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The development of resistance to chemotherapeutic agents, such as Doxorubicin (DOX) and cytarabine
(AraC), is one of the greatest challenges to the successful treatment of Acute Myeloid Leukemia (AML).
Such acquisition is often underlined by a metabolic reprogramming that can provide a therapeutic oppor-
tunity, as it can lead to the emergence of vulnerabilities and dependencies to be exploited as targets
against the resistant cells. In this regard, genome-scale metabolic models (GSMMs) have emerged as
powerful tools to integrate multiple layers of data to build cancer-specific models and identify putative
metabolic vulnerabilities. Here, we use genome-scale metabolic modelling to reconstruct a GSMM of the
THP1 AML cell line and two derivative cell lines, one with acquired resistance to AraC and the second
with acquired resistance to DOX. We also explore how, adding to the transcriptomic layer, the metabo-
lomic layer enhances the selectivity of the resulting condition specific reconstructions. The resulting
models enabled us to identify and experimentally validate that drug-resistant THP1 cells are sensitive
to the FDA-approved antifolate methotrexate. Moreover, we discovered and validated that the resistant
cell lines could be selectively targeted by inhibiting squalene synthase, providing a new and promising
strategy to directly inhibit cholesterol synthesis in AML drug resistant cells.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although great advancement is being made in optimizing exist-
ing chemotherapeutics and developing new ones, drug resistance
still poses the greatest threat against the successful treatment of
cancer. Indeed, over 90% of cancer patients’ deaths can be attribu-
ted to drug resistance [1]. Specifically, in Acute Myeloid Leukemia
(AML) 35% to 45% of de novo diagnosed patients are bound to
develop resistance to the broadly administered induction therapy
comprising of an anthracycline drug, e.g., Doxorubicin (DOX), in
combination with cytarabine (AraC) [2]. Reportedly, the exact
mechanisms of drug resistance are not only complex and elusive
but also vary among different subtypes and age groups of AML
patients [1,3,4].

Metabolism has not only been established as a hallmark of can-
cer but its involvement in the emergence and instatement of drug
resistance in different types of cancer, including AML, has gained
increasing interest [5–7]. In previous studies, we have demon-
strated that by targeting glutaminase 1 (GLS1), a metabolic enzyme
overexpressed by colon cancer cells in response to palbociclib
treatment (an FDA-approved chemotherapeutic that inhibits
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CDK4/6), it is possible to sensitize cancer cells to CDK4/6 inhibi-
tion, thus improving the therapeutic efficacy [8]. Thus, the meta-
bolic adaptations responsible for the therapeutic refractoriness of
cancer cells represent, at the same time, vulnerabilities that can
be exploited as therapeutic targets to successfully prevent resis-
tance to targeted antineoplastic treatments.

In the last decade, genome-scale metabolic models (GSMMs)
have emerged as powerful tools to identify targets against the
metabolic reprogramming underlying cancer [9]. A GSMM is a
mathematical representation of the entire known network of
metabolic reactions of an organism and its functional association
with the genome [10]. Human GSMMs, like Recon 2, serve as plat-
forms where multiple layers of data can be integrated to recon-
struct cancer-specific GSMMs, which provide a genome-scale
representation of the metabolic network supporting cancer cells.
Such models allow integrating transcriptomics to identify meta-
bolic vulnerabilities underlying cancer metabolic reprogramming
that can be putative drug targets [11,12]. GSMMs can also integrate
metabolomics alongside transcriptomics to be specific enough to
identify metabolic vulnerabilities selective for a given subpopula-
tion of cancer cells. Case in point, a GSMM analysis of two isogenic
prostate cancer cell lines identified that the cancer cell lines with
cancer stem cell like phenotype were vulnerable to the accumula-
tion of long-chain fatty acids with antiproliferative effects and
could be selectively killed by blocking fatty acid oxidation [13].
Likewise, in a same patient-derived cell line panel, GSMMs have
also enabled the identification that the combined inhibition of
cystine uptake and folate metabolism is highly selective against
metastatic cells [14].

Here, we reconstructed cell-line specific GSMMs of the THP-1
AML cell line and two derivative cell lines with acquired resistance
to AraC and DOX, respectively. The THP-1 cell line was selected for
this study since as it is broadly used as a model for AML in drug
screenings [15]. Moreover, the THP-1 cell model is part of the
Genomic of Drug Resistance in Cancer Project [16], in the Cancer
Cell Line Encyclopaedia [17] and in the Cancer Therapeutics
Response Portal [18]. We explore how adding the metabolomic
layer to the transcriptomic layer enhances the specificity of the
resulting condition-specific models. With this layer, we identify
and validate folate and cholesterol metabolism as metabolic vul-
nerabilities that can be used to target the resistant cell lines.
2. Materials and methods

2.1. Chemicals and reagents

Methotrexate, cytarabine and doxorubicin were obtained from
Sigma-Aldrich (St. Louis, MO). RPMI-1640 media was obtained
from Biowest (Labclinics). Antibiotic (10,000 U/ml penicillin,
10 mg/ml streptomycin), and PBS were obtained from Biological
Industries (Kibbutz Beit Haemet, Israel), and fetal bovine serum
from Invitrogen (Carlsbad, CA, USA).
2.2. Cell culture

The AML cell line THP-1 was obtained from DSMZ (Braun-
schweig, Germany). Cytarabine (AraC) and doxorubicin (DOX)-
resistant sublines were established by continuous exposure to
stepwise increasing drug concentrations as previously described
[19] and derived from the Resistant Cancer Cell Line (RCCL) collec-
tion (www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html) [20].
There were no clonal isolation processes involved, thus each sub-
line is expected to be a mixture of clones able to grow optimally
under the drug exposure. To ensure AraC and DOX resistance dur-
ing the entirety of the study, IC50 concentrations against AraC and
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DOX were determined in the resistant and paired controls each 2–
3 weeks. All the cell lines were cultured in RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS), 4 mM glutamine
and 1% penicillin and streptomycin at 37 �C in a humidified incu-
bator with 5% CO2. Particularly, AraC and DOX resistant cells were
maintained with 8 mM of AraC or 20 pM of DOX, respectively.
2.3. Cell characterization and cell viability assay

Cell size was determined using a Scepter TM Handheld Auto-
mated Cell Counter (Merck Millipore, Billerica, MA, USA) at differ-
ent time periods. In addition, protein content differences between
the THP-1 cell lines (parental, AraC-resistant and DOX-resistant)
were further analyzed by i) collecting in Eppendorf tubes different
number of cells (from 250,000 cells/ml to 2x106 cells/ml), ii) count-
ing cell number in each Eppendorf, and iii) lysing cells and measur-
ing the total protein content in all the conditions by Bicinchoninic
acid (BCA) assay (Thermo Fisher Scientific, Waltham, MA USA).

Cell viability was measured using Cell Titer-Glo� Luminescent
Cell Viability Assay. For the cell viability testing after drug incuba-
tion, 16,000 cells/well were seeded in 96-well plates using 100 ml
suspension cell volume. Fresh media (100 ml) containing the
desired concentration of drug, the combination of drugs under
study, or vehicle was added, and cells were incubated 72 h. For Cell
Titer-Glo� Luminescent Cell Viability Assay, 96-well opaque-
walled plates were used and measurements were made according
to manufacturer’s instructions. Briefly, plates were removed from
the incubator, allowed to equilibrate at room temperature
30 min and 100 ml of Cell Titer-Glo reagent was added directly to
the wells. Content was mixed for 2 min on an orbital shaker and
plater were allowed to incubate at room temperature for 10 min
to stabilize the luminescent signal. Luminescence was determined
using a Mithras LB 940 reader (Berthold Technologies, DLReady,
Germany), which allows the integration of the signals detected in
the short-wavelength filter at 485 nm and the long-wavelength fil-
ter at 530 nm. Cell viability was assessed and represented as a per-
centage of viability relative to untreated control cells. IC50 values
were calculated using GraphPad Prism 6 software (La Jolla, CA,
USA).
2.4. Measurement of extracellular metabolites

Glucose, lactate, glutamate and glutamine concentrations of
THP-1 parental and AraC and DOX resistant cells were determined
by spectrophotometry (COBAS Mira Plus, Horiba ABX) from cell
culture media by monitoring the production of NAD(P)H in specific
reactions for each metabolite at 340 nm wavelength. Glucose con-
centration was measured using hexokinase (HK) and glucose-6-
phosphate dehydrogenase (G6PD) coupled enzymatic reactions
(ABX Pentra Glucose HK CP, HORIBA ABX, Montpellier, France).
Lactate concentration was determined by lactate dehydrogenase
(LDH) reaction at 37 �C by mixing the media samples with
1.55 mg/ml NAD+ and 87.7U/ml LDH (Roche) in 0.2 M hydrazine
12 mM EDTA buffer (pH 9). Glutamate concentration was assessed
by its conversion to a-ketoglutarate through glutamate dehydro-
genase (GLDH) reaction in the presence of ADP. This reaction was
performed at 37 �C by adding media sample to a cuvette containing
2.41 mM ADP, 3.9 mM NAD+ and 39U/ml of GLDH in 0.5 M
glycine/0.6 M hydrazine buffer, pH 9. Glutamine was determined
by its conversion first to glutamate through glutaminase (GLS)
reaction and subsequently quantification of glutamate concentra-
tion as described above. GLS reaction was performed by adding
media sample to a cuvette containing a mixture consisting of
90 mU/ml GLS in 111 mM acetate buffer, pH 5. The reaction was
carried out for 30 min at 37 �C in agitation.
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To measure amino acids and biogenic amines we used the Bio-
crates AbsoluteIDQ p180 kit (UM-P180). In detail, internal stan-
dards were applied to the filter inserts of the 96-well kit plate.
Standards, quality controls and media samples (10 ll of each)
and pellet samples (50 ll each) were added onto the filter inserts
and dried for 30 min under a nitrogen stream. Amino acids and bio-
genic amines were derivatized for 20 min with an excess of 5%
phenylisothiocyanate in ethanol/water/pyridine (ratio 1/1/1,
v/v/v), and subsequently dried for 60 min under a nitrogen stream.
Metabolites and internal standards were then extracted with
300 ml methanol containing 5 mM ammonium acetate by shaking
for 30 min, and eluted by centrifugation for 2 min at room temper-
ature and 500 � g. One-half of the eluate was diluted with water
(50/50, v/v) was run using tandem mass spectrometry with an
MS/MS Sciex Triple Quad 6500 (AB Sciex) coupled to liquid chro-
matograph UHPLC 1290 Infinity (Agilent).
2.4.1. Normalizing rates of uptake and secretion per cell
Consumption and production rates of glucose, lactate, glu-

tamine and glutamate, as well as essential amino acids in the
media, were calculated as follows:

l ¼
ln Nf

N0

� �

tf
ð1Þ
kp ¼ DM

DNÂ � p
� l ð2Þ

where l represents the growth rate, N0 and Nf the initial and final
number of cells respectively given in [millions of cells] for a time
tf given in [h], DΜ = Mf-M0 represents the increase or decrease in
concentration for a metabolite for the time tf, an initial concentra-
tion M0, a final concentration Mf and it is given in [lmol]. Flux rates
were normalized by total protein per cell p, given in [mg protein/
million cells] to account for the difference in the size of the cells.
Finally, the normalized consumption or production rate of a
metabolite kp is calculated in [lmol/ (mg protein∙h)].
2.5. Transcriptomic analysis

2.5.1. RNA extraction
Cell pellets of THP-1 parental and resistant cell lines were col-

lected and frozen. Total RNA was extracted using RNeasy Mini
Kit (Qiagen, Hilden, Germany). RNA integrity was further tested
using lab-on-a-chip technology on the BioAnalyzer 2100.
2.5.2. RNA-Seq library preparation, sequencing and generation of
FastQ files

High-quality RNA-seq (transcriptome) was performed in the
CNIC genomic unit using the Illumina HiSeq 2500 sequencer.
There, 200 ng of total RNA were used to generate barcoded RNA-
seq libraries using the NEBNext Ultra RNA Library preparation kit
(New England Biolabs). Briefly, poly A + RNA was purified using
poly-T oligo- attached magnetic beads followed by fragmentation
and then first and second cDNA strand synthesis. Next, cDNA ends
were repaired and adenylated. The NEBNext adaptor was then
ligated, followed by uracil excision from the adaptor and PCR
amplification. Finally, the size of the libraries was checked using
the Agilent 2100 Bioanalyzer DNA 1000 chip and their concentra-
tion was determined using the Qubit� fluorometer (Life Technolo-
gies. Libraries were sequenced on a HiSeq2500 (Illumina) to
generate 60 bases single reads. Finally, FastQ files for each sample
were obtained using CASAVA v1.8 software (Illumina).
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2.6. Bioinformatics analysis

Quality Control (QC) of the RNA-seq data was performed using
FastQC, a computational Quality control tool for high throughput
sequence data in Java developed by Simon Andrews and the Babra-
ham Bioinformatics group (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). The alignment of the reads was performed
using STAR version 2.5.2a open-source software [21] and the
FASTA sequences were generated using the Homo sapiens high cov-
erage GRCh37.75.dna.primary_assembly. Gene counts were ana-
lyzed with the DESeq2 package and expressed as fragments per
kilobase per million mapped reads (FPKM) [22].
2.7. Modelling

2.7.1. Building condition specific GSMMs
Genome Scale Metabolic Model (GSMM) reconstructions were

built for the THP-1 Acute Myeloid Leukaemia (AML) cell-lines
under different treatments. All computational analyses for the
model reconstructions were performed in Python programming
language, using the COBRApy-0.17.1 [23]. The CPLEX 12.6.2 solver
was used for the computational simulations.

Recon 2, comprising 5063 metabolites, 7440 reactions and 1734
associated genes, was used as a base model for the reconstructions
[24]. Recon 2 includes a biomass reaction that represents the meta-
bolic demands of energy, reductive power and building blocks for
growth and proliferation and can be used to simulate proliferation
[25].

Transcriptomics and measured rates of metabolite uptake and
secretions were integrated to the reconstructions using GIM3E
[14]. GIM3E uses flux minimization weighted by transcriptomics
Eq. (3) to identify the flux distribution most consistent with tran-
scriptomics and metabolomics measures Eq. (4):

wi ¼ max geth � gei;0
� � ð3Þ
GIM3Eopt ¼ min
X
i

wi � v i ð4Þ

Subject to

Sirrev :v 0 ; lb 6 v 6 ub

where wi is the minimization weight for reaction i. gei is the gene
expression value (FPKM) mapped to reaction i using the gene-
protein reaction rules of GPR. geth is the gene expression value
below which reactions will be penalized. This threshold was set
to the 80th percentile for gene expression values of metabolic
genes. GIM3Eopt is the optimal value of the GIM3E objective. vi is
the flux through reaction i. Sirrev is the stoichiometric matrix of
the metabolic network. Prior to applying GIM3E, the network was
converted to irreversible by splitting each reversible reaction into
a forward and reverse reaction. lb and ub are the lower and upper
bound for each reaction. The flux through biomass reaction was also
constrained to a lb of 90% of Biomassopt. To integrate the measured
consumption or production rate of a metabolite, lb and ub were
set to the 95% confidence interval for each measure.

Next, as implemented by Schmidt et al. [26], the GIM3E solution
space was identified by maximizing and minimizing each flux
within the space defined by 99% optimality of the GIM3E solution
(GIM3Eopt). The obtained flux intervals were added as lower and
upper bounds to Recon2, leading to condition specific GSMMs for
each cell line.

Then, the OptGpSampler algorithm [27] was applied to obtain
20,000 flux distributions samples in each condition-specific
GSMMs. The average of the sampled flux values in each GSMMs
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was selected as the reference (wild type) flux distribution for each
condition.

2.7.2. Identifying putative targets through gene knockouts (KOs)
To identify putative drug targets, the effect of individual gene

knockouts (KOs) on growth (i.e., flux through biomass reaction)
was simulated in each condition-specific GSMMs [9]. This simula-
tion was performed with the Minimization of metabolic adjust-
ment (MOMA) algorithm [28], which identifies the flux
distribution that minimizes the distance between the reference
flux distribution for each cell line and the flux distribution after
inactivating the reactions associated to the gene KO in each condi-
tion specific GSMMs. A gene was considered as essential for
growth, and thus a putative target, if it reduced the flux through
biomass reaction to less than 20% of the wild type.

2.7.3. Simulating the effect of increasing dosage of Methotrexate
Methotrexate is an anti-folate that inhibits Dihydrofolate

Reductase (DHFR). To simulate the effect of increasing dosage of
Methotrexate on each cell line, the reactions mapped to the DHFR
gene were progressively inhibited (i.e. the upper bound was low-
ered) relative to the reference flux distribution and the effect of
the inhibition on biomass production was evaluated with MOMA.
For each condition, inhibitions from 90% to 100% relative to the ref-
erence flux distribution were evaluated.

2.8. Venn diagrams

Venn diagrams were generated using the BioVenn version 1.1.1
R package [29], providing the Entrez gene IDs.

3. Results

3.1. Genome scale metabolic reconstructions integrating
transcriptomics

We first used the GIM3E algorithm [26] to integrate transcrip-
tomics into the human GSMM Recon2 [24] to build specific models
for each condition. The resulting metabolic models for the THP-1
parental untreated, AraC- and DOX-resistant cells incorporating
only transcript expression levels were used to perform high
throughput simulations of the effects of gene KOs on the capacity
to grow and proliferate. These resulted in the identification of 30
putative metabolic vulnerabilities for the THP-1 parental untreated
cells and 31 for the AraC-resistant cells, one of which was
condition-specific and the remaining 30 were common between
the AraC-resistant and the parental untreated models. Finally, 26
essential genes were identified for the DOX-resistant cells, all of
which were common targets with the other cell models (Fig 1A).

3.2. Genome-scale metabolic reconstructions integrating
transcriptomics and metabolomics

Next, we enhanced the existing THP-1 cell model reconstruc-
tions, built using transcriptomic data, with the integration of meta-
bolomics. Specifically, we integrated the consumption rates of the
main sources of carbon, i.e., glucose and glutamine, the production
rates of their respective products, lactate and glutamate, and the
consumption rates of other amino acids as constraints to the
models.

The single gene KO simulations performed using these Tran-
scriptomics & Metabolomics models resulted in the identification
of 30 putative metabolic vulnerabilities for the THP-1 parental
untreated cells, 43 for the AraC-resistant cells and 40 for the
DOX-resistant cells (Table 1). No specific metabolic vulnerabilities
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were found for the THP-1 DOX-resistant cell model (Fig. 1B). One
condition-specific essential gene was identified for the parental
untreated cells and three metabolic vulnerabilities were found to
be common between the THP-1 parental untreated and the AraC-
resistant cells.

In the case of the parental untreated cells, integrating the addi-
tional layer of metabolomic data onto the GSMMs that were recon-
structed based on the transcriptomics, did not provide any new
potential metabolic vulnerabilities. However, further constraining
the drug-resistant cell models using targeted metabolomics
increased the number of essential genes by 12 for the AraC-
resistant and by 14 for the DOX-resistant THP-1 cells (Fig. 2).

Remarkably, the metabolic vulnerabilities shared across all
three cell models were also conserved between the reconstructions
of different integration levels. Specifically, our analysis revealed
that 26 essential genes were shared across the THP-1 parental
untreated and the drug-resistant cells and that these genes are
involved in glycolysis, the pentose phosphate pathway, folate
metabolism, sphingolipid and glycerophospholipid metabolism,
nucleotide metabolism and aspartate and asparagine metabolism
(Table 1).

3.3. Targeting the folate cycle shows promise against parental and
drug resistant THP-1 cells

Enzymes involved in Folate metabolism were identified as com-
mon metabolic vulnerabilities of the parental untreated THP-1
cells and of both AraC- and DOX-resistant cells, namely thymidy-
late synthetase (TYMS) and dihydrofolate reductase (DHFR). Both
enzymes have a crucial role in DNA biosynthesis [30]. TYMS cat-
alyzes the methylation of 20-deoxyuridine-50-monophosphate
(dUMP) and 5,10-methylenetetrahydrofolate (CH2THF) to 20-deoxy
thymidine-50-monophosphate (dTMP, thymidylate) and 7,8-
dihydrofolate (7,8-DHF) [31]. Then, DHFR catalyses the first of
the two reactions needed to transform the reduced 7,8-DHF back
to CH2THF [31]. Methotrexate is a DHFR inhibitor that has been
approved by the U.S. Food and Drug Administration (FDA) against
a variety of pathologies [32,33]. In our study, we determined that
Methotrexate could completely inhibit growth of the parental
and resistant cell models at concentrations well under 0.1 lmol.
This suggests that Methotrexate could be used to target AraC and
DOX resistant populations. Interestingly, the effects of DHFR inhi-
bition were stronger on the THP-1. parental untreated and the
AraC-resistant, compared to the DOX-resistant cells (Fig. 3A). This
result is supported by the transcriptomic analysis which showed a
decrease in DHFR transcript level of 40% in THP-1 DOX-resistant
cells when compared to the parental. This could indicate that
DOX-resistant cells have a lower dependency on folate cycle for
survival than the other cell models. We found that our GSMMs
could reproduce this behavior through partial inhibition of DHFR,
where it was shown that DOX-resistant cells required a higher
degree of inhibition of DHFR to impair cell proliferation (Fig. 3B).
Additionally, it has been reported that the inhibition of over 95%
DHFR activity is necessary to achieve the therapeutic effect of
Methotrexate [34], which matches the growth inhibitory ranges
that we identified in silico (Figs. 1 and 3).

3.4. Resistant cells are selectively vulnerable to inhibition of cholesterol
biosynthesis

Solely upon the integration of targeted metabolomic data, the in
silico single gene KO screening highlighted several enzymes that
catalyze key reactions in the cholesterol biosynthesis pathway as
essential for the viability of the drug-resistant THP-1 cells. Namely,
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), mevalonate
kinase (MVK), phosphomevalonate kinase (PMVK), mevalonate



Fig. 1. Venn diagram showing the number of condition specific and common essential genes that were identified for the THP-1 parental, AraC- and DOX-resistant cell models
only integrating transcriptomic data [A] or integrating both transcriptomics and metabolomics [B].

Table 1
The gene essentiality analysis performed in silico resulted in the identification of potential metabolic vulnerabilities for the AML THP-1 parental untreated, AraC-resistant and
DOX-resistant cell models. The table presents the potential gene targets grouped according to their metabolic pathway. Genes were considered essential for growth, if their KO
reduced the flux through biomass reaction to less than 20% of the wild type. The asterisk (*) denotes the essential genes that were identified only upon the integration of the
targeted metabolomics dataset.

Pathway Targets Parental AraC DOX

Pentose phosphate pathway G6PD, PGD, PGLS Essential Essential Non-essential
RPIA Essential Essential Essential

Cholesterol metabolism CYP51A1, DHCR7, EBP, SQLS, LSS, MSMO1, NSDHL,
SQLE, TM7SF2, HSD17B4, HMGCR, MVD, MVK, PMVK

Non-essential Essential* Essential*

LIPA Essential Essential Essential
Glycolysis GPI Essential Essential Essential
Folate metabolism ATIC, DHFR, GART, TYMS Essential Essential Essential
Sphingolipid metabolism KDSR, SGMS1, SPTLC1, SPTLC2, SPTLC3 Essential Essential Essential
Nucleotide metabolism ADSL, CAD, CMPK1, DHODH, PAICS, PFAS,

PPAT, TXNRD1, UMPS
Essential Essential Essential

PNP Essential Non-essential Non-essential
Glycerophospholipid metabolism CRLS1, LCAT, PGS1, PTPMT1 Essential Essential Essential
Alanine, aspartate and glutamate metabolism ASNS Essential Essential Essential

Fig. 2. The integration of targeted metabolomics resulted in the identification of
additional and condition-specific putative metabolic vulnerabilities in the case of
the drug-resistant THP-1 AML cells models, as opposed to genome-scale metabolic
reconstructions built using only transcriptomic data.
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diphosphate decarboxylase (MVD), squalene synthase (SQLS),
squalene epoxidase (SQLE) and lanosterol synthase (LSS) emerged
as putative targets against the THP-1 Arac- and DOX-resistant cell
models. Previous studies have already established that only the de
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novo biosynthesis of cholesterol branch of the mevalonate path-
way has serious implications in AML and not the branch related
with protein isoprenylation [35]. Therefore, we decided to evaluate
the effects of direct cholesterol biosynthesis inhibition by using
YM-53601, a SQLS specific inhibitor [36]. As predicted by our anal-
ysis, the proliferation of THP-1 AraC- and DOX-resistant cells was
significantly more compromised compared to the THP-1 parental
untreated cells (Fig. 3C). Thus, suggesting that targeting squalene
synthase and directly inhibiting cholesterol biosynthesis could be
a promising therapeutic strategy against chemoresistant AML
populations.
4. Discussion

Most commonly, AML disease diagnosis and subsequent thera-
peutic planning rely on the identification of specific genomic traits
[37] and despite the great efforts put towards designing more
effective therapeutic strategies for AML, the fact still remains that
drug resistance is the leading cause for treatment failure in this
type of cancer. Genomics alone often fails to capture and compre-
hensively interpret the phenotypic variability that emerges from
the complex interactions of the different layers of regulatory
events in the cells. The integration of omics data under the frame-



Fig. 3. [A] Effect of anti-folate analogue Methotrexate on AML THP-1 parental
untreated, AraC- and DOX-resistant cells. Cell viability was assessed after 72 h
incubation with Methotrexate (nM). Values represent mean ± SD of n = 3. [B]
Simulated growth at increasing inhibitions of DHFR, the primary target of
Methotrexate. Growth is expressed as the flux through the biomass reaction
relative to the wild type. Inhibition of DHFR is relative to the flux through reactions
mapped to the DHFR genes in the wild type. [C] Effect of YM-53601 squalene
synthase inhibitor on AML THP-1 parental untreated, AraC- and DOX-resistant cells.
Cell viability was assessed after 72 h incubation with YM-53601 (lM). Values
represent mean ± SD of n = 3.
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work of GSMMs provides the tools to incorporate a much broader
wealth of biological information in the modelling process of differ-
ent pathologies in a condition-specific manner and therefore reveal
not only putative therapeutic drug targets, but also drug suitability
or potential side effects [38,39]. In most mammalian cell models, it
has been shown that most transcript levels are correlated to the
respective protein abundance [40]. However, in cancer where epi-
genetic events, such as methylation, contribute to the pathogenesis
and the distinct disease subgroup phenotype, not all metabolic flux
rates may positively correlate with transcriptomics. Case in point,
in previous studies, evidence has been provided, using a breast
cancer cell model, that only 50% of metabolic reactions might be
regulated directly by transcriptomics [41]. Such cases can be ade-
quately modelled through the integration of other layers such as
the metabolome layer into GSMMs.

However, GSMM modelling still has some limitations and fur-
ther development and improvements are needed. For instance,
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GSMMs are mainly unable to integrate information regarding
enzyme kinetics, allosteric regulation and signal transduction
events that might modulate enzyme activity. Data collection is also
a limitation to integrate the metabolome layer in genome-scale
metabolic modelling in the clinical setting as uptake and secretion
rates of metabolites cannot be easily measured in vivo. They can,
however, be measured ex vivo using patient-derived primary cell
lines.

In this regard, our aim in this study was to evaluate the signif-
icance of including the metabolome layer in the reconstruction
process of GSMMs. We selected THP-1 parental and AraC and
DOX-resistant cells as a case study and we built condition-
specific GSMMs to identify metabolic targets against AML cells
resistant to the two commonly used chemotherapeutic drugs.
Our results showed that adding metabolome constraints, addition-
ally to the transcriptome, leads to the reconstruction of more
specific metabolic models of THP-1 cells under AraC and DOX resis-
tance and enhances the identification of selective targets against
the different cell models.

Our study highlighted several metabolic vulnerabilities shared
by the parental and resistant cells that have gained scientific inter-
est in AML and are being tested as potential drug targets in clinical
trials. For instance, we identified some members of the de novo
pyrimidine biosynthesis pathway as putative targets for all cell line
models (i.e., THP-1 parental untreated, AraC- and DOX-resistant),
including dihydroorotate dehydrogenase (DHODH). There are
reports in the literature about the use of different DOHDH inhibi-
tors in AML with very promising results in several clinical and pre-
clinical studies [42–45]. In the latest of them, Cao et al., 2019,
presented a novel inhibitory compound that displayed increased
efficacy and low cytotoxicity in preclinical AML trials [46].

Our analysis also predicted that inhibition of DHFR with the
anti-folate Methotrexate could target both resistant and parental
cell lines. Folate metabolism is often over-activated in cancer cells
and plays a key role in supporting de novo nucleotide synthesis,
epigenetic regulation, and energy and redox balance, thus making
it a prominent therapeutic target against cancer. Methotrexate is
approved for clinical use against several autoimmune diseases
and cancer types, including Acute Lymphoblastic Leukemia (ALL)
where it is administered alone or in combination therapies
[47,48]. Studies have shown that in vitro AML cell lines respond
to Methotrexate and that in vivo acute monocytic leukemia seems
to be particularly sensitive [48,49]. However, its clinical potential
against AML resistant cells has not been explored yet. In fact,
Methotrexate in AML has only been studied in a clinical setting
against childhood acute monocytic leukemia and has only been
proposed in combination therapy with Asparaginase [50]. Remark-
ably, our simulation showed that it would be effective against both
parental and resistant cells and this was confirmed in vitro with
both parental and resistant cell lines having high sensitivity to
Methotrexate. In addition, we determined that Methotrexate does
not exhibit cross-resistance with AraC in THP-1 cells and only
moderate cross-resistance with DOX. Worth noting, even in DOX-
resistant cells, the measured IC50s for Methotrexate were signifi-
cantly under the range of concentrations (>0.1–10 lM) that cause
methotrexate-associated toxicity [51]. Thus, the use of Methotrex-
ate could be explored in a clinical setting to improve the therapeu-
tic outcome of AraC- or DOX-resistant patients.

Additionally, taking full advantage of the metabolomic layer, we
identified cholesterol metabolism as a selective target against
AraC- and DOX-resistant THP-1 cells. Indeed, the experimental val-
idation of targeting the de novo cholesterol biosynthesis pathway
as putative targets using YM-5360, which inhibits squalene syn-
thase, provided very promising results against the resistant cells.
Remarkably, the reconstructed GSMMs were able to predict the
enhanced sensitivity of resistant THP-1 to YM-53601 compared
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to the parental cells. Indeed, many of the targets predicted to be
selective against the resistant cell lines were associated with
cholesterol metabolism, confirming that this pathway plays a key
role in the metabolic reprogramming underlying the acquisition
of chemoresistance in our cell model. In this regard, it has been
demonstrated that exposing AML cell lines to radiotherapy and
chemotherapy increases cholesterol levels and blocking cholesterol
synthesis increases the susceptibility of the cell lines to therapy
[35]. Even more, statins and specific inhibitors of the mevalonate
pathway have been evaluated in combination therapy with
chemotherapeutics, including AraC [52,53]. The response rate to
this combinatorial approach has been estimated at around 75%
for relapse patients [54]. Interestingly, to our knowledge, our work
is the first instance where squalene synthase inhibitors have been
used against AML or chemoresistance, paving the way for new
therapeutic combinations against AML. Notably, squalene synthase
and cholesterol metabolism only emerged as a target when meta-
bolomics data were integrated. Therefore, our results suggest that
transcriptomic data alone can fail to capture the shift in metabolic
requirements and dependencies that accompanied the acquisition
of drug resistance in the THP-1 cells.

Our results provide a proof of concept that when condition-
specific GSMMs are constructed, adding the metabolomic enhances
the specificity of the condition-specific GSMM. Indeed, we show
that additional metabolic vulnerabilities against the resistant cells
that were not identifiable using only transcriptomic data are
unveiled following the proposed workflow. The transcriptomics-
metabolomics integration in GSMMs presented in this paper
clearly contributes towards improving the predictive capacity of
the flux distribution beyond transcriptomic regulation and sets
the basis for clinical omics-data integration. Mapping metabolic
regulation in AML at a patient-specific level could be the key to
select the best treatment for AML patients and can be analogously
applied in additional cancer types.
5. Conclusions

In this study, we use a workflow for the reconstruction of
condition-specific GSMMs to build metabolic models of the AML
cell line THP-1 and two derivatives with resistance to AraC and
DOX. The resulting models enabled us to identify that drug-
resistant cell lines could be targeted with the FDA-approved anti-
folate Methotrexate. Moreover, we determined that the resistant
cell lines could also be selectively targeted with YM-53601, an
inhibitor of squalene synthase, providing a new and promising
strategy to directly inhibit cholesterol synthesis in AML drug-
resistant cells. Future works should continue to evaluate the ther-
apeutic potential of using squalene synthase combined with
chemotherapeutic agents in AML and other cancer types. Impor-
tant to mention, our work demonstrated the importance of inte-
grating the metabolomics layer into GSMMs, as it enabled a
clearer distinction of putative metabolic vulnerabilities between
the parental untreated and the drug-resistant AML THP-1 cells
and led to the identification of squalene synthase as a putative tar-
get. Henceforth, the integration of such layer could be key to build-
ing condition-specific GSMMS of in vitro models of drug resistance,
not only in the case of AML but also for other cancer types, and
enable the identification of novel putative targets against chemore-
sistance. Indeed, metabolism has been recognized as an important
driver in the emergence and instatement of drug resistance in dif-
ferent cancers. Therefore, our methodology could be applied not
only for AML but also to other hematologic and non-hematologic
cancers to enhance the identification of metabolic vulnerabilities
specific to the different malignancies significantly. Given how
straightforward the methodology described is, it could also be
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applied on patient-derived cell lines to build accurate patient-
specific GSMMS incorporating the particular metabolomic and
transcriptomic alterations for applications-oriented at patient risk
stratification and personalized medicine.
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