Cell Reports, Volume 41

Supplemental information

USP32-regulated LAMTOR1 ubiquitination impacts

mTORC1 activation and autophagy induction

Alexandra Hertel, Ludovico Martins Alves, Henrik Dutz, Georg Tascher, Florian Bonn, Manuel Kaulich, Ivan Dikic, Stefan Eimer, Florian Steinberg, and Anja Bremm

В

Α

Figure S1. Cellular localization of USP32 (related to Figure 1)

A USP32 is present in the cytoplasmic and membrane fraction in different cell lines. Subcellular fractionation of RPE1, U2OS and MCF7 cells followed by Western blotting.

B Endogenous USP32 localizes at the Golgi apparatus. MCF7 cells were co-stained for USP32 and the Golgi marker GM130. Scale bar = $20 \ \mu m$.

0.5

0.4

0.3

0.2

0.1

0

WHI USP32 KO

Pearson's coefficient CI-MPR - Giantin

NHT

USP32KO

13.

100

Α

Figure S2. USP32 knockout impacts retrograde transport (related to Figure 2)

A Abundance of retromer components is stable upon loss of USP32. Lysates of U2OS and RPE1 control and USP32 KO cells were analyzed for retromer components by Western blotting.

B Composition of retromer complex does not change in USP32 KO cells. Endogenous VPS35 was immunoprecipitated from RPE1 NHT and USP32 KO cells with a specific antibody. Protein levels were detected by Western blotting. * VPS29 blot shows overexposed signal of control antibody light chain in first lane.

C CI-MPR localization at the TGN is slightly increased in USP32 KO cells. RPE1 NHT and USP32 KO cells were stained for CI-MPR and the Golgi marker Giantin. Scale bar = $15 \mu m$.

D Quantification of CI-MPR and Giantin co-localization shown as Pearson's coefficient with indicated mean \pm SD. The colocalization was quantified across ten images from two independent experiments (*** p-value < 0.001, unpaired Student's *t* test).

Figure S3. USP32 regulates autophagy (related to Figure 3)

A USP32 depletion impairs lysosomal degradation of autophagosomes in U2OS cells. Representative images of LC3A/B staining in untreated and 2 h amino acid-starved U2OS control (ctrl) and USP32 KO cells. Scale bar = 20 μm.

B Quantification of LC3 positive dots shown as number of dots per cell with indicated mean ± SD,

*** p<0.0001, unpaired Student's *t* test.

С

starved

Figure S4. LAMTOR1 ubiquitination regulates its interaction with v-ATPase (related to Figure 4)

A Intensity of ubiquitination sites as identified by MaxQuant, shown as mean +/- SD.

B His-tagged ubiquitin pulldown assay performed in 293 cells co-expressing His-ubiquitin and GFP-LAMTOR1 in the presence of wildtype HA-USP32 or catalytic inactive HA-USP32 (C743S). **C** Lysosomal LAMTOR1 localization is reduced in U2OS USP32 KO cells. Representative immunofluorescence microscopy images of LAMTOR1 and LAMP2 co-staining in untreated and 2 h amino acid-starved U2OS control (ctrl) and USP32 KO cells. Scale bar = 20 μm.

D Quantification of LAMTOR1 co-localization to LAMP2 positive structures shown as Pearson's coefficient (per cell) with indicated mean \pm SD, ** p<0.01, *** p<0.0001, unpaired Student's *t* test (n=3)

E Co-immunoprecipitation of LAMTOR1-GFP and endogenous lysosomal v-ATPase subunits shown in control and USP32 KO cells.

В

Figure S5. mTORC1 substrate phosphorylation (related to Figure 5)

A RPE1 NHT and USP32 KO cells were amino acid-starved for 16 h (EBSS medium) and subsequently cultured in full medium (DMEM) for the indicated time points. Protein levels were detected by Western blotting.

B Relative quantification of immunoblot of pWIPI2 S413 normalized to total WIPI2 level from panel A (n=2)

C Relative quantification of immunoblot of pAMBRA1 S52 normalized to total AMBRA1 level from panel A (n=2)