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The yeast Rcf1 protein is amember of the conserved family of
proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or
HIGD1) family. Rcf1 interacts with components of the mito-
chondrial oxidative phosphorylation system, in particular the
cytochrome bc1 (complex III)-cytochrome c oxidase (complex
IV) supercomplex (termed III-IV) and the ADP/ATP carrier
proteins. Rcf1 plays a role in the assembly andmodulation of the
activity of complex IV; however, the molecular basis for how
Rcf1 influences the activity of complex IV is currently unknown.
Hig1 type 2 isoforms, which include the Rcf1 protein, are
characterized in part by the presence of a conserved motif,
(Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show
that mutation of conserved residues within the Rcf1 QRRQ
motif alters the interactions between Rcf1 and partner proteins
and results in the destabilization of complex IV and alteration of
its enzymatic properties. Our findings indicate that Rcf1 does
not serve as a stoichiometric component, i.e. as a subunit of
complex IV, to support its activity. Rather, we propose that Rcf1
serves to dynamically interactwith complex IVduring its assem-
bly process and, in doing so, regulates a late maturation step of
complex IV. We speculate that the Rcf1/Hig1 proteins play a
role in the incorporation and/or remodeling of lipids, in partic-
ular cardiolipin, into complex IV and. possibly, othermitochon-
drial proteins such as ADP/ATP carrier proteins.

Mitochondria are specialized organelles that are a nexus for
several critical cellular pathways, including the aerobic produc-
tion of energy through oxidative phosphorylation (OXPHOS)2

(1–4). The enzymes involved in this cellular energy pathway,
referred to as complexes I-IV, are embedded within the inner
mitochondrial membrane and facilitate the establishment of a
proton gradient through the oxidation of reducing equivalents.
In the final steps of this process, the electron carrier cyto-
chrome c mediates the transfer of electrons from cytochrome
bc1 (complex III) to cytochrome c oxidase (COX, complex IV),
which donates electrons to O2, forming water (1, 5–7). The
electrochemical proton gradient is utilized by the F1F0-ATP
synthase and provides the energy necessary to generate ATP
from ADP and inorganic phosphate (8). Newly synthesized
ATP is then exchanged for cytosolic ADP by the ADP/ATP
carrier (AAC) proteins, integral membrane proteins of the
mitochondrial inner membrane (9).
OXPHOS enzyme complexes require correct assembly and

tight regulation to ensure optimal function and integrity. A
point of potential regulation is the organization of OXPHOS
enzymes, including AAC and complexes III and IV, into struc-
tures termed supercomplexes (1–3, 10–15). These higher-or-
dered supercomplexes, e.g. the III-IV supercomplex, have been
proposed to facilitate efficient electron channeling and possibly
enable the co-regulation of these enzymes. The III-IV super-
complex is stabilized by the signature mitochondrial phospho-
lipid cardiolipin (CL) and can also include the AACprotein (12,
16–21).
Rcf1 and Rcf2 (respiratory complex factor 1 and 2) are two

proteins in the yeast Saccharomyces cerevisiae that indepen-
dently associate with subpopulations of the III-IV supercom-
plex (22–24). Like the AAC proteins, current data indicate that
Rcf1 and Rcf2 support the assembly of complex IV and, thus,
III-IV supercomplex organization (12, 22–24). The Rcf1 and
Rcf2 proteins have been shown to cooperatively play a critical
role in respiration-based growth and influence the activity of
complex IV (22–24). The growth defect of the �rcf1;�rcf2
mutant, at least in part, is caused by a reduction in complex IV
enzyme levels in the absence of both Rcf1/Rcf2 proteins (23).
Rcf1 physically interacts with the mitochondrially encoded
Cox3 subunit during its assembly and has also been shown to
modulate the association of Cox12 (Cox6b in mammals) with
complex IV enzyme. Cox12 is a peripheral subunit of complex
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IV, which, together with Cox2 and Cox3, is involved in the
binding of substrate, cytochrome c, to complex IV (23, 24). A
close association of the Rcf1 and AAC proteins has also been
reported (23). It is currently unknownwhether the roles ofAAC
and the Rcf1/Rcf2 proteins in supporting complex IV levels are
related and whether they may involve the lipid CL.
Rcf1 and Rcf2 are both members of the conserved protein

family termed hypoxia-induced gene 1 family (Hig1) (also
referred to as hypoxia-inducible gene domain (HIGD1) family).
The Hig1 protein family can largely be divided into two sub-
groups of isoforms, termed the Hig1 type 1 and the more uni-
versally found type 2 isoforms, and the classification of these
isoforms is based largely on the presence or absence of a con-
served (Q/I)X3(R/H)XRX3Q motif (termed here the QRRQ
motif), which is characteristically found in Hig1 type 2 family
members. The Hig1 type 1 proteins characteristically contain
a modified version of this motif, e.g. the HIGD1A protein in
mammals has (I/V/L)HLIHMRX3Q instead. Although theHig1
type 2 isoforms are universally found in all eukaryotes (and in
�-proteobacteria) and appear to represent constitutively
expressed isoforms, theHig1 type 1 subgroup is found in higher
eukaryotes and appears to represent hypoxia- and stress-in-
duced isoforms (25–27). Rcf1 andRcf2 areHig1 type 2 proteins,
and S. cerevisiae, like many lower eukaryotes (e.g. fungi and
nematodes), does not contain Hig1 type1 isoforms.
In this study,we have sought to gain further understanding of

the significance of Rcf1 involvement with complex IV assembly
and its enzymatic properties.Wehave explored the relevance of
the Hig1 type 2 QRRQ motif for the function of yeast Rcf1. As
outlined below, our findings indicate that Rcf1 does not act as a
subunit of the assembled complex IV enzyme to support its
activity, but, rather, we propose that Rcf1 transiently associates
with a late-stage assembly intermediate of complex IV to mod-
ify it, possibly its lipid composition, and, by doing so, alters its
enzymatic properties.

Results

Expression of Rcf1 QRRQ Mutant Derivatives—Rcf1, like the
other members of the Hig1 protein family, is an integral inner
mitochondrial membrane protein with two predicted trans-
membrane segments (Fig. 1A). A limited sequence alignment
illustrates the conserved nature of the QRRQ motif from
diverse species, such as in �-proteobacteria, yeast (both Rcf1
and Rcf2), nematodes, andmammals (Fig. 1B). In the yeast Rcf1
protein, the QRRQ motif corresponds to residues 61–71, i.e.
61QX3RXRX3Q71 (Fig. 1, A and B).
The functional significance of the conserved QRRQmotif in

the yeast Rcf1 proteinwas investigated by adopting a strategy of
alanine site-directed mutagenesis. Two distinct Rcf1 mutant
derivatives were initially created. In the first mutant, glu-
tamines 61 and 71 were simultaneously mutated to alanines to
create the rcf1Q61A,Q71A derivative. In the second mutant,
derivative arginine 67 was mutated to Ala (rcf1R67A).
Rcf1 mutant derivatives were expressed as C-terminal His-

tagged derivatives in the Rcf1/Rcf2 double-null yeast strain
(�rcf1;�rcf2). Analysis of isolated mitochondria from the
resulting strains revealed that the steady-state levels of the
rcf1His

Q61A,Q71A and rcf1His
R67A derivatives appeared to be sim-

ilar to that of the wild-type Rcf1His control, thus indicating that
mutation of the QRRQ motif in this manner did not adversely
affect the stability of the Rcf1 protein (Fig. 1C). The�rcf1;�rcf2
yeast strain displays a respiration-based growth defect (23). The
expression of rcf1His

Q61A,Q71A and rcf1His
R67A derivatives, like

the Rcf1His wild-type protein, largely complemented the �rcf1;
�rcf2 respiratory growth defect (growth on the non-fermenta-
ble carbon source, glycerol) (Fig. 1D). This finding indicates
that an intact QRRQmotif is not essential for the ability of Rcf1
to support OXPHOS-based yeast growth.

Expression of rcf1His
R67A Alters the Complex IV Assembly

State—The �rcf1;�rcf2 mutant mitochondria examined con-
tain reduced levels of complex IV subunits (23). In contrast, the
�rcf1;�rcf2 mitochondria harboring His-tagged wild-type Rcf1
or the rcf1His

Q61A Q71A or rcf1His
R67A derivatives appeared to

have normal steady-state levels of all complex IV subunits ana-
lyzed (Fig. 2A). We therefore conclude that an intact QRRQ
motif does not appear to be required by Rcf1 to support the
stable accumulation of complex IV subunits.

FIGURE 1. Rcf1, an inner membrane protein and member of Hig1 type 2
familyand theconservedQRRQmotif.A, theNout-Cout orientationof Rcf1 in
the innermembranewith N andC tails exposed to the intermembrane space.
The locationofQRRQ (Gln61, Arg67, Gln61)motif relative to the two transmem-
brane segments (TM1 and TM2, respectively) is indicated. B, limited sequence
alignment (amino acid residue numbers are indicated) of the QRRQ motif
region from a selection of Hig1 type 2 family members. Hs, Homo sapiens
(NP_620175); Bt, Bos taurus (NP_001071329); Ce, C. elegans (NP_001254152);
Bj, Bradyrhizobium japonicum (WP_014491643). C, mitochondria were iso-
lated from thewild type, the�rcf1;�rcf2 controls (�), or the�rcf1;�rcf2 strain
harboring either His-tagged Rcf1 (Rcf1His), rcf1His

Q61A,Q71A (Gln61,Gln71) or
rcf1His

R67A (R67A) derivatives. Rcf1 and Tim44 (control) levels were analyzed
by Western blotting. D, serial 10-fold dilutions of the WT and �rcf1;�rcf2
expressing Rcf1His, rcf1His

Q61A,Q71A, or rcf1His
R67A derivatives or not, as indi-

cated, were spotted on YP plates containing glucose (YPAD) or glycerol sup-
plemented with 0.1% galactose (YPG� 0.1% Gal) and grown at 30 °C.
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Throughblue native gel electrophoresis (BN-PAGE),wenext
addressed whether the QRRQ-mutated derivatives of Rcf1
could support the assembly of complex IV and its association
with complex III into the III-IV supercomplex, which is altered
in the absence of Rcf1 and Rcf2 (23). In �rcf1;�rcf2 mitochon-
dria, there is a pronounced shift from the III2-IV2 form
(observed in the wild-type control mitochondria) to a predom-
inately III2-IV form and also to free III2 complexes (Fig. 2B),
which has been previously attributed to the limiting levels of
complex IV in the absence of Rcf1/Rcf2 (23). The III2-IV(1–2)

supercomplex organizational state was largely restored in
�rcf1;�rcf2mitochondria harboringwild-typeRcf1His (Fig. 2B).
The rcf1His

Q61A,Q71A or rcf1His
R67A mutants, analyzed in paral-

lel, displayed a similar capacity as the wild-type Rcf1His deriva-
tive to rescue the organization of the III-IV supercomplex in
�rcf1;�rcf2 mitochondria.
These results indicate that an intact QRRQ motif is not

required for the ability of Rcf1 to support the assembly of
complex IV and its ability to co-assemble with complex III.
Although this conclusion is consistent with the observed
steady-state levels of complex IV subunits, which appearednor-
mal in the mitochondria harboring the QRRQ mutant Rcf1
derivatives, we observed a noticeable difference in the behavior
of complex IV from rcf1His

R67A mitochondria when solubilized
with the detergent dodecyl maltoside (DDM) prior to the BN-
PAGE analysis (Fig. 2C). Solubilization of mitochondria with
DDM causes complex IV to become physically separated from
the III-IV supercomplex assembly, and released complex IV
migrates independently as monomers (IV) on the BN-PAGE
(24, 28). In wild-typemitochondria, a small fraction of a slightly
larger form of complex IV, termed IV*, was also detected and
represents the population ofmonomeric complex IV,where the
peripheral subunits Cox12 and Cox13 remain in association
under DDM solubilization conditions (Ref. 24 and data not
shown). The level of the DDM-solubilized complex IV from
wild-type or �rcf1;�rcf2�Rcf1His mitochondria (and also from
rcf1His

Q61A Q71A) was considerably greater than that observed
from the �rcf1;�rcf2 mitochondria, where complex IV levels
(relative to the wild-type control) were reduced by �50%, as
reported previously (23). In contrast, however, the rcf1His

R67A-
containing mitochondria displayed strongly reduced levels of
complex IVmonomers followingDDMsolubilization, with lev-
els that resembled more that of the �rcf1;�rcf2 mitochondria
(Fig. 2C). Furthermore, in addition to the monomeric complex
IV population, the rcf1His

R67A mitochondria contained a novel
complex IV subpopulation, termed IV**, that migrated slower
on the BN-PAGE gel. The sum of the levels of both complex IV
populations (IV � IV**) observed in the rcf1His

R67A mutant
mitochondria following DDM solubilization were significantly
lower than those from the mitochondria harboring either the
Rcf1His or rcf1His

Q61A,Q71A derivatives. The reduced levels of
the complex IV species (IV and IV*) observed in the DDM
extracts of rcf1His

R67A is inconsistent with the apparently nor-
mal steady-state levels of complex IV subunits and the regular
appearance of the digitonin-solubilized III-IV supercomplex in
these mitochondria. Together with the observed presence of
the novel complex IV** species, these results suggest that the
assembly state of complex IV is altered and appearsmoreDDM
detergent-labile in rcf1His

R67A mitochondria compared with
the wild-type control.
The presence of the novel larger IV** species in �rcf1;�rcf2

mitochondria harboring the rcf1His
R67A derivative was unex-

pected, and its composition was further investigated (Fig. 3).
Mitochondrial proteinswere solubilized inDDM, and the com-
plex IV populations were separated by BN-PAGE and subse-
quently serially analyzed by mass spectrometry. In the wild-
type control, the majority of the complex IV subunits detected
were present in the IV and IV* species, whereas the Cox13 pro-

FIGURE 2.Mutation of theQRRQmotif in Rcf1 affects the stability but not
the assembly of complex IV. A, steady-state levels of the OXPHOS subunits
in mitochondria (50�g) isolated from the indicated strains as detailed in Fig.
1C. Tim44wasusedas a loading control.B,mitochondria isolated fromtheWT
and the indicated �rcf1;�rcf2 strains were solubilized in digitonin (1%) and
subjected to BN-PAGE analysis, Western blotting, and immunodecoration
with antibodies against the complex III subunit, cytochrome c1 (� Cytc1). C,
same as in B, except that mitochondria were solubilized with DDM (0.6%)
prior to BN-PAGE, and decorationwas performedwith antibodies against the
complex IV subunit Cox3 (�-Cox3).
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teinwas detected only in the IV* population. (The small subunit
Cox12 was not identified in the datasets.) The absence of
detectable levels of Rcf1 in these complex IV or IV* populations
is notable and suggests that, in the wild type, Rcf1 is not a com-
ponent of the fully assembled complex IV/IV* enzyme. A small
amount of Rcf1 in the wild-type sample was, however, detected
in a higher molecular mass area of the BN-PAGE and co-mi-
grated at a position of the IV** species, a species that was more
evident in rcf1His

R67Amitochondria. This area of the BNgel was
also populated with minor but detectable amounts of complex
IV subunits, suggesting that this may correspond to a Rcf1-
containing late assembly intermediate of complex IV. When
the �rcf1;�rcf2 mitochondria harboring the Rcf1His protein
were analyzed, in addition to both IV and IV* populations, small
but detectable levels of the IV** subpopulation and some co-mi-
grating Rcf1His species were observed. However, the ratio of the
IV** to the IV subpopulation was distinctly increased in
rcf1His

R67A sample relative to the othermitochondrial types and
in agreement with the BN-PAGE analysis shown in Fig. 2C. The
total amount of rcf1His

R67A protein co-migrating with the IV**
species was also considerably greater than that observed with
the wild-type Rcf1His sample (also confirmed by Western blot-
ting analysis, data not shown). Because the relative stoichiomet-
ric abundance of the complex IV subunits in the IV** species
appeared similar to that of the IV species, we conclude that the
novel complex IV** subpopulation is, at least in part, character-
ized by the stable association of the Rcf1 protein. From its
mobility on the BN-PAGE, we estimated the apparent mass of
IV** to be 234 kDa. The estimated mass of the IV** species
(relative to the IVpopulation, 197 kDa)would indicate that IV**
may contain one copy of Rcf1His (19.9 kDa) with another,

unknown protein of similar size or two copies of Rcf1His. We
favor that more than one copy of Rcf1 is present in the IV**
subpopulation, as we have observed that the Rcf1 proteins can
interact with each other and can at least form dimers (data not
shown).
In summary, these findings support the conclusion that, in

wild-type (or Rcf1His) mitochondria, the majority of complex
IV (i.e. the IV and IV* species) is not present in association with
the Rcf1 protein. Furthermore, the data indicate that the
rcf1His

R67A derivative may have a tighter association (possibly a
higher affinity or less dynamic interaction) with complex IV
than its wild-type Rcf1 counterpart and thus results in the accu-
mulation of a larger, novel Rcf1-associated complex IV species,
IV**.

The QRRQ Motif Influences the Association of Rcf1 with
Complex IV and the Cox3 Subunit—The levels of complex IV
associated with the His-tagged Rcf1 derivatives was next inves-
tigated through affinity purification via Ni-NTA chromatog-
raphy following solubilization from mitochondria with
Triton X-100 (Fig. 4A). A significantly higher level of complex
IV subunits co-purified with the rcf1His

R67A derivative com-
pared with the control Rcf1His protein analyzed in parallel (Fig.
4A). Consistentwith theTritonX-100 lysis/purification results,
enhanced association of complex IV subunits with the
rcf1His

R67A derivative relative to the wild-type Rcf1His control
was also observed under digitonin conditions (where the III-IV
association is preserved) (Fig. 4B).
Co-purification of complex IV subunits with the

rcf1His
Q61A,Q71A derivative was not observed under Triton

X-100 solubilization conditions (Fig. 4A) but was observed
(together with complex III subunits) under digitonin solubili-

FIGURE 3. Compositional analysis of the complex IV** subpopulation. One-dimensional BN-PAGE analysis of protein complexes in wild-type �rcf1;�rcf2
mitochondria and those harboring Rcf1His or rcf1His

R67A following solubilization with DDM (0.6%) was performed. The areas of the gel encompassing the
complex IV and IV** species (as shown) were fractionated, and proteins were identified and quantified by mass spectrometry. The amounts of identified
proteins were quantified using intensity-based absolute quantification value as described under “Experimental Procedures.” Heatmaps and graphs show
protein profiles normalized to the maximum abundance of a protein within BN lanes of the wild type and �rcf1;�rcf2mutants.
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zation conditions (Fig. 4B). Thus, mutation of the Gln61/Gln71
residues in the QRRQ motif disturbs the integrity of the Rcf1-
complex IV interaction so that it does not remain stable in the
presence of TritonX-100 but can be preservedwhen themilder
detergent (digitonin) solubilization conditions are applied.
Complex IV substrate cytochrome c was not recovered with
affinity-purified wild-type or QRRQ mutant Rcf1His proteins
under either detergent conditions (data not shown).
Association of the Rcf1 protein with complex IV, at least in

part, involves the mitochondrially encoded subunit 3, Cox3, of
complex IV,which canphysically associatewithRcf1 prior to its
assembly into final complex IV (23). In organello synthesized,
radiolabeled Cox3 co-purified with both wild-type Rcf1His and
the rcf1His

R67A derivatives. Association of radiolabeled Cox3
with the rcf1His

Q61A,Q71A derivative under these Triton X-100
solubilization conditions, however, was not observed (Fig. 4C).
Furthermore, a pulse-chase kinetic analysis indicated that the
association of radiolabeled Cox3 with the rcf1His

R67A derivative
appeared to bemore prolonged than with the wild-type Rcf1His
control, suggesting that mutation of the Arg67 residue to ala-
nine causes enhanced association with Cox3, which may pro-
tect Cox3 from subsequent proteolytic turnover (Fig. 4D).
Taken together, these results indicate that mutation of the

QRRQmotif has the potential to impact the nature of the Rcf1-
complex IV interaction through an altered interaction with the
Cox3 subunit.Mutation of Arg67 to alanine causes an enhanced
complex IV interaction, as evidenced by the elevated levels of

the complex IV** species and the increased association of com-
plex IV subunits and radiolabeled Cox3 with the rcf1His

R67A

derivative.
Complex IV in Mitochondria Harboring the rcf1His

R67A

Derivative Displays Altered Enzymatic Properties—The enzy-
matic properties of complex IV in rcf1His

R67A mitochondria
were explored next. The complex IV enzyme solubilized in
DDM retains its enzymatic activity, as evidenced by “in-gel”
activity assays performed with exogenously added cytochrome
c and diaminobenzidine following BN-PAGE analysis (Fig. 5A,
center panel). The level of complex IV activity was strongly
reduced in the �rcf1;�rcf2 mutant compared with both the
wild-type control and the null mutant harboring the Rcf1His
protein. This reduced complex IV enzyme activity can be
attributed to the reduction in complex IV protein levels in the
�rcf1;�rcf2 mutant (Figs. 2C and 5A). Despite also having
reduced protein content (as judged by parallelWestern blotting
analysis; Fig. 5A, top panel), the levels ofDDM-solubilized com-
plex IV enzyme activity in both the IV and IV** subpopulations
in the rcf1His

R67A sample appeared similar to, or even higher
than, those obtained for the IV population in the �rcf1;
�rcf2�Rcf1His or the rcf1His

Q61A,Q71A mitochondria (Fig. 5A,
center panel). These results suggest that the complex IV/IV**
subpopulations solubilized from rcf1His

R67A exhibit an in-
creased level of enzyme-specific activity.
The O2 consumption capacity of mitochondria harboring

theRcf1derivativesunderdifferentbioenergetic stateswasmea-

FIGURE4.Mutationof theQRRQmotif affects theassociationofRcf1withCox3andcomplex IV.A, affinitypurificationofRcf1His, rcf1His
Q61A,Q71A, rcf1His

R67A

derivatives following solubilizationwithTritonX-100detergentwasperformed, followedbySDS-PAGE,Westernblotting, and immunodecorationas indicated.
Total, 5% of solubilizedmaterial; Bound, 100% of affinity-purifiedmaterial on the Ni-NTA beads. B, the same as A, except solubilizationwas performedwith 1%
digitonin.C, in organello labeling in thepresenceof [35S]methioninewasperformed for 20min in isolatedmitochondriaprior to solubilizationwithTritonX-100.
Affinity purification of theHis-tagged Rcf1 derivativeswas performed as described in A, but, following SDS-PAGE, the gels were subjected to autoradiography.
D, as in C, except, following the pulse of translation (20min), translationwas stopped through addition of puromycin and coldmethionine and further chased
for the time periods indicated prior to solubilization of the mitochondria with Triton X-100 and affinity purification of the Rcf1 derivatives.
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sured. The rates of O2 consumption following addition of the
substrate NADH, i.e. basal or “state 4” respiration, were similar
in all mitochondrial types, i.e. harboring either the Rcf1His,
rcf1His

Q61A,Q71A or rcf1His
R67A proteins. The respiratory con-

trol rate (state 3 respiration [NADH�ADP]/state 4) in QRRQ
mutant mitochondria was also similar to the other mitochon-
dria measured, indicating the coupled state of these mitochon-
dria (Fig. 5C). The maximum oxygen consumption capacity of
complex IV (measured in the presence of ascorbate/TMPD/
CCCP) was also found to be similar in mitochondria harboring
both wild-type Rcf1His and the QRRQ mutant derivatives (Fig.
5D). Therefore, we conclude that both the rcf1His

Q61A,Q71A and

rcf1His
R67A mutant derivatives displayed the capacity to fully

support maximal complex IV activity when expressed in the
�rcf1;�rcf2 strain even when the enzyme is working to its max-
imum capacity.
Finally, the observed elevated in-gel enzyme activity assay

suggests that the complex IV enzyme in the rcf1His
R67A mito-

chondria may display differential enzymatic properties than
when the wild-type Rcf1 control protein is present. In support
of this, we also observed that the complex IV enzyme in
rcf1His

R67A mitochondria displayed an increased sensitivity to
DCCD relative to those harboring the wild-type Rcf1His (Fig.
5E). A similar effect was observed in �rcf1;�rcf2 mitochondria.
DCCDbinds to Cox3 (Glu90 residue in bovine Cox3, equivalent
to Glu98 in yeast) and, in doing so, interferes with the oxygen
uptake pathway of complex IV, which involves associated lip-
ids, phosphatidylglycerol (PG1/PG2), and CLmolecules within
the enzyme (29, 30). We speculate that structural changes in
complex IV in rcf1His

R67A mitochondria may alter the accessi-
bility ofDCCD to its target. Alterations in the lipid composition
of complex IV may underlie this and would be consistent with
the observed instability of complex IV from rcf1His

R67A mito-
chondria to extraction with the detergent DDM.

Rcf1 May Be Involved in Posttranslational Modification of
Complex IV—Analysis of the amino acid sequence region
encompassing the QRRQ motif in an �-helical plot indicated
that the Arg67 residue co-aligned with the Gln71 residue, where
theGln61 residue neighbored the Arg65 residue, suggesting that
theymay formGln/Arg pairs (Fig. 6A).We further explored the
QRRQ motif in the Rcf1 protein by making double mutants,
mutating one or other of the Gln/Arg pairs, i.e. rcf1His

Q61A,R65A

and rcf1His
R67A,Q71A, and then expressed them in the �rcf1;

�rcf2 null mutant. Steady-state analysis of proteins isolated
from the resulting strains indicated that the levels of both
mutant Rcf1 derivatives were strongly reduced, in particular
the rcf1His

Q61A,R65A derivative, compared with the wild-type
Rcf1His control (Fig. 6B). Thus, mutation of either of the Gln/
Arg pairs in this manner strongly impacted the stability and
steady-state levels of the Rcf1 protein. Mutation of residue
Arg65 alone (i.e. rcf1His

R65A) did not compromise the stability of
Rcf1 or its ability to support the assembly of a functional com-
plex IV (supplemental Fig. S1). Similar to the rcf1His

R67A deriv-
ative (albeit to a lesser extent), an increase in the level of com-
plex III-IV subunits in association with the affinity-purified
rcf1His

R65A derivative was observed (supplemental Fig. S1).
Despite the strongly reduced levels of the rcf1His

Q61A,R65A

protein, the complex IV subunit levels in themutantmitochon-
dria were similar to that of the Rcf1His control and significantly
higher than those observed in the �rcf1;�rcf2 null mitochon-
dria (Fig. 6B). The organization and levels of the III-IV super-
complex in the rcf1His

Q61A,R65A mitochondria also resembled
those of the Rcf1His control analyzed in parallel (Fig. 6C, top
panel). Furthermore, the levels ofDDM-solubilized complex IV
in the rcf1His

Q61A,R65A mitochondria were similar to those of
the wild-type Rcf1His control (Fig. 6C, bottom panel).
Although the steady-state levels of the rcf1His

R67A,Q71A deriv-
ative were marginally higher than that of rcf1His

Q61A,R65A pro-
tein, the presence of the rcf1His

R67A,Q71A protein only partially
restored the complex IV subunits to wild-type levels, indicating

FIGURE 5. Complex IV in rcf1His
R67A mitochondria displays altered cata-

lytic properties. A, mitochondria isolated from WT or the �rcf1;�rcf2 strain
harboring the Rcf1His, rcf1His

Q61A,Q71A, rcf1His
R67A derivatives, as indicated,

were solubilized with DDM (0.6%) and subjected to duplicate BN-PAGE anal-
ysis. The complex IV enzyme activity levels were analyzed in one set of sam-
ples by performing an in-gel enzyme assay (center panel), and in a parallel
sample, the complex IV protein levels were determining following Western
blotting and decoration with Cox3 antibody (top panel), as indicated. The
levels of Coomassie-stained complex V (F1F0-ATP synthase) are shown in the
bottompanel as a loading control. B andC, theOCRs of theNADH-driven state
4 and respiratory control ratio (the ratio of state 3 (NADH/ADP) to state 4
(NADH))weremeasured in the indicated isolatedmitochondria (n� 3).D, the
maximal capacity of complex IV was determined by measuring the OCR
driven by ascorbate/TMPD in the presence of CCCP to dissipate the mem-
brane potential (n� 6). E, isolated �rcf1;�rcf2mitochondria and �rcf1;�rcf2
harboring the Rcf1His or rcf1His

R67A derivatives were incubated with DCCD at
the indicated concentrations for 90 min at room temperature prior to mea-
suring the maximal complex IV OCR in the presence of ascorbate/TMPD and
CCCP. The percent of inhibition caused by theDCCD treatment relative to the
control (no DCCD) is indicated.
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that the ability of this Rcf1 derivative to support complex IV
assembly was compromised through mutation of the Arg67/
Gln71 pair (Fig. 6B). Consistently, a partial restoration of the
III2-IV1–2 species was observed in the BN-PAGE analysis of the
digitonin-solubilized rcf1His

R67A,Q71A mitochondria, parallel-
ing the observation that the levels of the complex IV subunits in
these mitochondria were greater than those in the �rcf1;�rcf2
control but not equivalent to those of the wild-type control (or

of the rcf1His
Q61A,R65Amitochondria) (Fig. 6C, top panel). How-

ever, when solubilized with DDM, the levels of free complex IV
from rcf1His

R67A,Q71A mitochondria appeared similar to those
of the �rcf1;�rcf2 null mitochondria and in contrast to those
from the rcf1His

Q61A,R65A mitochondria, where the levels of
complex IV were similar to the wild-type Rcf1His control (Fig.
6C, bottom panel). These results together suggest that complex
IV from the rcf1His

R67A,Q71A mitochondria may exhibit some
detergent instability to DDM extraction in a similar manner as
observed previously in the rcf1His

R67A mitochondria (Fig. 3C).
In contrast to the rcf1His

R67A mitochondria, the presence of a
complex IV** form was not detected in the rcf1His

R67A,Q71A

mitochondrial sample. This may be attributed to the strongly
reduced of levels of rcf1His

R67A,Q71A derivative in these mito-
chondria and, thus, would be limiting to form detectable levels
of the complex IV** species, and/or the introduction of the
additional Q71Amutationmay have compromised the stability
of the Rcf1-complex IV association.
Measurement of the maximal O2 consumption rates of com-

plex IV in the rcf1His
Q61A,R65A mitochondria demonstrated

them to be fully restored to the levels in wild-type Rcf1His con-
trol mitochondria, whereas, in rcf1His

R67A,Q71A mitochondria,
although they were significantly higher than those measured in
the �rcf1;�rcf2 null mitochondria, they were not equivalent to
the rcf1His

Q61A,R65A or wild-type Rcf1His mitochondria (Fig.
6D). The increased level of complex IV activity in both of these
mutants was sufficient to restore aerobic growth, as expression
of both rcf1His

Q61A,R65A and rcf1His
R67A,Q71A derivatives en-

sured complementation of the growth defect phenotype of the
�rcf1;�rcf2 strain (Fig. 6E).
In summary, the Gln61/Arg65 and Arg67/Gln71 residue pairs

within the QRRQ motif of Rcf1 are independently critical for
the stability of the Rcf1 protein. However, despite being
strongly reduced in levels, theGln/Arg pairmutatedRcf1 deriv-
atives could support (fully for the Gln61/Arg65 mutant and par-
tially for the Arg67/Gln71 mutant) the assembly and activity of
complex IV.

The Integrity of the Rcf1 QRRQ Motif Alters the Molecular
Environment of the Rcf1 Protein—As described previously,
wild-type Rcf1His forms a number of adducts with the cross-
linking reagent MBS, the most notable being a 45-kDa adduct
reported previously to represent cross-linking of Rcf1 to the
AAC proteins (23). The rcf1His

Q61A,Q71A derivative maintained
the ability to be cross-linked to AAC, whereas the cross-linking
between rcf1His

R67A and AAC was significantly reduced (Fig.
7A) despite the normal levels of the AAC protein in thesemito-
chondria (Fig. 2C). The MBS cross-linking profile of the
rcf1His

R65A derivative resembled that of the rcf1His
R67A protein

(supplemental Fig. S1). In addition to the loss of the Rcf1-AAC
adduct in rcf1His

R67A mitochondria, we observed the gain of a
novel adduct near 50 kDa. This rcf1His

R67A adduct was close in
size to, but distinct from, a 52-kDa Rcf1 adduct observed in
Rcf1His and rcf1His

Q61A,Q71A mitochondria. As the mass of the
50-kDa Rcf1 adduct was similar to the sum of the His-tagged
Rcf1 (20 kDa) and subunit 2 of complex IV, Cox2 (30 kDa), we
explored whether this represented an Rcf1-Cox2 adduct. Dec-
oration of a parallel experiment with Cox2-specific-antiserum
demonstrated that a MBS-formed adduct of similar size (�50

FIGURE 6.Mutation of the Glu/Arg pairs in theQRRQmotif in Rcf1 affects
the stability of Rcf1, but complex IV assembles. A, an �-helical plot of res-
idues Leu54 through Gln71 of Rcf1 depicting the co-localization of the Gln61/
Arg65 residue pair and the Arg67/Gln71 residue pair on the helix. B, steady-
state levels of the OXPHOS subunits in the mitochondria (50 �g of protein)
isolated from the indicated strains. Tim44 was used as a loading control. C,
mitochondria isolated from theWTand the indicated�rcf1,�rcf2 strainswere
solubilized in digitonin (1%, top panel) or DDM (0.6%, bottom panel) and sub-
jected to BN-PAGE analysis, Western blotting, and immunodecoration with
antibodies against the complex III subunit, cytochrome c1 (�-Cytc1, top panel)
and the complex IV subunit, Cox3 (bottom panel). D, maximal OCR of bioen-
ergetically isolated complex IV was measured in mitochondria isolated from
the �rcf1;�rcf2 strain and the�rcf1;�rcf2 strain harboring the rcf1His

Q61A,R65A

or rcf1His
R67A,Q71A derivatives following addition of ascorbate/TMPD and

CCCP. E, serial 10-fold dilutions of WT, and �rcf1;�rcf2 expressing Rcf1His,
rcf1His

Q61A,R65A, rcf1His
R67A,Q71A derivatives or not, as indicated, were spotted

on YP plates containing glucose (YPAD) or glycerol supplemented with 0.1%
galactose (YPG� 0.1% Gal) and grown at 30 °C.
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kDa) was detected with both Rcf1 and Cox2 antisera in �rcf1;
�rcf2 mitochondria harboring the rcf1His

R67A mutant deriva-
tive (Fig. 7B). In contrast, no Cox2-containing adduct was
detected in �rcf1;�rcf2 mitochondria harboring His-tagged
wild-type Rcf1 or the rcf1His

Q61A,Q71A derivative (data not
shown) and consistent with the Rcf1-antibody decoration. We
therefore conclude that the arrangement of Rcf1 with complex
IV is altered in the rcf1His

R67A mutant so that a close proximity
between Rcf1 and Cox2 is gained and revealed through the
cross-linking approach.
Similar to the rcf1His

R67A mitochondria, loss of Rcf1-AAC
adduct formation was also observed in mitochondria isolated
frommutants displaying defective CL biosynthesis, such as the
CL synthase mutant �crd1 (where AAC levels are normal) or
the Tam41 null mutant �tam41 (Fig. 7C) (albeit with reduced

levels of AAC). Tam41 is a CDP-diacylglycerol synthase
required for CL biosynthesis inmitochondria, and thus, like the
�crd1,�tam41 mitochondria are deficient in CL (31). Interest-
ingly, despite being reduced in levels, a population of Taz1, an
enzyme involved in remodeling of CL, was recovered in associ-
ation with the affinity-purified rcf1His

R67A protein (Fig. 4B).
Taz1 has also been found previously in association with the
CL-containing AAC protein (32). Taken together, these results
indicate that the molecular environment of Rcf1 is altered
through the R67A (and R65A) mutation and in a similar man-
ner as that observed for wild-type Rcf1 in mitochondria defi-
cient in CL.

Discussion

Here we have studied the yeast Hig1 protein Rcf1, a member
of the Hig1 type 2 subgroup, and have probed the functional
importance of the conservedQRRQmotif of Rcf1, an important
distinguishing feature between the type 2 and type 1 subgroups
of the Hig1 protein family. Our findings here indicate that the
QRRQmotif may form Gln/Arg pairs (Gln61/Arg65 and Arg67/
Gln71), which serve to support the stability of the Rcf1 protein
within the mitochondrial membrane. Furthermore, our data
demonstrate that an intact QRRQmotif supports the ability of
Rcf1 to associate with complex IV, in particular with Cox3 and
Cox2 subunits, and facilitate the correct maturation and stable
assembly of the complex IV enzyme. In particular, our results
illustrate the importance of the residueArg67 inmodulating the
interaction of Rcf1 with Cox3/complex IV.
How do Rcf1 and the Hig1 family members support complex

IV assembly/activity and how is this related to their QRRQ
motif? One possibility is that Rcf1 represents a physical com-
ponent (i.e. a stoichiometric subunit) of complex IV and,
through Cox3 (and possibly Cox2), may serve to enhance the
structure and activity of this enzyme in a manner that influ-
ences the association of both Cox12 and the substrate cyto-
chrome c (23). Thus, by binding as an additional subunit to
subpopulations of the enzyme (i.e. in stoichiometrically equiv-
alent amounts as other complex IV subunits), Rcf1may exert an
influence over substrate binding and the enzymatic properties
of complex IV. Indeed, the binding of a Hig1 family member,
HIGD1A, to the complex IV enzyme has been indicated to
enhance the activity of the enzyme (33), and evidence to indi-
cate altered cytochrome c binding properties to the complex IV
enzyme is obtained in mitochondria lacking the Rcf1 protein
(15).
On the other hand, it was suggested previously that Rcf1may

play a role in the proper assembly of complex IV rather than
acting as a stoichiometric component supporting the III-IV
supercomplex arrangement (34). A number of lines of evidence
presented here support this proposal. First, the BN-PAGE/pro-
teomic analysis demonstrates that Rcf1/Rcf1His is not found in
association with the predominant subpopulations of complex
IV, i.e. the IV/IV* species, and is recovered only with the IV**
subpopulation. The IV** species represented a minor popu-
lation of total complex IV in wild-type (or in �rcf1;
�rcf2�Rcf1His) mitochondria, and the level of IV** was signif-
icantly increased through the R67A mutation, which also pro-
moted the Rcf1-Cox3 interaction. Consistently, earlier

FIGURE 7.Mutation of the QRRQ motif or the absence of CL alters the
environment of Rcf1. A, chemical cross-linking usingMBSwas performed
on mitochondria isolated from the �rcf1;�rcf2 strain harboring either the
wild-type Rcf1His, rcf1His

Q61A,Q71A, or rcf1His
R67A mutant derivatives as indi-

cated. Following SDS-PAGE and Western blotting, decoration with His tag
epitope antiserum was performed. The positions of the dominant 45-kDa
(Rcf1-AAC) and 36-kDa (Rcf1-Rcf1) Rcf1-containing adducts are indicated.
The position of a less abundant Rcf1 50-kDa adduct detected in rcf1His

R67A

mitochondria is indicated by two asterisks. Note that a slightly larger (52-
kDa), still uncharacterized Rcf1 adduct is also observed in the Rcf1His or
rcf1His

Q61A,Q71A mitochondria and is indicated by one asterisk. B, cross-
linking was performed and analyzed as described in A. Parallel Western
blots were decorated with either Rcf1 (left panel) or Cox2 (right panel)
antiserum. Only the area encompassing the 50-kDa Rcf1-Cox2 adduct is
shown. C, cross-linking of Rcf1 was performed in mitochondria isolated
from the wild type, �crd1, �tam41, and �aac2,�aac1 strains, as indicated.
Samples were further analyzed as described in A using Rcf1 (top panel) or
AAC-specific (bottom panel) antibodies. Only the areas of the gel encom-
passing both the 45-kDa Rcf1-AAC adduct and the monomeric AAC are
shown.
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BN-PAGEand affinity purification approaches have shown that
themajority of Rcf1 is not together with complex IV, and only a
minor percentage of complex IV is recovered together with
Rcf1 (23). Second, an enhanced specific activity of both com-
plex IV and the novel IV** species was observed through in-gel
complex IV activity analysis in the extracts of the rcf1His

R67A

mitochondria, yet the rcf1His
R67A protein was present in asso-

ciation with only the IV** species. Third, complex IV activity
(and steady-state levels) were fully restored in the �rcf1;�rcf2
mutant harboring the rcf1His

Q61A,R65A protein (and partially in
those containing the rcf1His

R67A,Q71A protein) despite the
strongly reduced levels of these mutated Rcf1 derivatives.
These findings indicate that Rcf1 does not need to be present at
its wild-type levels to fully support the activity of complex IV
and, thus, argue against Rcf1 exerting its influence on complex
IV activity as a stoichiometric equivalent component of the
enzyme.
Taking these findings together, we propose here that Rcf1

functions to support the assembly and activity of complex IV by
dynamic and transient associations with it, possibly during the
assembly process to modify the enzyme composition and,
thereby, its stability and catalytic properties. Thus, when ana-
lyzed, only a small fraction of complex IV is found in association
with Rcf1, and this may reflect a late-stage Rcf1-complex IV
assembly intermediate or a small population of the assembled
complex IV being modified in an Rcf1-dependent fashion.
Moreover, we suggest that this modification of complex IV, i.e.
Rcf1’s “fingerprint” on it, may involve non-protein elements of
complex IV, such as associated lipids. The association of Rcf1
with Cox3-containing assembly intermediates may be impor-
tant to secure the correct maturation (or regulatory modifica-
tion) of this subunit. We speculate that an otherwise transient
interaction of Rcf1 andCox3protein is stalled uponmutation of
the key Arg67 residue, and thus, more of complex IV (IV**)
remains in associationwith the rcf1His

R67A species, and thismay
have interfered with the normal maturation and stability of the
enzyme. A number of results reported here support the specu-
lation that the function of the fingerprint of Rcf1may be related
to the incorporation or remodeling of the CL or other lipid
species associated with the complex IV enzyme. Both CL and
PG lipids are associated with complex IV, in particular with the
Cox3 subunit, and together are proposed to form an integral
part of the O2 translocation channel to the active site of the
enzyme (30). The observed instability of the complex IV
enzyme to DDM detergent extraction and the increased sensi-
tivity toDCCD inhibition in rcf1His

R67Amitochondriamay sug-
gest an altered CL and/or PG arrangement within the complex
IV enzyme.
A possible role for Rcf1 in the lipid maturation of mitochon-

drial enzyme complexes may not be limited to complex IV, as
we also demonstrate that the rcf1His

R67A mutant displays a
decreased ability to cross-link to AAC proteins, a result that
was mirrored with the wild-type Rcf1 protein in the CL-defi-
cientmitochondria�crd1 and�tam41. Rcf1 has been shown to
exist in a close physical relationship with the Cox3, Cox12,
AAC proteins (Ref. 23 and our results here), and also with cyto-

chrome c1 of complex III (22),3 and all are proteins known to be
intimately associated with CL molecules. Lipid profile analysis
of �rcf1;�rcf2 mutant mitochondria has not indicated a major
alteration in the content of CL or PG in the absence of Rcf1/
Rcf2 proteins.4 The recovery of a population of Taz1 with the
rcf1His

R67A mutant may also add further support to a possible
involvement of Rcf1 inCLmaturation or remodelingwithin the
mitochondrial membrane complexes.
Finally, as our data highlight the importance of the QRRQ

motif for the function of Rcf1, aHig1 type 2 familymember, it is
important to note that this motif is noticeably different in the
Hig1 type 1, stress-induced isoforms, where the QRRQmotif is
replaced with (I/V/L)HLIHMRX3Q. It is possible that the dif-
ferences in these motifs between the type 2 and type 1 Hig1
family members reflect the need for differential lipid modifica-
tions of complex IV and other enzymes, designed to fine-tune
the respiratory chain to operate under stress conditions such as
hypoxia.

Experimental Procedures

Yeast Strains and Growth Conditions—All S. cerevisiae
strains used in this study were in the haploidW303–1A genetic
background (W303-1A, mat a leu2, trp1, ura3, his3, ade2) and
include the WT, �rcf1;�rcf2 (RCF1:: HIS3, RCF2::KAN) (23),
�aac2 (AAC2::KAN) (35), �tam41 (MMP37::KAN) (36), and
�crd1 (CRD1::KAN). Yeast strains were maintained and cul-
tured at 30 °C on YP (yeast extract, peptone) medium supple-
mented with 2% glucose and 20 mg/liter adenine hemisulfate
(YPAD) following standard protocols. All cultures were grown
in YP medium containing 0.5% lactate and supplemented with
2% galactose.

Generation of His-tagged Rcf1 QRRQ Mutant Derivatives—
The Yip351-LEU2 vector containing the open reading frame
encoding the Rcf1 protein as a C-terminal His12-tagged protein
downstream of the galactose-inducible GAL10 promoter (23)
was used as a template for PCR-based mutagenesis. Mutations
in the QRRQ motif were generated using a PCR site-directed
mutagenesis strategy. The resulting plasmids were integrated
into the leu2 locus of the �rcf1;�rcf2 strain, LEU� transfor-
mants were selected, and expression of Rcf1His derivatives was
verified.

Affinity Purification of His-tagged Proteins—Isolated mito-
chondria (200 �g of protein) harboring the His-tagged Rcf1
derivatives were solubilized in lysis buffer (100 mM KCl, 20 mM

HEPES-KOH, 10 mM MgCl2, and 0.5 mM PMSF (pH 7.4)) con-
taining either 0.25% Triton X-100, 0.6% DDM, or 1% digitonin
(as indicated) for 30 min on ice. Following a clarifying spin,
Ni-NTA purification of His-tagged proteins was performed as
described previously (37).

BN-PAGE Analysis—BN-PAGE analysis of digitonin-solubi-
lized (1%) or DDM-solubilized (0.6%) mitochondrial extracts
(30 �g of protein) was performed using Invitrogen NuPAGE
gradient (4–12%) gels according to the protocol of the manu-
facturer, followed byWestern blotting and immunodecoration
with subunit-specific antisera as indicated. For in-gel complex

3 J. Garlich and R. A. Stuart, unpublished results.
4 S. Claypool, personal communication.
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IV activity following BN-PAGE (0.6% DDM lysis), the gel was
incubated in activity buffer (50mMphosphate buffer (pH 7.4), 1
mg/ml 3,3� diaminobenzidine, 1 nM catalase, 1 mg/ml cyto-
chrome c, and 75 mg/ml sucrose) for 90 min at room tempera-
ture, fixed for 1 h in 45% methanol and 10% acetic acid, and
destained overnight in 10% methanol and 10% acetic acid.

Quantitative Mass Spectrometry—Protein abundance pro-
files of subunits within complexes were analyzed by a combina-
tion of BN-PAGE and quantitative MS (38). Briefly, the area of
the complex IV species in the BN-PAGE gel (linear 3–18%
acrylamide gradient) was cut into 16 even slices, digested with
trypsin as described previously (38), and further analyzed as
described previously (28).MSdatawere analyzed byMaxQuant
(v1.5.3.30) (39). Proteins were identified using the yeast refer-
ence proteome database UniProtKBwith 6721 entries, released
in March 2016, supplemented with the Rcf1-His derivatives as
described previously (28). Intensity-based absolute quantifica-
tion valueswere recorded andnormalized tomaximumappear-
ance within native lanes comparing wild-type, �rcf1;�rcf2,
�rcf1;�rcf2�Rcf1His, and �rcf1;�rcf2�rcf1His

R67A. To com-
pare these mini abundance profiles, each sample was normal-
ized to the median of protein abundance of the wild type (28).
Normalization to the maximum appearance of each protein
within the analyzed samples was used to display the results in
heatmaps and profile plots. Complexes III2 (473 kDa), ATP syn-
thase (572 kDa), IV (sum of all matured subunits, two copies of
Cox8, without Cox12 andCox13, 197 kDa) were used for native
mass calibration (data not shown).

O2 Consumption Assays—Oxygen consumption rates
(OCRs) were measured with a Clark-type oxygen electrode
(Rank Brothers, digital model 10) using isolated mitochondria
(80 �g of protein) in an isosmotic buffer (10 mM potassium Pi,
20 mMHEPES-KOH, 2 mMMgCl2, 1 mM EDTA, 1 mg/ml BSA,
and 0.6 M mannitol (pH 7.2)). State 4 respiration was measured
following addition of NADH (0.5 mM), and state 3 was then
achieved by subsequent addition of ADP (0.2 mM). The bioen-
ergetically isolated complex IVOCRwas attained by addition of
TMPD/ascorbate (0.4 mM/1.6 mM) to directly reduce cyto-
chrome c, and maximal bioenergetically isolated complex IV
activity was achieved by subsequent addition of a protonophore
(CCCP, 0.2 mM). DCCD inhibition of bioenergetically isolated
complex IV was measured as above following 90-min, 25 °C
incubation of mitochondria in MES-Tris buffer (pH 7.3) con-
taining 10% methanol and 0.3, 0.6, or 1.2 mM DCCD (in meth-
anol) or control (methanol alone).

Miscellaneous—In organello translation with [35S]methio-
nine labeling was performed as described previously (40).
Chemical cross-linkingwithm-maleimidobenzoyl-N-hydroxy-
succinimide ester (MBS) was performed as described previ-
ously (23). Mitochondrial isolation, protein determination, and
SDS-PAGE were performed according to published methods
(21, 41, 42). The Cox1 and Cox3 antibodies used in this study
were commercially obtained (Cox1: Molecular Probes, anti-
yeast Cox1, mouse monoclonal 11D8-B7, lot 6251–1; Cox3:
Invitrogen/Novex anti-Cox3 monoclonal, 459300, lot H3578).
All other antibodies used were rabbit polyclonal against the
respective purified yeast proteins and generated either in the
Stuart laboratory or received as gifts.
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