

Supplementary Figure S1. Effects of prenatal conditions on adult male brain methylation. Nine loci (*Bdnf1* promoter region 1, *Bdnf* promoter region 2, *Crhr1*, *Fkbp5*, *Htr1a*, *Maoa*, *Nos1*, *Nr3c1* promoter, and *Nr3c1* NGFI-A binding site) were analyzed in 6 brain regions (amygdala, frontal cortex, hippocampus, hypothalamus, raphe nuclei, and striatum) of adult male mice. In the bar diagrams (mean ± SEM) for each gene and brain region, blue bars indicate prenatal CTRL and green bars prenatal EE conditions. MS, CTRL, and EE represent postnatal conditions. The six treatment groups are shown in the following order, preCTRL/postMS vs. preEE/postMS, preCTRL/postCTRL vs. preEE/postCTRL, preCTRL/postEE vs. preEE/postEE. Significant differences between preCTRL and preEE animals of a given offspring group are indicated by thin vertical lines

Supplementary Figure S2. Effects of prenatal conditions on adult female brain methylation. Nine loci (*Bdnf1* promoter region 1, *Bdnf* promoter region 2, *Crhr1*, *Fkbp5*, *Htr1a*, *Maoa*, *Nos1*, *Nr3c1* promoter, and *Nr3c1* NGFI-A binding site) were analyzed in 6 brain regions (amygdala, frontal cortex, hippocampus, hypothalamus, raphe nuclei, and striatum) of adult female mice. In the bar diagrams (mean \pm SEM) for each gene and brain region, blue bars indicate prenatal CTRL and green bars prenatal EE conditions. MS, CTRL, and EE represent postnatal conditions. The six treatment groups are shown in the following order, preCTRL/postMS vs. preEE/postMS, preCTRL/postCTRL vs. preEE/postCTRL, preCTRL/postEE vs. preEE/postEE. Significant differences between preCTRL and preEE animals of a given offspring group are indicated by thin vertical lines

Supplementary Table S1. PCR and sequencing primers.

Gene	Primer	Sequence (5'-3') ^a	Amplicon	Chromosomal	Gene region	No. of
			length (bp)	localisation (bp) ^b		CpGs
Bdnf-1	Forward	GGGGTTAGGGTAGTTTTTTGAG	316	Chr. 2:	Promoter:	
	Reverse	^a ACACAAATTCCTATAAACAACTAATAACT		109,674,340-	Bdnf-201, -206, -207,	
	Sequencing 1	TTTTTTTTTTTATTATGATTAAGGGT		109,674,656	-208, and -210	3
	Sequencing 2	AGTGATTTGTTTTAGGGAATA				3
	Sequencing 3	TTTTTTAGGGATTGATGATTAG				3
Bdnf-2	Forward	AGGTAGAGGAGGTATTATATGATAGT	343	Chr. 2:	Promoter: Bdnf-203,	
	Reverse	^a CCCCAAAATTCTAAACTCTTACTATA		109,692,371-	-204, -205, and -211	
	Sequencing 1	AGGAGGTATTATATGATAGTT		109,692,714	Intron 1: -201, -206,	4
	Sequencing 2	GAGGAGAGGATTGTT			-207,-208, and -210	4
Crhr1	Forward	^a AGGAGGTTAGAGAAGAAGGTTGTT	271	Chr. 11:	Promoter:	
	Reverse	ATCCCCTCCTCTTTCTCCCT		104,132,485-	Crhr1-201	
	Sequencing	TACTAAACCCCCTCT		104,132,756		7
Fkbp5	Forward	TGGGGGTTGGATAATAGGT	227	Chr. 17:	Promoter:	
	Reverse	^a AAACATCCTCCCCTTTCCTCA		28,517,552-	<i>Fkbp5</i> -202 and -206	
	Sequencing 1	TTTAAAAAGTTGGGTTTG		28,517,779	-	5
	Sequencing 2	GGGAATTTTTGGAGT				4
Htr1a	Forward	GGGATGGAGATGAGAAAGTTAATG	245	Chr. 13:	Exon 1:	
	Reverse	^a ATACTACCCATAACTACTCTATACCA		105,444,517-	Htrla-201	
	Sequencing	ATGAGAAAGTTAATGAGTTAAG		105,444,762		7
Maoa	Forward	^a TGGAGAAGTTTAGTATTATAGGTTATATGT	124	Chr. X:	Exon 1/Intron 1:	
	Reverse	CAAATTCCCTACCCCTAATCATCT		16,619,850-	<i>Maoa</i> -201	
	Sequencing	ACTACTATTAAAAATCCAAACTAAC		16,619,974		4
Nos1	Forward	AGTTTTGAATTTGGTTAGGTTAGAG	254	Chr. 5:	Promoter: Nos1-201	
	Reverse	^a ATCCAAAACTAAAAACTCACCTACT		117,842,043-	Exon1: -206	
	Sequencing 1	GTTTTGGAAGTTTTTAT		117,842,297	Intron 1: -203 and -205	3
	Sequencing 2	AAGAGGTTGGGAGGG				3

Nr3c1	Forward	GGGAGAAGTTGTAAAGTAGAA	242	Chr. 18:	Promoter: <i>Nr3c1</i> -201,	
pro-	Reverse	^a AAATACAAAAAAACCCAACTC		39,490,688-	-203, -206, and -208	
moter	Sequencing	GAGTTTGAGAGGAGG		39,490,930	Intron 1: -205, -207	7
Nr3c1	Forward	^a GGGGGTTTTGGAGGTAGATTTA	95	Chr. 18:	Promoter:	
NGFI-A	Reverse	ATTTCTCTTCTCCCTAACTCCT		39,490,248-	<i>Nr3c1</i> -203, -205, and	
	Sequencing	CTCCCTAACTCCTTC		39,490,343	-207	4

^a primer biotinylated at the 5'end ^b according to Ensembl release 87 - December 2016

Supplementary Table S2. Two-way ANOVAs for postnatal environmental manipulations on adult brain methylation patterns of prenatal cohort 1 (standard environment).

Brain	Gene	ANOVA		
region		Sex	Postnatal	Sex * Postnatal
	Bdnf-1	-	F(2,61)=4.00; p<0.05	-
	Bdnf-2	-	-	-
	Crhr1	F(1, 70)=16.32; p<0.0001	F(2, 70)=3.17; p<0.05	F(2, 70)=7.19; p<0.01
	Fkbp5	-	-	F(2, 65)=4.73; p<0.05
Amygdala	Htrla	F(1, 71)=7.49; p<0.01	-	-
	Maoa	F(1, 64)=2244; p<0.001	-	F(2, 64)=6.96; p<0.01
	Nosl	F(1, 78)=7.92; <0.01	-	-
	Nr3c1	F(1, 77)=25.43; p<0.0001	-	-
	NGFI-A	-	-	-
	Bdnf-1	-	-	F(2, 48)=4.37; p<0.05
	Bdnf-2	F(1, 48)=16.80; p<0.001	-	-
	Crhr1	-	-	-
F	Fkbp5	-	-	-
F rontal	Htrla	-	-	-
cortex	Maoa	F(1, 57)=1559; p<0.0001	-	-
	Nosl	-	-	-
	Nr3c1	-	-	-
	NGFI-A	F(1, 69)=18.56; p<0.0001	-	-
	Bdnf-1	-	-	-
	Bdnf-2	-	-	-
	Crhrl	F(1, 63)=21.95; p<0.001	-	-
Hinno	Fkbp5	-	-	-
compus	Htrla	-	-	-
campus	Maoa	F(1, 64)=1860; p<0.0001	-	-
	Nosl	-	-	-
	Nr3c1	-	-	-
	NGFI-A	-	-	-
	Bdnf-1	-	-	-
	Bdnf-2	-	-	-
	Crhr1	F(1, 51)=15.12; p<0.001	-	-
Hypo-	Fkbp5	-	-	-
thelemus	Htrla	-	-	-
thatamus	Maoa	F(1, 47)=1431; p<0.0001	-	-
	Nosl	-	-	-
	Nr3c1	-	-	-
	NGFI-A	F(1, 52)=5.12; p<0.05	-	F(2, 52)=4.53; p<0.05
	Bdnf-1	-	-	-
	Bdnf-2	-	-	-
Raphe	Crhrl	-	-	-
nuclei	Fkbp5	-	-	-
	Htrla	-	-	-
	Maoa	F(1, 68)=515.2; p<0.0001	-	-

	Nosl	-	-	-
	Nr3c1	-	-	-
	NGFI-A	-	-	-
	Bdnf-1	-	-	-
	Bdnf-2	-	-	F(1, 53)=5.02; p<0.05
Striatum	Crhr1	-	-	-
	Fkbp5	-	-	-
	Htrla	F(1, 68)=9.23; p<0.01	-	-
	Maoa	F(1, 56)=592.6; p<0.0001	-	-
	Nos1	-	-	-
	Nr3c1	-	-	-
	NGFI-A	-	-	-

Supplementary Table S3. Two-way ANOVAs for postnatal environmental manipulations on adult brain methylation patterns of prenatal cohort 2 (enriched environment).

Brain		ANOVA			
region	Gene	Sex	Postnatal	Sex * Postnatal	
	Bdnf-1	-	-	-	
	Bdnf-2	-	-	-	
	Crhr1	F(1, 62)=29.95; p<0.0001	F(2, 62)=4.61; p<0.05	-	
	Fkbp5	-	-	-	
Amygdala	Htrla	F(1, 70)=14.51; p<0.0001	-	F(2, 70)=7.25; p<0.01	
	Maoa	F(1, 62)=779.3; p<0.0001	-	-	
	Nosl	-	-	-	
	Nr3c1	F(1, 71)=42.53; p<0.0001	-	-	
	NGFI-A	-	-	-	
	Bdnf-1	F(1, 47)=6.17; p<0.05	-	-	
	Bdnf-2	-	-	-	
	Crhr1	-	-	-	
Enontal	Fkbp5	-	-	-	
r rontal	Htrla	-	-	-	
COLLEX	Maoa	F(1, 58)=1739.85; p<0.0001	-	-	
	Nosl	F(1, 63)=24.99; p<0.0001	F(2, 63)=6.96; p<0.01	-	
	Nr3c1	-	-	-	
	NGFI-A	F(1, 70)=18.89; p<0.0001	-	-	
	Bdnf-1	-	-	-	
	Bdnf-2	-	-	-	
	Crhr1	F(1, 54)=11.39; p<0.001	-	-	
Hinno	Fkbp5	F(1, 65)=16.75; p<0.0001	-	-	
compus	Htrla	-	-	-	
campus	Maoa	F(1, 67)=2032.11; p<0.0001	-	-	
	Nosl	-	-	-	
	Nr3c1	-	-	-	
	NGFI-A	-	-	-	
	Bdnf-1	F(1, 60)=17.72; p<0.0001	-	-	
	Bdnf-2	-	-	-	
	Crhrl	F(1, 68)=19.67; p<0.001	-	-	
Hypo-	Fkbp5	-	-	-	
thalamus	Htrla	-	-	-	
thatamus	Maoa	F(1, 51)=2942; p<0.0001	-	-	
	Nosl	-	-	-	
	Nr3c1	-	F(2, 75)=5.04; p<0.01	-	
	NGFI-A	-	-	F(1, 66)=4.35; p<0.05	
	Bdnf-1	F(1, 41)=7.76; p<0.01	-	-	
	Bdnf-2	-	F(2, 49)=6.26; p<0.01	-	
Raphe	Crhr1	-	-	-	
nuclei	Fkbp5	-	-	-	
	Htrla	-	-	-	
	Maoa	F(1, 63)=234.4; p<0.0001	-	-	

	Nosl	F(1, 39)=12.60; p<0.01	-	-
	Nr3c1	-	-	-
	NGFI-A	-	-	-
	Bdnf-1	-	-	-
	Bdnf-2	-	-	-
	Crhr1	-	-	-
	Fkbp5	-	-	-
Striatum	Htrla	F(1, 62)=17.05; p<0.0001	-	-
	Maoa	F(1, 45)=290.0; p<0.0001	-	-
	Nos1	-	-	-
	Nr3c1	-	-	-
	NGFI-A	F(1, 63)=23.30; p<0.0001	F(2, 63)=3.88; p<0.05	-