 2 Å 

RMSD als den Erfolg des Dockings nicht negativ beeinflussend heraus. Wenn die CSP 

gleichmäßig verteilt sind, kann zudem eine Zuweisung von nur 40% oder weniger 

toleriert werden. 

Die geringe Menge verfügbarer experimentell bestimmter Daten erlaubt es trotz dieser 

Erfolge nicht, alle Vorteile der Methode endgültig herauszustellen. Einige 

Einschränkungen des Verfahrens konnten aber festgestellt werden, sowohl was die 

Theorie hinter der Methode, aber auch die experimentell bestimmten Daten betrifft. Um 

die Anwendungsmöglichkeiten der Methode zu verfeinern und zu erweitern, müssen 

diese Einschränkungen in zukünftigen Entwicklungen reduziert werden. 

Eine geringe Genauigkeit bei der Vorhersage von CSP von Amidprotonen zeigt dabei 

nur einen beschränkten Einfluss auf den Erfolg des Verfahrens verglichen mit 

unvollständigen und unregelmäßigen Zuweisungsmustern. Hinsichtlich der 

Wasserstoffbrücken wären ein besseres Verständnis und eine bessere Behandlung 

elektrostatischer Effekte wünschenswert. Gleiches gilt für eine Erweiterung des 

Ansatzes unter Berücksichtigung von Proteinflexibilität. Hinsichtlich des Problems der 

Wasserstoffbrücken haben Moon und Case (Moon and Case, 2007) erst kürzlich ein 

erweitertes empirisches Modell vorgestellt. Es bleibt aber nachzuprüfen, ob die 

Verwendung einer solchen Methode die Effizienz des Verfahrens nicht beeinträchtigt. 

Generalisierte Born-Modelle sind eine Alternative zu expliziten 

Lösungsmittelmodellen. Es ist offen, ob solche Modelle effizient in QCSPScore 

implementiert werden können und ob der Gewinn an Genauigkeit tatsächlich die Kosten 
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ausgleicht, die ein solches Verfahren verursacht. Effizientere Methoden zur 

Vorhersagen von CSP auf der Ligandenseite sind vor kurzem ebenfalls vorgestellt 

worden. NMRScore (Wang, et al., 2007) benutzt dafür quantenmechanische Ansätze. 

Dies ist nützlich zur Verfeinerung der Struktur, aber nicht für den Einsatz in Docking-

Verfahren mit mittlerem Durchsatz. 

Die Konzentration auf Ringstromeffekte schränkt die Fälle an Liganden ein, die 

untersucht werden können. Dies gilt aber nur diejenigen 5% der Strukturen aus der 

„MDL Drug Data Report“ Datenbank, die keine aromatischen Systeme tragen. Die 

Nichtberücksichtigung der Proteinflexibilität schränkt das Verfahren ebenfalls ein, ist 

aber weniger eine Beschränkung des QCSPScore als des zugrunde liegenden Docking-

Verfahrens. 

Ich bin davon überzeugt, dass Verfahren wie QCSPScore für mit Dockingverfahren 

schwierig vorherzusagende Protein-Ligand-Komplexe deutliche Verbesserungen 

bringen können. Dies gilt beispielsweise im Fall des fragmentbasierten 

Ligandenentwurfs (Congreve, et al., 2008), weil kleine Fragmente eine Herausforderung 

für klassische Bewertungsfunktionen darstellen (Hubbard, et al., 2007; Chen and 

Shoichet, 2009), und für Protein-Protein-Wechselwirkungsflächen (Arkin and Wells, 

2004), die typischerweise relativ flache Bindestellen haben, die für gängige Docking-

Programme schwer anzugreifen sind (Gonzalez-Ruiz and Gohlke, 2006). 
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Appendix: Implementation of QCSPScore 

All dockings were done using AutoDock 3.0.5, with DrugScore fields as base scoring 

function. In order to incorporate the EQCSP term and construct the hybrid scoring 

function we have extended AutoDock’s original code. The most salient features of the 

extended implementation are specified in the UML diagram in Figure A.1. The core of 

the modification consists of two new classes: AtomP and Protein_csp. The existing 

class Eval (used by AutoDock for evaluations of the scoring function) has been 

extended to contain Protein_csp. A Protein_csp object is made of a number of 

AtomP objects. It has methods for reading both PDB structural data and the 

experimental CSP. Finally and for convenience, it also holds specific information about 

the ligand: which atoms are involved in aromatic rings and in groups generating 

anisotropy. AtomP objects hold the individual protons for which CSP have to be 

predicted (those for which experimental information is provided). 

 

Figure A.1 UML diagram of the most relevant modifications done to AutoDock 3, in 

order to incorporate the information about CSP to the scoring function (diagram 

generated with BOUML (http://bouml.free.fr)). 
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Experimental CSPs, PDB with protein coordinates and ligand chemical groups relevant 

for the calculation of the CSP are passed to the program through a new line in the 

AutoDock’s input file. The weight for the EQCSP contribution is also specified at this 

point. A new DPF keyword (“shifts”) has been defined to request AutoDock to setup 

a calculation involving CSP. The example of the new input line: 

 

Figure A.2 Example of the new input line required to use AutoDock with our extension 

incorporating CSP. 

CSP are specified as in the example below (example line in the “file with CSP”): 

9 TYR  H   -0.010 

where the first column corresponds to residue number, the second to residue name, the 

third to the atom name, and the fourth to the experimental CSP. Chemical information 

of the ligand is specified as: 

ring 0.85 6 28 29 30 32 34 35 

where “ring” is a keyword that identifies an aromatic ring. Groups that are sources of 

anisotropic effects are labelled “cgroup”. What follows is the intensity of the ring 

factor (or the anisotropy), the number of atoms, and the atom numbers as in the pdbq 

file specified at the “move” keyword in a standard AutoDock run. 

At docking time for every conformation with favourable interacting energy (EDS < 0) the 

program calls the get_CSP_Score() procedure from Eval class, passing to it the 

coordinates of the new trial ligand pose to compute EQCSP. EQCSP is only contributing to 

the objective function during docking and is not used in the final re-ranking of 

solutions, if more than one docking is performed. For that final scoring and re-ranking, 

only DrugScore and the internal energy of the ligand as computed by AutoDock is 
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considered. All implementations have been done in C++ and a flag CSPDOCK has been 

defined for conditional compilation of the program (with or without CSP). 
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