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Abstract

A newly proposed framework of perfect-fluid relativistic hydrodynamics for particles with spin 1/2 is briefly reviewed.
The hydrodynamic equations follow entirely from the conservation laws for energy, momentum, and angular momen-
tum. The incorporation of the angular-momentum conservation requires that the spin polarization tensor ωμν is intro-
duced. It plays a role of a Lagrange multiplier conjugated to the spin tensor S λ, μν. The space-time evolution of the spin
polarization tensor depends on the specific form chosen for the spin tensor.
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1. Introduction

We report herein on our recent work [1, 2], where a new hydrodynamic framework for particles with
spin 1/2 has been introduced. The main motivation for our studies are first positive measurements of the Λ–
hyperon spin polarization [3, 4, 5]. They have already inspired many theoretical studies analyzing the spin
polarization and vorticity formation in heavy-ion collisions [6, 7, 8, 9, 10, 11]. Since relativistic hydrody-
namics forms now the main tool to model the space-time evolution of matter created in heavy-ion collisions,
it is tempting to include the dynamics of spin polarization into such a framework. This opens a new dimen-
sion in the hydrodynamic studies which undergo a very rapid development in recent years [12, 13].

2. Local equilibrium distribution functions

Our starting point are local equilibrium distribution functions for particles (plus signs) and antiparticles
(minus signs) introduced in [14],

f +rs(x, p) =
1

2m
ūr(p)X+us(p), f −rs(x, p) = − 1

2m
v̄s(p)X−vr(p). (1)
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Here r, s = 1, 2 are spin indices, ur and vs are Dirac bispinors, and X± are the four-by-four matrices in the
spinor space,

X± = exp
[
±ξ(x) − βμ(x)pμ

]
M±, (2)

where

M± = exp
[
±1

2
ωμν(x)Σ̂μν

]
. (3)

Here βμ = uμ/T and ξ = μ/T , with the temperature T , chemical potential μ, and the fluid four-velocity uμ

(uμuμ = 1). The quantity ωμν is the spin polarization tensor, while Σ̂μν is the Dirac spin operator, which
can be expressed in terms of the gamma matrices, Σ̂μν = (i/4)[γμ, γν]. Assuming that ωμνωμν > 0 and
ωμνω̃

μν = 0, where ω̃μν is the dual spin polarization tensor, we find a simple expression for M± [1], 1

M± = cosh(ζ) ± sinh(ζ)
2ζ

ωμνΣ̂
μν, ζ =

1
2

√
1
2
ωμνωμν. (4)

The quantity ζ can be interpreted as the ratio of the spin chemical potentialΩ and the temperature T , namely,
ζ = Ω/T . We note that since M± is an even function of ζ, we can, without loss of generality, choose the
positive root in the last equation above. Then, the direction of the polarization is determined by elements of
the polarization tensor ωμν, for details see [2].

The use of the equilibrium distribution functions (1) leads to the formula for pressure that becomes in
this case a function of T, μ and Ω, i.e., P = P(T, μ,Ω). The other thermodynamic functions are obtained
through the thermodynamic relations:

s =
∂P
∂T

∣∣∣∣∣
μ,Ω
, n =

∂P
∂μ

∣∣∣∣∣
T,Ω
, w =

∂P
∂Ω

∣∣∣∣∣
T,μ
, (5)

where s, n and w are the entropy, charge, and spin densities, respectively.

3. Hydrodynamic background equations

The standard expressions for the charge current, energy-momentum tensor, and the entropy current allow
us to calculate these quantities directly from the equilibrium distributions [1, 17]. The energy-momentum
tensor has a perfect-fluid, symmetric form and should be conserved, ∂μT μν = 0. This equation can be split
into two parts, one which is longitudinal to the flow vector uμ and the other one which is transverse. In this
way we obtain two equations:

∂μ[(ε + P)uμ] = uμ∂μP, (6)
(ε + P)uν∂ν uμ = (gμα − uμuα)∂αP, (7)

where ε is the energy density. Evaluating the derivative on the left-hand side of the first equation we find

T ∂μ(suμ) + μ ∂μ(nuμ) + Ω ∂μ(wuμ) = 0.

The middle term vanishes due to charge conservation, ∂μ(nuμ) = 0. Hence, in order to have entropy con-
served in our system (for the perfect-fluid description we are aiming at), we demand that ∂μ(wuμ) = 0.
Consequently, we self-consistently arrive at the conservation of entropy, ∂μ(suμ) = 0.

Equations (6) and (7), supplemented by the conservation of the spin density w, form a closed system
of six equations for six unknowns: T (x), μ(x), Ω(x) and three components of uμ(x). Since they do not
determine the time evolution of the individual components of the spin polarization tensor they can be dubbed
the equations for hydrodynamic background.

1The case with ωμνωμν < 0 has been recently discussed in [15], see also [16].

W. Florkowski et al. / Nuclear Physics A 982 (2019) 523–526524



0 0

x x

z

Fig. 1. (Color online) Schematic plots illustrating the space-time evolution of a spin-polarized fluid. Left (right) panel shows the initial
(final) system’s configuration. The arrows show directions of the hydrodynamic, vortical-like flow in the reaction plane. The 3D plots
in the upper parts show temperature profiles — the initial profile is elongated along the impact-vector axis, while the final one is rotated
and more symmetric due to the outward expansion. The red color in the lower parts marks the region with a given spin polarization
which is transported along the fluid stream lines, according to Eq. (10).

4. Spin dynamics

Our approach is based on the conservation of the angular momentum in the form ∂λJλ,μν = 0, where
Jλ,μν = Lλ,μν+S λ,μν with Lλ,μν = xμT νλ− xνT μλ being the orbital angular momentum and S λ,μν being the spin
tensor. Since our energy-momentum tensor T μν turns out to be symmetric, the conservation law ∂λJλ,μν = 0
implies a separate conservation of the spin tensor S λ,μν [18],

∂λS λ,μν = 0. (8)

For S λ,μν we use the form discussed in [19]

S λ,μν =
∫

d3 p
2(2π)3Ep

pλ tr
[
(X+−X−)Σ̂μν

]
=

wuλ

4ζ
ωμν. (9)

Using the conservation law for the spin density and introducing the rescaled spin polarization tensor
ω̄μν = ωμν/(2ζ), we find

uλ∂λ ω̄μν =
dω̄μν

dτ
= 0. (10)

Since ω̄μν is antisymmetric, Eq. (10) with the normalization condition

ω̄μν ω̄
μν = 2 (11)

yields five independent equations. One may also check that if the condition ωμνω̃μν = 0 is fulfilled on the
initial hypersurface, it is fulfilled at later times, provided Eq. (10) holds. Hence, Eq. (10) delivers four extra
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equations that are necessary to determine the space-time evolution of a spinning fluid. We note that Eq. (10)
excludes mixing of various components of the spin polarization tensor. A heuristic derivation of Eqs. (8)
and (9) has been recently given within the kinetic-theory approach in [20].

In Ref. [1] we have shown that our framework has a vortex solution that corresponds to global equilib-
rium studied in [14]. In this case, the spin polarization tensor ω is equal to the thermal vorticity� (the latter
being a rotation of the β field),

ωμν = �μν = −1
2

(
∂νβμ − ∂μβμ

)
. (12)

In Fig. 1 we show schematic plots of our preliminary numerical simulations [21] that describe a vortex-
like behaviour of the polarized fluid. In this case, Eq. (12) does not hold in general. One expects that
the relation (12) is a consequence of a dissipative spin-orbit interaction, which is so far missing in our
framework [22]. The spin-orbit interaction should lead also to asymmetric energy-momentum tensor [23].

5. Summary

A new hydrodynamic approach to relativistic perfect-fluid hydrodynamics of particles with spin 1/2 has
been introduced. The system of hydrodynamic equations follows directly from the conservation laws for
electric charge, energy, momentum and angular momentum. An important ingredient of our approach is the
form of the spin tensor defined by Eq. (9) that allows for construction of a consistent system of equations.
We note that the form (9) is different from those used in [14] and [17], which, by the way, differ from each
other. The role played by the definition of the spin tensor for the formulation of hydrodynamics will be the
subject of a separate publication [24].
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