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A B S T R A C T   

The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms 
specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to 
human errors. This warrants a need for an automated algorithm for first motion polarity determination. We 
present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities 
of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces 
from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal 
set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 
traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works 
and show that our model achieves a higher recall on both positive and negative polarities.   

1. Introduction 

The first motion polarity of earthquake waveforms is an important 
parameter in determining focal mechanisms, particularly for smaller 
earthquakes. Traditionally the first-motion polarity is assigned manually 
by expert analysts. However, based on their observation on a dataset 
from the Northridge region Hardebeck and Shearer (2002), reported 
that the picked polarities are inconsistent with the true polarities about 
10% (for impulsive onset where polarities are more easily determined) 
to 20% (for emergent onset where polarities are more ambiguous) of the 
times. This, coupled with the growing volumes of seismological data, 
warrants the need for a faster, more precise and efficient method for the 
picking of polarities. 

An automated polarity picking algorithm proposed by Chen and 
Holland (2016) is based on comparing the signal amplitude with the 
background noise and checking whether it crosses a user-defined 
threshold. Pugh et al. (2016) presented a Bayesian inference approach 
to polarity determination. Such numerical approaches, however, (i) 
require intensive human involvement, (ii) are heavily dependent on a 
limited number of parameters, and (iii) fail to account for the complex 

nature of seismograms; and hence cannot compete with manual picks 
(Ross et al., 2018). 

Data-driven computer vision techniques, such as convolutional 
neural networks have been shown to be capable of analysing spatially 
independent information by mimicking the perception of images by the 
human brain (Voulodimos et al., 2018; Lundervold and Lundervold, 
2019; Brachmann et al., 2017). Like in most research fields, deep 
learning has been successfully applied to seismology for tasks such as 
event detection & location (Perol et al., 2018), seismic phase identifi-
cation & picking (Chen, 2018; Zhu and Beroza, 2019; Li et al., 2021, 
2022), magnitude characterization (Mousavi and Beroza, 2020; Chak-
raborty et al., 2021a,b, 2022). The applicability of simple Convolutional 
Neural Networks (CNNs) in the picking of first-motion polarities has 
been demonstrated by Ross et al. (2018), Hara et al. (2019) and Uchide 
(2020). 

In this study we use an autoencoder model for determining the first- 
motion polarities. Unlike (Mousavi et al., 2019) who also use autoen-
coders for polarity classification in an unsupervised fashion, we adopt a 
supervised approach and leverage the polarity information provided in 
the metadata of the INSTANCE dataset (Michelini et al., 2021). Since 
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there are several algorithms that are capable of picking P-arrival times 
with an accuracy of the order of 0.01s (Mousavi et al., 2020; Li et al., 
2021; Zhu and Beroza, 2019; Liao et al., 2021) we focus solely on 
classification of polarities and not the picking of P-arrival times. 

Therefore, we assume the P-arrival time to be an a-priori knowledge 
and use data windows of fixed length centred around the known P- 
arrival sample. We perform extensive analysis on our results to inves-
tigate its potential at outperforming human analysts and to investigate 
the possible scenarios that can lead to an error in assignment of polarity 
by the model. 

2. Methodology 

2.1. Data 

Nearly 1.2 million waveforms recorded primarily by the Italian Na-
tional Seismic Network between January 2005 and January 2020 and 
obtained from the INSTANCE dataset (Michelini et al., 2021) are used to 
train and validate our model. The dataset also contains traces for which 
multiple detections are retrieved using EQTransformer (Mousavi et al., 
2020); this is indicated by the metadata parameter trace_-
EQT_number_detections. For simplicity we use only those traces for 
which the number of detections is 1. It has been observed by (Ross et al., 
2018) that the accuracy in the prediction of polarity falls exponentially 
with signal-to-noise ratio (SNR), when the SNR is below 10 dB. Thus, we 
ignore traces with SNR less than 10 dB to ensure minimum discrepancy 
in the training data. This leaves us with 443,002 traces out of which 109, 
748 have polarity information identified by expert analysts and made 
available through catalogs. These 109,748 traces are divided in the ratio 
60:10:30 for training, validation and testing purposes. 

Each trace in the training and validation sets is included twice in the 
respective set – once in its original form and once by flipping it (i.e. 
multiplying it by − 1). This augmentation technique, previously used by 
Uchide (2020), not only doubles the volume of training data but also 
helps in balancing out the two classes (‘positive’ and ‘negative’ polarity), 
which is known to benefit the learning of a classifier (Batista et al., 
2004). No such augmentation is applied to the test dataset to retain the 
original distribution of classes. We do not apply any pre-processing 
steps, other than normalising each waveform by dividing it with its 
maximum absolute value. As mentioned earlier, we work with the 
assumption that the first P-arrival time is already known to us. We use a 
fixed data window centred around the P-arrival sample. The length of 
the window was chosen experimentally to be 64 samples after exploring 
several values between 32 and 1024 samples. Note that only powers of 2 
were used since the auto-encoder reduces the data dimensionality by a 
factor of 2 at each step. 

2.2. Model architecture and training 

We use an autoencoder model (Rumelhart et al., 1986) whose ar-
chitecture is shown in Figure 1. It uses two sets of 1D Convolution 
(Kiranyaz et al., 2015) and Maxpooling (Nagi et al., 2011) layers to map 
the data into a 16-dimensional latent space (encoded layer). The decoder 
for reconstructing the data consists of two sets of Convolutional and 
Upsampling layers. Further details on the hyperparameters used can be 
found on the caption for Fig. 1. A softmax function is applied to the 
encoded layer to perform the classification. The model is implemented 
using Keras (Charles, 2013) and trained and tested on an NVIDIA A100 
GPU. An Adam Optimiser (Kingma and BaAdam, 2014) is used for 
backpropagation. The loss function is a weighted sum of the recon-
struction and classification losses with weights of 1 and 200 respec-
tively. Since, we are more interested in the classification performance 
than the reconstruction performance, and the reconstruction is only 
used to facilitate the learning, higher weight is assigned to classification 
loss. To calculate the reconstruction and classification losses we use the 
Keras (Charles, 2013) inbuilt loss functions for mean squared error and 
huber loss with delta = 0.5, respectively. We use early stopping (Pre-
chelt, 2012) to prevent overfitting, whereby the training stops auto-
matically if the validation loss does not decrease for 15 consecutive 
epochs, and the best set of learned model weights (one with lowest 
validation loss) is saved iteratively. We also use ReduceLROnPlateau 
function to reduce the learning rate by a factor of 10 if the validation loss 
does not decrease for 10 epochs, starting with a learning rate of 10− 3 and 
letting it have a minimum value of 10− 6. Using these conditions, the 
model trains for 75 epochs with an average training time of 1s per epoch. 

3. Results and discussion 

As stated previously, PolarCAP was trained only on data with signal- 
to-noise ratio (SNR) above 10 dB to ensure a good quality of training 
data, so we test it separately on data with SNR above and below 10 dB. 
This testing was performed on two independent datasets: (i) the portion 
of the INSTANCE dataset (Michelini et al., 2021) not used for training or 
validation and (ii) test dataset from Southern California Seismic 
Network (SCSN) (Southern california earthquake data center, 2013) 
used in Ross et al. (2018). For the latter dataset, however, we ignored the 
waveforms for which the polarity was ‘undetermined’. The results have 
been summarised in the first half of Table 1 and the corresponding 
confusion matrices (Ting, 2017) can be found in Fig. 2. As one can see, 
the accuracy for traces with SNR above 10 dB is around 98% for both the 
datasets which means for about 98% of the traces 

the polarity labels determined by our model agrees with the polarity 
labels assigned through manual analysis. A few examples of such traces 
are shown in Fig. 3a. As expected, the accuracy is lower for smaller SNR 
since a higher noise level makes the polarity information ambiguous and 
hence difficult to determine either manually or using a deep learning 

Fig. 1. The autoencoder architecture used for our 
study. The 1D convolutional layers in the encoder use 
‘relu’ activation and have 32 and 8 filters respectively 
and kernel sizes of 32 and 16, respectively. Each 
Maxpooling layer reduces the data dimension by 2. 
The drop out rate used is 0.3. The convolutional 
layers in the decoder use ‘tanh’ and ‘relu’ activations 
respectively and 8 and 32 filters and kernel sizes of 16 
and 32, respectively. The final decoder layer has a 
‘tanh’ activation. A softmax function is applied on the 
encoded layer to get the probability of the waveform 
having a ‘negative’ and a ‘positive’ polarity 
respectively.   
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model. It is also worth noting that although the model was trained only 
on data from the Italian National Seismic Network it can perform 
reasonably well on data from Southern California Seismic Network. This 
demonstrates the model generalizability. 

3.1. Comparison with previously published models 

In this section we compare the performance of PolarCAP with models 
described in previous works such as Ross et al. (2018); Uchide (2020); 
Hara et al. (2019). To do this, we train each model on the same traces, 
while using the same model architecture, training parameters and input 
data length specified by the respective authors. We then test the models 
on both test datasets, with SNR above 10 dB for a reliable comparison. 
Our observations are summed up in Table 2. As one can see PolarCAP 
outperforms the other models. 

3.2. Manual inspection of traces with mismatched assigned and predicted 
po-larity 

We further investigate the 595 traces from INSTANCE dataset with 
SNR above 10 dB for which the polarity predicted by PolarCAP and the 
manually assigned polarities were in disagreement (refer to Fig. 2). We 

could classify these cases into one of the following three categories:  

• The polarity assigned by the analyst was correct.  
• The polarity predicted by the model was correct.  
• The polarity information was ambiguous due to high noise levels, or 

incorrect P-picking. 

Based on our analysis we observed that for 40.8% of the cases the 
polarity predicted by the model was correct whereas in 27.6% of the 
cases the model predicted incorrect polarities. In the remaining 31.6% 
cases the polarity information was hard to determine through manual 
inspection, mostly due to high noise levels. Some examples of the former 
case can be found in Fig. 3b. We further found that incorrect classifi-
cation of traces by the model, was either due to incorrect picking of the 
first P-arrival (although one can see from Fig. 3b that some degree of 
time shift is accounted for by the model based on what is encountered in 
the training data) or the P-arrivals being emergent in nature. We went on 
to inspect the traces where we identified the P-arrival sample to be 
incorrectly picked, and picked the P-arrivals ourselves using the EPick 
model (Li et al., 2021). Fig. 4a shows five traces where the P-arrival 
samples determined by EPick seemed more accurate than those provided 
in the metadata. We then fed 64 sample windows centred around the 

Table 1 
Summary of Model Performance when trained with and without data augmentation on the two datasets for traces with SNR above and below 10 dB.   

Test Dataset Accuracy (%) Precision (%) Recall (%) 

Positve Negative Positve Negative 

Data without Augmentation INSTANCEa SNR ≥10 dB 98.19 99.06 96.49 98.22 98.12 
SNR <10 dB 96.22 98.18 93.63 95.3 97.5 

SCSNb SNR ≥10 dB 97.53 98.89 94.98 97.35 97.87 
SNR <10 dB 89.65 96.11 77.67 88.87 91.48 

Data with Augmentation INSTANCEa SNR ≥10 dB 97.65 98.61 95.77 97.86 97.23 
SNR <10 dB 94.24 97.68 89.98 92.36 96.9 

SCSNb SNR ≥10 dB 97.78 98.99 95.5 97.64 98.05 
SNR <10 dB 92.46 96.86 83.55 92.26 92.93  

a (Michelini et al., 2021). 
b (Southern california earthquake data center, 2013). 

Fig. 2. Confusion matrices for testing model on INSTANCE data (Michelini et al., 2021) with (a) SNR 10 dB (b) SNR < 10 dB and SCSN data used by (Ross et al., 
2018) with (c) SNR 10 dB (d) SNR. 
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Fig. 3. Examples of traces where (a) the polarity predicted by the model matches with the polarity assigned by human analysts, (b9) the model predicts the correct 
polarity as opposed to manually assigned polarity. The red dashed line shows the P-arrival sample provided in the metadata. In the figure titles, M stands for event 
magnitude, SNR for signal-to-noise ratio, e for epicentral distance and d for focal depth. Passgn and Ppred represent the assigned and predicted polarities respectively 
and the percentages in square brackets represent probabilities corresponding to the predicted polarity. 
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picked P-phases and in each of these cases the polarities predicted by the 
model now matched with the assigned polarities. Fig. 4b shows some 
examples of emergent arrivals. It is also observed that the probability of 
prediction for emergent onsets are usually lower than that for impulsive 
onsets. 

3.3. Factors affecting model accuracy 

We looked at the distribution of the incorrectly classified traces in 
terms of signal-to-noise ratio, magnitude, focal depth, and epicentral 

distances. Signal-to-noise ratio (SNR) can influence the ease with which 
the first P- arrival is picked and hence the first motion polarity can be 
determined, and magnitude can be correlated with the SNR. However, 
we did not find any observable correlation between signal-to-noise ratio, 
magnitude and model accuracy, as shown in Fig. 5a, which means the 
model is capable of performing polarity determination across a wide 
range of SNR and magnitudes. One can also see from Fig. 5b that the 
incorrect classifications are restricted to shallower events (<80 km) 
even though these are most represented in the training data. This is 
likely to be because deeper earthquakes tend to have a more impulsive 

Table 2 
Comparison between different models. As one can see from the table, PolarCAP outperforms the other models for both the datasets.  

Test Dataset Model Accuracy (%) Precision (%) Recall (%) 

Positve Negative Positve Negative 

INSTANCEa PolarCAP 98.19 99.06 96.49 98.22 98.12 
Ross et al. (2018) b 97.2 94.82 98.42 96.88 97.36 
Hara et al. (2019) c 97.06 94.7 98.26 96.56 97.31 
Uchide (2020) d 98.01 96.08 99.01 98.03 98.01 

SCSNe PolarCAP 97.53 98.89 94.98 97.35 97.87 
Ross et al. (2018) b 96.18 91.71 98.69 97.53 95.48 
Hara et al. (2019) c 97.27 94.37 98.85 97.79 97.01 
Uchide (2020) d 97.23 94.04 98.96 98.02 96.82  

a (Michelini et al., 2021). 
b (Ross et al., 2018). 
c (Hara et al., 2019). 
d (Uchide, 2020). 
e (Southern california earthquake data center, 2013). 

Fig. 4. (a) Examples of traces where the polarity prediction was incorrect due to an error in the P-arrival time provided in the metadata (showed with red-dashed 
line). The P- arrival sample picked by the model from (Li et al., 2021) is shown with a dotted blue line. The dotted gray line shows the new time window. The 
predicted polarities in red and blue correspond to the arrival times provided in the metadata and those picked using (Li et al., 2021) respectively (b) Examples of 
traces where the polarity was predicted incorrectly by the model due to the emergent nature of the P-arrival. The panel on the right shows a magnified plot of just 10 
samples around the P-arrival sample (provided in the metadata). In the figure titles, M stands for event magnitude, SNR for signal-to-noise ratio, e for epicentral 
distance and d for focal depth. Passgn and Ppred represent the assigned and predicted polarities respectively and the percentages in square brackets represent prob-
abilities corresponding to the predicted polarity. 
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nature as compared to shallow earthquakes of similar magnitude (Bor-
mann et al., 2014). 

We also looked at the fraction of incorrect classification for different 
site conditions as characterised by the average shear wave velocity of 
the top 30 m of subsurface (VS30). We find that the tendency for incorrect 
polarity classification is slightly higher for VS30 < 420 ms− 1, although 
for the 11 events recorded at stations with VS30 < 240 ms− 1 there is no 
observed misclassification (Fig. 5c). 

3.4. Further improvement through augmentation 

As outlined above, the incorrect determination of polarity was 
caused by incorrect picking of P-wave arrival time or emergent nature of 
P-onsets. In order to tackle the first issue, we used data augmentation to 
add a time shift to some of the traces in the training data. This 
augmentation technique was also explored in Uchide (2020). Since we 
did not have any information on the quality of P-wave onsets in the 
metadata, it was not possible to apply augmentation to increase the 
amount of emergent traces in the training data. The time shift was 
applied to 1/5th of the traces (which were then added back to the 
dataset); the amount of time shift was chosen from a normal distribution 
with mean 0 and standard deviation of 10 samples. A maximum shift of 
30 samples was allowed to ensure that the first P-arrival is included in 
the window. 

After re-training the model on the augmented data, we tested it again 
on the same test sets. The corresponding evaluation of the model per-
formance is shown in the second half of Table 1. As one can see, the use 
of data augmentation resulted in lower accuracy on the INSTANCE 
dataset (for both low and high SNR). This could be because in the 
dataset, more often than not the traces had correctly picked P-arrival 
times and hence the augmentation was not needed. In case of the test 
data from Southern california earthquake data center (2013), on the 
other hand, the accuracy increased to 0.25% for high SNR data and 

2.81% for low SNR data upon using data augmentation. As one might 
expected, the improvement was more significant for low SNR cases. This 
could indicate that the augmentation helps in better representing the 
traces in the SCSN dataset (Southern california earthquake data center, 
2013). 

4. Conclusion 

In this study, we explored the potential of a deep learning model - 
PolarCAP to determine first-motion polarity of earthquake waveforms 
when the P-arrival information is available, faster and more accurately 
as compared to human analysts. We show that when tested on unseen 
traces, the polarity predicted by the model, matches the ones assigned 
by human analysts over 98% of the times. We observed that the major 
reasons behind incorrect assignment of polarity by the model were 
incorrect P-arrival picks and emergent arrivals; to that end we also found 
the event depth to indirectly affect the fraction of incorrect predictions 
by affecting the quality of P-wave arrival. However in spite of these 
hurdles we find that when the polarities predicted by the model differed 
from those presented in the metadata, it was usually the model that was 
correct (almost 41% of the times, while the model was wrong only about 
28% of the times), thus demonstrating its ability to overcome human 
errors. 
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Jonas Köhler for their kind suggestions. Prof. Dr. Horst Stoecker grate-
fully acknowledges the Judah M. Eisenberg Laureatus - Professur at 
Fachbereich Physik, Goethe Universität Frankfurt, funded by the Walter 
Greiner Gesellschaft zur Förderung der physikalischen Grund-
lagenforschung e.V. 

References 

Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., 2004. A study of the behavior of several 
methods for balancing ma- chine learning training data. SIGKDD Explorations 
Newsletter 6, 20–29. https://doi.org/10.1145/1007730.1007735. 

Bormann, P., Klinge, K., Wendt, S., 2014. Data Analysis and Seismogram in- 
Terpretation, pp. 1–126. 

Brachmann, A., Barth, E., Redies, C., 2017. Using cnn fea- tures to better understand 
what makes visual art- works special. Frontiers in Psychology 8. https://doi.org/ 
10.3389/fpsyg.2017.00830. 

Chakraborty, M., Fenner, D., Li, W., Faber, J., Zhou, K., Rümpker, G., et al., 2022. 
CREIME—a convolutional recurrent model for earthquake identification and 
magnitude estimation. J. Geophys. Res. Solid Earth 127, e2022JB024595. https:// 
doi.org/10.1029/2022JB024595. 

Chakraborty, M., Li, W., Faber, J., Ruempker, G., Stoecker, H., Srivastava, N., 2021a. 
A Study on the Effect of in- Put Data Length on Deep Learning Based Magnitude Clas- 
Sifier. https://doi.org/10.48550/ARXIV.2112.07551. https://arxiv.org/abs/2112 
.07551. 
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