
                                                                                                       
 

 

  

The influence of the Maillard reaction on the 
immunogenic properties of food allergens 

 
 
 

Dissertation  
zur Erlangung des Doktorgrades  

der Naturwissenschaften 

 

 
vorgelegt beim Fachbereich Biochemie, Chemie und Pharmazie  

der Johann Wolfgang Goethe-Universität  
in Frankfurt am Main  

von  
 
 

Anne Ilchmann 
aus Dresden  

 
 
 

 
 
 
 
 
 
 
 
 

Frankfurt, 2010 
(D 030) 

 
 



                                                                                                       
 

 

  

Vom Fachbereich Biochemie, Chemie und Pharmazie der Johann Wolfgang 
Goethe-Universität als Dissertation angenommen. 
 
 
Dekan: Prof. Dr. H. Steinhilber 
 
 
 
Gutachter: Prof. Dr. T. Dingermann  
                  Prof. Dr. S. Vieths  
                   
 
 
 
 
 
 
 
Datum der Disputation: 23.04.2010 
 

 

 

 

 
 
 
 
 
 
 



                                                                                                       
 

 

  

 

Meinen Eltern 
 



                                                                                                       
 

 

i 
 

Table of Contents 
 
1 INTRODUCTION ........................................................................................................................... 1 

1.1 Introduction to Allergy ........................................................................................................ 1 
1.2 Mechanism of Type I Allergy ............................................................................................. 1 

1.2.1 Allergens..................................................................................................................... 3 
1.3 Food Allergy ....................................................................................................................... 3 
1.4 Influence of thermal processing on food allergens ............................................................ 4 
1.5 The Maillard reaction ......................................................................................................... 5 

1.5.1 The Maillard reaction in food allergy .......................................................................... 6 
1.5.2 Clinical relevance of the Maillard reaction .................................................................. 6 
1.5.3 Influence of AGEs on DC function ............................................................................. 7 

1.6 AGE binding receptors ....................................................................................................... 7 
1.6.1 Macrophage scavenger receptors .............................................................................. 8 

1.6.1.1 Class A Scavenger receptors ............................................................................. 8 
1.6.1.1.1 Scavenger receptor class A type I and II ..................................................... 8 

1.6.1.2 Class B Scavenger receptors ............................................................................. 9 
1.6.2 Receptor for advanced glycation end products (RAGE) .......................................... 10 
1.6.3 Galectin-3 ................................................................................................................. 10 

1.7 Model allergens used in this study .................................................................................. 11 
1.7.1 Chicken Ovalbumin, a major allergen of egg white .................................................. 11 

1.7.1.1 The Mannose receptor ...................................................................................... 12 
1.7.2 Ara h 2, a major allergen of peanut .......................................................................... 12 

1.8 Dendritic cells .................................................................................................................. 13 
1.8.1 DC subsets ............................................................................................................... 13 

1.9 Antigen uptake by dendritic cells ..................................................................................... 14 
1.9.1 Pinocytosis and phagocytosis .................................................................................. 14 
1.9.2 Receptor mediated endocytosis and the endocytotic pathway ................................ 15 

1.10 Antigen processing by antigen presenting cells ............................................................ 16 
1.10.1 MHC class I restricted presentation ....................................................................... 16 
1.10.2 MHC class II restricted presentation ...................................................................... 16 

1.11 Maturation of DCs .......................................................................................................... 17 
1.12 T cells............................................................................................................................. 18 

1.12.1 Activation of naïve T cells ...................................................................................... 18 
1.12.2 CD4+ T cells ........................................................................................................... 19 

1.12.2.1 Th1 cells .......................................................................................................... 19 
1.12.2.2 Th2 cells .......................................................................................................... 20 
1.12.2.3 Th17 cells ........................................................................................................ 20 
1.12.2.4 Regulatory T cells ........................................................................................... 21 

1.12.3 CD8+ T cells ........................................................................................................... 21 
1.13 B cells ............................................................................................................................ 22 

 
2 AIMS OF THIS THESIS .............................................................................................................. 23 
 
3 MATERIAL AND METHODS ...................................................................................................... 25 

3.1 Material ............................................................................................................................ 25 
3.1.1 Commonly used equipment...................................................................................... 25 
3.1.2   Chemicals ............................................................................................................... 26 
3.1.3 Buffers ...................................................................................................................... 26 
3.1.4 Cell culture media and reagents .............................................................................. 26 
3.1.5 Native and recombinant proteins ............................................................................. 27 
3.1.6 Antibodies and reagents for immune detection ........................................................ 27 
3.1.7 Mice .......................................................................................................................... 29 
3.1.8 Oligonucleotides ....................................................................................................... 30 
3.1.9 Software ................................................................................................................... 30 

3.2 Methods ........................................................................................................................... 30 



                                                                                                       
 

 

ii 
 

3.2.1 Molecular biological methods ................................................................................... 30 
3.2.1.1 Total RNA isolation ........................................................................................... 30 
3.2.1.2 Reverse transcriptase (RT) reaction ................................................................. 31 
3.2.1.3 Polymerase chain reaction (PCR)..................................................................... 31 
3.2.1.4 Agarose gel electrophoresis ............................................................................. 32 

3.2.2 Biochemical methods ............................................................................................... 33 
3.2.2.1 Preparation of proteins modified with AGEs ..................................................... 33 

3.2.2.1.1 Preparation of AGE-OVA and AGE-BSA .................................................. 33 
3.2.2.1.2 Preparation of AGE-rAra h 2 ..................................................................... 34 

3.2.2.2 Measurement of the protein concentration using bicinchoninic acid (BCA) ..... 34 
3.2.2.3 SDS-polyacrylamid gel electrophoresis (SDS-PAGE) ...................................... 34 
3.2.2.4 Coomasie Brilliant blue protein stain ................................................................ 36 
3.2.2.5 Structural analysis by circular dichroism spectroscopy .................................... 36 
3.2.2.6 Labelling of proteins with Fluorescein isothiocyanate ...................................... 37 

3.2.3 Cell culture Methods ................................................................................................. 38 
3.2.3.1 Working environment for cell cultures ............................................................... 38 
3.2.3.2 Culture conditions ............................................................................................. 39 
3.2.3.3 Counting of cells ............................................................................................... 39 
3.2.3.4 Preparation of bone marrow derived myeloid dendritic cells (mDCs) ............... 39 
3.2.3.5 Assessment of mDC maturation ....................................................................... 40 
3.2.3.6 Assessment of antigen uptake by mDCs .......................................................... 40 
3.2.3.7 Isolation of CD4+ and CD8+ T cells ................................................................... 41 
3.2.3.8 Assessment of antigen specific CD4+ T cell activation by mDCs ..................... 42 

3.2.3.8.1 Activation of antigen specific CD4+ T cells from naïve transgenic mice with 
OVA specific TCR ..................................................................................................... 42 
3.2.3.8.2 Activation of antigen specific CD4+ T cells from mice after immunisation 
with OVA ................................................................................................................... 42 

3.2.3.9 Activation of antigen specific CD8+ T cells from naïve transgenic mice with 
OVA-specific TCR ......................................................................................................... 43 
3.2.3.10 Assessment of T cell proliferation using carboxyfluorescein succinimidyl ester
 ...................................................................................................................................... 43 
3.2.3.11 Assessment of T cell proliferation using tritium [3H] labelled thymidine ......... 44 

3.2.4 Immunological methods ........................................................................................... 45 
3.2.4.1 Flow cytometry .................................................................................................. 45 
3.2.4.2 Antibody staining of cells for flow cytometry ..................................................... 46 

3.2.4.2.1  Direct staining of cell surface molecules for flow cytometric analysis ...... 46 
3.2.4.2.2 Indirect staining of cell surface molecules for FACS analysis ................... 46 

3.2.4.3 Cell analysis by confocal laser scanning microscopy (LSM) ............................ 47 
3.2.4.3.1 Cell preparation for LSM ............................................................................ 47 

3.2.4.4 Enzyme linked immunosorbent assay (ELISA) ................................................. 48 
3.2.4.4.1 Indirect ELISA ............................................................................................ 48 

3.2.4.4.1.1 Measurement of mouse serum Immunoglobulins .............................. 48 
3.2.4.4.1.2 Detection of Maillard reaction products .............................................. 49 
3.2.4.4.1.3 Verification of comparable FITC/protein ratio on labelled proteins .... 49 

3.2.4.5.2 Sandwich ELISA ........................................................................................ 49 
3.2.4.5.2.1 Sandwich ELISA for the detection of cell supernatant cytokines ....... 49 

3.2.5 Animal experimental methods .................................................................................. 50 
3.2.5.1 Housing of mice ................................................................................................ 50 
3.2.5.2 Short term mouse anaesthesia ......................................................................... 51 
3.2.5.3 Mouse euthanasia ............................................................................................. 51 
3.2.5.4 Blood harvest from the tail vain......................................................................... 51 
3.2.5.5 Immunisation ..................................................................................................... 51 

3.2.5.5.1 Intraperitoneal immunisation ..................................................................... 51 
3.2.5.5.2 Subcutaneous immunisation ..................................................................... 52 

 
4 RESULTS .................................................................................................................................... 53 

4.1 Analysis of glycated ovalbumin (AGE-OVA).................................................................... 53 
4.2 Analysis of glycated bovine serum albumin (AGE-BSA) ................................................. 55 

4.3.1 Activation of OVA specific CD4+ T cells in vitro by glycated OVA ........................... 56 



                                                                                                       
 

 

iii 
 

4.3.1.1 Comparing the T cell activation ability of AGE-OVA and the unglycated OVAs
 ...................................................................................................................................... 56 

4.3.1.1.1 Verification of mDC involvement in CD4+ T cell activation by AGE-OVA .. 59 
4.3.1.2 Assessment of T cell activation by selectively glycated OVA ........................... 59 

4.3.2 Influence of AGE-OVA on the proliferation of OVA specific CD4+ T cells ............... 61 
4.3.3 Cytokine production by AGE-OVA activated CD4+ T cells ....................................... 62 
4.3.4 Influence of AGE-OVA on the activation of OVA specific CD8+ T cells ................... 63 

4.4 Interaction of AGE-OVA with mDCs in vitro .................................................................... 64 
4.4.1 Influence of AGE-OVA on the maturation of mDCs ..................................................... 64 

4.4.2 Influence of glycation of OVA on the uptake of the allergen by mDCs .................... 65 
4.4.2.1 Verifying the comparability of the FITC labelling of the different OVA forms ... 65 
4.4.2.2 Analysis of the uptake of AGE-OVA by mDCs ................................................. 66 

4.4.3 Receptors mediating the uptake of AGE-OVA by mDCs ......................................... 68 
4.4.3.1 Detection of receptors expressed on bone marrow derived mDCs .................. 68 
4.4.3.2 Non-involvement of RAGE in the uptake of AGE-OVA .................................... 69 
4.4.3.3 Non-involvement of Galectin-3 in the uptake of AGE-OVA .............................. 70 
4.4.3.4 Involvement of SR-AI/II in the uptake of AGE-OVA by mDCs .......................... 71 
4.4.3.5 Involvement of the MR in the uptake of AGE-OVA by mDCs ........................... 71 

4.4.4 Verification of interaction of AGEs with SR-AI/II ...................................................... 72 
4.4.4.1 Uptake of native and AGE-BSA by Wt mDCs ................................................... 73 
4.4.4.2 Inhibition of mDC uptake of AGE-OVA by AGE-BSA ....................................... 73 
4.4.4.3 Excluding unspecific interaction of FITC with SR-AI/II ..................................... 74 

4.4.5 Uptake of recombinant OVA by Wt mDCs and SR-AI/II deficient mDCs ................. 75 
4.4.5 Role of SR-AI/II mediated OVA uptake by mDCs in the activation of OVA specific 
CD4+ T cells ....................................................................................................................... 76 

4.4.5.1 Verification of antigen uptake and T cell stimulatory capacity of SR-AI/II 
deficient mDCs .............................................................................................................. 76 
4.4.5.2 The role of SR-AI/II in the activation of OVA specific CD4+ T cells .................. 77 

4.4.6 Localisation of internalised AGE-OVA in mDCs ...................................................... 79 
4.7 Influence of glycation by the Maillard reaction on the T cell immunogenicity and 
antigenicity of OVA in vivo ..................................................................................................... 83 

4.7.1 Assessment of the T cell immunogenicity of AGE-OVA by subcutaneous 
immunisation of mice ......................................................................................................... 83 
4.7.2 Assessment of the T cell immunogenicity and antigenicity of AGE-OVA using 
intraperitoneal immunisation of mice ................................................................................. 84 

4.7.2.1 Assessment of the T cell immunogenicity of AGE-OVA by ip immunisation of 
mice ............................................................................................................................... 85 
4.7.2.2 Assessment of the antigenicity of AGE-OVA by intraperitoneal immunisation of 
mice ............................................................................................................................... 86 

4.8 Analysis of AGE-rAra h 2 ................................................................................................. 91 
4. 9 Influence of glycation by the Maillard reaction on the T cell immunogenicity and 
antigenicity of rAra h 2 ........................................................................................................... 93 

4.9.1 Assessment of the T cell immunogenicity of AGE-rAra h 2 by ip immunisation of 
mice ................................................................................................................................... 93 
4.9. 2 Cytokine production of CD4+ T cells from the mice after receiving ip immunisation 
with unprocessed, thermally processed or AGE-rAra h 2 ................................................. 94 
4.9.3 Assessment of the T cell antigenicity of AGE-rAra h 2 by ip immunisation of mice . 97 

 
5 DISCUSSION ............................................................................................................................ 101 

5.1 Glycation of OVA enhances the CD4+ T cell immunogenicity of the allergen in vitro ... 101 
5.1.1 Incubation of allergens with sugars efficiently induces modification by the Maillard 
reaction ............................................................................................................................ 101 
5.1.2 AGE-OVA has a higher CD4+ T cell immunogenicity than unglycated OVA ......... 102 

5.1.2.1 Increased CD4+ T cell activation does not result from an AGE-OVA induced 
enhanced maturation of mDCs ................................................................................... 102 
5.1.2.2 Glycation of OVA by the Maillard reaction significantly enhances the uptake of 
the allergen by mDCs ................................................................................................. 103 
5.1.2.3 SR-AI/II mediates the enhanced uptake of AGE-OVA by mDCs .................... 104 

5.1.3 CEL and CML contribute to the enhanced CD4+ T cell activation by AGE-OVA ... 105 



                                                                                                       
 

 

iv 
 

5.1.4 SR-AI/II plays a critical role in the activation of CD4+ T cells by (AGE-)OVA ........ 106 
5.1.5 SR-AI/II targets AGE-OVA to MHC class II loading pathway ................................. 107 

5.2 Glycation of OVA by the Maillard reaction enhance the antigenicity and T cell 
immunogenicity of the allergen in vivo ................................................................................. 109 

5.2.1 Antigenicity of AGE-OVA in intraperitoneal immunisation ..................................... 110 
5.2.2 The influence of AGEs on CD4+ T cell differentiation ............................................ 111 

5.3 Glycation reduces the allergenicity of rAra h 2 .............................................................. 112 
5.3.1 Thermal incubation of rAra h 2 with carbohydrates leads to glycation and loss of 
secondary structure ......................................................................................................... 113 
5.3.2 The glycation of rAra h 2 by the Maillard reaction reduces the CD4+ T cell 
immunogenicity of the allergen in vivo ............................................................................ 114 
5.3.3 The glycation of rAra h 2 by the Maillard reaction reduces the antigenicity of the 
allergen in vivo................................................................................................................. 115 

5.4 Differential effects of glycation on the T cell immunogenicity and antigenicity of OVA and 
rAra h 2 ................................................................................................................................ 117 
5.5. Potential Allergenicity of AGEs of food allergens ......................................................... 118 

 
6 SUMMARY ................................................................................................................................ 120 
 
7 GERMAN SUMMARY ............................................................................................................... 122 
 
8 ABBREVIATIONS ..................................................................................................................... 129 
 
9 REFERENCES .......................................................................................................................... 133 
 
10 LEBENSLAUF ........................................................................................................................ 169 
 
11 PUBLIKATIONEN UND PRÄSENTATIONEN ....................................................................... 171 

11.1 Publikationen ............................................................................................................... 171 
11.2 Präsentationen ............................................................................................................. 171 

 
12 DANKSAGUNG ...................................................................................................................... 172 
 

 



                                                                                                                                  Introduction 
 

 

1 
 

1 Introduction  
 

1.1 Introduction to Allergy 
The term allergy was introduced by Clemens von Pirquet in order to differentiate between 

protective immunity and hypersensitive reactions (von Pirquet, 1906). The World Allergy 

Organisation now defines allergy as a “hypersensitive reaction initiated by specific immunologic 

mechanisms” (Johansson et al., 2004). Allergic reactions result from an inappropriate reaction of 

the immune system to a normally harmless, non-infectious substance, called allergen. Sources of 

allergens may be grass or tree pollen, animal epithial cells or feathers, house dust mites, drugs, 

insect venom or food.  

The pathologic mechanisms of allergies have been divided into four types (Coombs and Gel 

1963). Types I, II and III are antibody mediated and discerned by the antibodies and antigens 

involved. Type I responses, immediate hypersensitivity reactions, are mediated by IgE antibodies. 

Type II and III are both mediated by IgG antibodies but type II responses are directed against cell 

surface or matrix antigens while type III responses are directed against soluble antigens. Type IV 

is antibody independent and is mediated by T helper cells. In the focus of this thesis is food 

allergy which is frequently associated with the IgE mediated type I immediate hypersensitivity 

reaction. Therefore only this mechanism will be described in more detail.  

 

 

1.2 Mechanism of Type I Allergy 
The Type I allergy may generally be divided into two phases, a sensitisation phase and an 

elicitation phase. In the sensitisation phase the production of allergen specific IgE antibodies is 

initiated but no symptoms are yet induced. In the elicitation phase repeated contact with the 

allergen elicits allergic reactions. 

During the sensitisation phase allergens enter the body by passing the mucosa, usually in small 

amounts. The allergens are taken up by antigen presenting cells (APC) such as dendritic cells 

(DCs) and macrophages. These cells process the allergen by proteolysis and peptide fragments 

of the allergen are loaded onto MHC class II molecules (MHC II) (chapter 1.10.3). The complex of 

the allergen peptide and MHC II is presented on the surface of the APCs. CD4+ T cells recognise 

the complex by a T cell receptor (TCR). The binding of the TCR to the peptide-MHC II complex, in 

conjunction with further co-stimulatory signals, results in the activation and differentiation of the T 

cells (chapter 1.12.1). Naïve CD4+ T cells are known as Th0 cells and can differentiate into four 

subsets; T helper 1 (Th1) cells, T helper 2 (Th2) cells, T helper 17 cells (Th17) and regulatory T 

cells. In the onset and maintenance of allergic diseases Th2 cells play a critical role (chapter 

1.13.1.2). The cytokines IL-4 and IL-13, which are typically secreted by Th2 cells, induce the 

differentiation of B cells to IgE producing plasma cells (Poo et al., 1988). In contrast to other 

antibodies which generally bind to Fc receptors only after they have bound to specific antigens, 
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IgE antibodies are captured by high affinity Fcε receptors (FcεRI) in the absence of bound 

antigen. Mast cells and basophils express FcεRI, therefore IgE antibodies are bound to the 

surface of these cells (Murphy et al., 2008).  

If the same allergen is reencountered after the sensitisation phase, an allergic reaction with 

clinical symptoms occurs, this is the elicitation phase. The elicitation phase is divided into an early 

phase and a late phase reaction. Crosslinking of the specific IgE antibodies by allergens induces 

the release of inflammatory mediators such as histamine from these cells which induce allergic 

symptoms such as diarrhoea, conjunctivitis and anaphylaxis. This process is the early phase 

reaction. In order for cross linking of the IgE antibodies captured on the cell surface to occur, the 

allergen needs to posses at least two different epitopes recognised by the antibodies. 

 

First contact:

Sensitisation phase 

Mast cell

IgE FceRI

Allergen

Antigen presenting cellT helper cell

TH2

IL-4, 

IL-13

B  cell

Differentiation

Class switch

IgE

Second contact:

Elicitation phase

Release of inflammatory mediators

Allergic reaction 

Plasma cell
 

Fig. 1.1 Overview of the mechanism of type I allergy 

 

After the first immediate allergic reaction, the late phase reaction may follow which takes up to 8 

to 48 hours to develop. In the late phase reaction, mast cells and basophils are also pivotal 

players as they are the major source of various cytokines and chemokines. These mediators drive 

the Th2 immune responses and initiate the influx of leukocytes, for example eosinophils, to the 

inflammatory sites. Eosinophils produce inflammatory mediators such as leukotrienes, which 

cause vasodilatation, mucosal swelling and smooth muscle contraction. Symptoms associated 

with the late phase reaction is a second phase of smooth muscle contraction, edema and swelling 

due to hypertrophy (increase in cell size) and hyperplasia (increase in cell proliferation) (Murphy 
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et al., 2008). The late phase reaction occurs in roughly 50% of the patients with an immediate 

response (Meltzer 1997). 

 

1.2.1 Allergens  
In order for a molecule to be defined as an allergen it must display specific properties. It must be 

able to bind to IgE in order to elicit the clinical symptoms associated with allergy. The IgE 

antibodies are generally specific for the particular allergen, however cross reactions can occur.  

Such cross reactions are commonly observed in patients sensitised to the birch pollen allergen 

Bet v 1. Homologues of this protein are found in fruits and vegetables such as cherries or carrots. 

These elicit allergic reactions by binding to Bet v 1 specific IgE due to cross reactions. IgE 

sensitisation to N-glycans (cross‐reactive  carbohydrate  determinants), as they are found on 

some plant glycoproteins, can also be a cause of cross reactivity.  

According to the prevalence of the IgE sensitisation in patients, allergens are divided into major 

and minor allergens. In order to be classified as a major allergen, the allergen has to be 

recognised by the serum IgE from more than 50% of the patients in a group of at least 5 allergic 

patients. From 5-50% prevalence, the allergen is considered minor (Larsen et al., 1996). The 

binding of allergens by IgE antibodies is dependent on the identification of so called B cell 

epitopes; these can either be linear or conformational. Linear epitopes consist of a continuous 

sequence of amino acids while conformational epitopes consist of amino acid sequences which 

belong to different sections of a protein but have come to lie within close proximity to each other 

due to the three dimensional structure of the protein. T helper cells recognise allergens only after 

they have been processed by antigen presenting cells (APC) and are presented as MHC-peptide 

complexes (chapters 1.9.2 and 1.10). Epitopes recognised by T cells are always linear.    

 

1.3 Food Allergy  
For the prevalence of food allergy, only estimated figures exist. Studies claim that 3-7% of the 

western population suffer from food allergies, some studies even present figures of up to 17% 

(Rona et al., 2007). Furthermore, the prevalence of food allergy in the western countries has 

experienced a significant increase in the recent decades (Sicherer 2002; Sampson 2003). Some 

common allergies include egg (0.5 - 9%), milk (0.2 – 9%), shell fish (2.5%) and peanut (0,5-6%) 

(Rona et al., 2007). The heterogeneity in the prevalence of food allegy in general and allergies to 

a specific food stated in different studies is likely to be the result of the different populations being 

studied and differences in study design or methodology.   

The symptoms of food allergy can range from itchiness of the oral cavity and gastrointestinal 

disorders such as diarrhoea to severe reactions such as dyspnoea or an anaphylactic shock 
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which can be fatal. Seemingly unrelated symptoms such as itchiness of eyes and rhinitis or 

contact dermatitis may also be seen in response to aerosolised food particles or handling food.    

 

 

1.4 Influence of thermal processing on food allergens 
Heating makes food safe to eat by inactivating harmful bacteria or toxins. It also enhances the 

texture, flavour and colour. The thermal processing of foods may decrease or enhance the 

allergenicity of food allergens as a result of a heat induced change of protein conformation and 

chemical modifications. The influence of thermal processing on the allergenicity of an allergen 

depends on temperature, pH, time and on the cooking method. The surrounding food matrix 

would also have a significant impact. So far, there are no universal rules predicting the 

consequences of thermal processing on the allergenicity of proteins. A decrease of allergenicity 

could be the result of the destruction of conformational epitopes by the denaturation of the protein, 

leaving only linear epitopes available for antibody binding.  

Thermal treatment is as likely to not affect or even to enhance the allergenicity of a food protein 

as it is to reduce it, as has been shown in a considerable number of studies. One of the major 

allergens of egg, ovomucuid, retains its immunogenicity after being heated to 100 °C (Hirose, 

2004). The cherry allergen Pru v 3 remains IgE reactive in thermally processed foods (Scheurer et 

al., 2004). Allergenicity may increase due to an increased resistance to digestive enzymes, newly 

available IgE binding sites or better accessibility of these sites due to unfolding of the protein or 

chemical modification. The latter two can lead to the formation of neoallergens. Neoallergen 

formation is very likely to play a role in cases where patients react to processed but not to raw 

food. Interestingly, the first reported case of allergy was a report of a patient who reacted to 

proteins in cooked but not in raw fish (Prausnitz and Kustner, 1921). A variety of similar cases 

have been published since then. For instance, it has been reported that a patient with pecan nut 

allergy had antibodies exclusively to allergenic determinants found in pecan nuts only after longer 

storage or heating (Malanin, 1995). Another case described a patient with allergic reactions 

following the consumption of cooked shrimp but not raw shrimp (Rosen et al., 1994). These 

findings suggest the development of neoallergen formation under the influence of heat.  

Protein-sugar interactions occur during thermal processing; these result in the non-enzymatic 

browning of food. The chemical modifications resulting from this interaction contribute to 

neoallergen formation. The reaction describing this process is the Maillard reaction and it has 

been found that the reaction products, in particular the end products of this multistep reaction, 

may severely influence the immunologic properties of food allergens.  
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1.5 The Maillard reaction  
The Maillard reaction is a major reaction occurring during the thermal processing and storage of 

food. In 1912 Louis C. Maillard (Maillard 1912) first described systemic studies about the reaction 

indicating that amino acids and reducing sugars undergo complex reactions during heating which 

lead to the formation of brown substances. The “Maillard reaction” is a series of subsequent and 

parallel reactions which can be divided into three stages.  

In the early stage, condensation takes place between an amino group of a protein and a carbonyl 

group of a reducing carbohydrate leading to the formation of a Schiff base. The condensation is 

followed by an intramolecular rearrangement of the Schiff base, resulting in the first stable 

reaction product, an aminoketose. The different aminoketoses which can be produced during the 

first stage of the reaction are collectively called Amadori products (Fig. 1.1). The ε-amino group of 

lysine represents the primary target for an attack by carbohydrates. Up to 70% of the lysine 

residues of a protein can react to Amadori products, depending on the time and temperature 

during heating or storage (Finot et al., 1981). Amadori products are fairly stable in foods with low 

water activity but during severe heating or prolonged storage they can undergo degradation, this 

marks the second stage of the Maillard reaction. The degradation reaction of the Amadori 

products results in the formation of 1,2-dicarbonyls. These are prone for reactions with proteins; 

this reactivity allows the final stage of the Maillard reaction to occur.  

 

Advanced glycation end products  (AGE)

N-e-carboxyethilysine
(CEL)

N-e-carboxymethilysine
(CML)

GA-pyridine

pyrraline

NHR

Amino compound

Reducing sugar

Amadori product

 
Fig. 1.2 Main steps of the Maillard reaction  
 

The 1,2-dicarbonyls react with further lysine side chains, ones which have not already been 

modified in the first stage of the reaction, or arginine of the protein to form stable peptide bound 

amino acid derivatives (Henle, 2005). N-ε-cyrboxymethyllysine (CML), N-ε-cyrboxyethyllysine 

(CEL), pyrraline, Glycolaldehyde-pyridine (GA-pyridine) and pentosidine are representative 

structures of amino acid derivatives formed during the final stage of the reaction (Fig. 1.1). Some 

of the “end products” of the Maillard reaction, namely peptides and proteins modified with these 
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structures after the reaction are collectively called advanced glycation end products (AGEs). N-ε-

carboxymethyllysine (CML) was the first amino-acid derivative of the Maillard reaction detected in 

food (Hartkopf and Ebersdobler, 1994). A pyrrole derivate of lysine, pyrraline, was quantified in 

several foods like milk or bakery products (Henle and Klostermeyer 1993; Rufian-Henares et al. 

2004). To distinguish the reaction mechanisms of the Maillard reaction from enzymatic 

glycolsylation the term glycation was introduced (Ledl and Schleicher, 1990). 

 

1.5.1 The Maillard reaction in food allergy 
The Maillard reaction may increase the allergenicity of food allergens in thermally processed 

foods. The glycation structures present on proteins modified by the Maillard reaction could 

contribute to the formation of new epitopes. When native Ara h 1 and Ara h 2 purified from 

peanuts (of which they are the major allergens) or recombinant Ara h 2 were subjected to the 

Maillard reaction by heating with carbohydrates or carbohydrate break down products, the binding 

of these allergens to serum IgE from peanut allergic patients was increased (Maleki 2001, Gruber 

2005). Chung et al showed that the amount of AGE adducts is twofold higher in roasted than in 

raw peanuts (Chung et al., 2001). A further analysis then showed that mature peanuts, which 

contain more sugar and protein than immature peanuts, have 20% higher levels of AGE adducts 

after roasting than identically processed immature peanuts. This increased level of AGE 

correlated with enhanced binding of IgE to the peanut extract (Chung et al., 2003). Scallop 

tropmyosin was also found to have increased IgE binding ability after modification by the Maillard 

reaction (Nakamura et al., 2005). 

Another interesting study suggested the generation of neoallergens by the Maillard reaction. The 

nonallergic protein lectin from peanuts was subjected to modifications by the Maillard reaction. 

While lectin showed little or no reactivity to serum IgE antibodies from patients with peanut 

anaphylaxis, the AGE-lectin did bind to the antibodies. Furthermore, AGE-lectin was able to inhibit 

serum IgE binding to peanut allergens (Chung and Champagne, 1999). IgE is the immunoglobulin 

isotype involved in the induction of allergic responses (chapter 1.13). The observations suggest 

that the glycation by the Maillard reaction could enhance the allergenicity of food allergens. 

 

1.5.2 Clinical relevance of the Maillard reaction 
Rhabar published in 1968 that the glycosylated part of haemoglobin, HbAIc, was increased in 

patients with diabetes (Rhabar, 1968). HbAIc is glycated by the binding of glucose to a valine 

residue in the form of an Amadori rearrangement (Koenig et al., 1977). These studies showed that 

the Maillard reaction occurs in the body.  

Recent studies have shown that various AGEs of endogenous proteins accumulate in the human 

body during aging, especially in long lived tissues such as collagen, neural myelins or the lens 

(Simm et al., 2008). The glycation process is dependent on the glucose concentration and is 

accelerated in hyperglycaemia (a condition in which an excess amount of glucose circulates in the 
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blood plasma) (Brownlee, 1992, Yamagishi et al. 2003, Yamagishi and Imaizumi, 2005). There is 

increasing evidence that the accumulation of endogenous AGEs plays a crucial part in the onset 

of diabetic complications and neurodegenerative disorders (Simm et al 2008; Takeuchi et a., 

2008; Gosh and Cooper 2008). A correlation of acute exacerbation of atopic dermatitis with the 

urinary levels of the AGE pentosidine has also been observed (Tsukahara et al., 2003). 

Interaction of AGEs with the signal-transducing receptor RAGE (receptor for advanced glycation 

end products, chapter 1.6.2) appears to play a role in the onset and exacerbation of diabetic 

complications and atopic dermatitis. RAGE mediated signalling induces the secretion of 

inflammatory cytokines (i.e. IL-1α and tumour necrosis factor-α) and growth factors (i.e. vascular 

endothelial growth factor and connective tissue growth factor) by epithelial cells, macrophages 

and monocytes. These cyokines and growth factors induce inflammation and oxidative stress, 

which could contribute to the pathological changes observed in the diabetic complications and 

atopic dermatitis (Bucula and Vlassare, 1995; Suzuki and Miyata et al., 1999). These 

observations suggest that AGEs could have an immunostimulatory effect.  

Since the in vivo Maillard reaction is exceedingly complex, endogenous AGEs are very 

heterogeneous. So far, only few AGEs generated under physiological conditions have been 

characterised, such as CML and pentosidine.  It is still not known whether the biological activity of 

endogenous and food derived AGEs is different or not (Koschinsky 1997). 

 

1.5.3 Influence of AGEs on DC function 
Studies examining the influence of AGEs on DCs have given conflicting data. AGEs derived from 

bovine serum albumin (AGE-BSA) were able to induce the maturation of human monocyte 

derived DCs and augmented their capacity to stimulate T cell proliferation as well as cytokine 

secretion (Ge et al., 2005). In contrast, adrenocorticotrophic hormone derived AGEs were shown 

to inhibit maturation and T cell stimulatory capacity of human DCs (Price et al., 2004). Together 

these studies suggest that AGEs could have an influence on the maturation of DCs as well as on 

the T cell immunogenicity of antigens. Maturation and antigen presentation in DCs and 

subsequent activation of T cells are highly critical processes in the onset and maintenance of 

allergy. Therefore, the glycation of food allergens by the Maillard reaction could contribute to the 

pathology of food allergy.  

 

1.6 AGE binding receptors 
Since it was found that AGEs contribute to the pathology of a variety of diseases, many 

researchers have tried to identify receptors which mediate the interaction of cells with AGEs. So 

far, the following receptors have been shown to bind to AGEs: the receptor for advanced glycation 

end products (RAGE) (Schmidt et al., 1992; Neeper 1992), Galectin-3 (Vlassara et al., 1995) and 

several receptors belonging to the heterogeneous scavenger receptor family; scavenger receptor 
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class A type I and II (SR-AI/II) (Suzuki et al., 1997; Araki et al., 1999), scavenger receptor class B 

type I (SR-BI) (Ohgami et al., 2001, a) and CD36 (Ohgami et al., 2001, b). 

 

1.6.1 Macrophage scavenger receptors 
Macrophage scavenger receptors (SR) were originally defined as receptors which could bind to 

low density lipoproteins (LDL) modified by acetylation (AcLDL) or oxidation (OxLDL) but not 

unmodified LDLs (Goldstein et al., 1979). Since then, the family of scavenger receptors has vastly 

expanded. The family is divided into eight classes (Class A, B, C, D, E, F, G and H) according to 

their multidomain structure (Krieger, 1997). Due to the definition of the receptors, the SR family 

consists of unrelated distinct gene products with considerable structural heterogeneity amongst 

the different classes. 

 

1.6.1.1 Class A Scavenger receptors 
The scavenger receptor class A has been identified in several species, including humans and 

mice (Ashkenas et al., 1993; Matsumoto et al., 1990; Tomokiyo et al., 2002). It is highly 

conserved among the species and is found in three isoforms, SR-AI, SR-AII (both collectively 

called SR-AI/II) and SR-AIII, which result from alternative splicing of one gene. SR-AIII is non-

functional and remains trapped in the endoplasmatic reticulum (Matsumoto et al., 1990; Rohrer et 

al., 1990; Gough et al., 1998). Further members of class A are the macrophage receptor with 

collagenous structure (MARCO) (Elomaa et al., 1995), scavenger receptor class A 5 (SCARA-

5)(Jain et al., 2006) and scavenger receptor with a c-type lectin domain (SRCL-I/II)(Nakamura et 

al., 2001). Those receptors have similar domain structures to SR-AI/II. 

1.6.1.1.1 Scavenger receptor class A type I and II 

SR-AI/II is a trimer consisting of three 80 kDa type II transmembrane proteins with an intracellular 

N-terminus. It is made up of the transmembrane domain, a spacer region, a helical coiled coil 

domain, a collagenous domain and a C-terminal cysteine rich domain. SR-AII has a shorter C-

terminus than SR-AI (Fig. 1.2). To this date, only the collagenous domain has been identified as a 

ligand binding domain. SR-AI/II binds to a wide range of anionic ligands including natural 

carbohydrates, oxLDL and acLDL and chemically modified proteins such as AGEs. The ligand 

binding specificity of SR-AI and SR-AII is considered to be similar (Kodama et al., 1995; Gough et 

al., 1998).  

The expression of SR-AI/II is restricted to cells of the myeloid lineage (e.g. DCs and 

macrophages) with the exception of monocytes (Hughes et al., 1995). SR-AI/II is expressed on 

26% of splenic CD11c+ DCs (Becker et al., 2006). Expression of SR-AI/II was also found on bone 

marrow derived murine DCs generated with granulocyte macrophage colony stimulating factor 

(GM-CSF) where the expression of SR-AI/II was intrinsically correlated with the expression of 

CD11c (Becker et al., 2006; Amiel et al., 2007). 
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SR-AI/II mediates the clearance of LDLs and pathogens (Hughes et al., 1995; Platt and Gordon, 

2001) and act as an adhesion molecule for macrophages (Santaiago-Garcia et al., 2003). 

Furthermore, the receptors appear to play a role in antigen presentation. Previous studies have 

demonstrated that the conversion of antigens to SR-AI/II ligands increased their T cell 

immunogenicity. For example, maleylation of mouse serum albumin (Mal-MSA) targets the protein 

for uptake by the scavenger receptors. Mal-MSA was able to induce T cell activation in mice, 

while native MSA was not. Additionally, T cell activation by Mal-MSA was dependent on the 

presence of SR-AI/II (Nicoletti et al., 1999). The results indicate that SR-AI/II play a role in the 

antigen capture and subsequent antigen presentation by APCs. 

Araki et al have shown that Chinese hamster ovary cells expressing SR-AI/II take up and degrade 

AGE-BSA (Araki et al., 1995). Binding of AGE to SR-AI/II was confirmed in peritoneal 

macrophages from SR-AI/II knock out mice, where degradation of AGE-BSA was considerably 

reduced compared to that in WT macrophages (Suzuki et al., 1997). It has been demonstrated 

that BSA modified with glycoaldehyde, which is an intermediate in the formation of CML, is 

recognised by SR-AI/II (Nagai et al., 2000). However, the exact ligand structure of AGEs which 

can bind to SR-AI/II remains unknown. 
 

                         

SR-AI   SR-AII    CD36        SR-BI

Class A                Class B

Collagenous domain
A-helical coil 
Cysteine rich domain 
Potential N-linked glycosylation

Key to Domains

 
Fig. 1.2 Domain architecture of class A and class B scavenger receptors. 
The receptors of one scavenger receptor class are structurally similar but the structures of different classes are very 

heterogeneous. Figure adopted and modified from Plüddemann et al., 2007.  

 
 
1.6.1.2 Class B Scavenger receptors 
The scavenger receptor class B has two members, CD36 and SR-BI. CD36 is a type II 

transmembrane receptor consisting of two transmembrane domains, an extracellular loop with 

glycosylation sites and two short intracellular tails (Greenwalt et al., 1992). The ligand binding site 

was suggested to be in the central part of the extracellular domain (Fig. 1.2) (Puente et al., 1996). 

CD36 is expressed on macrophages, platelets, adipocytes and some epithelial and endothelial 

cells (Terpstra et al., 2000). SR-BI has a similar loop structure as CD36. The receptor exists as 

two splice variants, SR-BI and SR-BII collectively referred to as SR-BI (Acton et al., 1994). SR-BI 
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is expressed on monocytes, macrophages and DCs as well as on hepatocytes (Terpstra et al., 

2000).  

Using Chinese hamster ovary cells expressing CD36, it was found that CD36 mediated the uptake 

of AGE-BSA which then underwent lysosomal degradation (Ohgami et al., 2001b). SR-BI also 

mediates the endocytosis of AGE-BSA.  AGE-BSA binds to the same sites of SR-BI as AcLDL 

and OxLDL (Ohgami et al., 2001a). 

 

1.6.2 Receptor for advanced glycation end products (RAGE) 
Schmidt and colleagues found that endothelial cells bind to AGE-modified proteins by a lactoferrin 

like protein (Schmidt et al., 1992). Using molecular cloning, it was shown that this protein was a 

member of the immunoglobulin superfamily of receptors. The receptor was named the receptor for 

advanced glycation end products (RAGE) (Neeper et al., 1992). RAGE has an N-terminal 

extracellular domain, a V-region like and two C-region like domains, one transmembrane domain 

and an intracellular C terminal domain. The V-region like domain is involved in ligand binding 

whereas the C-terminus is important for signal transduction (Schmidt and Stern 2000; Neeper et 

al., 1992; Hofmann et al., 1992; Huttunen et al., 1999).  

RAGE expression is observed in various tissues including vascular epithelium, lung, liver and 

neurons. Endothelial cells, DCs, macrophages, and monocytes are the main cells expressing the 

receptor (Lin et al., 2009; Cataldegirmen et al., 2005). RAGE contributes to a number of 

pathological processes in diabetes, atherosclerosis and neurodegenerative disorders (chapter 

1.5.2). In addition to cell surface bound RAGE, a soluble secreted form of RAGE has also been 

identified, so called endogenous secretory RAGE. This form of RAGE results from alternative 

splicing and appears to protect from AGE-induced injury by capturing AGE ligands (Yonekura et 

al., 2003). Apart from AGEs, several ligands for this receptor have been identified. One of the 

ligands is the nuclear protein high-mobility group box 1 (HMGB-1).  Stimulation of T cells with 

HMGB-1 via RAGE was shown to be essential for activation of these cells (Moser et al., 2007). 

 

1.6.3 Galectin-3 
Lectins are proteins which can bind to both soluble carbohydrates and carbohydrate moieties 

which are part of a glycoprotein. They have important functions in the innate and adaptive 

immune system by sensing glycoconjugates derived from self or pathogens.  Galectins are a 

family of 15 lectins which have the specificity for lactose/galactose in common (Barondes et al., 

1995). Galectin-3 was originally described as a cell surface marker for activated macrophages 

(Ho and Springer, 1982). Later, the receptor was also found on monocytes, eosinophils, natural 

killer cells, activated T and B cells and DCs (Dumic et al., 2006; Sato and Nieminen, 2004). 

Galectin-3 interacts with β-galactoside residues of matrix and cell surface proteins via the 

carbohydrate recognition domain (Pricci et al., 2000). The receptor contributes to a variety of 

cellular processes, such as phagocytosis by macrophages (Sano et al., 2003), proliferation and 
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survival of T cells and monocytes (Demetriou et al., 2001; Morgan et al., 2004). It has been shown 

that Galectin-3 has a high affinity for AGE-BSA (Vlassara 1995).  

 

1.7 Model allergens used in this study 

To examine the influence on the immunogenicity and antigenicity of food allergens in this study 

two model allergens were chosen: chicken ovalbumin (OVA), a major allergen of egg white, and 

Ara h 2, a major allergen of peanut (Arachis hypogaea). 

 

1.7.1 Chicken Ovalbumin, a major allergen of egg white  
Egg white allergy is one of the most prevalent allergies in children (Sicherer and Sampson, 2006). 

Some children become tolerant against egg by the time they reach school age (Wood, 2003). 

However, the allergy persists in others (Savage et al., 2007) and allergic reactions to egg in those 

patients are frequently severe. In some cases, onset of egg allergy has also been observed in 

adults (Nogaard et al., 1992; Escudero et al., 2003). OVA and ovomucoid are the two major 

allergens of egg white (Mine and Yang, 2008). 

OVA is the most abundant protein in avian egg white (Mine and Zhang, 2002). It is a glycoptrotein 

with a molecular weight of approximately 45 kDa and 386 amino acid residues (Nisbet et al., 

1981). The protein contains 3,5% of carbohydrate by weight. There is a single carbohydrate chain 

attached to the aspargine (Asn) at position 293 which is composed of N-acetyl-glucoseamine 

(GNac) and mannose (Fig. 1.3). The serine residues at positions 69 and 345 are potential 

phosphorylation sites (Perlmann, 1952) 

Purified OVA is commercially available in large quantities and is cost efficient. It has therefore 

become a widely used model allergen for immunological analysis. Many immunological tools have 

been established to study OVA, such as the transgenic mouse strains OT-1, OT-2 and DO11.10, 

which have T cell receptors specifically recognising OVA peptides. For these reasons, OVA was 

used as a model allergen in this study.   

                                   
Fig. 1.3 Glycation structures of chicken ovalbumin 
The single carbohydrate chain of OVA is attached to Asn293 and is composed of N-acetyl-glucoseamine (GNAc) and 

mannose (Man). Kiely et al., 1976 
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1.7.1.1 The Mannose receptor 
As OVA has several mannose residues (Fig. 1.3), the allergen binds to the mannose receptor 

(MR) (Huntington 2001 et al., Burgdorf 2006, Autenrith et al., 2007). The MR is a transmembrane 

receptor of approximately 180 kDa. It is a c-type lectin. C-type lectins have a highly conserved 

calcium dependent carbohydrate recognition domain (CRD) of around 120 amino acids. The MR 

consists of an N-terminal cysteine rich domain, a fibronectin type II repeat domain, eight CRDs, a 

transmembrane domain and a short intracellular region (Ezekowitz et al., 1990). The CRDs bind 

to glycoproteins bearing terminal fucose, mannose or glucose, whereas the cysteine rich domain 

binds sulphated sugar moieties (Largent et al., 1984). The MR is an endocytotic receptor. The 

receptor also contributes to pathogen defence by the recognition of carbohydrate residues of 

several microorganisms (McGreal et al., 2005). The MR is expressed by macrophages, DCs, 

monocytes, dermal microvascular endothelial cells and liver endothelial cells (Harris et al., 1992; 

Figdor et al.2002).  

 

1.7.2 Ara h 2, a major allergen of peanut  
Peanuts (Arachis hypogaea) are highly allergenic and cause severe anaphylactic reactions more 

often than other food known to cause allergic reactions (Yunginger et al., 1989; Sampson et al., 

1992). Peanut allergy tends to develop in childhood and often remains throughout life. The 

prevalence of peanut allergy has risen over the past decade (Burks, 2008). Due to the widespread 

use of peanut products and the lack of efficient therapies, patients have to accommodate 

themselves with restrictions on quality of life. Accordingly, peanut allergy is a growing concern in 

regard to food safety.  

Peanuts contain many proteins with allergenic properties. So far, Ara h 1 to 9 have been isolated 

from peanuts as allergens. Among these, Ara h 1 and Ara h 2 are considered as the major 

allergens as they are recognised by serum IgE from more than 90% of the patients with peanut 

allergy (Burks et al., 1992; Burks et al., 1995). The glycoprotein Ara h 2 belongs to the 

prolamines, a superfamily whose members are frequently found in seeds as storage proteins and 

amongst which plant food allergens are often found. In SDS-PAGE the protein runs as two bands 

at approximately 16 kDa and 18 kDa representing the two isoforms, Ara h 2.01 and Ara h 2.02. 

(Chatel et al., 2003). The amino acid sequence of the isoforms is 98,1% identical. Ara h 2.01 has 

160 amino acids, whereas Ara h 2.02 contains an additional insertion of 12 amino acids. Ara h 2 

is resistant to acidic conditions and digestion enzymes of the gastrointestinal tract (Astwood et al., 

1996, Lehmann et al., 2006), properties which could contribute to the high allergenicity of 

peanuts. In general, peanuts are thermally treated in some form and Ara h 2 was shown to be 

highly resistant to temperatures of up to 90°C (Lehmann et al., 2006). Therefore, the influence of 

thermal processing on the allergenicity of peanut allergens is of great interest.  

 



                                                                                                                                  Introduction 
 

 

13 
 

1.8 Dendritic cells  
As professional antigen presenting cells (APCs), dendritic cells (DCs) would be the first immune 

cells to capture allergens. DCs were first described by Paul Langerhans in 1868, who stained 

these cells in human skin and mistakenly thought they were nerve cells due to their dendrites 

(Langerhans 1868). DCs are key players of the immune system in both protection and tolerance. 

They are widely distributed in most tissues, including non-lymphoid as well as lymphoid tissues 

and also in the blood. DCs in tissues such as the intestine constantly sample environmental 

antigens (e.g. food proteins) and migrate into the T cell areas of lymph nodes (LNs). The T cell 

area is located in the cortex of the LNs and it is within these areas that T cells are found. Within 

the T cell area the contact between DCs and T cells takes place. When T cell receptors of T cells 

recognise the antigenic peptide presented by DCs, the T cell is activated (chapter 1.12.1). The 

migration of DCs to the LNs is greatly enhanced once an inflammatory signal is encountered 

(Randolph et al., 2008). However, self antigens should not induce an immune response. DCs are 

able to tolerise T cells to self antigens in the thymus and in the periphery (Bancherau and 

Steinman 1998). In allergy, DCs play a critical role in the sensitisation to allergens and the 

induction of the Th2 response (Hammad et al., 2002; Graffi et al., 2002) as well as in antigen 

presentation to previously primed Th2 cells. The pivotal role of DCs in food allergy was 

demonstrated by the observation that the adoptive transfer of Payer’s patches derived DCs from 

allergic mice was able to induce antigen-specific IgE responses in naïve mice even without prior 

antigen challenge of the naïve mice (Chambers et al., 2004).  

 

1.8.1 DC subsets 
Since the first description of DCs, it has become apparent that there are many different subtypes 

of DCs. Each subtype has a particular location and function in the immune system (Shortman and 

Liu, 2002). In the steady state, DCs can be divided into two major populations in both mice and 

humans, conventional DCs (cDCs) and plasmacytoid DCs (pDCs). By flow cytometry, murine 

cDCs can be characterised as CD11c+CD11b+B220- (Wick, 2007), pDCs can be identified by flow 

cytometry as being CD11clow CD11b– B220+ (Brawand et al., 2003). During infection or 

inflammation, further DCs can develop, such as monocyte derived DCs and tumour necrosis 

factor (TNF) producing DCs.  

cDCs can be further subdivided into migratory DCs and lymphoid tissue resident DCs. Migratory 

cDCs act as sentinels in the peripheral tissue and migrate to the LN bearing antigens from the 

periphery where subsequently activates T cells. Examples of migratory cDC would be the 

Langerhans cells in the skin or the cDCs found in the intestine and airways. Lymphoid tissue 

resident DCs collect and present antigens in the lymphoid organ itself. Lymphoid tissue resident 

cDCs include most of the cDCs in the thymus and the spleen.  

DCs are of haematopoietic origin. Haematopoietic stem cells are found in the bone marrow and 

give rise to two lineages of progenitor cells, the myeloid and the lymphoid progenitor. All subtypes 
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of DCs can develop from either the common lymphoid progenitor (CLP) or the common myeloid 

progenitor (CMP) populations. Since myeloid precursors are more abundant in the bone marrow 

than lymphoid precursors, it is assumed that in vivo most DCs are of myeloid origin.  

pDCs have been mainly identified as important players in viral infections by secretion of large 

amounts of Interferon (IFN) −α  and  β. Their potential to take up antigen and initiate T cell 

responses is still unclear. On the other hand, cDCs are known to be highly sufficient in antigen 

uptake and are highly potent activators of T cells. These characteristics make them critical players 

also in allergy. In vitro generated bone marrow derived mouse myeloid dendritic cells (mDCs) are 

regarded as a model for cDCs. Therefore, mDCs were chosen for the present study.  

 

 

1.9 Antigen uptake by dendritic cells 
In most tissues, DCs are in an immature state. In this state they are unable to stimulate T cells but 

are well equipped to capture antigens. Immature DCs are highly efficient in the uptake of self and 

foreign antigens. The sampling of their environment by DCs is critical for the regulation of 

tolerance and the induction of immunity. DCs employ a variety of mechanisms for the uptake, 

namely pinocytosis, phagocytosis, and receptor-mediated endocytosis.  

 

1.9.1 Pinocytosis and phagocytosis 
Pinocytosis describes an uptake mechanism by which fluids are introduced into the cell via the 

invagination of the cell membrane resulting in the formation of vesicles within the cells. 

Pinocytosed material is taken up into clathrin coated pits which have the protein chlathrin on the 

inner side of the membrane which, together with other proteins, forms a basket. The pits are 

pinched off from the cell membrane and enter the cell as clathrin coated vesicles and fuse with 

early endosomes and are then processed in the endocytotic pathway (chapter 1.9.2). Pinocytosis 

is a constitutive process in immature DCs.  
For the uptake of large particulates, DCs employ phagocytosis. The particles are usually 

recognised by receptors on the cell surface. When binding to the particles, the receptors form so 

called phagosomes by folding of the plasma membrane around the binding area. Within the cells, 

the phagosome fuses with the lysosome, where the phagocytosed particles are degraded 

(chapter 1.9.2). Bacteria (Rescigno, 2002), protozoans (Konecny et al., 1999) and yeast (d'Ostiani 

et al., 2000), as wells as cell debris or whole dying cells are taken up by phagocytosis. DCs are 

able to distinguish between necrotic and apoptotic cells and the presentation of cell related 

antigens may play a role in the maintenance of tolerance (apoptotic cells) and for the triggering of 

an immune response (necrotic cells) ( Steinman et al., 2000) 
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1.9.2 Receptor mediated endocytosis and the endocytotic pathway 
To take up soluble exogenous antigens, DCs are equipped with a full array of specialised 

receptors such as galectins, c-type lectin receptors, Fc receptors (Fanger, 1996; Ravetch, 2001) 

and scavenger receptors (Becker et al., 2006; Amiel et al, 2007) on the cell surfaces. These 

receptors bind to conserved structures such as carbohydrate moieties on antigens and pathogen-

associated molecular patterns in pathogenic microbes. The captured allergens and pathogenic 

microbes are endocytosed and targeted into the endocytotic pathway, which consists of various 

endosomal compartments. Concerning their pH and composition, the endosomal compartments 

mature gradually along the track which makes it difficult to clearly distinguish them from each 

other. However, three major compartments are commonly defined, the early endosomes, the late 

endosomes and the lysosomes.  

The membrane and the lumen of the early endosome are similar in design to the cell membrane 

and the extracellular medium, respectively. In the late endosomes there is already a considerable 

variety of proteases present which are only found in the endocytotic pathway and the interior is 

mildly acidic (around pH 6). Late endosomes mature into lysosomes which are highly acidic, with 

a pH of around 4 to 5 (Poole and Ohkuma, 1981) and have extensive proteolytic activity 

(Villadangos, 2001). Lysosomes contain around 40 different types of acid hydrolases which 

depend on the acidic environment of the lysosome for activation (Chapman, 1998). Hydrolases 

found within the lysosome include proteases, lipases, glycosidases, phosphatases and 

sulphatases; they are engaged in the antigen processing.  

Evidence has accumulated that antigens internalised by receptor mediated endocytosis enter 

either the MHC class I or the MHC class II loading pathway (chapters 1.10.1. and 1.10.2). The 

separation of exogenous soluble antigens for MHC I from MHC II restricted presentation appears 

to depent on the receptor mediating the uptake. Lakadamyali and colleagues have shown that 

antigens taken up by different receptors are delivered to two different endosomal subsets. One 

group of endosomes displayed a high mobility along microtubules and matured rapidly towards 

late endosomes, while the other subset was static and matured much slower (Lakadamyali et al., 

2006). The content of the fast maturing endosomes is rapidly degraded in the course of 

maturation. Ovalbumin (OVA) taken up by the mannose receptor (MR) by mouse DCs and 

macrophages was delivered to stable endosomes from where it is released for degradation in the 

cytosol to be processed only for MHC I presentation. In contrast, OVA which was pinocytosed or 

taken up scavenger receptors (SR) was targeted to the lysosomes (possibly via the fast maturing 

endosomes) and was exclusively presented on MHC class II (Burgdorf et al., 2007). Ligands of 

DC-SIGN, dectin-1 and DEC-205 are also targeted to the lysosomes (Engering et al., 2002; 

Carter et al., 2006; Dudziak et al., 2007) 
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1.10 Antigen processing by antigen presenting cells 
In order for antigens to be made available for presentation to T cells, they have to be processed 

into short peptides and loaded onto MHC molecules. This is a complex process involving different 

steps in which mediators of proteolysis, protein sorting and transport, chaperons and other 

components have to work together in a coordinated fashion. Exogenous and endogenous 

antigens are presented on MHC I and II which are recognised by CD8+ and CD4+ T cells 

respectively.   

 

1.10.1 MHC class I restricted presentation 
MHC I is a transmembrane heterodimer consisting of an α-chain and a β2-micorgloblin. The α-

chain folds into three domains, α1, α2 and α3. The folding of the α1 and α2 domain creates a long 

groove, which is the site of peptide binding. After assembly of the α chain with the β2-

microglobulin, MHC I is targeted to the peptide-loading complex in the endoplasmatic reticulum 

(ER). The peptide-loading complex consists of many components, including the chaperon 

calreticulin and TAP (transporter associated with antigen processing). 

Endogenous proteins are degraded in the cytoplasm by the proteasome and other enzymes, 

generating peptides. The proteasome is the major proteolytic complex and is found in the 

cytoplasm and the nucleus of the cells. (Kloetzel, 2004; Rock et al., 2004; Shastri et al., 2002). 

The antigen peptides are then transported into the lumen of the ER by TAP. The final trimming of 

the peptides takes place in the ER. There, the peptide loading complex conducts the assembly of 

MHC I with the peptides and the peptide-MHC I complexes are then transported to the cell 

surface (Elliot and Williams, 2005).   

In addition to endogenous antigens, exogenous antigens are also presented on MHC I by a 

process termed cross presentation. Cross presentation was found to occur in DCs (Dudziak et al., 

2007; Pooley et al, 2001), certain macrophages (Burgdorf et al., 2007), B cells (Ke and Kapp, 

1996) and, under special circumstances, liver endothelial cells (Limmer et al., 2000). Cross 

presentation allows APCs to present antigens of viruses which do not infect APCs and antigens of 

tumours which do not originate from APCs on MHC I. TAP dependent and independent 

mechanisms have been proposed for the loading of exogenous protein derived peptides to MHC I. 

In the case of OVA which is taken up via the MR, it was found that after processing of the antigen 

in the cytosol, the peptides reenter the early endosome in a TAP dependent manner without 

diversion to the ER, subsequently this would require a MHC class I loading machinery in the early 

endosomes (Burgdorf et al., 2008).  

 

1.10.2 MHC class II restricted presentation 
MHC II is constitutively expressed on professional APCs such as DCs, macrophages and B cells. 

Cortical and medullary thymic epithelial cells also express the molecules. MHC II consists of two 

glycoprotein chains, α and β. Both chains have two domains, α1, α2 and β1, β2 respectively. The 
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α1 and β2 domains form the peptide binding cleft. The β-chain is polymorphic and is responsible 

for the peptide binding specificity of each MHC class II molecule (Bell at al., 1985; Engelhard, 

1994). 

The αβ heterodimers of MHC II are assembled in the endoplasmatic reticulum (ER) together with 

the invariant chain ( Ii ) which chaperons the folding of MHC II (Sant and Miller, 1994; Cresswell, 

1996). Ii has a targeting motive in the cytoplasmic tail which targets the MHC II-Ii complex to the 

endocytotic pathway. The compartment where antigen peptides are loaded to MHC II s is termed 

MHC class II-containing compartment (MIIC).   

There has been considerable debate in exactly defining MIIC. Loading of antigen peptide to   

MHC II has been reported for every location of the endocytotic route. The majority of MHC II-Ii 

complex is delivered to the transition between early and late endosomes (Geuze 1998; Wattes, 

2001) and then enters the late endosomes. There, the MHCII-Ii complex is processed by cysteine 

proteases. After this processing, only a small peptide remains on the peptide binding groove of 

MHC II, the class-II associated variant chain peptide (CLIP), which prevents premature binding of 

antigen peptides. Substitution of CLIP with antigen peptides is catalysed by an accessory 

molecule, HLA-DM in human and H2-DM in mouse. In B cells, peptide loading is further catalysed 

by HLA-DO and H2-O in human and mouse respectively (Brocke et al., 2002). 

The second location for Ii processing and peptide loading is the early endosome (Villadangos, 

2001). Some of the MHC II-Ii complex has been observed in this compartment (Brachet et al., 

1999; Pond and Watts, 1997). In the early endosomes, the removal of Ii from MHC II is 

independent of cysteine proteases and H2-DM, how it is accomplished instead is still unknown. 

Proteolytic activity in the early endosome is not high. It has been suggested that in the early 

endosomes MHC II binds to peptides which do not survive the harsher conditions of the later 

endosomal compartments and are only preserved as part of longer polypeptides. The complex of 

MHC II and antigen polypeptide could then move to the late endosomes/lysosomes. In these, 

unprotected regions of the polypeptide on MHC II are clipped off by proteases (Villadangos, 

2001). Finally, the antigen peptide - MHC II complex is transferred to the cell surface. 

 

 

1.11 Maturation of DCs 
Before antigen capture or activation by mediators secreted by other cells, DCs in most tissues are 

immature and unable to stimulate T cells. For an efficient activation of T cells, MHC I or II and co-

stimulatory molecules play a pivotal role. Immature DCs express relatively low levels of MHC I 

and II or co-stimulatory molecules (e.g. CD40 or CD86) on the cell surface. MHC II is synthesised 

in fairly large amounts but is not transported to the cell surface, instead it is retained in the 

endocytotic pathway (Pierre et al. 1997).  

Maturation transforms DCs from antigen capturing cells into antigen presenting cells. Fully mature 

cells then express nearly all of their MHC II on the cell surface (Pierre et al. 1997). In parallel, the 
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cell surface expression of co-stimulatory molecules (e.g. CD40, CD80 or CD86), MHC I and T cell 

adhesion molecules (e.g. CD48 and DC-SIGN) is upregulated. The morphology of the DCs also 

changes. The cells lose their adhesive structure, reorganise the cytoskeleton and acquire high 

cellular motility (Trombetta and Mellman 2005). Membrane folds develop to form long dendrites, 

increasing the cell surface, thereby increasing the opportunities for T cell interaction. The 

expression of receptors for antigen capture is significantly reduced. Instead, chemokine receptors 

which facilitate the migration of the DCs to lymphoid organs are upregulated.  

 

1.12 T cells 
Antigen stimulation is passed on to tissues by T cells which initiate tissue cells to increase 

immune responses. Furthermore, T cells are required for the production of antibodies by B cells 

(chapter 1.13). The nature of the response depends on the property of the involved T cells 

(Schmidt-Weber et al., 2007). T cells can be divided into two large groups according to the co-

receptors expressed on the cell surface. One group expresses CD4 while the other carries CD8 

which bind to MHC II and MHC I respectively. In order to be able to respond to the enormous 

diversity of antigenic epitopes, an excessively large range of T cell receptors (TCR) must be 

available for T cells. The antigen recognition domains are encoded by genes which are 

assembled by somatic rearrangement (Murphy et al., 2008). 

 

1.12.1 Activation of naïve T cells  
Naïve T cells are functionally immature. In the cortical region of the lymph nodes, they transiently 

bind to every APC they encounter. This transient binding is important for the T cells to sample 

many MHC molecules on the APCs for the presence of the specific antigen peptide their T cell 

receptor (TCR) recognises. The encounter of a T cell with a peptide-MHC complex which is 

recognised by the TCR results in the stabilisation of the association between APC and T cell 

(Bromley et al., 2001). This can last for several days, during which the naïve T cells proliferate 

and the daughter cells also adhere to the APC and differentiate into effector cells (Murphy et al., 

2008).  

For the activation of naïve T cells two signals are required. The first signal is the interaction of the 

TCR with a specific peptide-MHC complex presented on the cell surface of APCs. The second 

signal required for efficient T cell activation is delivered by co-stimulatory molecules. Both the 

antigen-specific signal and the co-stimulatory signal have to be delivered by the same cells. 

Consequentially, only activated APCs, predominantly DCs, can induce T cell responses. This is 

crucial to prevent responses to self antigens.  

The most important co-stimulatory signals for efficient clonal expansion of naïve T cells are 

provided by members of the B7 family, B7-1 (CD80) and B7-2 (CD86) which interact with CD28 

on T cells. Naïve T cells divide and undergo apoptosis on an irregular basis. The binding to the 
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MHC-peptide complex and CD28 co-stimulation directly trigger the progression through the G1 

phase of the cell cycle (Appleman et al. 2000). CD28 co-stimulation also induces the synthesis of 

IL-2 and the expression of the α-chain (CD25) of the IL-2 receptor (IL-2R). Naïve T cells express 

an IL-2R made up of the β and γ chains only which has a low binding affinity for IL-2. The α-chain 

associates with the βγ heterodimer to give rise to a high affinity IL-2R. Binding of IL-2 triggers the 

entry into the S-phase of the cell cycle (Appleman et al. 2000). The T cells can then proliferate 

two to three times per day for several days resulting in clonal expansion. IL-2 is an essential 

survival factor for T cells and also promotes the differentiation into effector cells. Since activated T 

cells synthesise IL-2, they promote their own growth in an autocrine fashion.  

 

1.12.2 CD4+ T cells 
CD4+ T cells are key players of the adaptive immunity. Four main subsets of CD4+ T cells are 

generally discerned. Namely these are the effector cells Th1, Th2 and Th17, which are opposed 

by the fourth subset, the regulatory T cells (Tregs), whose function is to suppress effector T cell 

activation in order to prevent excessive T cell responses and autoimmune diseases. T cell 

differentiation is mainly determined by the cytokine milieu during the activation of naïve T cells.   

In murine models based on artificial immunisation or infection, T cell differentiation is clear cut. In 

humans, polarisation of CD4+ T cell responses is usually less clear (Romagnani, 1994). An 

imbalance of the CD4+ subsets in humans is associated with the development of allergies and 

autoimmune diseases (Farrar et al., 2002; Ho and Glimcher 2002; Neurath et al., 2002) 

 
1.12.2.1 Th1 cells 

Th1 cells are characterised by the production of IFN-γ and TNF-β (Mosmann et al 1986, Del Prete 

et al., 1988). The development of Th1 is driven by IFN-γ, IL-12 and IL-27. IFN-γ and IL-27 activate 

the transcription factor STAT1 (Signal Transducers and Activators of Transcription protein 1). 

STAT1 activates T-bet, which is considered to be the key transcription factor in Th1 development, 

and initiates IFN-γ production (Wilson et al, 2009). T-bet, in association with various co-factors, 

also antagonises GATA-3, which is the transcription factor controlling Th2 differentiation, thereby 

silencing the expression of the Th2 associated cytokines IL-4, IL-5 and IL-13 (Dijuretic et al., 

2007).   

Th1 cells play a critical role in cell mediated immunity. They activate macrophages and control 

intracellular pathogens such as viruses and certain bacteria, e.g. Listeria and Mycobacterium 

tuberculosis (Holland et al., 2007). Th1 cells also stimulate antibody production against 

extracellular pathogens via co-stimulation of B cells. In human, the antibody subclasses 

associated with Th1 responses are IgG1 and IgG3, whereas in mouse they are IgG2a and IgG2b 

(Murphy et al., 2008). The excessive production of Th1 cytokines has been linked with delayed 

hypersensitivity reactions (Type IV allergies, Abbas et al., 1996).  
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For Type I allergy it has been demonstrated that Th1 cytokines suppress Th2 responses (Iwamoto 

et al. 1993; Dow et al. 1999). IFN-γ inhibits Th2 cytokine production and proliferation in vitro 

(Gajewski et al., 1989; Fernandez-Botran et al., 1988).  In vivo, IFN-γ is capable of reducing the 

numbers of Th2 cells in the area of allergic inflammation as well as inhibiting the secretion of Th2 

cytokines (Li et al., 1996; Iwamoto et al., 1993; Nakajima et al., 1993). Furthermore, IFN-γ can 

block Th2 induced inflammatory pathways downstream of cytokine production. This effect may 

occur by the action of the cytokine on inflammatory cells such as eosinophils (Cohn et al. 1999). 

Subjects with intact oral tolerance to food proteins have reportedly higher levels of IFN-γ and 

TNF-α than food allergic subjects (Turcanu et al., 2003; Andre et al., 1996). Furthermore, 

resolution of allergy appears to be related with normalisation of IFN-γ levels (Smart et al. 2002), 

showing the importance of Th1 cell contribution for a balanced immune response to 

environmental antigens. 

 
1.12.2.2 Th2 cells 
Th2 cells are characterised by the production of IL-4, IL-5, IL-6, IL-9, and IL-13. Th2 differentiation 

is induced by IL-4. The cytokine activates the transcription factor STAT6, which activates GATA-3. 

GATA-3 contributes to the expression of IL-4, IL-5 and IL-13 and also in silencing of IFN-

γ expression.  

In allergic patients, a high frequency of allergen specific Th2 cells in the peripheral blood and 

inflammatory tissues has been observed. The Th2 response to one or more environmental 

allergen triggers the recruitment of other cell types, the secretion of a large number of soluble 

factors and the expression of adhesion molecules. Th2 cytokines are required for the 

differentiation, maturation, activation and tissue homing of inflammatory cells and the Th2 cells 

themselves. For instance, IL-4 and IL-13 are required for the production of IgE antibodies by B 

cells (de Vries et al., 1993, chapter 1.13). IL-5 induces the release of mature eosinophils as well 

as immature eosinophils from the bone marrow and is important for the terminal maturation and 

activation of these cells (Palframan et al.,1998). IL-4 induces expression of chemokines (i.e. 

eotaxin) in epithelial cells and fibroblasts, which induce the migration of eosinophils and Th2 cells 

into inflammatory sites. IL-4 and IL-9 promote the development and maturation of mast cells. 

Together, activation of Th2 cells triggers an inflammatory cascade of great complexity which 

promotes allergic inflammation and the manifestation of clinical symptoms. 

 

1.12.2.3 Th17 cells 
Th17 cells are a more recently described subset of CD4+ T cells and are characterised by the 

production of IL-17, IL-22 and IL-23.  Th17 differentiation is induced by IL-6 and TGF-β. Th17 

cells contribute to the host defence by acting on various immune and non-immune cells in 

protecting against extracellular bacteria. However, they also play a critical role in autoimmune 

diseases such as multiple sclerosis and rheumatoid arthritis. Experimental data suggests that IL-

17 coordinates tissue inflammation by inducing the secretion of proinflammatory cytokines such 
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as IL-6, IL-8 and TNF-α.  Involvement of Th17 cells in allergic diseases has also been shown. In 

atopic contact dermatitis, the frequency of IL-17 producing CD4+ T cells correlated with the 

severity of the disease (Koga et al., 2008). In asthmatic tissues, upregulation of IL-17 production 

was found. It was suggested that the cytokine is involved in inflammation and airway remodelling 

(Matsunaga et al., 2006; Molet et al., 2001; Hashimoto et al., 2007). In some patients suffering 

from food allergy, enterocolitis (inflammation of the colon and small intestine) and accumulation of 

neutrohphils in the intestinal tissues was observed. IL-17 seems to recruit neutrophils by inducing 

IL-8 secretion or mast cell activation in these patients (Oboki et al., 2008), thereby promoting 

allergic inflammation. 

 

1.12.2.4 Regulatory T cells 
Tregs play a critical role in the maintenance of tolerance and suppression of potentially 

destructive activities of effector T cells and inflammatory cells. Tregs have been classed into 

naturally occurring Tregs which develop in the thymus (nTregs) and Tregs which emerge in the 

periphery under various tolerogenic conditions (Sakaguchi et al., 2008), so called inducible Tregs 

(iTregs). Most nTregs are differentiated in the presence of transforming growth factor - beta (TGF-

β), and are characterised by a high expression of CD25 and the co-expression of the forkhead 

box P3 transcription factor (Foxp3) (Sakaguchi 2005). nTregs produce both TGF-β and IL-10. In 

iTregs, there are several subsets such as Tr1 cells producing IL-10 and TGF-β producing Th3 

cells (Vagnali et al., 2009; Roncarolo and Gregori, 2008). Both nTregs and iTregs reportedly play 

an important role in suppression of allergic diseases (Akdis, 2009).  

The inhibitory cytokines IL-10 and TGF-β produced by Tregs are crucial for their suppressive 

functions. These cytokines inhibit proliferation and cytokine production of effector T cells. IL-10 

also inhibits IgE production of B cells and activation of mast cells. In studies of food allergy, 

children outgrowing a food allergy seem to have more Tregs than children with persistent allergy 

(Karlsson et al., 2004). It has also been shown that Tr1 cells consistently represent the dominant 

T cell subset specific for food allergens in healthy individuals; in contrast, there is a high 

frequency of allergen specific IL-4 producing T cells in allergic individuals. A quantitative defect of 

Treg could be involved in the pathogenesis of allergic diseases (Grindebacke H et al., 2004). 

1.12.3 CD8+ T cells  
CD8+ T cells predominantly differentiate to cytotoxic T cells and play a central role in pathogen 

defence. The cytotoxic T cells kill target cells which display antigen peptides on MHC I. MHC I is 

expressed by most nucleated cells. This enables them to present antigens of intracellular 

pathogens such as viruses to CD8+ T cells, facilitating the elimination of the infected cells and 

thereby hindering the spreading of the pathogen. APCs can also activate CD8+ T cells with 

exogenous derived antigens by cross presentation (chapter 1.10.2).  
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1.13 B cells  
The chief function of B cells is the production of antibodies in response to antigens. In mammals, 

five isotypes of antibodies have been identified; IgM, IgD, IgG, IgA and IgE. They differ from each 

other in the structure of the constant region of their heavy chains. Mature naive B cells express 

IgD and IgM on their surface which act as B cell receptors (BCR) and capture and internalise 

antigens. The BCR have a vast range of antigen specificities, with each individual B cell producing 

receptors of one specificity which is determined by the variable region of the immunoglobulin. The 

first antibody isotype secreted upon activation is always IgM, later in the immune response the 

same veriable region may be expressed in IgE, IgA or IgG antibodies. This process is known as 

isotype switching and depends on the stimuli which the B cells receive.  

For the production of IgE antibodies in response to an allergen, two steps are required. The B cell 

must first be activated and then a class switch to IgE must be induced. The activation of B cells 

can be T cell dependent or independent. Antibody production against protein antigens, including 

allergens, requires antigen specific T cell help (Murphy et al., 2008). Naive B cells can bind 

antigens (allergens) via their cell surface IgM and IgD. The antigen-Ig complexes are internalised 

and processed by the B cells. The antigen derived peptides are then loaded onto MHC II and are 

subsequently presented on the B cell surface. TCRs of activated CD4+ T cells recognising the 

same antigen as the Ig of the B cells bind to the peptide-MHC II. In addition, the CD40 ligand 

expressed on T cells interacts with CD40 on B cells, thereby supplying the co-stimulatory signal 

required for B cell activation and class switching (Rivera et al., 2001). CD40 stimulation by 

allergen specific T cells upregulates the expression of the co-stimulatory molecules CD80 and 

CD86 by B cells, which in turn enhances CD40L expression on T cells and increases the 

stimulation of B cells through the induction of IL-4 (Geha et al., 2003). Proliferating B cells form a 

so called germinal centre which is present for about three to four weeks after the initial antigen 

contact. Germinal centre B cells first differentiate into plasmablasts, these are cells which have 

begun to secrete antibodies but are still dividing and can still interact with T cells. Some of the 

plasmablasts differentiate further into plasma cells. These no longer express MHC II or CD40. 

However, they efficiently produce large amounts of antibodies. Other germinal B cells differentiate 

into memory B cells (Murphy et al., 2008).  

In class switching to IgE, the Th2 cytokines IL-4 and IL-13 play a pivotal role. Through the 

interaction of IL-4 and IL-13 with their receptors on the B cell surface a signal transduction 

cascade is triggered which results in the transcription of the gene for the epsilon class of the 

constant region (Cε) of the immunoglobulin heavy chain in B cells, resulting in the production of 

class E antibodies (de Vries et al., 1993) 
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2 Aims of this thesis 
 

The Maillard reaction is a chemical reaction between reducing sugars and amino acids which 

generates protein derivatives modified with glycation structures, collectively called advanced 

glycation end products (AGEs). The products are important for the brown colour and taste of 

cooked foods. As the Maillard reaction occurs during storage and thermal processing of foods, a 

possible involvement of AGEs in the pathology of food allergy is of great interest. The aim of this 

thesis was to study the influence of the Maillard reaction on the T cell immunogenicity (the ability 

to induce T cell responses), antigenicity (the ability to induce antibody responses) and the 

potential allergenicity (an ability to induce allergic responses) of food allergens. 

Maillard reaction products have been shown to influence the maturation and T cell activation 

ability of dendritic cells (DCs). However, the impact of AGEs derived from food allergens on DC 

function and/or the subsequent activation of allergen specific T cells had not been examined prior 

to this study. Therefore, in the first part of the thesis, the T cell immunogenicity of the model 

allergen ovalbumin (OVA) which had been modified by the Maillard reaction was to be examined 

using in vitro murine cell cultures. For this purpose, OVA was to be glycated (AGE-OVA) by 

thermal processing with glucose and the structural changes induced by this process analysed. For 

all experiments, native OVA and OVA thermally processed without glucose were to be used as 

controls. To examine the T cell immunogenicity of AGE-OVA, CD4+ or CD8+ T cells from 

transgenic mice with OVA specific T cell receptors were to be used and co-cultured with bone 

marrow derived myeloid DCs (mDCs). Allergen specific T cell activation is preceded by the uptake 

of allergens by DCs, a process predominantly mediated by endocytotic receptors. In other studies, 

receptors which can bind AGEs have been identified, e.g. the receptor for AGEs (RAGE), galectin-

3 or SR-AI/II (macrophage scavenger receptor class A type I and II). However, the receptor(s) 

which mediate(s) the uptake of AGEs by mDCs was/were not known. A further aim was therefore 

the identification of the receptor(s) involved in AGE-OVA uptake by mDCs.  

In the second part of this thesis, the immunogenic properties of AGE-OVA in vivo were to be 

examined. For this, mice were to be exposed to AGE-OVA by different immunisation routes. The 

T cell immunogenicity of the glycated allergen was to be assessed by measuring the proliferation 

of splenic and lymph node CD4+ T cells of immunised mice in response to in vitro re-stimulation 

with the allergen. In addition, the level of allergen specific antibodies in the serum of immunised 

mice was to be measured by ELISA in to order elucidate the antigenicity of AGE-OVA.  

The prevalence of peanut allergy is increasing. Additionally, peanuts often induce life threatening 

anaphylactic reactions. Peanuts generally undergo thermal processing (e.g. roasting or frying) 

before consumption and since peanuts contain high amounts of reducing sugars, the Maillard 

reaction would occur. Therefore, in the final part of this thesis, the influence of glycation by the 

Maillard reaction on the immunogenic properties of the major peanut allergen Ara h 2 was to be 

determined in vivo. For this study, recombinant Ara h 2 was used. The recombinant allergen was 
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to be subjected to glycation by thermal treatment in the presence of carbohydrates and analysed. 

Unprocessed rAra h 2 and rAra h 2 thermally processed without carbohydrates were to be used 

as controls for all experiments. T cell imunogenicity and antigenicity of AGE-rAra h 2 in vivo, was 

to be evaluated in a similar way as for AGE-OVA.  
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3 Material and Methods 
 

3.1 Material 

3.1.1 Commonly used equipment.  
 
Special equipment and materials needed for a certain method are listed in the relevant method 
description. 
 
 
Tab. 3.1 List of commonly used equipment 
 
Equipment Model and Company 
  
Magnetic stirrer IKAMAG® RCT basic (IKA , Staufen) 
  
pH meter SevenEasy (Mettler Toledo, Giessen) 
  
Power source PowerPacTM (Biorad, München) 
  
Thermo mixer Thermomixer Compact (Eppendorf, Hamburg) 
  
Heating block Digital Heatblock (WVR International, Darmstadt) 
  
Incubator cabinet Orbital incubator SI50 (Carl Stuart Ltd., Dublin, IRL) 
  
Water bath Grant GD100 (Grant Instruments Ltd., Cambridge, UK) 
  
Vortex Vortex-Genie 2 (Scientific Industries, New York USA) 
  
Weighing scales Explorer Pro, (Ohaus, Pin  Brook, NJ, USA) 

EK-300i ( AND, Abingdon, UK) 
  
Centrifuges Centrifuge 5417C/R  (Eppendorf; Hamburg) 

Multifuge 1S-R (Heraeus, Langenselbold) 
Sorvall SLA 3000 (Thermo Scientififc, Bonn) 

  
Speed Vac SPD 111V (Savant, Ramsey, MN, USA) 
  
Seesaw shaker DUOMAX 1030 (Heidolph Instruments, Schwalbach) 
  
Orbital shaker KS 130 control (IKA, Staufen) 
  
Laminar flows Lamin Air HB2448 (Heraeus, Langenselbold) 

Labotect SG-400 (Labotect, Göttingen) 

  
Incubator (for cells) Hear cell 150 (Heraeus, Langenselbold) 
  
PCR thermocycler PCR System 2700 (Applied Biosystem, Weiterstadt) 
  
ELISA reader Spectra Max 340 PC (Molecular Devices, München) 
  
CD spectrometer J-810S (JASCO, Groß-Umstadt) 
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3.1.2   Chemicals 
If not otherwise specified, all chemicals were obtained from Merck (Darmstadt), Sigma 

(Steinheim) or Roth (Karlsruhe).  

 

3.1.3 Buffers 
General buffers were obtained from the medium kitchen of the Paul-Ehrlich-Institut (PEI). Special 

buffers and chemicals are described in the respective methods. 

 

PBS:                  1,5 mM KH2PO4 

                           8 mM Na2HPO4  

                          137 mM NaCl 

                           3 mM KCl  

                           pH 7.2 

 
 

3.1.4 Cell culture media and reagents 
 
Tab. 3.2 Media, additives and reagents for culture of primary mouse cells  
 
 Application Supplier 
   
RPMI 1640  All cells Gibco, Fisher Scientific, 

Schwerte 
   
Glutamine with Penicillin and Streptomycin All cells Media kitchen, PEI 
   
Fetal calf serum (FCS), Lot S0115 mDC culture Biochrom Berlin 
   
FCS Proliferation 

assays 
Gibco 

   
C8H18N2O4S  (HEPES), 1M mDC culture Media kitchen, PEI 
   
Recombinant mouse Granulocyte-
macrophage colony-stimulating factor (GM-
CSF) 

mDC culture R&D Systems, Wiesbaden 

   
Sodium pyruvate  mDC culture Sigma, Steinheim 
   
10 x lysis buffer Erythrocyte lysis  BD Biosciences, Heidelberg 
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3.1.5 Native and recombinant proteins 
 
Tab. 3.3 native and recombinant proteins used in this study 
 
Protein Supplier 
  
Ovalbumin from chicken egg white, grade V Sigma, Steinheim 
  
Recombinant OVA Section 5/4, PEI 
  
BSA  Santa Cruz, Heidelberg 
  
BSA, cell culture tested Sigma 
  
Recombinant Ara h 2 Section 5/4, PEI 
  
Recombinant cytokines for ELISA  
  
Recombinant mouse IL-2 Biolegend, San Diego, CA 
  
Recombinant murine IL-4 Peprotech, Hamburg 
  
Recombinant mouse IL-10 BD Biosciences, Heidelberg 
  
Recombinant mouse IL-12 BD Biosciences  
  
Recombinant murine IFN-γ Peprotech 

 
 
 

3.1.6 Antibodies and reagents for immune detection 
 
Tab. 3.4 Antibodies 
 
Antibody Application Company 
   
Primary antibodies   
   
APC Rat IgG2bκ anti-mouse CD4 Flow cytometry eBioscience, San Diego, CA 
   
FITC rat IgG2b anti-mouse CD4 Flow cytometry Miltenyi Biotech, Bergisch 

Gladbach 
   
APC Rat IgG2bκ anti-mouse CD11b Flow cytometry eBioscience 
   
PE Rat IgG2bκ anti-mouse CD11b Flow cytometry eBioscience 
   
APC Hamster IgG anti-mouse CD11c  Flow cytometry eBioscience 
   
PE-Cy5.5 Hamster IgG anti-mouse 
CD11c  

Flow cytometry eBioscience 

   
FITC Hamster IgMκ anti-mouse CD40 Flow cytometry eBioscience 
   
FITC Hamster IgG anti-mouse CD80 Flow cytometry eBioscience 
   
FITC Rat IgG2aκ anti-mouse CD86 Flow cytometry eBioscience 
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Rabbit polyclonal IgG anti-EEA1  LSM Calbiochem, Merck, Darmstadt 
   
Mouse IgG2a anti-FITC  ELISA Chemicon, Millipore, 

Schwalbach 
   
Rat IgG2aκ anti-mouse Galectin-3 Flow cytometry eBioscience 
   
Rat IgG2bκ anti-mouse IL-2 ELISA Biolegend 
   
Rat IgG1κ anti-mouse IL-4 ELISA eBioscience 
   
Rat IgG2bκ anti-mouse IL-10 ELISA Biolegend 
   
Rat IgG2aκ anti-mouse IL12 p35/p70 ELISA eBioscience 
   
Rat IgG2aκ anti-mouse LAMP1 LSM eBioscience 
   
Rat IgG1κ anti-mouse IFN-γ ELISA eBioscience 
   
Rat IgG2aκ isotype control  Flow cytometry eBioscience 
   
Rat IgG2b isotype control Flow cytometry eBioscience 
   
Rat IgG1κ anti-mouse IgE ELISA BD Biosciences, Heidelberg 
   
FITC rat IgG2b anti-mouse MHC class II Flow cytometry eBioscience 
   
Rat IgG2bκ anti-mouse MHC class II LSM BD Biosciences 
   
Rat IgG2a anti-mouse MR (CD206) Flow cytometry AbD Serotec, Düsseldorf 
   
Rabbit polyclonal IgG anti-mouse RAGE Flow cytometry Abcam, Cambridge 
   
Rat IgG2b anti-mouse SR-A type I 
(CD204) 

Flow cytometry R&D Systems, Wiesbaden 

   
   
Secondary antibodies   
   
Biotin rat IgG2bκ  anti-mouse Il-2 ELISA Biolgend 
   
Biotin rat IgG1κ anti-mouse IL-4 ELISA eBioscience 
   
Biotin rat IgG1κ anti-mouse IFN-γ ELISA eBioscience 
   
Biotin rat IgG1κ anti-mouse IgE ELISA BD Biosciences 
   
HRP anti-mouse IgG ELISA GE Healthcare, München 
   
Cy 3 Goat F(ab’) fragment anti-rabbit 
IgG 

LSM  Jackson ImmunoResearch 
Europe Ltd., Suffolk, Uk 

   
HRP anti-rabbit IgG ELISA Sigma 
   
HRP rabbit anti-mouse IgG1 ELISA Zymed, Invitrogen, Karlsruhe 
   
HRP rabbit-anti-mouse IgG2a ELISA Zymed 
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Alexa Fluor 488 goat anti-rat IgG FACS, LSM Molecular Probes, Invitrogen, 

Karlsruhe 
   
Alexa Fluor 568 goat anti-rat IgG LSM Molecular Probes 
   
Alexa Fluor 488 donkey anti-goat IgG LSM Molecular Probes 
   

 
Reagents for immune detection: 
Sreptavidin-Horseradisch Peroxidase Conjugate (BD Biosciences) 

Tetramethylbenzidine (TMB) substrate reagent set (BD Biosciences) 

 

3.1.7 Mice  
 
Tab. 3.5 Mouse strains used in this study 
 
Genotype  Genetic background  Reference 
   
BALB/c (wild type)   
   
C57BL/6 (wild type)   
   
C3H/HeJ (wild type)   
   
C.Cg-Tg(DO11.10)10Dlo/J 
(DO11.10 ) BALB/c Murphy et al., 1990 

   
C57BL/6-Tg(TcraTcrb)1100Mjb/J 
(OT-1) C57BL/6 Hogquist et al., 1994 

   
C57BL/6-Tg(TcraTcrb)425Cbn/J 
(OT-2) C57BL/6 Barnden et al., 1998 

   
RAGE-/- C57BL/6 Myint et al., 2006 
   
B6.Cg-Msr1tm1Csk/J 
(SR-AI/II-/-) C57BL/6 Suzuki et al., 1997 

 

C57BL/6 mice were purchased from Harlan-Winkelmann GmbH (Borchen). BALB/c and C3H/HeJ 

mice were purchased from Charles River Laboratories (Sulzfeld). DO11.10, OT-1, OT-2 and SR-

AI/II-/- mice were purchased from Jackson Laboratories (Bar Harbour, ME, USA). RAGE-/- mice 

were a kind gift from Dr. T. Shoji (Osaka Medical College, Japan). The genetically modified mice 

were bred in the animal facility of the Paul-Ehrlich-Institut. 
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3.1.8 Oligonucleotides 
 
Primers were obtained from Sigma Genosys, Sigma-Aldrich, Steinheim 

 
Tab. 3.6  List of primers used 

Name  Sequence 5’ → 3’ 
 
Amplification of SR-A cDNA from mDCs 
SR-A (s)                    AGA ATT TCA GCA TGG CAA CTG 
SR-A (as)                  ACG GAC TCT GAC ATG CAG TG 
 
Amplification of SR-B1 cDNA from mDCs 
SR-B1  (s) CTC ATC AAG CAG CAG GTG CTC 
SR-B1 (as) GAG GAT TCG GGT GTCATG AA 
  
Amplification of SR-B1 cDNA from mDCs 
CD36 (s) GTG CTG ATC CTT TCA GAG TCT C 
CD36 (as) CTG AGG AAT GGA TCT TTG TAA CC 
 

The sequence of the sense (s) and antisense (as) primers are given in the standard abbreviations for nucleic acids. 
 

3.1.9 Software 
 
Tab. 3.7 Used EDV programmes 
 
Program  Application  
  
FACS Diva 6.0 Flow cytometric data assimilation and analysis 
  
FlowJo 7.2.4 Data analysis flow cytometry  
  
SigmaPlot 11.0 Graphs  
  
Microsoft Office Text processing, Tables, Figures 
  
Zeiss LSM Image browser 4.2 Analysis of laser scanning microscopy data  
 
 

3.2 Methods 

3.2.1 Molecular biological methods 
 
3.2.1.1 Total RNA isolation  
Total RNA was isolated from myeloid dendritic cells (mDCs, chapter 3.2.3.4) using Trizol reagent 

according to the manufacturer’s instructions. mDCs (5-10x106 cells) were lysed with 1 ml of Trizol 

reagent. The lysed sample was incubated at room temperature for 5 min and then 200 µl of 

Chloroform was added per 1 ml of Trizol reagent. The sample was shaken vigorously, and 

incubated at room temperature for 3 min. Subsequently the sample was centrifuged (10,000 rpm, 

15 min, 4°C). After centrifugation, the aqueous phase, containing the RNA, was transferred into a 
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new tube. To precipitate the RNA, 500 µl of Isopropyl alcohol (per 1 ml of Trizol originally added) 

was added and the sample incubated for 10 min at room temperature. The sample was again 

centrifuged (10,000 rpm, 10 min, 4°C) and the supernatant removed. To wash the RNA pellet, 1 

ml of 75% Ethanol per 1 ml Trizol reagent was added and centrifuged (7,500 rpm, 10 min,  4°C). 

The RNA pellet was air dried and dissolved with 50 µl of RNAse free water.  To determine the 

amount of isolated RNA, the RNA solution was diluted 1:100 and the OD measured at 230, 260 

and 280 nm. The absorption at 230 and 280 nm is measured to calculate the contamination with 

DNA and protein, respectively. At A260 = 1, the RNA concentration is 40 µg/ml.  

 
Trizol reagent (Invitrogen) 

Isopropyl alcohol 

75% Ethanol (Roth) 

RNAse free water (Invitrogen) 

 

3.2.1.2 Reverse transcriptase (RT) reaction  
RNA isolated as described in chapter 3.2.1.1 was transcribed to cDNA for the PCR (chapter 

3.2.1.3) using the enzyme reverse transcriptase. The reverse transcriptase catalyses the 

transcription of RNA to DNA. First, RNAse free water, dNTPs, Oligonucleotides and the isolated 

RNA (chapter 3.2.1.1) was gently mixed and incubated at 65°C for 5 min to break any double 

stranded RNA sequences. The mixture was immediately placed on ice, where the reverse 

transcriptase (RT) buffer and the reverse transcriptase were added. The reaction mixture was 

then incubated at 42°C for 60 min, after which the reaction is stopped by heating to 90°C for 10 

min.  

 

Reaction mixture:  

RNase free DW  11.0 µl 

10 mM dNTP mixture (Invitrogen)  1.0 µl 

Oligo(dT)12-18, 0.5 µg/ml (Invitrogen) 1.0 µl 

RNA soln. 500 µg/ml 4.0 µl 

  

RT Buffer 2.0 µl 

Reverse Transcriptase  (New England Biolabs)  1.0 µl     

 
 
3.2.1.3 Polymerase chain reaction (PCR) 
The polymerase chain reaction (PCR) is an in vitro application to amplify defined nucleic acid 

sequences of DNA, using DNA polymerase, which catalyses the polymerisation of 

deoxyribonucleotides into a DNA strand. Taq polymerase was used, which has the advantage of 

being heat stable. The PCR programme consists of denaturation, annealing and elongation 

phases. First, the reaction mixture is heated to 94°C to denature double stranded DNA (denature 
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phase). Lowering the temperature allows the hybridisation of the oligonucleotide primers to the 

single stranded DNA templates (annealing phase). Subsequently the temperature is raised to 

72°C, which is the optimal working temperature for the Taq DNA Polymerase. The enzyme 

elongates the primers until the DNA is again double stranded (elongation phase). 35 of these 

cycles were run, after which a final 8 min elongation phase was added. An aliquot of the reaction 

mixture was then applied to an agarose gel to analyse the PCR products (chapter 3.2.1.4.) 

For one reaction with a total volume of 20 µl the reaction composition below was used. The PCR 

thermal cycler programmes used in this study are shown in Tab 3.8. 

 
PCR Reaction:  

10 x PCR Buffer (Invitrogen) 2.0 µl

50 mM MgCl2 (Invitrogen) 0.6 µl 

10 mM dNTP Mix (Invitrogen) 0.4 µl 

5-Primer (10 µM) 0.4 µl 

3-Primer (10µM) 0.4 µl 

Taq DNA Polymerase (Invitrogen) 0.1 µl

cDNA from First Strand Reaction 4.0 µl 

DW 12.1 µl

 
 
Tab 3.8 PCR-cycler programme conditions for the qualitative analysis of mDC receptor expression 
 
Primer  Cycler programmes 

SR-B1 2 min 94°C + 35 cycles (1 min 95°C , 1 min 60°C, 1 min 72°C) + 8 min 72°C 

CD36,  SR-AI/II 2 min 94°C + 35 cycles (1 min 94°C , 1 min 55°C, 2 min 72°C) + 8 min 72°C 
 

 
3.2.1.4 Agarose gel electrophoresis 
A molecule which posses a net charge will move in an electric field. This phenomenon, 

electrophoresis, is a powerful tool for separating DNA and other macromolecules such as proteins 

(SDS-PAGE, chapter 3.2.2.2.). The phosphate residues of DNA are negatively charged. 

Therefore, DNA molecules move towards the positive anode when in an electric field. Compared 

to larger DNA fragments, smaller ones can move through the gel matrix quicker, this physical 

property is exploited for the separation.  

In this study agarose gel electrophoresis was employed to detect PCR products (chapter 3.2.1.3). 

Gels with a concentration of 1.5 % were used. The agarose was heated in 1x TAE buffer until fully 

dissolved, then this was used to cast the gel. The sample from the PCR which was to be analysed 

was prepared by adding 1 µl of loading buffer to 5 µl of the sample. The gel was run at 110 V in a 

Mini Sub-Cell CT chamber (Biorad, München). After 1 h the gel was removed from the running 

chamber and stained with ethidium bromide for 15 min. Ethidium bromide is an intercalating agent 
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which is fluorescent under UV light (300 nm), it inserts itself  between DNA base pairs making the 

bands in the dyed agarose gel appear as glowing bands. Excess ethidium bromide was then 

washed off with water and the gel photographed under UV light.  

 
Agarose (PeqLab, Erlangen) 

 

TAE buffer (20x):                 800 mM Tris 

                                             2.28% (v/v) CH3COOH 

                                             25 mM EDTA 

                                             pH 8.5 

 

Loading buffer (6x):              0,06 % Bromophenol Blue    

                                             30 % Glycerol   

                                             0.2 mM EDTA  

 
Base pair standard: 100 bp DNA ladder (New England Biolabs, Frankfurt)) 
 
Ethidum bromide solution: 10 % Ethidium bromide (w/v) (Fluka, Sigma-Aldrich Steinheim) 
 

 

3.2.2 Biochemical methods 
 
3.2.2.1 Preparation of proteins modified with AGEs 

3.2.2.1.1 Preparation of AGE-OVA and AGE-BSA 
Glycated Ovalbumin (AGE-OVA) and glycated bovine serum albumin (AGE-BSA) were produced 

following a protocol by Gasic-Milenkovic (Gasic-Milenkovic et. al. 2003). 1 mM of OVA or BSA 

(both from Sigma) was incubated with 1 M Glucose (Sigma) in 100 mM sodium phosphate buffer, 

pH 7.4 for 6 weeks at 50°C. Excess glucose was removed by extensive dialysis with PBS. OVA or 

BSA incubated under the same conditions, but without glucose (thermally processed OVA/BSA), 

and native OVA/BSA were used as controls.  

 

100 mM Sodium phosphate buffer, pH 7,4 

Stock solution A:  200 mM monobasic sodium phosphate, monohydrate  

27.6g NaH2PO4 · H2O / L  

Stock solution B: 200 mM dibasic sodium phosphate  

28.4 g Na2HPO4 / L  

 

To receive a 100 mM phosphate buffer pH 7,4:  mix 19 ml of solution A with 81 ml of solution B 

and dilute to 200 ml. 
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3.2.2.1.2 Preparation of AGE-rAra h 2 

For the preparation of glycated recombinant Ara h 2 (AGE-rAra h 2) 500 µg/ml of the protein was 

incubated with 0.1 M of a fructose, galatcose, glucose, lactose, mannose or maltose in PBS. 

Incubation was for 2 hours at 120°C. Excess carbohydrates were removed by extensive dialysis 

with PBS. As controls for all experiments, unprocessed recombinant rAra h 2 or rAra h 2 heated 

for 2 h at 120°C without carbohydrates were used.  

 
3.2.2.2 Measurement of the protein concentration using bicinchoninic acid (BCA) 
Protein concentrations in sample solutions were measured using a Bicinchoninic acid (BCA) 

assay kit (Pierce, Bonn) according to the manufacturer’s protocol.  The principle of the BCA assay 

is based on the Biuret reaction. Proteins form complexes with Cu2+ when in an alkaline milieu. 

The Cu2+ ions of these complexes are reduced to Cu1+ ions by cysteine, tyrosine and tryptophan 

residues in the proteins. In the second step, BCA reacts with the Cu1+ ion. By chelation of two 

molecules of BCA with one Cu1+ ion, a purple reaction product is formed. The BCA/copper 

complex is water soluble and shows a linear absorbance at 562 nm with increasing protein 

concentrations. The absorption at this wavelength was photometrically determined using the 

ELISA reader (Tab. 3.1).  

 

BSA (protein standard):  2 mg/ml bovine serum albumin (Pierce, Bonn) 

Micro titre plate:             96 flat bottom well plate (Nunc, Langenselbold) 

 

3.2.2.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) (modified after Laemmli, 

1970) was used as a method to further analyse proteins after thermal treatment with or without 

carbohydrates. SDS-PAGE allows the separation of proteins according to their apparent 

molecular weight. The sample is heated to 95°C with SDS to destroy the secondary and tertiary 

structures. The negative charge obtained by the protein upon SDS binding is usually much 

greater than the charge of the native protein, thus the native charge is rendered insignificant. 

Through the application of voltage, the negatively charged proteins migrate through the gel, the 

speed depending exclusively on their size after denaturation and treatment with SDS. 

In this study, the electrophoresis was performed using 12.5 % acrylamide gel at 100 V in a Mini 

Protean Cell (Biorad, München). The proteins in the gel were then stained with Coomasie Brilliant 

Blue (chapter 3.2.2.4).  

 

Running buffer 25 mM Tris 

 250 mM Glycin 

 0.1 % (w/v) SDS 
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2 xLoading buffer:   25 mM Tris 

 5 ml Beta-mercaptoethanol 

 1 % SDS (w/v) 

 10 % Glycerol (w/v) 

 0.001 % Bromphenol blue (w/v) 

 
 
Stacking and separation gel are composed of the following solutions:  
 
Acrylamid:               30% Acrylamid, 0,8% Bisacrylamid (Roth, Karlsruhe) 

  

Solution A :             1.5 M Tris 

 0.4 % SDS (w/v) 

 240 mM HCl  

 pH 8.8  

  

Solution B:              1.5 M Tris 

 0.4 % SDS (w/v) 

 500 mM HCl 

 pH 6.8  

  

APS:                      10% Ammoniumpersulfat (Sigma, Steinheim)              

  

TEMED:                 N,N,N’,N’-Tetramethylethylendiamin (Sigma, Steinheim) 

 
 
12,5% Separation gel:   7.5 % Acrylamid  

 4.5 ml solution A 

 80 µl APS 

 15 µl TEMED   

 6 ml deionised water 

  

4,5 % stacking gel:          0.9 ml Acrylamid 

 1.5 ml solution B 

 20 µl APS 

 15 µl TEMED 

 3.5 ml deionised water 
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3.2.2.4 Coomasie Brilliant blue protein stain  
Coomasie brilliant blue (CBB) is a method to stain protein bands in a polyacrylamid gel. CBB 

R250 is a dye which unspecificaly binds to proteins and can detect 0.5 µg proteins /cm2  in the gel 

matrix. After electrophoresis (chapter 3.2.2.3) the gel was incubated in CBB staining solution for 

30 min. Subsequently the gel was incubated in unstaining solution over night to make the blue 

protein bands visible as unbound dye diffuses from the gel into solution.   

 

Staining solution:           1%  Coomasie brilliant blue R250 ( w/v) (Fluka. Sigma-Aldrich) 

 25 % Methanol  (v/v) 

 7.5 % Acetic acid (v/v) 

  

Unstaining solution:       25 % Methanol (v/v) 

 7.5 % Acetic acid (v/v) 

 
 
3.2.2.5 Structural analysis by circular dichroism spectroscopy  
The secondary structure of a protein can be analysed by circular dichroism (CD)-spectroscopy. 

The sample is irradiated with left and right circular polarised light. The difference of the absorption 

between the two polarisation directions is measured, giving the CD spectrum of a sample. Using 

this, the fractions of, for example, alpha helix conformations, beta sheet conformations or random 

coils of a molecule can be estimated. 

For the measurement the salt concentration was not allowed to be over 10 mM. Therefore, the 

proteins were transferred into a 10 mM KH2PO4 buffer by dialysis using a dialysis tube (Float-A-

Lyzer, 1 ml volume, 3500-5000 MWCO, Spectra Por, Roth). For the analysis, a spectrum between 

185 and 255 nm was measured at 50 nm/min. The resolution of the data points was 0.2 nm. The 

sample was measured ten times and averaged. Additionally, the spectrum of the protein free 

buffer was subtracted. The mean molar ellipticity per amino acid residue was calculated by using 

the following formula:  

 

 
Where:  

[Θ]MRW is the average residual ellipticity 

θ[mdeg] is the measured ellipticity in mdeg 

c is the protein concentration 

d is the path length of the cuvette 

N is the number of the amino acids  

 
Cuvette: quartz cuvettes, 1mm path length (Hellma, Mühlheim)  

[Θ]MRW
100 x θ[mdeg] 
     c x d x N 
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Potassium-Phosphate buffer:  10 mM KH2PO4, pH 7,4   

 

Stock solution A:  100 mM Potassium phosphate monobasic, PH 4,5 

13.6 g KH2PO4 / L  

Stock solution B: 100 mM Potassium phosphate dibasic, pH9 

28.4 g K2HPO4 / L  

 

To receive a 100 mM phosphate buffer pH 7.4: mix 19.7 ml of solution A with 80.3 ml of solution B 

and dilute to 1000 ml. 

 

3.2.2.6 Labelling of proteins with Fluorescein isothiocyanate 
Labelling proteins with a florescent dye makes it possible to visualise the protein uptake by cells in 

flow cytometry (chapter 3.4.2.1) or laser scanning microscopy (chapter 3.2.4.3). In this study, 

native OVA, thermally processed OVA, AGE-OVA, native BSA and AGE-BSA were labelled with 

Fluorescein isothiocyanate (FITC). 

For the FITC labelling of the proteins, the FluoroTag FITC conjugation Kit (Sigma) was used. 

FITC conjugation occurs through the free amino groups of proteins, primarily of lysine residues, 

forming a stable thiourea bond. To accurately analyse the uptake of OVA or BSA samples by 

mDCs (chapter 3.2.3.6), it was crucial that each sample was labelled with a comparable 

FITC/protein (F/P) molar ratio.  

To determine the amount of dye for the optimal and comparable labelling of all three OVAs or 

BSA, the FITC conjugation was first performed on a small scale using different concentrations of 

FITC. The proteins were diluted to 5 mg/ml in 0.1M carbonate-bicarbonate buffer, pH 9.0 provided 

in the kit. One vial of FITC was reconstituted and diluted as shown in Table 3.8. 50 µl of the FITC 

solution was added drop wise to 200 µl (1 mg) of protein while gently stirring. The reaction vials 

were covered with aluminium foil to protect FITC from light during the 2 h of incubation at RT.  

The labelled proteins were isolated from unreacted dye using a Sephadex G-25 M column A 

(maximum sample volume 300 µl) provided in the kit. The column was equilibrated with 12 ml 

PBS. The reaction mixture was applied to the top of the gel bed. The column was eluted with 2.5 

ml of PBS, collecting ten 250 µl fractions. Two yellow bands were clearly visible during elution. 

The lower band consists of the labelled protein, to upper band is the unbound dye. Of each 

fraction the absorbance at 280 nm (A280, absorbance maximum of proteins) was measured. 

Fractions with an A280 greater than 0.2 were pooled. The conjugate could be stored at 4°C for a 

short time. For long term storage lypholisation of aliquots and storage at -80°C was most suitable.  

After having determined the optimal FITC concentration for each protein, the labelling could be 

performed on a larger scale. Here, 5 mg of protein was labelled. All other reagents were scaled up 

accordingly. To isolate the labelled protein from unconjugated FITC, the larger Sephadex G-25 M 

column B (maximum sample volume 1.5 ml) provided in the kit was used.  
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Table 3.9 preparation of FITC solution of different concentrations  
Label 0,1 M sodium carbonate-bicarbonate buffer Reconstituted FITC 

20:1 2.0 ml FITC vial 

10:1 0.5 ml 0.5 ml of 20:1 

5:1 0.75 ml 0.25 ml of 20:1 

 

 

Determination of the FITC/Protein Molar ratio  

The F/P ratio is defined as the ratio of moles FITC to the moles of protein in the conjugate. To 

determine this ratio, the absorbance of the conjugate at 280 nm and 495 nm (absorbance 

maximum of FITC) has to be determined.  

The conjugates were diluted 1:5 or 1:10 with the same PBS as was used for the elution from the 

column (this was also used to measure the blank value). The absorbance at 280 and 495 nm was 

measured using a quartz cuvette with 1 cm path length. From the absorbance readings (A280 and 

A495) of the conjugate sample, the F/P of the FITC-OVA/BSA conjugate was calculated according 

to the following equation.  

 

Molar F/P =

MW                    A495/195                                      A495 x C

389        A280 – [(0,35 x A495)]/E280
0,1% A280 – (0,35 x A495)

Where:            MW x E280
0,1% 

389 x 195

=

C =

x

 
 

MW is the molecular weight of the protein 

389 is the molecular weight of FITC 

195 is the absorption E280
0,1% of bound FITC at 490 nm at pH 13 

(0,35 x A495) is the correction factor due to the absorbance of FITC at 280 nm 

E280
0,1% is the absorption at 280 nm of  protein at 1.0 mg/ml 

 
 

3.2.3 Cell culture Methods 
 

3.2.3.1 Working environment for cell cultures 
All work with cell cultures was performed under a sterile laminar air flow cabinet. The surface of all 

used equipment was disinfected with Terralin Liquid (Schülke und Mayr, Norderstedt). Only sterile 

disposable or autoclaved plastics and sterile media and buffers were used.  
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3.2.3.2 Culture conditions  
All cells were cultured in CO2 incubators at 37°C with 5% CO2 and 95% relative humidity.  

 

3.2.3.3 Counting of cells 
The cell number of a cell suspension was determined using a Neubauer counting chamber (LO 

Laboroptik, Friedrichsdorf). To count only viable cells, trypan blue, a vital stain, is used to exclude 

dead cells. Trypan blue only stains dead cells as these cells have an altered cell membrane 

permeability. The cell suspension is given into the counting chamber and four large squares 

consisting of 16 small squares are counted. The average number of cells counted in each large 

square is used to calculate the cell number. As each large square has a volume of 0.004 µl, the 

cell number is multiplied by 104 in addition to the dilution factor. The calculation of the cell number 

is performed using the formula below: 

 

C = N x D x 104 

C = cells/ml 

N = average of the counted cells 

D = dilution factor  

104 = chamber factor 

 

3.2.3.4 Preparation of bone marrow derived myeloid dendritic cells (mDCs) 
For the preparation of bone marrow derived myeloid dendritic cells (mDCs) the bone marrow cells 

of femur and tibia from mice were used.  

The mouse was disinfected by bathing it in 70% ethanol. The skin and the muscle were removed 

from the hind legs and the legs were carefully dislocated from the hip. Any remaining muscle was 

removed from the bones and the bones disinfected in 70% ethanol. The end of the bones was cut 

open and the cells were flushed out with 5 ml RPMI medium using a 5 ml syringe (Braun, 

Melsungen) and a needle (gage 26, Braun). The cell suspension was transferred into a 15 ml 

centrifugation tube and centrifuged (1,200 rpm, 4°C,  5 min). After discarding the supernatant, red 

blood cells were lysed using red blood cell lysis buffer (BD Biosciences). The cells were then 

washed with RPMI containing 10 % FCS three times.  

After washing, the cell pellet was resuspended in DC medium and the cell number was 

determined (chapter 3.2.3.3). The cells were seeded into cell culture flasks (Greiner, 

Frickenhausen) at 1x106 cell/ml and granular macrophages colony stimulatory factor (GM-CSF) 

was added according to Tab. 3.10. The bone marrow cells were cultured for eight days. During 

the culture period the medium was changed three times. The volume of medium changed for each 

flask size is indicated in Tab 3.11. The last medium change took place 24 h before the cells were 

used in an assay.  
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DC medium:    RPMI 1640 medium (Gibco) 

 + 10% FCS (Biochrom, Lot. S0115) 

 + 1 mM Sodium Pyruvate (Sigma) 

 + 10 mM HEPES 
 + 100 U/ml penicillin 
 + 100 µg/ml streptomycin 
 + Glutamine 
 + 0.1 mM 2-Mercaptoethanol (3.5 µl 14 M in 500 ml medium) 
 + 100 ng/ml GM-CSF (added freshly to culture) 

 
 
Table 3.10 Seeding conditions for mDC 
Flask size Vol. medium Vol. GM-CSF  Num. cells 
T25 5 ml 25 µl 0.5 x107

T75 15 ml 75 µl 1.5x107 
 
 
Table 3.11 Volume of medium changed of mDC cultures 
Flask size Vol. medium which is changed Vol. GMSCF  
T25 4 ml 20 µl 
T75 10 ml 50 µl 

 

 
3.2.3.5 Assessment of mDC maturation  
In order to asses whether AGE-OVA influences the maturation of mDCs, 1x106 mDCs were 

seeded into wells of a 24 well plate (Falcon, BD Bioscience) and stimulated with 10 µg/ml LPS or 

20 µg/ml of either form of OVA for 18 hours. Following the incubation, the levels of IL-10 and IL-

12p70 in the culture supernatant were measured by ELISA (chapter 3.2.4.5.2.1). Additionally, the 

cells were stained with PE conjugated anti-mouse CD11b and APC conjugated anti-mouse 

CD11c mAbs to gate the mDC population. The expression of co-stimulatory molecules and MHC 

II was assessed by staining with FITC conjugated monoclonal anti-mouse CD40, CD80, CD86 or 

MHC II antibody (chapter 3.2.4.2.1). FITC intensity of CD11b+CD11c+ cells was measured by flow 

cytometry (chapter 3.2.4.1).  

 
3.2.3.6 Assessment of antigen uptake by mDCs 
To asses the uptake of different antigens, 5 x 105 mDCs were seeded into wells of a 24 well plate 

(Falcon, BD Bioscience). The cells were incubated for 15 min with different concentrations of 

FITC conjugated antigen (3.2.2.5.1).  As antigens, AGE-OVA or AGE-BSA and the corresponding 

controls were used. One experiment was also performed with FITC conjugated human Transferrin 

(Trf, Invitrogen). Following the incubation with the FITC conjugates, the cells were stained with 

PE-conjugated anti-CD11b and APC conjugated anti-CD11c (3.2.4.2.1) antibodies and analysed 

by flow cytometry (3.2.4.1).  

To inhibit galectin-3 or mannose receptor (MR) mediated uptake, 150 mM lactose or 3 mg/ml 

mannan were used respectively. These were given to the mDCs 30 min prior to the addition of 
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AGE-OVA or the controls. To elucidate the involvement of the receptor for AGEs (RAGE) or the 

scavenger receptor class A type I and II (SR-AI/II), mDCs derived from the mice deficient of the 

respective receptor were used.  

 

3.2.3.7 Isolation of CD4+ and CD8+ T cells  
CD4+ or CD8+ T cells were isolated from the spleen or lymph nodes (LN) of mice using the 

magnetic cell sorting systems from Miltenyi Biotec (Bergisch Gladbach). For the isolation of T 

cells, the spleen or LN were transferred into a Petri dish (Greiner) with RPMI 1640 medium 

containing penicillin (100 U/ml), streptomycin (100 µg/ml) and β-mercaptoethanol (0.05 mM). The 

back of a syringe plunger was used to mechanically remove the cells from the tissue. The cells 

were passed through a cell strainer (70 µm mesh, BD Biosciences) into a 50 ml centrifugation 

tube and centrifuged at 1,200 rpm at 4°C for 10 min. The supernatant was removed and the cells 

transferred into a 15 ml centrifugation tube with 10 ml medium and centrifuged again. Lymph node 

cells were washed two more times with the medium. In the case of splenocytes, red blood cells 

were lysed by treatment with lysis buffer (BD Biosciences) for 1 min at room temperature. 

Following lysis, the cells were washed twice with RPMI containing 5% FCS in addition to the 

above additives. After washing, 10 ml of MACS buffer (see below) was added to the loosened cell 

pellet and the cell number was determined (chapter 3.2.3.3).  

 

Isolation of CD4+ T cells  

To isolate CD4+ T cells, 10 µl of anti-CD4 (L3T4) MicroBeads were added to 1x107 total cells in  

90 µl of MACS buffer. The cells were incubated with the beads at 4°C for 15 min. Then the cells 

were washed by adding 1-2 ml of MACS buffer per 1x107 cells followed by centrifugation at 1,200 

rpm for 10 min. The supernatant was taken off and up to 1x108 cells were resuspended in 500 µl 

of buffer. To separate the labelled from the unlabelled cells, an appropriate MACS column was 

used (Tab. 3.12). The column was placed in a MACS separator (magnet). The column was 

equilibrated with MACS buffer and the cell suspension added to the top of the matrix. When inside 

the separator, the column matrix provides a magnetic field which is sufficient to retain cells 

labelled with a MicroBead conjugated antibody. Unlabelled CD4 negative cells pass through the 

column. These were thoroughly washed out of the column with buffer (6x3ml). The retained cells 

(CD4+ T cells) are eluted with buffer after the removal of the column from the magnet. The purity 

of the CD4+ T cells was analysed by flow cytometry (chapter 3.2.4.1). The purity of the CD4+ T 

cells was routinely around 95%.  

 

Isolation of CD8+ T cells  

For the isolation of CD8+ T cells, negative selection was used. To label non-CD8+ T cells, 10 µl of 

a biotin-antibody cocktail against B cells, natural killer cells, CD4+T cells, dendritic cells, 

granulocytes, macrophages and erythroid cells was added to 1x107 total cells in 40 µl MACS 

buffer. The cells were incubated with the cocktail at 4°C for 10 min. Following the labelling, 30 µl 
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of buffer and 20 µl of anti-biotin MicroBeads per 1x107 total cells were added. The cells were 

incubated for 15 min at 4°C. The remaining procedure was as for the CD4+ T cell isolation, 

however here the unlabelled cells in the eluate were those of interest as these were the CD8+ T 

cells.  

 
MACS buffer:       PBS, Dulbecco’s, low endotoxin (Biochrom, Berlin) 

 + 0.5% BSA (cell culture tested) 
 + 2mM EDTA 
 

MicroBead conjugated monoclonal rat IgG2b anti-mouse CD4 (L374) antibody (Miltenyi Biotec) 

 

CD8+ T cell isolation kit, mouse (Miltenyi Biotec). Contains: 

1) Cocktail of biotin-conjugated monoclonal antibodies against mouse CD4 (L3T4) (rat 

IgG2b), CD11b (Mac-1) (rat IgG2b), CD45R (B220) (rat IgG2a), DX5 (rat IgM) and Ter-

119 (rat IgG2b). 

2) MicroBeads conjugated monoclonal anti-biotin antibody (mouse IgG1)  
 
Table 3.12 MACS columns 
Column Max. number of labelled cells Max. number of total cells 
MS 1x107 2x108 
LS 1x108 2x109 

 
 

 
3.2.3.8 Assessment of antigen specific CD4+ T cell activation by mDCs 

3.2.3.8.1 Activation of antigen specific CD4+ T cells from naïve transgenic mice with OVA 
specific TCR 

Splenic CD4+ T cells were isolated from OT-2 or DO11.10 mice as described (3.2.3.7.). To 

evaluate the T cell activation, 4x104 CD4+ T cells were co-cultured in a U-bottom 96 well plate 

(Nunc, Langenselbold) with 8x103 mDCs and stimulated with 0.2, 20, or 200 µg/ml of either form 

of OVA or BSA for 24, 48, 72 or 96h. In some experiments, 1.25x105 mDCs were first incubated 

with either form of OVA for 3 h in a 96 well flat bottom plate (Nunc) and then washed with PBS 

and fixed with 0.008% glutaraldehyde (Roth). Subsequently 2.5 x 105 CD4+ T cells were added 

and incubated for 21 h. The concentration of IL-2 in the culture supernatants was measured by 

ELISA (chapter 3.2.4.5.2.1).  

 

3.2.3.8.2 Activation of antigen specific CD4+ T cells from mice after immunisation with OVA 

Wild type BL6 mice were subcutaneously immunised with either form of OVA as described in 

chapter 3.2.5.5.2.  The inguinal (groin) and poplitial (knee) lymph nodes (LN) of immunised mice 

were removed one week after immunisation. CD4+ T cells were isolated from LNs by magnetic 
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cell sorting system (chapter 3.2.3.7). In a 96 well flat bottom plate (Nunc), 1.6x105 CD4+ T cells 

were co-cultured with 4x104 BL6 mDCs and stimulated with 0.2, 20, or 200 µg/ml of AGE-OVA or 

one of the controls. After 24 h, the IL-2 concentration in the co-culture supernatants was 

measured (chapter 3.2.4.5.2.1).  

 

3.2.3.9 Activation of antigen specific CD8+ T cells from naïve transgenic mice with OVA-
specific TCR 
mDCs generated from BL6 mice were pre-matured for 2 h with 10 µg/ml LPS and 1.25x105  cells 

seeded into a 96 well flat bottom plate. The mDCs were then stimulated with 2, 20, or 200 µg/ml 

of native, thermally processed or AGE-OVA for 3 h. The mDCs were washed with PBS and fixed 

with 0.008% glutaraldehyde solution. Splenic CD8+ T cells were isolated from OT-1 mice as 

described (chapter 3.2.3.7) and 2.5 x 105 T cells added to the mDCs. The cells were incubated for 

21 hours. After this time the IL-2 concentration in the supernatants was determined by ELISA 

(chapter 3.2.4.5.2.1).   

 
3.2.3.10 Assessment of T cell proliferation using carboxyfluorescein succinimidyl ester  
For the analysis of cell proliferation, staining of cells with carboxyfluorescein succinimidyl ester 

(CFSE) is a sensitive and convenient method. CFSE is non-fluorescent and colourless until the 

acetate groups of the agent are cleaved by intracellular esterases. This process yields the highly 

fluorescent carboxyfluorescin succimidyl ester. The succimidyl ester groups react with intracellular 

amines, forming fluorescent conjugates. The formed protein-dye adducts remain in the labelled 

cells throughout meiosis. Daughter cells inherit the label after cell division, however the 

fluorescence is diluted with each generation, as shown in Fig 3.1.  

In this study, the CellTrace CFSE Cell Proliferation Kit (Invitrogen) was used to trace the 

proliferation (cell division) of CD4+ T cells isolated from spleens of naïve OT-2 mice. For the 

staining, T cells were resuspended in pre-warmed PBS/0.1% BSA at 1x106 cells/ml. The cells 

were incubated with 10 µM CFSE at 37°C for 10 min. The staining was quenched by adding 5 

volumes of ice cold culture medium to the cells. The CFSE stained CD4+ T cells were then co-

cultured with mDCs upon stimulation with antigens as described in 3.2.3.8.1. After 24, 48, 72 and 

96 h of stimulation, the cells were harvested from the wells with EDTA/Trypsin and stained with 

APC-conjugated anti-mouse CD4 antibody (chapter 3.2.4.2.1). The intensity of CFSE in the CD4 

T cells were analysed by flow cytometry (chapter 3.2.4.1). 
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Fig 3.1 Diagrams of dye dilution during proliferation of CFSE stained cells.  
A Scheme of the CFSE dilution after each cell division. B Example of flow cytometry histogram showing five generations 

of CD4+ T cells, including the parent generation (0).   

 

 

3.2.3.11 Assessment of T cell proliferation using tritium [3H] labelled thymidine  
Another method for the measurement of cell proliferation is radioactive labelling. This method 

utilises the principle that cells incorporate radioactive labelled nucleotides into newly synthesised 

DNA. The level of radioactive labelled nucleotide incorporated by the cells is measured by a 

scintillation counter. A frequently used nucleotide is thymidine labelled with tritium [3H].  

In this study the proliferation of CD4+ T cells isolated from the spleen (chapter 3.2.3.7) of 

intraperitoneally immunised mice (chapter 3.2.5.5.1) was measured. As antigen presenting cells, 

(APCs) splenocytes of naïve mice belonging to the same strain as the mice from which the CD4+ 

T cells were isolated from were used. To suppress proliferation while retaining the antigen 

presenting ability of splenocytes, the cells were irradiated or treated with mitomycin C (MMC, 

Sigma). For irradiation, splenocytes received γ-rays from Caesium 137 (1,500 R). MMC is an 

antibiotic from Streptomyces caespitosus. It inhibits DNA synthesis by forming crosslinks between 

complementary strands of DNA. For the MMC treatment, 1x108 cells were resuspended in 900 µl 

medium containing 10% FCS to which 100 µl 500 µM MMC was added and then incubated at 

37°C for exactly 30 min. The cells where then washed 3 times with medium.  

1x105 CD4+ T cells were co-cultured with 4x105 irradiated or MMC treated splenocytes in 96 well 

flat bottom plates (Nunc). The cells were stimulated with antigens or Con A (a mitogen which 

induces unspecific polyclonal activation of T cells). After 72 hours 0.1 µCi of [methyl-3H]Thymidine 

(GE Healthcare) was added to each well. After further 20 h, the cells were harvested. 

To harvest the cells, a harvester (Inotech) with vacuum pump was used to trap the cellular DNA 

on a glass fibre membrane (Perkin Elmer, Rodgau). Medium and unincorporated thymidin was 

removed by extensive washing with water followed by a wash with 70% ethanol. Once the 

membranes were dry, a scintillation matrix (Perkin Elmer) was melted on. The level of tritium was 

then determined using a gamma counter (1450 Microbeta, Perkin Elmer).  

To compare the CD4+ T cell proliferation of different samples, the stimulation index was 

calculated. This index takes into the account the proliferation (as counts per minute) in co-cultures 



                                                                                                                 Material and Methods 
 

 

45 
 

which were treated with medium only. The Stimulation index is calculated by using the following 

formula:  

 

Stimluation index = (cpm Ag – cpm NC)/cpm NC 

 

Where: 

cpm: counts per minute 

cpm Ag is the cpm measured in a well where the cells where stimulated with antigen 

cpm NC is the cpm measured in a well where the cells were treated with medium only  

 

 

3.2.4 Immunological methods 
 
3.2.4.1 Flow cytometry 
Flow cytometry is a versatile method which simultaneously measures several characteristics of 

particles, usually cells, as they flow in a stream through a beam of light. The properties, which can 

be measured by flow cytometry, are size, granularity and relative fluorescence intensity of the 

cells. The properties are defined using an optical-to-electronic coupling system which records how 

a cell scatters laser light and emits fluorescence.   

For the analyses, the cells are taken up by a capillary and singly pass a laser beam. Once the 

cells pass through the laser intercept, they scatter laser light and additionally, if fluorescent 

molecules are present on the cells, they fluorescence. The forward scatter of the light (FSC) is a 

measurement of light deflection of a low angle and is dependent on the size of the cell. The 

sideward scatter (SCC) is a measurement of the light refraction in a right angle and this is 

dependent on the granularity of the cell, the size and structure of its nucleolus and the amount of 

vesicles in the cell. With these two parameters, cell populations may be crudely differentiated. 

The application of various fluorescent dyes is vital for the flow cytometric analysis. For instance, to 

identify a particular cell type, the cells are labelled with fluorescent conjugated antibodies against 

cell surface markers which are characteristic for the cells (e.g. proteins of the CD-classification 

such as CD11c). The scattered and fluorescent light is steered to the appropriate detectors by a 

combination of beam splitters and filters. The fluorescent signals are converted to electronic 

signals in proportion to the fluorescent strength.  

By combining the information from the FSC/SSC and the fluorescence intensity of the cells 

stained with specific markers, identification of target cells and a measurement of the frequency of 

the target cells in the total cell population is facilitated. The simultaneous use of different 

fluorophores is possible because even if the fluorophores are excited at similar wavelengths, they 

have emission spectra which are characteristic for each fluorophore. Overlaps in these spectra 

can be compensated prior to the sample measurement. 
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In this study, flow cytometric analysis was performed using an LSRII (Becton Dickinson) in 

connection with the FACS-Diva Software. The data was analysed using FlowJo software (Tab. 

3.7).  

 
3.2.4.2 Antibody staining of cells for flow cytometry 

3.2.4.2.1 Direct staining of cell surface molecules for flow cytometric analysis 
Cell surface molecules can be labelled directly when fluorescent dye conjugated antibodies 

against the target molecules are available and staining with these antibodies is strong enough for 

detection (i.e. does not need to be amplified with an additional step). In this study, the co-

stimulatory molecules CD40, CD80, CD86 and MHC II and RAGE on mDCs as well as CD4 on T 

cells were stained with the direct staining method. To identify the mDCs by flow cytometric 

analysis CD11c and CD11b were also routinely stained with fluorophore conjugated antibodies 

specific for these markers.  

For the staining, mDCs were harvested from the cell culture plates using a small cell scraper. To 

stain the CD4+ T cells of co-culture assays, the cells were detached from the wells using 

EDTA/Trypsin (2 min at 37°C). All cells were spun down (1,200 rpm, 5 min, 4°C) and then washed 

with FACS buffer. Typically, 0.5 – 1.0 x 106 cells in a total volume of 50 to 100 µl (FACS buffer) 

were incubated with the antibody at 4°C for 20 min. Subsequently, the cells were washed with 

FACS buffer. The pellet was then resuspended in FACS buffer containing 0.5% PFA and 

analysed by flow cytometry on the same day.  

3.2.4.2.2 Indirect staining of cell surface molecules for FACS analysis 
MR, SR-A type I, Galectin-3 and RAGE on mDCs were labelled with an indirect staining method 

using unlabelled primary unlabelled antibodies. mDCs (2.5 x 105 cells) were stained with 

antibodies specific for MR, SR-A type I, Galectin-3 or RAGE. To prevent unspecific binding of the 

antibodies to FcγRI (IgG receptors) on the cell surface, the cells were treated with 100 µl blocking 

buffer for 30 min at 4°C. To this suspension the purified monoclonal rat anti-mouse MR, SR-AI or 

galectin-3 antibody was given. The cells were incubated with the antibodies for 30 min at 4°C and 

then washed with PBS. This was followed by 20 min incubation at 4°C with an AlexaFluor 488 

goat anti-rat IgG antibody in blocking buffer. Following receptor staining, the cells were washed 

three times with FACS buffer. Subsequently CD11b and CD11c were then stained as described 

(chapter 3.2.4.2.1).  

EDTA/Trypsin (PEI media kitchen) 

 

FACS buffer:               PBS pH 7.2 

 + 1% BSA 

 + 20mM EDTA 

 + 0.75 % (w/v) Sodium azide   

 + 0.75 % (w/v) Sodium azide   
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Fixation solution:   1g of Paraformaldehyde (PFA) are solved in 100 ml PBS at 70°C  

  

Blocking buffer:           PBS pH 7.2 

 + 5% normal goat serum 

 Filtered 

 
 
3.2.4.3 Cell analysis by confocal laser scanning microscopy (LSM) 
Confocal laser scanning microscopy is a technique employed to obtain high resolution images of 

a sample. A conventional light microscope returns an image which is obtained from a sample slice 

which is as thick as the light will penetrate. The major advantage of a confocal microscope is that 

it acquires an image from one selected depth. This makes it very suitable for studying the (co)-

localisation of proteins in cells because there is no superimposing of image information from 

multiple depths in the specimen which may lead to false co-localisations. In LSM, a laser beam is 

focused into a small part of the sample by an object lense. In the specimen, proteins are usually 

labelled with fluorophore conjugated antibodies or are directly labelled with a fluorescent dye. 

Emitted light is recollected by the same object lense as is used to focus the laser beam, then 

passes through a pinhole and before it reaches a detector, usually a photomultiplier or an 

avalanche photodiode. Excitation and detection focus are confocal to each other. Information 

outside of the focus depth is excluded in two ways; the light intensity outside of the focus is very 

weak and additionally it is blocked by the pin hole. The images are acquired point by point, 

requiring a reconstructing with a computer. 

 

3.2.4.3.1 Cell preparation for LSM 
mDCs (5x105 cells) were seeded into the wells of a 24 well plate (Falcon) containing sterilised 

round cover slips (12 mm in diameter, Roth) and left to adhere for 1 h. The medium was then 

removed and replaced with fresh medium containing 10 µg/ml of AGE-OVA. The cells were then 

incubated with the antigen for 5 to 60 min at 37°C. Subsequently the cells were washed with PBS. 

In the following staining procedure the cells were washed with PBS (3 times, 10 min) between 

each step. During all incubations, the cells were kept in the dark at room temperature and were 

slowly agitated on a seesaw shaker. After washing, cells were fixed with 4% PFA in PBS for 20 

min. The cells were then blocked and permeabilised for 1 h. This was followed by incubation with 

primary antibody (purified anti-SR-A, anti-MHC class II, anti-Lamp1 or anti-EEA1 antibody) for 1 h. 

Subsequently, the cells were incubated with the appropriate secondary antibody for 30 min. As a 

counter stain and to facilitate the identification of individual cells under the microscope, the cell 

nuclei were stained with DAPI (Invitrogen) for 7 min. Following a rinse with deionised water the 

cover slips were mounted onto SuperFrost microscope slides (Roth) with Fluorescence mounting 

medium (Dako, Hamburg). The slides were kept in the dark at 4°C until analysis with a laser 
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scanning microscope LSM 510 (Carl Zeiss, Jena). The images were analysed with the Zeiss LSM 

Image browser 4.2. 

 

Fixation solution (4% PFA): 

16% PFA (Pierce Bonn) diluted with PBS pH 7.2 

 

Blocking/permeabilisation buffer:     PBS, pH 7.2 

 + 5% skimmed milk powder 

 + 1% normal mouse serum (own production) 

 + 0.1 % Triton X 100 

 + 1 µg/ml normal mouse IgG (Santa Cruz) 

 

Assay buffer:                                    PBS, pH 7,2 

 + 1% normal mouse serum (own production) 

 + 0.1 % Triton X 100 

 
 
3.2.4.4 Enzyme linked immunosorbent assay (ELISA) 
The enzyme linked immunosorbent assay (ELISA) employs antibodies as an exceedingly specific 

analytical reagent for the detection and quantification of proteins or other antigens with which less 

than 1 ng of protein can be detected. 

There are two types of ELISA commonly used. One is the indirect ELISA, for which the antigen is 

adsorbed directly to the microtitre plate. The second type is the sandwich ELISA, for which the 

antigen is captured by an antigen specific antibody which is attached to the plate. In both types 

the antigen is detected by a (second) antibody. This antibody can be conjugated with an enzyme 

or it may be unlabelled and is itself detected by a further, enzyme conjugated, antibody. The 

enzyme reacts with a colourless substrate to give a coloured product. Alternatively, biotin 

molecules may be linked to the detection antibody to which a strepdavidin coupled enzyme can 

bind, this additional step has the advantage of amplifying the signal. The optical density of the 

coloured product indicates the quantity of the antigen or antibody of interest in the samples.  

 

For all ELISAs, the wells were washed three times with washing buffer between each step to 

remove any proteins or antibodies that were not specifically bound. Incubations at room 

temperature were performed on an orbital shaker at 80 rpm.  

3.2.4.4.1 Indirect ELISA  

3.2.4.4.1.1 Measurement of mouse serum Immunoglobulins  
To detect antigen (OVA or rAra h 2) specific antibodies in mouse sera, microtitre plates (MaxiSorp 

F96; Nunc, Langenselbold, Germany) were coated with antigens diluted in coating buffer at 4 °C 
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over night. The OVAs were coated at 100 µg/ml using 100 µl/well, whereas Ara h 2 was coated at 

5 µg/ml using 50 µl/well. The plates were then blocked with 2 % BSA in PBS for 1 h at RT. After 

blocking, mice sera diluted in assay buffer were applied to the plates and incubated for 2 hours at 

RT or over night at 4°C. Serum IgG antibodies bound to the antigen in the wells were detected 

with horse reddish peroxidase (HRP) conjugated rabbit anti-mouse IgG1 or IgG2a antibodies 

(Zymed), diluted 1:4000 in assay buffer. Serum IgE antibodies were detected by a biotin 

conjugated anti-mouse IgE antibody (BD Biosciences), diluted 1:1000. The plates were incubated 

with the secondary antibodies for one hour at RT. For the detection of serum IgE, the plates were 

further incubated with a streptavidin-HRP conjugate diluted 1:2000 in assay buffer for 30 min at 

RT. Subsequently, 100 µl of substrate solution were added to the plates, and incubated at RT for 

10 to 30 min. The substrate used for the peroxidase was 3, 3’, 5, 5’-tetramethylbenzidine (TMB, 

BD Biosciences). The reaction was stopped with 50 µl of stopping solution. The absorption of 

each well at 450 nm was measured using an ELISA reader.  

3.2.4.4.1.2 Detection of Maillard reaction products 
AGEs were detected using an indirect ELISA system. The procedure was as described in chapter 

3.2.4.4.1.1. The different OVA samples were added to the first well at 10 mg/ml in 100 µl coating 

buffer and then a tenfold serial dilution in the subsequent wells was performed. AGE structures 

were detected with mouse monoclonal antibody (mAb) against CEL, pyrralin or GA-pyridine or 

rabbit polyclonal antibodies against CML (each used at 0.1 µg/ml). Subsequently, the plates were 

incubated with HRP conjugates of either anti-mouse IgG (diluted 1:4000, GE Healthcare, Munich, 

Germany) or anti-rabbit IgG antibodies (diluted 1:5000, Sigma-Aldrich). The substrate was applied 

to the plates as described in 3.2.4.3.1.1. 

3.2.4.4.1.3 Verification of comparable FITC/protein ratio on labelled proteins 
To verify whether the FITC-conjugated proteins were labelled with a comparable F/P molar ratio, 

an ELISA was performed in addition to the calculation based on the absorption at 280 and 495 nm 

(chapter 3.2.2.6). The procedure was almost identical to that described above (chapter 

3.2.4.4.1.1). The FITC conjugated proteins were added to the first well at 100 µg/ml in 100 µl 

coating buffer and then diluted 1:10 in the consecutive wells. FITC on the proteins was detected 

by an HRP-conjugated mouse anti-FITC antibody, diluted 1:5000. Subsequently, the substrate 

was applied to the plates as described in 3.2.4.4.1.1. 

 

3.2.4.5.2 Sandwich ELISA  

3.2.4.5.2.1 Sandwich ELISA for the detection of cell supernatant cytokines 
Sandwich ELISAs were performed to measure the concentration of cytokines in cell culture 

supernatants. Microtitre plates were coated at 4°C over night with a primary antibody 

(eBioscience or Biolegend) against the cytokine of interest, diluted 1:1000 in coating buffer. After 

blocking, cell culture supernatants were added to the wells. To quantify the cytokine concentration 
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in the supernatant, recombinant cytokines (Tab. 3.3) with known concentrations were added to 

the plates in different dilutions as standards. The supernatants and standards were incubated for 

2 h at RT or at 4°C over night. The plates were then incubated with a biotin-conjugated secondary 

antibody (eBioscience or Biolegend) specific for the cytokine, diluted 1:1000 and subsequently 

with a streptavidin-HRP conjugate, diluted 1:4000. The substrate was then applied to the plates 

as described in 3.2.4.4.1.1. 

 
Micro titre plate: 96 well, Maxisorb (Nunc, Langenselbold) 

 

Coating buffer (50mM Sodium-carbonate puffer):   1.696g Na2Co3 

 2.856g NaHCo3 

 ad 1L deionised water pH 9.6   

(does not need to be adjusted) 

  

Washing buffer:                                                       PBS pH 7.2 

 + 0.05 % Tween 20 

  

Blocking buffer:                                                       PBS pH 7.2  

 + 2% BSA 

 

 

 

Assay buffer:                                                           PBS pH 7.2 

 + 0.05% Tween 20 

 + 1% BSA   

 

Tetramethylbenzidine (TMB) substrate reagent set (BD Biosciences) 

 
Stopping solution:                                                  1N H2SO4 
 
 

3.2.5 Animal experimental methods 
All mice experiments were performed according to the guidelines of animal welfare of the state 

and the PEI.  

 

3.2.5.1 Housing of mice 
Gene modified mice were bred under specific pathogen free (SPF) conditions in the S1 area of 

the “Zentrale Tierhaltung” of the PEI. For breeding, one male and one female were kept in a cage. 

For experiments, mice were transferred into the experimental mouse room. In the room, mice 

were housed in cages with single cage ventilation in same sex groups of up to 5 individuals. 
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3.2.5.2 Short term mouse anaesthesia  
For short term anaesthesia, 1-2 ml of Isofluran were given into a glass with lid and covered with a 

bit of tissue. The mouse was put into the glass and carefully watched until anaesthesia set in. 

After taking the mouse out of the glass, it remained in anaesthesia for a further 30 sec.  

 
3.2.5.3 Mouse euthanasia 
The mice were anaesthetised with Isofluran (chapter 3.2.5.2) and then sacrificed by cervical 

dislocation.  

 
3.2.5.4 Blood harvest from the tail vain 
The levels of antigen specific antibodies in sera of immunised mice are important indicators for 

the antigenicity of protein. The sera were won by harvesting blood from the lateral tail vain of 

immunised mice. To facilitate an easier harvest of blood, the mice were warmed up under an 

infrared light for 20 sec. The mouse was then fixed in a tube which allowed easy access to the 

tail. To draw blood, the tail was carefully cut with a thin razor blade and the blood collected.  

After the harvest, the blood was kept at room temperature for 30 min to inactivate complement 

factors. Then it was centrifuged at 4,500 rpm for 15 min at 4°C to separate the serum from the red 

blood cells. The sera were kept at -20°C until analysed by ELISA (3.2.4.4.1.1). 

 
3.2.5.5 Immunisation  
For this study, several immunisation methods were used. For all experiments an adjuvant was 

used because proteins alone generally induce only weak immune responses in animal models. 

Adjuvants are non-specific stimulators of the immune response, making a prospective antigen 

more immunogenic. The effect of an adjuvant may be the result of one or more mechanisms of 

action: a depot effect, an antigen presenting effect, via CD8 cytotoxic lymphocyte induction or by 

an immune activation/modulation effect (Cox and Coulter, 1997).  

3.2.5.5.1 Intraperitoneal immunisation  
For intraperitoneal immunisation (ip), aluminium hydroxide (Imject Alum, Pierce, Bonn) was used 

as an adjuvant. Aluminium salts adsorb antigens and provide a depot effect (Gupta and Rost 

2000). The depot effect is a classic mechanism in which the adjuvant protects the antigen from 

dilution, rapid degradation and elimination by the host. The intact antigen is localised in the 

immunised tissues and released slowly, resulting in prolonged exposure of the immune system to 

the antigen. This results in a continued stimulation of antibody producing cells, leading to a 

production of high levels of antibodies by the host. Additionally, aluminium adjuvants induce Th2 

dominated immune response (Lindbald 2000).  

The alum was added to the antigen in PBS and the mixture incubated at RT for 30 min, rotating 

slowly. For the immunisation, 200 µl PBS containing the antigen (either of the OVAs or rAra h 2)  

adsorbed to Alum was injected into the peritoneum of mice. Different immunisation protocols were 

used, refer to the respective results section for these. Seven days after each immunisation, blood 
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was harvested from the tail to determine the antibody levels in the serum. One week after the last 

immunisation, the mice were sacrificed and the splenicT cell activation analysed (3.2.3.11). 

3.2.5.5.2 Subcutaneous immunisation 
Subcutaneous (sc) immunisation was used as a method to obtain high frequency of antigen-

specific CD4+ T cells from inguinal (groin) and popliteal (knee) lymph nodes. For the 

subcutaneous immunisation TiterMax Gold® Adjuvat (Sigma) was found to be an effective 

adjuvant. This is a water-in-oil emulsion. Emulsions are commonly used depot adjuvants. 

TiterMax Gold® consists of squalene (a metabolisable oil), an emulsifier, a microparticulate silica 

and a block copolymer. The pronounced adjuvant activity of the high molecular weight copolymers 

presumably results through antigen presentation, complement activation, chemotactic properties 

and macrophage activation (Howerton et al., 1990; Hunter and Bennett 1984). 
To prepare the immunisation solution, AGE-OVA or one of the controls was diluted in PBS to 2 

mg/ml. This antigen solution was then mixed at a ratio of 1:1 with TiterMax Gold®, adding the 

antigen solution drop wise and mixing thoroughly in between additions to facilitate the preparation 

of a homogenous emulsion. The emulsion was then taken up into a 1 ml syringe (Braun) with a 

needle (25 G, Braun). Each mouse subcutaneously received 100 µg of OVA. One week after the 

immunisation, the mice were sacrificed and the poplitial and inguinal lymph nodes removed to 

assess the activation of the CD4+ T cells present in these organs (chapter 3.2.3.7.2). 
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4 Results 
 

4.1 Analysis of glycated ovalbumin (AGE-OVA)  
To investigate the influence of glycation by the Maillard reaction on the immunogenicity of food 

allergens, OVA was used as a model allergen. First, OVA glycated by the Maillard reaction (AGE-

OVA) was prepared by incubation of OVA with glucose for six weeks (chapter 3.2.2.1.1). The 

glycation structures on AGE-OVA were analysed by ELISA using antibodies recognising the AGE 

structures N-ε-cyrboxymethyllysine (CML), N-ε-cyrboxyethyllysine (CEL), Glycolaldehyde-pyridine 

(GA-pyridine) or pyrraline (Fig. 4.1). CML, CEL and GA-pyridine were detected on AGE-OVA, 

whereas pyrraline was not detected by the used ELISA (Fig. 4.2). A reversed-phase HPLC 

analysis (Henle 1991, Henle 1997) of AGE-OVA confirmed the presence of high levels of CML 

(Tab. 4.1, performed by Ms Anne Wellner, TU Dresden). Fructose-lysine, which is an intermediate 

of the Maillard reaction, was also detected by this method. The reversed-phase HPLC analysis 

was sensitive enough to detect minimal amounts of pyrraline (Tab. 4.1). The respective glycation 

structures were not detected on native OVA or OVA thermally processed under the same 

conditions as AGE-OVA but without glucose (thermally processed OVA) (Fig. 4.2). Tab. 4.1 also 

shows that the amount of free lysine was considerably reduced after OVA had been glycated by 

the Maillard reaction. Only 22.1 ± 2.0mmol free lysine/100g protein remained in AGE-OVA as 

opposed to 50.9 ± 0.1 mmol free lysine/100g protein found in native OVA. Therefore, over 50% of 

the free lysine residues found in OVA had been modified during thermal processing with glucose.  

Importantly, different batches of AGE-OVA produced and used for this study were glycated to a 

similar extent with the same AGE structures (Fig. 4.2).  

 

 
 
 
Fig. 4.1 Structural formula of glycation structures.  
Structural formulas of the advanced glycation end products which can be detected by specific antibodies in the ELISAs 

used.  Lys: lysine residues of protein 
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Fig. 4.2 Detection of glycation structures on AGE-OVA produced by the Maillard reaction. 
AGE-OVA was prepared by incubating 1 mM OVA with 1 M Glucose at 50°C for 6 weeks. The presence of glycation 

structures was verified by ELISAs performed with antibodies against different AGE structures.  The coloured curves show 

four representative lots of AGE-OVA. Native OVA and OVA thermally processed without glucose were used as controls.  

 

 

Table 4.1 Analysis of AGE-OVA 

Fructose-lysine in glycated ovalbumin [mmol/100 g protein] 10.7 ± 0.6 
Pyrraline in glycated ovalbumin [µmol/100 g protein] 29.4 ± 1.2 
Pentosidine in glycated ovalbumin  n.d. 
N-ε-carboxymethyllysine in glycated ovalbumin [mmol/100 g protein] 4.55 ± 0.49 
Free lysine in glycated ovalbumin [mmol/100 g protein] 22.1 ± 2.0 
Free lysine in non-glycated ovalbumin [mmol/100 g protein] 50.9 ± 0.1 

 

The glycation structures found on AGE-OVA and loss of free lysine due to glycation. Analysis performed by A. Wellner, TU 

Dresden, using biochemical methods. 

 

 

Besides the modification with glycation structures, any conformational change of OVA after the 

thermal incubation with or without glucose would be of importance, as this may also alter its 

immunogenic potential. To analyse the 2D-structures of AGE-OVA and the control OVAs, CD 
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spectroscopy was performed (chapter 3.2.2.5). The mean molar elipticity and the exact protein 

concentration were included for the evaluation of the spectra. The spectra measured for native, 

thermally processed and AGE-OVA were virtually identical (Fig 4.3, A). They have minima at 208 

and 220 nm, characteristic for a mostly α-helical protein. The results indicate that the 2D-structure 

of OVA was not affected by thermal incubation either with or without glucose.  

An SDS-PAGE was also performed to examine the nature of AGE-OVA. Native OVA is found in 

the gel at around 45 kDa (Fig. 4.3, B, lane 1), the 35 kDa band below the main band is only very 

faint. The band at 35 kDa would probably stem from a fraction of OVA which has degraded. For 

thermally processed OVA, the main band at 45 kDa is reduced and the 35kDa band has 

increased in intensity (lane 2). This suggests that minor degradation occurred during thermal 

treatment of OVA. The appearance of OVA in SDS-PAGE is completely changed by glycation. 

AGE-OVA is seen as a smear (lane 3) where the majority of the protein is found above 45 kDa 

and becomes very diffuse indicating, as expected, a significant modification of the protein by the 

Maillard reaction. This is in accordance with the data in Fig. 4.2. 
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Fig 4.3 Analysis of AGE-OVA by CD spectroscopy and SDS-PAGE 
The impact of thermally processing OVA at 50°C for 6 weeks with and without glucose on the 2D-structure and gel running 

properties of OVA was analysed by CD spectroscopy and SDS-PAGE. A CD spectrum of native, thermally processed and 

AGE-OVA was measured. B AGE-OVA and the controls were loaded on a 12.5% Tris-gylcine gel and stained with 

Coomasie brilliant blue. M: molecular weight standard, Prestained Broad Range (BioRad), 1: native OVA; 2: thermally 

processed OVA; 3: AGE-OVA.                                              

  

4.2 Analysis of glycated bovine serum albumin (AGE-BSA)  
For some experiments bovine serum albumin (BSA) was used as a control protein. For this 

purpose glycated BSA (AGE-BSA) and thermally processed BSA were prepared in the same way 

as OVA (chapter 3.2.2.1.1).  

As was observed for AGE-OVA, CML, CEL and GA-pyridine but not pyrraline were detected on 

the AGE-BSA but not on BSA thermally processed without glucose (Fig. 4.4 A). In SDS-PAGE, 



                                                                                                                                         Results 
 

 

56 
 

native BSA is found at around 67 kDa (Fig. 4.4 B, lane 1). After thermal processing without 

glucose, the majority of the protein was still found at 67 kDa (lane 2). As a result of the 

modifications by the Maillard reaction, there is no distinct band in the lane where AGE-BSA was 

applied (lane 3) but rather a diffused smear, similar to what was observed for AGE-OVA (Fig. 4.3, 

B lane 3). Collectively the analysis of AGE-OVA and AGE-BSA indicates that these proteins 

would possess similar glycation structures.  
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Fig. 4.4 Detection of glycation structures on AGE-BSA produced by the Maillard reaction. 
AGE-BSA was prepared by incubating 1mM BSA with 1M Glucose at 50°C for 6 weeks. A The formation of glycation 

structures was verified by ELISA using antibodies against different AGE structures. BSA thermally processed without 

glucose was used as a control. B Native, thermally processed, or AGE-BSA were loaded on a 12.5% Tris-gylcine gel and 

stained with Coomasie brilliant blue. M: molecular weight standard, Prestained Broad Range (BioRad), 1: native BSA; 2:: 

thermally processed BSA; 3: AGE-BSA.                                              

                                       
 

4.3 Influence of glycation by the Maillard reaction on the T cell 
immunogenicity of OVA in vitro 
CD4+ T cells are key players in the onset and maintenance of allergic diseases. It was therefore of 

interest how the glycation of OVA influences its T cell immunogenicity.  

 

4.3.1 Activation of OVA specific CD4+ T cells in vitro by glycated OVA 
 
4.3.1.1 Comparing the T cell activation ability of AGE-OVA and the unglycated OVAs 
First, the T cell immunogenicity of AGE-OVA was examined using an in vitro cell culture system. T 

cells from two transgenic mouse strains, DO11.10 (BALB/c background) and OT-2 mice (BL6 

background), were used. Around 80-85% of the CD4+ T cells from these transgenic mice posses 

a T cell receptor (TCR) which is specific for OVA (peptide 323–339, one letter coded amino acid 

sequence: ISQAVHAAHAEINEAGR). However, the TCRs of the two strains recognise different 

haplotypes of the MHC class II molecule. TCRs of OT-2 cells recognise a complex of the peptide 

and a I-Ab molecule, while TCRs of DO11.10 cells recognise a complex of the peptide and a I-Ad 
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molecule. Furthermore, the TCRs of these CD4+ T cells bind to some different amino acid 

residues of the OVA peptide 323–339. In this experiment the CD4+ T cells of OT-2 mice were 

mainly used because other genetically modified mice used in this study were also generated on a 

BL6 background. The experiment here was also performed with DO11.10 CD4+ T cells in order to 

elucidate whether the genetic background may have an influence on the T cell activation by AGE-

OVA.  

First, CD4+ T cells isolated from the spleen of OT-2 mice were co-cultured with mDCs and 

stimulated with either AGE-OVA or one of the controls, native and thermally processed OVA, at 2, 

20 or 200 µg /ml (chapter 3.2.3.8.1).  Upon activation, CD4+ T cells produce the cytokine IL-2. The 

concentration of IL-2 in the culture supernatant can easily be measured by ELISA and therefore is 

a valuable marker to assess activation of T cell.  

After 24 h, the highest concentration of IL-2 was found in the culture supernatants of T cells 

stimulated with AGE-OVA (Fig 4.5 ). It was of interest whether this enhanced T cell activation by 

AGE-OVA could also be seen at later time points or whether the level of activation becomes 

aligned for all three forms of OVA. As shown in Fig. 4.5, the level of IL-2 in the culture 

supernatants was much higher when the T cells were stimulated with AGE-OVA than when the 

cells were stimulated with the controls also after 48, 72 and 96 hours of co-culture. This result 

indicates that AGE-OVA activates OVA-specific CD4+ T cells much stronger than native or 

thermally processed OVA.    

 

To examine whether the genetic background of the mice influences the assessment of the T cell 

immunogenicity of AGE-OVA, CD4+ T cells isolated from DO11.10 mice were co-cultured with 

mDCs and stimulated with either form of OVA. As shown in Fig. 4.6, compared to the control 

OVAs, AGE-OVA induced a higher level of IL-2 production after 24 h in the co-culture of 

DO110.10 cells with mDCs. This was the case for all concentrations tested and also for incubation 

times of 48, 72 and 96 hours (data not shown).  

Together these results indicate that the glycation of OVA by the Maillard reaction enhances the 

CD4+ T cell immunogenicity of the allergen. Additionally, the enhanced CD4+ T cell activation by 

AGE-OVA was found to be independent of the mouse strain used as a source of the OVA specific 

CD4+ T cells.  
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Fig 4.5 Assessment of OT-2 CD4+ T cell activation induced by AGE-OVA  
OVA-specific CD4+ T cells isolated from OT-2 mice and BL6 mDCs were co-cultured and stimulated with native, thermally 

processed or AGE-OVA for 24, 48, 72 or 96 hours. The IL-2 concentration in the culture supernatants was determined by 

ELISA. Error bars signify the SD of culture triplicates and ELISA duplicates. 
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Fig 4.6 Assessment of DO11.10 CD4+ T cell activation induced by AGE-OVA  
OVA specific CD4+ T cells isolated from DO11.10 mice were co-cultured with BALB/c mDCs and stimulated with, native, 

thermally processed or AGE-OVA for 24 h. The IL-2 concentration in the culture supernatants was measured by ELISA. 

Error bars signify the SD of culture triplicates and ELISA duplicates.  
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4.3.1.1.1 Verification of mDC involvement in CD4+ T cell activation by AGE-OVA 
It was viable to verify whether the CD4+ T cells could be directly activated by AGE-OVA or 

whether mDCs are required to mediate the enhanced T cell activation. Therefore CD4+ T cells 

isolated from DO11.10 mice were cultured with or without mDCs and stimulated with native, 

thermally processed or AGE-OVA.  

As shown in Fig. 4.7, the amount of IL-2 produced by CD4+ T cells cultured without mDCs but 

stimulated with one of the OVAs at 20 or 200 µg/ml was extremely low when compared to the 

amount of IL-2 produced by the T cells co-cultured with mDCs. This clearly indicates that mDCs 

play a critical role in the enhanced OVA specific CD4+ T cell activation induced by AGE-OVA. 
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Fig 4.7 Involvement of mDCs in OVA specific CD4+ T cell activation by AGE-OVA 
CD4+ T cells isolated from DO11.10 mice were cultured with or without BALB/c mDCs. The cells were stimulated with 

AGE-OVA or the controls for 24 h. The concentration of IL-2 in the culture supernatants was determined by ELISA. Error 

bars signify the SD of culture triplicates and ELISA duplicates. 

 

An additional experiment was performed to elucidate whether antigen modified with Maillard 

glycation structures have the ability to activate CD4+ T cells directly.  For this experiment, AGE-

BSA was used. The co-cultures of OVA specific CD4+ T cells and mDCs were stimulated with 

native, thermally processed or AGE-BSA at 2, 20, and 200, µg/ml. The IL-2 concentration in the 

culture supernatants was below the detection level of the ELISA (2 pg/ml, data not shown). These 

results indicate that the T cells are only activated via their TCR which recognises the OVA peptide 

323–339 presented on MHC class II molecules of mDCs. The glycation structures alone could not 

activate the CD4+ T cells directly.  

 

4.3.1.2 Assessment of T cell activation by selectively glycated OVA  
The AGE-OVA used in this study has a variety of glycation structures, some of which could be 

detected by ELISA or biochemical methods (chapter 4.1). By selectively modifying OVA with 

glycation structures, it could be verified that glycation of the allergen does indeed have a 

significant influence on its T cell immunogenicity. Furthermore, it was of interest to investigate 
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which of the AGE structures may be responsible for the enhanced CD4+ T cell activation induced 

by AGE-OVA. The lysine residues of OVA were selectively modified with CML or CEL by Ms Anne 

Wellner, TU Dresden.  Samples in which different numbers of lysine residues were modified were 

prepared: CML-OVA 1 or 2, modified with 36.77 and 1.64 mmol CML/100g OVA, respectively and 

CEL-OVA 1, 2  or 3, modified with 45.17, 26.0 and 1.35 mmol CEL/100g OVA, respectively.  

CD4+ T cells isolated from the spleen of OT-2 mice were co-cultured with BL6 mDCs, and 

stimulated with CEL- or CML-OVA (3.2.3.8.1). As comparison, the T cells were again stimulated 

with native, thermally processed or AGE-OVA. The AGE-OVA was analysed by Ms Anne Wellner 

and was found to be modified with approximately 4.55 mmol CML/100g OVA (Tab. 4.1).  

OVA selectively modified with CEL or CML induced a higher T cell activation than native and 

thermally processed OVA. (Fig. 4.8). For CEL-OVA as well as CML-OVA the amount of IL-2 

produced by the stimulated T cells was dependent on the level by which OVA was modified. 

When higher levels of CML or CEL were present on OVA, more IL-2 was produced by the 

stimulated T cells. CEL-OVA 1 and CML-OVA 2, the selectively modified OVA with high levels of 

CEL and CML respectively, induced a comparable amount of T cell activation as AGE-OVA. 

These results suggest that selective modification with either CEL or CML alone significantly 

enhances the CD4+ T cell immunogenicity of OVA.  Additionally, the data suggests that CML and 

CEL detected on crude AGE-OVA would at least in part contribute to the enhanced CD4+ T cell 

activation. 
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Fig 4.8 Determination of OT-2 CD4+ T cell activation induced by CML- and CEL-OVA after 24 h 
CD4+ T cells isolated from OT-2 mice were co-cultured with BL6 mDCs and stimulated with OVA modified with the lysine 

derivates CML or CEL for 24 h. As comparison, the cells were also stimulated with native, thermally processed or AGE-

OVA. The IL-2 concentration in the cell culture supernatants was determined by ELISA. Error bars signify the SD of culture 

triplicates and ELISA duplicates.  
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4.3.2 Influence of AGE-OVA on the proliferation of OVA specific CD4+ T cells 
As AGE-OVA significantly enhanced the IL-2 production by OVA specific CD4+ T cells in 

comparison to the control OVAs, it was of particular interest to see whether this also results in 

enhanced proliferation of the T cells. CD4+ T cells isolated from the spleen of OT-2 mice were 

stained with CFSE (chapter 3.2.3.10) before being co-cultured with mDCs and stimulated with 

native, thermally processed or AGE-OVA, at 2, 20, or 200 µg/ml. The proliferation of the T cells 

was then determined by analysing the CFSE dilution using flow cytometry (chapter 3.2.4.1).  

For up to 48 hours no proliferation of CD4+ T cells could be observed (data not shown). After 72 h 

cell division was clearly detected (Fig. 4.9). The number of dividing cells was significantly higher 

upon stimulation with 2 or 20 µg/ml of AGE-OVA when compared to cells that were stimulated 

with either of the control OVAs (Fig. 4.9) at these concentrations.  This difference was not 

observed when the CD4+ T cells were stimulated with the very high concentration of  200 µg/ml of 

OVA. After 96 h, the number of cells which proliferate upon stimulation with 20 µg/ml of either 

form of OVA had also become comparable. However, CD4+ T cells which had been stimulated 

with only 2 µg/ml of allergen had proliferated only if stimulated with AGE-OVA (Fig. 4.9). These 

results show that AGE-OVA not only induces enhanced IL-2 production but also increases the 

proliferation of OVA specific CD4+ T cells when co-cultured with mDCs.  
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Fig 4.9 OVA specific CD4+ T cell proliferation induced by AGE-OVA analysed using CFSE staining 
CD4+ T cells were isolated from OT2-mice and stained with CFSE. The T cells were co-cultured with mDC and stimulated 

with different concentrations of AGE-OVA, native or thermally processed OVA. After 72 and 96 h the proliferation of the 

CD4+ T cells was determined by flow cytometry.  
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4.3.3 Cytokine production by AGE-OVA activated CD4+ T cells 
Production of Th2 type cytokines such as IL-4 by allergen specific CD4+ T cells is a critical 

component in the development and maintenance of food allergy (chapter 1.2 and 1.12.2.2). It was 

of interest whether glycatated food allergens may preferentially induce Th2 differentiation. 

Therefore the influence of the glycated OVA on the cytokine production of CD4+ T cells was 

analysed. As CD4+ T cells from OT-2 mice predominantly produce Th1 type cytokines such as 

IFN-γ but very little Th2 type cytokines such as IL-4, CD4+ T cells from DO11.10 mice, which 

efficiently produce Th2 type cytokines, were used. The isolated T cells were co-cultured with 

BALB/c mDCs and stimulated with native, thermally processed or AGE-OVA for 72h. The 

concentration of IL-4 and IFN-γ in the culture supernatants was determined by ELISA (chapter 

3.2.4.5.2.1).   

All three forms of OVA induced a robust secretion of IFN-γ by CD4+ T cells when the cells were 

stimulated with 200 µg/ml of allergen (Fig. 4.10). However, AGE-OVA induced significantly higher 

IFN-γ and IL-4 production than the control OVAs when CD4+ T cells were stimulated with only 2 or 

20 µg/ml of allergen. Native or thermally processed OVA induced robust secretion of IL-4 by the T 

cells only at a very high allergen concentration, 200 µg/ml (Fig. 4.10). Collectively, the results 

show that AGE-OVA, in addition to strongly enhanced CD4+ T cell activation and proliferation (Fig. 

4.6), also increased secretion of IFN-γ and IL-4.   

Interestingly, AGE-OVA induced the highest secretion of IL-4 by the T cells at the lower allergen 

concentration of 2 µg/ml. It seems that in CD4+ T cells stimulated with AGE-OVA at 200 µg/ml, the 

high level of IFN-γ inhibited IL-4 production by the cells. At the allergen concentrations used this 

could not be observed for native or thermally processed OVA, however, it may be possible that if 

higher allergen concentrations where used, increased IFN-γ may also inhibit IL-4 in cells 

stimulated with native or thermally processed OVA. The fact that IFN-γ secretion inhibits 

production of IL-4 is well established (chapter 1.12.2.1) 

However, the ratio of IL-4/IFN-γ in the supernatants of T cells stimulated with native, thermally 

processed OVA or AGE-OVA seems to be comparable. Therefore the glycation of the allergen 

would not particularly induce Th2 cell differentiation.  

            



                                                                                                                                         Results 
 

 

63 
 

     

120

80

20

IFN-γ IL-4
3000

2500

2000

1500

1000

500

0

IF
N

-γ
(p

g/
m

l)

IL
-4

 (p
g/

m
l)

180
160
140

100

60
40

0
Medium       2           20         200

OVA concentration (µg/ml)
Medium       2           20         200

OVA concentration (µg/ml)

native OVA
thermally processed OVA
AGE-OVA

120

80

20

IFN-γ IL-4
3000

2500

2000

1500

1000

500

0

IF
N

-γ
(p

g/
m

l)

IL
-4

 (p
g/

m
l)

180
160
140

100

60
40

0
Medium       2           20         200

OVA concentration (µg/ml)
Medium       2           20         200

OVA concentration (µg/ml)

native OVA
thermally processed OVA
AGE-OVA

            
Fig 4.10 Determination of the phenotype of activated OVA specific CD4+ T cells 
CD4+ T cells isolated from DO11.10 mice were co-cultured with BALB/c mDCs and stimulated with AGE-OVA or the 

controls for 72 h. The concentration of IL-4 and IFN-γ in the culture supernatants were measured by ELISA.  Error bars 

signify the SD of culture triplicates and ELISA duplicates. 

 

4.3.4 Influence of AGE-OVA on the activation of OVA specific CD8+ T cells 
It was of interest to examine whether the glycation of OVA influences the stimulatory effect of the 

allergen on CD8+ T cells. To elucidate the CD8+ T cell immunogenicity of AGE-OVA, CD8+ T cells 

isolated from spleen of the transgenic mouse strain OT-1 were used. These cells have a TCR 

which specifically recognises OVA residues 257-264 (SIINFEKL). CD8+ T cells were co-cultured 

with BL6 mDCs, which had been prestimulated with 200, 20 or 20 µg/ml of native, thermally 

processed or AGE-OVA for 3 h (chapter 3.2.3.9). After 21 h of co-culture, the IL-2 concentration in 

the culture supernatants was measured by ELISA (chapter 3.2.4.5.2.1). 

As shown in Fig. 4.11, AGE-OVA and native OVA induced comparable IL-2 production by the 

CD8+ T cells. This result indicates that glycation of OVA by the Maillard reaction does not 

enhance the CD8+ T cell immunogenicity of the allergen. Interestingly, thermally processed OVA 

induced an enhanced IL-2 secretion by CD8+ T cells. In Fig. 4.3, it is shown that thermally 

processing without glucose induces partial degradation of OVA. The partial degradation may 

enhance the processing of thermally processed OVA resulting in more MHC class I-OVA peptide 

complex to be presented on the cell surface of mDCs. 
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Fig 4.11 Assessment of CD8+ T cell activation after stimulation with OVA  
CD8+ T cells isolated from OT-1 mice were co-cultured with BL6 mDCs, which had been preincubated with native, 

thermally processed or AGE-OVA for 3 h.  After 21 h of co-culture, the IL-2 concentration in the cell culture supernatants 

was measured by ELISA. Error bars signify the SD of culture triplicates and ELISA duplicates. 

 

 

4.4 Interaction of AGE-OVA with mDCs in vitro  
Dendritic cells are professional antigen presenting cells which are highly specialised in the uptake 

of antigens and subsequent activation of T cells. As shown in Fig. 4.7, it was found that mDCs are 

essential for the enhanced CD4+ T cell activation by AGE-OVA. To obtain insights into the role of 

mDCs in the enhanced T cell activation by AGE-OVA, (i) the influence of AGE-OVA on mDC 

maturation and (ii) the mechanisms involved in the uptake of AGE-OVA by mDCs were examined.  

 

4.4.1 Influence of AGE-OVA on the maturation of mDCs  
First the influence of AGE-OVA on mDC maturation was assessed. mDCs were stimulated with 

20 µg/ml of AGE-OVA or either of the controls, native and thermally processed OVA for 18 h. As 

positive control in this experiment, LPS, a known inducer of mDC maturation, was used (chapter 

3.2.3.5). The cell surface expression of the maturation markers CD40, CD80, CD86 and MHC 

class II molecules (MHC II) on mDCs was analysed by flow cytometry (chapter 3.2.4.1). 

Furthermore, the concentration of IL-12p70 and IL-10 in the supernatant of the stimulated mDCs 

was measured by ELISA (chapter 3.2.4.5.2.1).  

As expected, stimulation of mDCs with LPS upregulated the expression of all maturation markers 

on the cell surface (Fig. 4.12 A). LPS stimulation also induced a significant secretion of IL-12p70 

and IL-10 by mDCs (Fig. 4.12 B). In contrast, the expression of the maturation markers by mDCs 

was not upregulated upon stimulation with AGE-OVA or any of the controls (Fig 4.12 A). In line 

with this, mDCs stimulated with either of the OVAs did not secrete detectable levels of IL-12p70 or 

IL-10 (Fig. 4.12, B). Collectively, these results indicate that AGE-OVA is not capable of inducing 

the maturation of bone marrow derived mDCs. 
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Fig 4.12 Assessment of mDC maturation induced by AGE-OVA 
mDCs were stimulated with 20 µg/ml of native, thermally processed or AGE-OVA or 10 µg/ml of LPS for 18h.                     

A Expression of the maturation markers CD40, CD80, CD86 and MHC II on mDCs was analysed by flow cytometry. Gray 

areas represent cells cultured with medium only. B The concentrations of IL-10 and IL-12p70 in the culture supernatants 

were measured by ELISA. Error bars signify the SD of culture triplicates and ELISA duplicates. 

 

 

4.4.2 Influence of glycation of OVA on the uptake of the allergen by mDCs 
Antigen-specific T cell activation is preceded by the uptake of antigens by DCs. To further 

investigate the mediator function of mDCs in the enhanced CD4+ T cell immunogenicity of AGE-

OVA, the uptake of native, thermally processed and AGE-OVA by mDCs was compared. 
 
4.4.2.1 Verifying the comparability of the FITC labelling of the different OVA forms 
In order to compare the uptake of AGE-OVA and the controls by mDCs, the OVAs had to be 

labelled with FITC at comparable FITC/protein molar ratio (chapter 3.2.2.6). The FITC/protein 

molar ratio was calculated by measuring the absorption of the samples at 280 nm (absorption 

maximum of proteins) and 495 nm (absorption maximum of FITC) as described in chapter 3.2.2.6. 
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The proteins were usually labelled with around 2.5 moles of FITC per mol of protein. Additionally, 

an ELISA using a mouse-anti FITC monoclonal antibody was performed to verify comparable 

labelling of all three OVA samples (chapter 3.2.4.4.1.3). A representative result of the ELISA is 

shown in Fig. 4.13.  The result shows that the anti-FITC monoclonal antibody bound to FITC 

labelled native, thermally processed and AGE-OVA equally well at all concentrations. This 

indicates that the three samples were labelled with a comparable FITC/protein molar ratio. 

Therefore these FITC-conjugates could be used to compare the uptake of the three forms of OVA 

since differences in FITC intensity of the cells would not be the result of non-uniform labelling of 

the proteins. 
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Fig 4.13 Comparability of FITC/protein ratio of the three OVAs 
ELISA plates were coated with FITC labelled native, thermally processed or AGE-OVA. The level of FITC on the OVAs 

was determined using a mouse-anti FITC antibody.  

 
 

4.4.2.2 Analysis of the uptake of AGE-OVA by mDCs 

To assess the level of OVA uptake by mDCs, the cells were incubated with 0.5 or 5 µg/ml of FITC 

labelled native, thermally processed or AGE-OVA for 15 min (3.2.3.6). Following the incubation, 

mDCs were harvested and stained with PE conjugated anti-mouse CD11b and APC conjugated 

anti-mouse CD11c (3.2.4.2.1) antibody. The FITC intensity of the CD11b+CD11c+ cells was 

measured by flow cytometry (3.2.4.1).  

When incubated with 5 µg/ml of allergen, the mDC uptake of AGE-OVA is more than fivefold 

higher than that of native or thermally processed OVA (Fig. 4.14 A). The result was even more 

striking when only 0.5 µg/ml of the allergens were given to the cells. Here, the mDC uptake of 

AGE-OVA was nearly tenfold higher than that of the control OVAs (Fig. 4.14 A). The fold increase 

of the mean fluorescence intensity (MFI) of cells incubated with native, thermally processed or 

AGE-OVA in relation to the auto fluorescence of mDCs cultured with medium only is shown in Fig. 

4.14 B. The MFI of the mDCs incubated with native or thermally processed OVA was only around 

5 and 20 fold greater than that of the unstimulated cells at the antigen concentration of 0.5 and 5 
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µg/ml respectively. For AGE-OVA the fold increase of the MFI was approximately 20 and 60 fold 

at the antigen concentration of 0.5 and 5 µg/ml respectively. The results strongly indicate that 

AGE-OVA was taken up by mDCs much more efficiently than native and thermally processed 

OVA. 

The increased fluorescence intensity of mDCs incubated with FITC-AGE-OVA might result from 

the attachment of the glycated allergen on the cell surface due to electric charges of the glycation 

structures. To verify whether AGE-OVA was taken up (endocytosed) by mDCs or simply attached 

to the cell surface, the localisation of AGE-OVA in the cells was analysed by confocal laser 

scanning microscopy (chapter 3.2.4.3). The mDCs were incubated with AGE-OVA for 15 min 

under the same conditions as for the flow cytometric analysis. The majority of AGE-OVA was not 

attached to the cell surface but clearly located within the mDCs (Fig. 4.14, C). This observation 

indicates that AGE-OVA was indeed endocytosed by the mDCs. 
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Fig 4.14 Influence of glycation on its uptake by mDCs 
Wt mDCs were incubated with 0.5 or 5 µg/ml of FITC conjugated native, thermally processed or AGE-OVA for 15 min.       

A  Analysis of uptake by CD11b+CD11c+ mDCs using flow cytometry. Gray areas represent cells cultured with medium 

only. Graphs are representative of three independent experiments. B The FITC mean fluorescence intensity (MFI) is 

shown as fold increase of MFI of cells cultured with medium only. Error bars signify the SD of three independent 

experiments.  C The uptake of FITC AGE-OVA by mDCs was analysed by confocal laser scanning microscopy.  
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4.4.3 Receptors mediating the uptake of AGE-OVA by mDCs 
Native OVA has a single carbohydrate side chain composed of N-acetylglucoseamine (GNAc) 

and mannose which facilitates the uptake of the allergen by the mannose receptor (MR) 

(Huntington 2001 et al., Burgdorf 2006, Autenrith et al., 2007). AGEs have been shown to bind to 

a variety of cell surface receptors such as RAGE (receptor for advanced glycation end products) 

(Schmidt 1992, Neeper 1992), scavenger receptor class A type I and II (SR-AI/II) (Suzuki 1997, 

Araki 1999) scavenger receptor class B type I (SR-BI) (Ohgami et al., 2001, a), CD36 (Ohgami et 

al., 2001, b) and Galectin-3 (Vlassara 1995). Following the observation that glycation of OVA 

enhances its uptake by mDCs, the aim was to identify the receptor(s) involved in the uptake of 

AGE-OVA by mDCs. 
 
4.4.3.1 Detection of receptors expressed on bone marrow derived mDCs 
First, it was verified whether the receptors which have previously been found to bind AGEs and 

the MR are expressed by the mDCs used in this study. The expression of MR, SR-AI, RAGE and 

Galectin-3 on the surface of the mDCs was analysed by flow cytometry (chapter 3.2.4.1) using 

monoclonal antibodies recognising these receptors (chapter 3.2.4.2.2). Expression of SR-B1, 

CD36, and also SR-AI/II by mDCs was examined by RT-PCR (chapter 3.2.1.2) 

As shown in Fig. 4.15 A and B, the majority of mDCs express the MR and Galectin-3. Cell surface 

expression of RAGE however, could not be detected by flow cytometry (Fig. 4.15, C). Gene and 

protein expression of RAGE was also not detected when using RT-PCR and Western Blot, 

respectively (data not shown). For the detection of SR-A a monoclonal antibody against SR-A 

type I only was used, as this is the only antibody commercially available which was suitable for 

flow cytometric analysis of BL6 derived mDCs. As shown in Fig. 4.15 D SR-AI was detected on 

some but not all mDCs. Additionally, the expression of SR-AI/II was confirmed by RT-PCR (Fig. 

4.15, E, lane 3). Gene expression of SR-B1 and CD36 by mDCs could also be shown by RT-PCR 

(Fig. 4.1,E, lanes 1 and 2). Therefore several receptors which may potentially bind AGE (-OVA) 

are expressed by the mDCs used in the present study.  
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Fig. 4.15 Expression of OVA and AGE-binding receptors expressed by mDCs  
Wt mDCs were analysed for their expression of the receptors to which AGE-OVA may bind. A-D The cells were stained 

with the respective monoclonal antibody and the expression of the receptors in CD11b+CD11c+ cells was analysed by flow 

cytometry. Gray areas represent the relevant isotype controls. E Total RNA of mDCs was isolated and subjected to 

reverse transcriptase treatment. PCR was then performed using primers detecting the genes for SR-B1, CD36 and SR-A, 

respectively. PCR products were analysed using a 1.5% agarose gel. M: size standard, 100 bp DNA ladder (NEB), 1: SR-

B1; 2: CD36; 3: SR-A. 

 

 

4.4.3.2 Non-involvement of RAGE in the uptake of AGE-OVA 
As shown in Fig. 4.15, expression of RAGE by mDCs could not be detected. However, as RAGE 

is a well known AGE-binding receptor, it remained an attractive potential receptor for the 

endocytosis of AGE-OVA in this study. It could not be excluded that the methods described above 

to detect RAGE expression were not optimal. Therefore it was examined whether the uptake of 

AGE-OVA is attenuated in mDCs generated from RAGE deficient mice. 

After incubation of wild type (Wt) mDCs and RAGE deficient mDCs with 5 µg/ml FITC-conjugated 

native, thermally processed or AGE-OVA for 15 min (chapter 3.2.3.6), the cells were stained with 

PE conjugated anti-mouse CD11b and APC conjugated anti-mouse CD11c (chapter 3.2.4.2.1) 

antibodies. The FITC intensity of CD11+CD11c+ cells was analysed by flow cytometry (chapter 

3.2.4.1). The fluorescence intensity of mDCs incubated with AGE-OVA was comparable in Wt and 

RAGE deficient mDCs (Fig. 4.16). A reduction in the uptake of native and thermally processed 

OVA was also not observed in RAGE deficient mDCs. The results indicate that RAGE is not 
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involved in the uptake of AGE-OVA or in the uptake native and thermally processed OVA in the 

experimental system used in this study.  
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Fig. 4.16 RAGE is not involved in the uptake of AGE-OVA by mDCs 
Wt or RAGE deficient mDCs were incubated with 5 µg/ml of FITC conjugated AGE-OVA or the controls. The uptake of the 

OVAs by CD11b+CD11c+ mDCs was analysed by flow cytometry. Gray areas represent mDCs cultured with medium only. 

Graphs are representative of three independent experiments.  

 

 

4.4.3.3 Non-involvement of Galectin-3 in the uptake of AGE-OVA 
Next it was investigated, whether Galectin-3 is engaged in the uptake of AGE-OVA. Lactose is a 

ligand of Galectin-3 (Cherayil et al., 1989) and is commonly used to block the interaction of other 

ligands with this receptor (Li et al., 2008; Karlsson et al., 2009). The uptake of all three OVAs by 

lactose treated and untreated Wt mDCs was compared. mDCs were treated with 150 mM lactose 

30 min prior to the addition of the OVAs (chapter 3.2.3.6). No significant reduction in the uptake of 

AGE-OVA or of the controls was observed in lactose treated mDCs (Fig. 4.17). Therefore 

galectin-3, highly expressed on the mDCs (Fig 4.15, B), does not mediate the uptake of AGE-

OVA.  
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Fig. 4.17 Galectin-3 is not involved in the uptake of AGE-OVA by mDCs 
mDCs were pre-incubated with lactose for 30 min to inhibit possible galectin-3 mediated uptake. Subsequently the cells 

were incubated with 5 µg/ml of FITC conjugated native, thermally processed or AGE-OVA .The uptake of the OVAs by 

CD11b+CD11c+ mDCs was measured by flow cytometry. Gray areas represent mDCs cultured with medium only. Graphs 

are representative of  three independent experiments. 
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4.4.3.4 Involvement of SR-AI/II in the uptake of AGE-OVA by mDCs 
Following the findings that RAGE and Galectin-3 are not involved in AGE-OVA uptake by mDCs, 

the role of a further potential receptor, SR-AI/II, was examined using mDCs generated from bone 

marrow cells of SR-AI/II deficient mice (chapter 3.2.3.6).  Importantly, AGE-OVA uptake by SR-

AI/II deficient mDCs was significantly reduced in comparison to that by Wt mDCs (Fig. 4.18). This 

reduction of uptake by the SR-AI/II deficiency is particularly pronounced when adding the lower 

concentration of AGE-OVA, 0.5 µg/ml. Surprisingly, native and thermally processed OVA uptake 

was also reduced in SR-AI/II deficient mDCs (Fig. 4.18). However, the reduction in the uptake of 

the control OVAs was considerably less than that of AGE-OVA. Additionally, when SR-AI/II 

deficient mDCs were treated with only 0.5 µg/ml of native or thermally processed OVA, a visible 

reduction of the uptake was no longer observed. The results indicate that SR-AI/II plays a pivotal 

role in the uptake of AGE-OVA by mDCs. The uptake of native and thermally processed OVA 

could also be mediated by SR-AI/II but only to a small extend.  
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Fig. 4.18 Uptake of AGE-OVA by SR-AI/II deficient mDCs 

Wt mDC or SR-AI/II deficient mDCs were incubated with 0.5 or 5  µg/ml of FITC labelled native, thermally processed or 

AGE-OVA for 15 min.  The FITC fluorescence intensity of CD11b+CD11c+ cells was measured by flow cytometry. Gray 

areas represent mDCs cultured with medium only. Graphs are representative of  three independent experiments. 

 

 
4.4.3.5 Involvement of the MR in the uptake of AGE-OVA by mDCs 
There was still considerable uptake of all three OVAs by SR-AI/II deficient mDCs (Fig. 4.18). OVA 

has a single carbohydrate side chain containing mannose, which facilitates the uptake of the 

allergen by the mannose receptor (MR) (Huntington 2001 et al., Burgdorf 2006, Autenrith et al., 

2007). Therefore the remaining uptake observed in SR-AI/II deficient mDCs may be mediated by 

the MR. To verify this, mannan, a carbohydrate which inhibits MR mediated endocytosis (Sallusto 
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et al., 1995), was used. SR-AI/II deficient mDCs were treated with 3 mg/ml of mannan prior to the 

incubation with 0.5 or 5 µg/ml of either of the FITC conjugated OVAs (chapter 3.2.3.6). 

Treatment of SR-AI/II deficient mDCs with mannan almost completely abolished the uptake of 

native and thermally processed OVA (Fig. 4.19). This observation indicates that the MR is the 

main receptor for the uptake of native and thermally processed OVA. Regarding the mDC uptake 

of AGE-OVA, the MR inhibition in combination with the SR-AI/II deficiency did not attenuate the 

uptake completely. Some uptake of AGE-OVA was still observed in SR-AI/II deficient mDCs which 

had been incubated with 5 µg/ml of OVA even after mannan treatment. The results suggest that in 

addition to the SR-AI/II, the MR is a mediator for the uptake of AGE-OVA. However, one or more 

further receptor(s) could be involved in the mDC uptake of AGE-OVA . 

 

   

0.5 µg/ml

5 µg/ml

Native OVA Thermally processed OVA AGE-OVA

%
 o

f M
ax

FITC

+ mannan
- mannan

%
 o

f M
ax

 
Fig. 4.19 Influence of mannan treatment on AGE-OVA uptake by SR-AI/II deficient mDCs 

SR-AI/II deficient mDCs were treated with 3 mg/ml of mannan for 30 min and then incubated with 0.5 or 5 µg/ml of FITC 

labelled native, thermally processed or AGE-OVA for 15 min. The FITC fluorescence intensity of CD11b+CD11c+ mDCs 

was measured by flow cytometry. Gray areas represent mDCs cultured with medium only. Graphs are representative of 

three independent experiments. 

 

 

4.4.4 Verification of interaction of AGEs with SR-AI/II  
The experiments in chapter 4.4.3 have demonstrated that the uptake of AGE-OVA is significantly 

reduced in SR-AI/II deficient mDCs while the uptake of native OVA and thermally processed OVA 

is only marginally affected. It was therefore very likely that the glycation structures on AGE-OVA 

enhance the interaction of AGE-OVA with SR-AI/II. To verify the interaction of AGEs with SR-AI/II, 

AGE-BSA was used. The profile of the glycation structures of AGE-BSA was comparable with that 

of AGE-OVA as shown in Fig. 4.2 and Fig. 4.4. 
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4.4.4.1 Uptake of native and AGE-BSA by Wt mDCs 
First, it was determined whether the glycation of BSA increases the uptake of the protein by 

mDCs as was observed for OVA (Fig. 4.14). Native BSA and AGE-BSA were labelled with FITC 

at a comparable FITC/protein ratio (chapter 3.2.2.6).  The level of the uptake of these BSAs was 

compared by measuring the FITC intensity of mDCs by flow cytometry (chapter 3.2.4.1). 

As shown in Fig. 4.20, the uptake of AGE-BSA was markedly greater than that of native BSA at 

both antigen concentrations used. Similar to the observations made with OVA (Fig 4.14), this 

difference was most evident at an antigen concentration of 0.5 µg/ml (Fig. 4.20) at which an 

uptake of native BSA by mDCs could barely be detected, while AGE-BSA is efficiently taken up. 

This result suggests that glycation structures are indeed the critical component for the enhanced 

uptake of glycated proteins by mDCs. 
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Fig. 4.20 Uptake of native BSA and AGE-BSA by Wt mDCs 
mDCs were incubated with 0.5 or 5 µg/ml of FITC conjugated native BSA or AGE-BSA for 15 min. The uptake of these 

BSAs by CD11b+CD11c+ mDCs was measured by flow cytometry. Gray areas represent cells cultured with medium only. 

Graphs are representative of  three independent experiments. 

 
 
4.4.4.2 Inhibition of mDC uptake of AGE-OVA by AGE-BSA 
To further verify the involvement of the glycation structures of AGE-OVA in the enhanced uptake 

by mDCs, an inhibition assay using AGE-BSA was performed. To this end, mDC uptake of FITC 

labelled AGE-OVA in the presence of native BSA or AGE-BSA was examined (chapter 3.2.3.6). In 

contrast to OVA, BSA does not possess natural carbohydrate residues which may facilitate 

binding to SR-AI/II (Wada, 1996). However, AGE-BSA, as an AGE derivative, should also be 

capable to bind to SR-AI/II. 

Native BSA did not inhibit the uptake of AGE-OVA by Wt mDCs, even when added at a very high 

concentration, 500 µg/ml (Fig. 4.21, A). In contrast, AGE-BSA inhibited the uptake of AGE-OVA 

by Wt mDCs in a dose dependent manner. High concentrations of AGE-BSA also inhibited the 

uptake of AGE-OVA by SR-AI/II deficient mDCs, but considerably less than in Wt mDCs (Fig. 4.21 

B). Native BSA, again, did not inhibit the uptake of AGE-OVA by the deficient mDCs. These 

results further support that (i) the glycation structures are the critical components in the uptake of 

AGE-OVA by SR-AI/II and (ii) (an)other receptor(s) in addition to SR-AI/II interact(s) with AGEs, 

although the role of the(se) receptor(s) in the uptake of the AGEs would be minor.  
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Fig. 4.21 AGE-BSA inhibition of AGE-OVA uptake by Wt and SR-AI/II deficient mDCs   
A WT mDCs or B SR-AI/II deficient mDCs were incubated with 5 µg /ml of FITC-conjugated AGE-OVA together with native 

or AGE-BSA at the indicated concentrations for 15 min. The uptake of AGE-BSA by CD11b+CD11c+ mDCs was measured 

by flow cytometry. Gray areas represent cells cultured with medium only. Graphs are representative of three independent 

experiments. 
 
 
4.4.4.3 Excluding unspecific interaction of FITC with SR-AI/II   
SR-AI/II has a broad ligand binding specificity against polyanionic molecules such as 

glycoproteins and chemically modified proteins. It was of importance to exclude the possibility of 

an involvement of FITC in the interaction of the labelled OVAs with SR-AI/II.   

To examine the involvement of FITC in SR-AI/II mediated uptake by mDCs, Transferrin (Trf) 

labelled with FITC was used. This protein is specifically internalised by the Transferrin receptor 

(TrfR) (Trowbridge and Shackleford, 1986). The endocytosis of Trf should therefore not be 
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affected by a lack of SR-AI/II on mDCs. As was expected, the uptake of FITC-Trf was comparable 

in Wt and SR-AI/II deficient mDCs (Fig. 4.22.). This result indicates that FITC-Trf uptake is 

mediated only by the TrfR and, importantly, excludes the possibility of FITC binding to SR-AI/II. 

 

                         

50 µg/ml5 µg/ml

SR-I/II- mDC
Wt mDC

%
 o

f M
ax

FITC  
Fig 4.22 Using FITC-Trf to exclude the possibility of unspecific interaction of FITC with SR-AI/II   
Wt mDCs or SR-AI/II deficient mDCs were incubated with 5 or 50 µg/ml of FITC-conjugated Trf. The uptake by 

CD11b+CD11c+ mDCs was measured by flow cytometry.  Gray areas represent cells cultured with medium only. Graphs 

are representative of three independent experiments. 
 

4.4.5 Uptake of recombinant OVA by Wt mDCs and SR-AI/II deficient mDCs 
In general, recombinant proteins which are prepared employing expression systems in E. coli do 

not possess natural carbohydrate residues. By using recombinant OVA it was possible to examine 

whether the natural single carbohydrate side chain composed of mannose and N-acetyl-

glucosamine on native OVA binds to SR-AI/II, or not (Fig. 4.18). The only possible mechanism for 

recombinant OVA to be taken up by mDCs would be pinocytosis. Here, the uptake of recombinant 

OVA and native OVA by Wt mDCs and SR-AI/II deficient mDCs was compared. The uptake level 

of recombinant OVA by Wt mDCs was significantly less than that of native OVA (Fig. 4.23, A). 

Furthermore, the uptake of recombinant OVA by SR-AI/II deficient mDCs is not reduced in 

comparison to the uptake by Wt mDCs (Fig. 4.23, B) while the uptake of native OVA was reduced 

by SR-AI/II deficiency (Fig. 4.18). These results indicate that SR-AI/II is engaged in the uptake of 

native OVA by association with the single carbohydrate side chain of the allergen. 
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Fig 4.23 Uptake of recombinant OVA by Wt mDCs and SR-AI/II deficient mDCs  

Wt mDCs or SR-AI/II deficient mDCs were incubated with 0.5 or 5 µg/ml of FITC-conjugated native or recombinant OVA 

for 15 min. The uptake by CD11b+CD11c+ mDCs was measured by flow cytometry.  A Uptake of native or recombinant 

OVA by Wt mDCs. B Comparison of recombinant OVA uptake by Wt and SR-AI/II deficient mDCs.  Gray areas represent 

cells cultured with medium only. Graphs are representative of three independent experiments. 
 
 

4.4.5 Role of SR-AI/II mediated OVA uptake by mDCs in the activation of OVA 
specific CD4+ T cells 
In this study it was found that (i) mDC uptake of AGE-OVA is greater than that of native or 

thermally processed OVA and that (ii) SR-AI/II plays a key role in the increased uptake of AGE-

OVA by mDCs. Next, it was of interest whether the SR-AI/II mediated uptake of AGE-OVA 

contributes to the enhanced CD4+ T cell immunogenicity of the allergen (chapters 4.3.1 and 

4.3.2). 

 

4.4.5.1 Verification of antigen uptake and T cell stimulatory capacity of SR-AI/II deficient 
mDCs 
First, it had to be verified that SR-AI/II deficient mDCs have the capacity to express similar levels 

of co-stimulatory molecules and MHC II as Wt mDCs, since these molecules are essential for an 

efficient T cell stimulation (chapter 1.12.1). Wt and SR-AI/II deficient mDCs were stimulated with 

LPS, an inducer of DC maturation, and the expression of CD40, CD80 CD86 and MHC II on the 

cell surface was measured by flow cytometry (chapter 3.2.4.1). As seen in Fig. 4.24, the co-

stimulatory and MHC II were comparably expressed on both Wt and SR-AI/II deficient mDCs. This 
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result indicates that the T cell stimulatory capacity of SR-AI/II deficient mDCs is not affected by a 

reduced ability to express surface molecules essential for T cell activation. 

Additionally, the assessment of the uptake ability of mDCs using FITC conjugated Trf (Fig. 4.22) 

showed that the uptake of Trf by SR-AI/II deficient mDCs was comparable to that of Wt mDCs. 

Collectively these results show that SR-AI/II deficiency would not generally influence the antigen 

uptake by and the T cell stimulatory ability of mDCs. 
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Fig 4.24 Expression of co-stimulatory molecules by Wt and SR-AI/II deficient mDCs after LPS stimulation.  
Wt mDCs or SR-AI/II deficient mDCs were incubated with 10 µg/ml of LPS for 18 h. The expression of CD40, CD80, CD86 

and MHC II on the cell surface of CD11b+CD11c+ mDCs was analysed by flow cytometry. Gray areas represent cells 

cultured with medium only. Graphs are representative of three independent experiments. 
 

 

4.4.5.2 The role of SR-AI/II in the activation of OVA specific CD4+ T cells  
The role of SR-AI/II mediated OVA uptake in the activation of OVA-specific CD4+ T cells was 

determined by performing a T cell activation assay with SR-AI/II deficient mDCs in addition to Wt 

mDCs (chapter 3.2.3.8.1). Wt or SR-AI/II deficient mDCs were incubated with 20 or 200 µg/ml of 

native, thermally processed, recombinant or AGE-OVA for 3 h before the cells were fixed with 

0.008% Glutaraldehyde. CD4+ T cells isolated from OT-2 mice were then cultured for 21 h in the 

presence of the fixed mDCs. The IL-2 concentration in the culture supernatants was measured by 

ELISA (chapter 3.2.4.5.2.1). Recombinant OVA was included as a further control to verify the 

importance of the natural carbohydrate residues in the uptake of native OVA by SR-AI/II. The 

protocol using mDC fixation was chosen to reduce the involvement of pinocytosis in the uptake of 

these OVAs by mDCs. 

Consistent with the previous result (Fig. 4.5), OT-2 CD4+ T cells cultured in the presence of Wt 

mDCs showed a considerably stronger activation when stimulated with AGE-OVA than when 

stimulated with native or thermally processed OVA (Fig. 4.25). A remarkable reduction of the IL-2 
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production by OVA-specific CD4+ T cells in response to the allergens was observed if the T cells 

were cultured in the presence of SR-AI/II-deficient mDCs instead of Wt mDCs. The decrease was 

observed for native, thermally processed and AGE-OVA stimulated T cells (Fig. 4.25). The results 

clearly indicate that SR-AI/II mediated uptake of OVA by mDCs is important for efficient OVA 

specific CD4+ T cell activation. The CD4+ T cell activation induced by recombinant OVA cultured 

with Wt mDCs is considerably lower than the activation induced by native OVA and is not affected 

by the lack of SR-AI/II expression on the mDCs. This suggests that the non-recombinant OVAs 

interact with SR-AI/II via their carbohydrate side chain as was also indicated by Fig. 4.23. Highly 

interestingly, for the T cells which were added to SR-AI/II deficient mDCs instead of Wt mDCs an 

enhanced activation in response AGE-OVA could no longer be observed. The abolishment of the 

difference in the IL-2 production induced by native, thermally processed and AGE-OVA when 

using SR-AI/II deficient mDCs suggests that the enhanced CD4+ T cell immunogenicity of AGE-

OVA in in vitro co-cultures is dependent on the expression of SR-AI/II by the mDCs. The basis for 

the SR-AI/II dependent enhanced CD4+ T cell activation by AGE-OVA would be an increased 

affinity of AGE-OVA to SR-AI/II due to the glycation structures as was also indicated in Fig. 4.21.  

Additionally, the data shown in Fig 4.25 suggests that OVA taken up by mDCs via endocytosis by 

SR-AI/II enters the MHC class II loading pathway which results in the presentation of the antigen 

peptide for CD4+ T cells. 
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Fig. 4.25 The role of SR-AI/II in the AGE-OVA mediated enhanced CD4+ T cell activation 
Wt mDCs or SR-AI/II-deficient mDCs were incubated with native, thermally processed, recombinant or AGE-OVA for 3 h 

and fixed with 0.008% glutaraldehyde before CD4+ T cells isolated from OT-2 mice were added and cultured for 21h. The 

concentration of IL-2 in the culture supernatant was measured by ELISA. Error bars signify the SD of culture triplicates and 

ELISA duplicates. 
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4.4.6 Localisation of internalised AGE-OVA in mDCs  
As shown in Fig 4.25, SR-AI/II mediated uptake of AGE-OVA facilitates OVA specific CD4+ T cell 

activation. CD4+ T cells are activated by recognition of antigenic peptide bound to MHC II on the 

cell surface of DCs via the TCR. It was therefore hypothesised that SR-AI/II targets its ligands to 

the MHC class II loading pathway in mDCs. To elucidate whether AGE-OVA endocytosed by SR-

AI/II is indeed targeted to the MHC class II loading pathway, the localisition of endocytosed AGE-

OVA in mDCs was analysed. To this end, immunofluorescence staining of cellular compartments 

for the MHC class II loading pathway in AGE-OVA incubated mDCs was performed (chapter 

3.2.4.3.1). The stained cells were then analysed using confocal laser scanning microscopy (LSM, 

chapter 3.2.4.3).  

First, the association of AGE-OVA with SR-AI/II was verified. mDCs were incubated with FITC 

labelled AGE-OVA for 5 min and immediately fixed. SR-AI/II in the incubated cells was then 

stained anti-SR-AI/II antibodies. As show in Fig 4.26, AGE-OVA did indeed co-localise with SR-

AI/II, confirming the association of AGE-OVA with the receptor.  

 
FITC AGE-OVA SR-AI/II Merge + DAPI

 
 

Fig 4.26 Localisation of AGE-OVA and SR-AI/II in mDCs  
mDCs were incubated with 10 µg/ml of FTIC labelled AGE-OVA for 5 min and then fixed with 4% PFA. The cells were then 

stained with polyclonal goat anti-SR-AI/II antibodies and Alexa 568 labelled monoclonal anti-goat IgG antibody. DAPI 

(blue) was used to stain the nucleus. The arrowheads point to SR-AI/II co-localised with AGE-OVA. 

 
 
Next, it was examined whether AGE-OVA and MHC II were found in the same cellular 

compartments. mDCs were incubated with FITC labelled AGE-OVA for 15 min and stained with 

anti-MHC II antibody. As shown in Fig 4.27 A, AGE-OVA and MHC II co-localised in mDCs. In 

SR-AI/II deficient mDCs, only small amounts of AGE-OVA were found inside the cells and there is 

little co-localisation with MHC II (Fig. 4.27 B). In MR-deficient mDCs, the co-localisation of AGE-

OVA with MHC class II molecules was, again, observed (Fig. 4.27 C). These results suggest that 

AGE-OVA taken up by SR-AI/II enters compartments which also contain MHC II. 
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Fig 4.27 Localisation of AGE-OVA and MHC II in Wt, SR-AI/II deficient and MR deficient mDCs  
 A WT mDCs, B SR-AI/II deficient mDCs or C MR deficient mDCs were incubated with FITC labelled AGE-OVA for 15 min 

and then fixed with 4% PFA. The cells were then stained with a monoclonal rat anti-MHC II antibody and Alexa 568 

labelled monoclonal anti-rat IgG antibody. DAPI (blue) was used to stain the nucleus. The arrowheads indicate MHC II co-

localisation with AGE-OVA. 

 
 
Multiple pathways regulate the targeting of antigens to MHC class II restricted presentation 

(Chapter 1.9.2). Burgdorf et al have shown that pinocytosed native OVA is delivered to the late 

endosomes/lysosomes in DCs, where antigenic peptides are generated by proteases and loaded 

to MHC II. To elucidate whether AGE-OVA was targeted to the late endosomes/lysosomes in 

mDCs here, the cells were incubated with FITC AGE-OVA for 15 to 60 min and then stained with 
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anti-LAMP-1 antibody. LAMP-1 is a marker protein for the late endosomes/lysosomes. Here, co-

localisation of AGE-OVA with LAMP-1 could not be observed at any time point of the incubation 

(Fig 4.28 A, showing 60 min incubation of AGE-OVA).  

 

FITC AGE-OVA LAMP 1 Merge + DAPI

 
Fig 4.28 Localisation of AGE-OVA and LAMP-1 in mDCs  
Wt mDCs were incubated with FITC labelled AGE-OVA for 60 min and then fixed with 4% PFA. The cells were then 

stained with monoclonal rat anti-LAMP1 antibody and Alexa 568 labelled monoclonal anti-rat IgG antibody to stain the 

lysosome / late endosome. DAPI (blue) was used to stain the nucleus. 

 

Several studies have shown that nascent MHC II is delivered from the ER, where they are 

assembled, to the early endosomes (Villadangos et al., 2000; Benaroch et al., 1995) (chapter 

1.10.3). To examine whether this may also be the case in mDCs, the cells were stained with anti-

MHC II antibody and anti-early endosome associated protein 1 (EEA1) antibodies. Consistent with 

the previous studies, co-localisation of MHC II and EAA1 was observed in mDCs (Fig. 4.29).  

 
MHC II Merge + DAPIEEA

1

 
 

Fig 4.29 Localisation of MHC II and EEA1 in mDCs  
Wt mDCs were fixed with 4% PFA. The cells were then stained with a monoclonal rat anti-mouse MHC II antibody and 

polyclonal rat anti-EEA1 antibodies followed by Alexa 568 labelled monoclonal anti-rat IgG antibody and Cy3 labelled 

monoclonal anti-rabbit IgG antibody to stain MHC II and the early endosomes, respectively.  DAPI (blue) was used to stain 

the nucleus. The arrowheads indicate MHC II co-localisation with EEA1. 
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Next it was elucidated whether AGE-OVA had also been delivered to the early endosomes. 

Therefore mDCs were incubated with FITC conjugated AGE-OVA for 15 min followed by staining 

with anti-EAA1 antibodies. A clear co-localisation of AGE-OVA with EAA1 was observed (Fig 4.30 

A).  Burgdorf et al have shown that the MR targets OVA to the early endosomes (Burgdorf et al., 

2007). To eliminate involvement of MR mediated targeting to the early endosome, MR deficient 

mDCs were also stained with anti-EAA1 antibodies after incubation with AGE-OVA. As shown in 

Fig 4.30 B, AGE-OVA was found in the early endosomes even in MR deficient mDCs. These 

results suggest that SR-AI/II, as the only other main receptor involved in AGE-OVA uptake, 

targets AGE-OVA to the early endosomes, in which MHC II was also found (Fig. 4.29). 
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Fig 4.30 Localisation of AGE-OVA and EEA1 in Wt and MR deficient mDCs  
 A WT mDCs or B MR deficient mDCs were incubated with AGE-OVA and then fixed with 4% PFA. The cells were stained 

with polyclonal rabbit anti-EEA1 antibodies and Cy3 labelled monoclonal anti-rabbit IgG antibody. DAPI (blue) was used to 

stain the nucleus. The arrowheads indicate co-localisation of EEA1 with AGE-OVA. 
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4.7 Influence of glycation by the Maillard reaction on the T cell 
immunogenicity and antigenicity of OVA in vivo 

As demonstrated in chapter 4.3, the glycation of OVA by the Maillard reaction significantly 

enhanced the CD4+ T cell immunogenicity of the allergen in vitro. Next, it was investigated 

whether AGE-OVA has a higher CD4+ T cell immunogenicity and antigenicity (the ability to induce 

antibody production) than native OVA and thermally processed OVA in vivo. It was of particular 

interest to see whether AGE-OVA has a higher potential to induce allergen specific IgE antibodies, 

as this immunoglobulin is a critical component in the pathophysiology of (food) allergy (chapter 

1.2). BL6 mice were used for the in vivo experiments since the SR-AI/II and RAGE deficient mice 

used for the in vitro study were generated on this genetic background.  

 

4.7.1 Assessment of the T cell immunogenicity of AGE-OVA by subcutaneous 
immunisation of mice 

First, subcutaneous (sc) immunisation was performed to examine the CD4+ T cell immunogenicity 

of all three OVAs in vivo (chapter 3.2.5.5.2). The method efficiently induces activation of antigen 

specific CD4+ T cells in the draining lymph nodes (LN) by only one immunisation. Mice were sc 

immunised with native, thermally processed or AGE-OVA together with the adjuvant TiterMax 

Gold®. Seven days after immunisation, CD4+ T cells were isolated from the LN using a magnetic 

cell sorting system (chapter 3.2.3.7). The T cells were co-cultured with mDCs, and stimulated with 

the OVAs for 24 h. As a positive control for the assay, CD4+ T cells were incubated with 

concanavalin A (Con A) which is a lectin with mitogenic properties, i.e. it induces antigen 

unspecific activation and proliferation of T cells. In order to assess the level of CD4+ T cell 

activation, the IL-2 concentration in the cell culture supernatants was measured (chapter 

3.2.4.5.2.1). 

The sc immunisation efficiently induced activation of antigen specific CD4+ T cells in the LNs (Fig. 

4.31). CD4+ T cells from all three immunisation groups displayed a greater IL-2 production upon 

ex vivo recall stimulation with AGE-OVA compared to the recall stimulation with native or 

thermally processed OVA.  Furthermore, CD4+ T cells isolated from AGE-OVA immunised mice 

produced considerably higher levels of IL-2 in response to AGE-OVA than T cells from mice 

immunised with native or thermally processed OVA. The results suggest that AGE-OVA has a 

higher T cell immunogenicity than native OVA and thermally processed OVA not only in vitro but 

also in vivo. 
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Fig. 4.31 LN CD4+ T cell activation induced by subcutaneous injection of AGE-OVA in BL6 mice  

BL6 mice (n=3) were subcutaneously immunised with 100 µg of native, thermally processed or AGE-OVA. Seven days 

after immunisation, CD4+ T cells were isolated from the LN, co-cultured with mDCs and stimulated with either form of the 

OVA for 24 h. The IL-2 concentration in the culture supernatants was determined by ELISA. IL-2 production by CD4+ T 

cells stimulated with Con A (2.5 µg/ml) was comparable among all immunisation groups. Error bars signify the SD of cell 

culture triplicates and ELISA duplicates.   

 

4.7.2 Assessment of the T cell immunogenicity and antigenicity of AGE-OVA using 
intraperitoneal immunisation of mice 

Next, the T cell immunogenicity and antigenicity of AGE-OVA was assessed by intraperitoneal (ip) 

immunisation of BL6 mice with the glycated or unglycated forms of the allergen. In mice, the 

usage of an adjuvant is generally required to induce a robust IgE production. Therefore, for the 

assessment of the antigenicity of AGE-OVA, the mice were immunised with the allergen in 

combination with the adjuvant aluminium hydroxide (Alum) which efficiently facilitates the 

production of antigen specific IgE and IgG antibodies (Cox and Coulter, 1997). BL6 mice were 

immunised ip with 50 µg of native, thermally processed or AGE-OVA in combination with 2 mg 

Alum (chapter 3.2.5.5.1). The mice were immunised three times to induce detectable level of 

allergen specific IgE antibodies.  The second and third immunisations were performed two weeks 

and three weeks after the first immunisation, respectively. As controls, mice were immunised with 

Alum in PBS only.  
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4.7.2.1 Assessment of the T cell immunogenicity of AGE-OVA by ip immunisation of mice 
First, the T cell immunogenicity of all three OVAs in ip immunised mice was assessed. One week 

after the final immunisation, CD4+ T cells isolated from the spleen were co-cultured with 

mitomycin C (MMC) treated splenocytes (used as antigen presenting cells) and stimulated with 

native, thermally processed or AGE-OVA for 96 hours. Proliferation of T cells during the final 20 h 

was assessed by measuring the incorporation of [3H-methly]-thymidine into the cells (chapter 

3.2.3.11). 

CD4+ T cells isolated from mice after three ip immunisations with either of the OVAs showed 

comparable levels of proliferation in response to native, thermally processed and AGE-OVA (Fig. 

4.32). Due to the multiple immunisation, the maximum in vivo level of T cell responses to the 

antigens could have been induced, which may lead to the comparable levels of T cell activation in 

all immunisation groups. 
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Fig. 4.32 Splenic CD4+ T cell activation induced by ip immunisation of BL6 mice 
BL6 mice (n=3) were ip immunised with native, thermally processed or AGE-OVA. Seven days after the third immunisation 

splenic CD4+ T cells were purified from the immunised mice. The T cells were co-cultured with MMC treated splenocytes 

from naïve BL6 mice and stimulated with either of the OVAs for 96 h. Proliferation of the T cells during the final 20 h was 

assessed by measuring incorporation of [3H-methly]-thymidine into the cells. The proliferation is shown as stimulation 

index. Error bars signify the SD of cell culture triplicates. The data shown represents two independent experiments 
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4.7.2.2 Assessment of the antigenicity of AGE-OVA by intraperitoneal immunisation of 
mice 
Next, the antigenicity of the OVAs in ip immunised mice was examined. Seven days after each 

immunisation serum samples were collected (chapter 3.2.5.4.). The levels of IgG1, IgG2a and IgE 

antibodies specific for native, thermally processed or AGE-OVA in the sera of individual mice 

were measured by ELISA (chapter 3.2.4.4.1.1). 

First, the allergen specific IgG1 and IgG2a antibodies in the sera of the immunised mice were 

measured. The levels of allergen specific IgG1 antibodies in the sera of the mice which had 

received only one ip immunisation with the OVAs was very low (data not shown). After the second 

ip immunisation a robust allergen specific IgG1 antibody production was observed. The level of 

IgG1 antibodies binding to native, thermally processed, or AGE-OVA was almost comparable in 

all three immunisation groups (Fig. 4.33).  

Small differences were observed in IgG2a production (Fig. 4.34). The production of IgG2a 

appears to be a bit higher in three mice of the AGE-OVA immunised group. Also, the binding of 

IgG2a to AGE-OVA from native and thermally processed OVA is a little reduced compared to 

binding to the unglycated OVA forms (Fig. 4.34,C). Compared to the levels of allergen specific 

IgG1 antibodies, those of specific IgG2a antibodies were significantly lower in the immunised 

mice. In mice, IgG antibodies are classified into IgG1, IgG2a, IgG2b and IgG3. IgG1 antibody 

production is mediated by Th2 cells, whereas IgG2a antibody production is mediated by Th1 cells. 

As Alum predominantly induces Th2 cell responses, IgG1 antibody production would be dominant 

in the immunised mice (Cox and Coulter, 1997).  

To examine whether glycation structures influence T cell differentiation in vivo, the IgG1/IgG2a 

ratio for each immunised mouse was calculated. AGE-OVA induced a slightly lower IgG1/IgG2a 

ratio than immunisation with the control OVAs (Fig. 4.35). However, the difference was not 

considerable. These results suggest that AGE-OVA would not have any influence on the T cell 

differentiation in vivo, which is consistent with the in vitro data (Fig. 4.10). 
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Fig. 4.33 Allergen specific IgG1 production in BL6 mice after the second ip immunisation with native, thermally 
processed or AGE-OVA  
BL6 mice (n=6) were ip immunised with 50 µg of native, thermally processed or AGE-OVA with 2 mg Alum three times. 

One week after the second immunisation, blood was harvested from the mice. A The level of anti-native OVA IgG1 

antibodies in the sera was measured using ELISA plates coated with the native allergen. B The level of anti-thermally 

processed OVA specific IgG1 antibodies in the sera was measured using plates coated with thermally processed OVA. C 

The level of anti-AGE-OVA IgG1 antibodies in the sera was measured using plates coated with glycated OVA. NC1 and 

NC2; mice immunised with PBS and Alum alone. 
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Fig. 4.34 Allergen specific IgG2a antibody production in BL6 mice after the second ip immunisation with native, 
thermally processed or AGE-OVA. 
BL6 mice (n=6) were ip immunised with 50 µg of native OVA, thermally processed OVA or AGE-OVA with 2 mg Alum 

three times. One week after the second immunisation, blood was harvested from the mice. A The level of anti-native OVA 

IgG2a antibodies in the sera was measured using ELISA plates coated with the native allergen. B The level of anti 

thermally processed OVA specific IgG2a antibodies in the sera was measured using plates coated with thermally 

processed OVA. C The level of anti-AGE-OVA IgG2a antibodies in the sera was measured using plates coated with 

glycated OVA. NC1 and NC2; mice immunised with PBS and Alum alone. 
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Fig. 4.35 IgG1/IgG2a ratio in BL6 mice after the second ip immunisation with native, thermally processed or AGE-
OVA 
The IgG1/IgG2a ratio in individual mouse ip immunised with native, thermally processed, or AGE-OVA, was calculated 

using the allergen concentration at 50% of the maximum absorption in the ELISA for measurement of IgG1 (Fig. 4.33) and 

IgG2a levels (Fig 4.34). Each dot represents the IgG1/IgG2a ratio of an individual mouse. Horizontal bars represent the 

mean for each group.  

 

 

Finally, the allergen specific IgE antibodies in the sera of ip immunised mice were measured. 

AGE-OVA induced significantly higher levels of allergen specific IgE antibodies than native and 

thermally processed OVA (Fig. 4.36). Furthermore, the IgE antibodies from AGE-OVA immunised 

mice bound equally well to native, thermally processed and AGE-OVA. These results strongly 

suggest that the glycation of OVA by the Maillard reaction could enhance the antigenicity of the 

egg white allergen to induce allergen specific IgE antibodies and antibodies from mice immunised 

with AGE-OVA not only recognise the glycated allergen but also the unglycated forms.  
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Fig. 4.36 Allergen specific IgE antibody production in BL6 mice after the second ip immunisation with native, 
thermally processed or AGE-OVA 
BL6 mice (n=6) were ip immunised with 50 µg of native OVA, thermally processed OVA or AGE-OVA with 2 mg Alum 

three times. One week after the second immunisation, blood was harvested from the mice. A The level of anti-native OVA 

IgE antibodies in the sera was measured using ELISA plates coated with the native allergen. B The level of anti-thermally 

processed OVA IgE antibodies in the sera was measured using plates coated with thermally processed allergen. C The 

level of anti-AGE-OVA IgE antibodies in the sera was measured using plates coated with glycated OVA. NC1 and NC2; 

mice immunised with PBS and Alum alone. 
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4.8 Analysis of AGE-rAra h 2  
Peanuts are one of the most common causes of severe allergic reactions to food. It has been 

shown that the Maillard reaction occurs during thermal processing of peanuts as the nuts contain 

many carbohydrates such as glucose and galactose (Maleki et al., 2001, Chung et al., 2003). 

Since peanuts are usually not eaten raw but roasted, fried or boiled, it is of importance to 

investigate how the Maillard reaction influences the T cell immunogenicity and antigenicity of 

peanut allergens such as one of the major allergens Ara h 2. Our collaborator, the Department of 

Allergology at the Paul-Ehrlich-Institut, has succeeded in producing recombinant Ara h 2 (rAra h 

2) using an expression system in E.coli. Here, it was investigated whether the Maillard reaction 

influences the T cell immunogenicity and antigenicity of Ara h 2 by using the recombinant protein. 

First, it was examined whether the type of carbohydrate present during thermal processing has an 

influence on the formation of glycation structures on glycated Ara h 2 (AGE-Ara h 2). rAra h 2 was 

incubated with glucose, galactose, fructose, lactose, maltose or mannose at 120°C for 2h (chapter 

3.2.2.1.1). ELISAs were performed to analyse the glycation structures on rAra h 2 after thermal 

processing with the different carbohydrates (chapter 3.2.4.4.1.2). Independent of the carbohydrate 

used for the process, high levels of CML and GA-pyridine were detected on AGE-Ara h 2 (Fig. 

4.37), while pyrraline and CEL were not detected by the ELISAs. Galactose, which is naturally 

contained in peanuts, induced a higher level of GA-pyridine than the other carbohydrates and was 

also very potent in inducing CML. Therefore, galactose, which is found in peanuts (Rudrapatnam 

et al., 197), was used in the preparation of AGE-Ara h 2 for the subsequent studies. 
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Fig. 4.37 Glycation structures on AGE-rAra h 2 produced by the Maillard reaction. 
AGE-rAra h 2 was prepared by incubating 500 µg/ml of rAra h 2 with 0.1M lactose, glucose, galactose, mannose, fructose 

or maltose in PBS at 120°C for 2h. The glycation structures on rAGE-Ara h 2 were analysed by ELISA.  Unprocessed     

Ara h 2 and Ara h 2 thermally processed without carbohydrates were used as controls.  

 
To examine whether the thermal processing with or without galactose at 120°C influences the 

secondary structure of rAra h 2, CD spectroscopy was performed (chapter 3.2.2.5). The mean 

molar elipticity and the exact protein concentration were included for the evaluation of the spectra. 

Consistent with the CD spectrum of native rAra h 2 isolated from peanut extracts (Lehmann et al, 

2006), unprocessed rAra h 2 had its maximum at 190 to 193 nm and its minima at 208 – 210 and 

222 nm (Fig. 4.38). The result indicates that α-helices dominate the secondary structure of the 

protein. The CD spectrum of rAra h 2 incubated at 120°C with or without galactose significantly 

differed from that of the unprocessed allergen. The minima of thermally processed and AGE-Ara h 

2 were at 199 and 198 nm respectively (Fig 4.38). The result suggests that (i) thermal processing 
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of rAra h 2 at 120°C leads to a destruction of the α-helical structures, and that (ii) the protein 

structure of the processed allergen is dominated by random coils. 
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Fig 4.38 Analysis of AGE-rAra h 2  by CD spectroscopy  
rAra h 2 was incubated with and without galactose at 120°C for 2h. The CD spectrum of unprocessed, thermally 

processed and AGE- rAra h 2 was analysed. 

 
 

4. 9 Influence of glycation by the Maillard reaction on the T cell 
immunogenicity and antigenicity of rAra h 2   

C3H/HeJ mice are a high responder mouse strain for Ara h 2 (Li et al., 2000; Proust et al., 2008). 

To examine whether the glycation of rAra h 2 by the Maillard reaction influences the T cell 

immunogenicity and antigenicity of this major peanut allergen, C3H/HeJ mice were ip immunised 

with 5 µg of unprocessed, thermally processed or AGE-rAra h 2 together with 2 mg Alum in 200 µl 

PBS (chapter 3.2.5.5.1). Two and three weeks after the first immunisation, the mice were boosted 

with 1 µg of the allergen together with 1 mg Alum. As controls, mice were immunised with Alum in 

PBS only.  

 

4.9.1 Assessment of the T cell immunogenicity of AGE-rAra h 2 by ip immunisation 
of mice 

To assess the T cell immunogenicity of AGE-rAra h 2, mice were sacrificed one week after the 

final immunisation and CD4+ T cells were isolated from the spleen of immunised mice. The 
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proliferation of splenic CD4+ T cells in response to unprocessed, thermally processed or AGE-

rAra h 2 was measured (chapter 3.2.3.11). 

As show in Fig. 4.39, stimulation with Con A induced comparable levels of proliferation of CD4+ T 

cells from all three groups. Therefore it was feasible to compare the levels of proliferation of CD4+ 

T cells from the mice immunised with the different forms of rAra h 2. The stimulation index was 

highest for splenic CD4+ T cells from all three groups when re-stimulated with unprocessed rAra h 

2. This indicates, that unprocessed rAra h 2 is the best stimulator of proliferation of T cells purified 

from rAra h 2 immunised mice, independent of the form of rAra h 2 used for immunisation. The 

data suggests that the CD4+ T cell immunogenicity of AGE-rAra h 2 is lower than that of 

unprocessed rAra h 2 and thermally processed Ara h 2 in C3H/HeJ mice. 
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Fig 4.39 Allergen specific proliferation of CD4+ T cells from mice after ip immunisation with unprocessed, 
thermally processed or AGE-rAra h 2 
C3H/HeJ mice (n=4) were ip immunised with unprocessed, thermally processed or AGE-rAra h 2 together with Alum three 

times. Splenic CD4+ T cells were isolated from immunised mice, co-cultured with irradiated syngeneic splenocytes and 

stimulated with either form of rAra h 2 for 96 h.  Proliferation of T cells during the final 20 h was assessed by measuring 

the incorporation of [3H-methly]-thymidine by the cells. The level of proliferation is indicated as stimulation index.  Error 

bars signify the SD of cell culture triplicates.  

 

4.9. 2 Cytokine production of CD4+ T cells from the mice after receiving ip 
immunisation with unprocessed, thermally processed or AGE-rAra h 2 

To assess whether AGE-rAra h 2 influences the CD4+ T cell differentiation in vivo, the cytokine 

production of splenic CD4+ T cells from mice immunised with unprocessed, thermally processed 
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or rAGE-Ara h 2 was examined. The concentration of Th1 type cytokine IFN-γ and Th2 type 

cytokine IL-4 in the culture supernatant of CD4+ T cells after 72h incubation with either form of 

rAra h 2 was measured by ELISA (chapter 3.2.4.5.2.1). 

Unprocessed rAra h 2 induced the highest secretion of both IFN-γ and IL-4 by CD4+ T cells, 

independent of which mouse group these were isolated from (Fig. 4.40 A and B). The cytokine 

production by CD4+ T cells stimulated with thermally processed or AGE-Ara h 2 was comparable 

for all three immunisation groups. The level of cytokine production and proliferative responses of 

isolated CD4+ T cells (Fig. 4.39) corresponded well. Collectively these results suggest that the 

glycation structures on AGE-rAra h 2 do not influence on the T cell differentiation in C3H/HeJ 

mice.   
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Fig 4.40 Cytokine production of CD4+ T cells from mice immunised with unprocessed, thermally processed or 
AGE-Ara h 2. 
C3H/HeJ mice (n=4) were ip immunised with unprocessed, thermally processed or AGE-rAra h 2 with Alum three times. 

Splenic CD4+ T cells were isolated from immunised mice. The T cells were co-cultured with irradiated syngeneic 

splenocytes and stimulated with either form of rAra h 2 for 72h. The concentration of A IFN-γ and B IL-4 in the culture 

supernatants was measured by ELISA. Error bars signify the SD of cell culture triplicates and ELISA duplicates.  
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4.9.3 Assessment of the antigenicity of AGE-rAra h 2 by ip immunisation of mice 

For the assessment of the antigenicity of AGE-rAra h 2, serum harvested seven days after the last 

immunisation was used. The experiments to examine the antigenicity of AGE-rAra h 2 were 

performed twice.  

The levels of IgG1 and IgG2a antibodies specific for unprocessed rAra h 2 in the sera of 

immunised mice were measured by ELISA (chapter 3.2.4.4.1.1). Both independent experiments 

showed that immunisation with unprocessed rAra h 2 and Ara h 2 thermally processed without 

galactose induced higher rAra h 2 specific IgG1 and IgG2a antibodies in mice, compared to 

immunisation with AGE-rAra h 2 (Fig. 4.41, A and B and Fig. 4.42, A and B). The results indicate 

that in C3H/HeJ mice the potential of AGE-rAra h 2 to induce allergen specific IgG was lower than 

that of unprocessed and thermally processed Ara h 2. 

 

Next, the level of IgE antibodies specific for unprocessed rAra h 2 in the sera of immunised mice 

was measured. In both experiments, the level of anti-unprocessed rAra h 2 IgE antibodies in the 

sera of AGE-rAra h 2 immunised mice was lower than that in the sera of mice immunised with 

unprocessed or thermally processed rAra h 2 (Fig. 4.41 C and Fig. 4.42 C). Since the amount of 

thermally processed rAra h 2 and AGE-rAra h 2 was limited, the levels of anti- thermally 

processed rAra h 2 and anti-AGE-rAra h 2 IgE antibodies could only be measured for experiment 

1. In this experiment, IgE antibodies in the serum of several mice immunised with unprocessed, 

thermally processed or AGE-rAra h 2 exihibited IgE antibodies binding to unprocessed rAra h 2 

but not to AGE-rAra h 2 (Fig. 4.43). Only one mouse immunised with thermally processed rAra h 2 

had serum IgE antibodies which had binding activity to the glycated allergen. The results suggest 

that glycation of rAra h 2 results in a decrease of the antigenicity of the allergen and also reduces 

recognition of the allergen by IgE antibodies specific for the unglycated forms of rAra h 2.  
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Fig. 4.41 Detection of rAra h 2 specific IgG1, IgG2a and IgE antibody production in mice after ip immunisation with  
unprocessed, thermally processed or AGE-rAra h 2 in Experiment 1  
C3H/HeJ mice (n=4) were ip immunised with unprocessed, thermally processed or AGE-rAra h 2 with Alum three times. 

The levels of A IgG1, B IgG2a and C IgE binding to unprocessed rArah2 in the sera of immunised mice was determined 

by ELISA using plates coated with unprocessed rAra h 2. NC; mouse immunised with PBS and Alum only. 
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Fig 4.42 Detection of Ara h 2 specific IgG1, IgG2a and IgE antibody production in mice after ip immunisation with  
unprocessed, thermally processed or rAGE-Ara h 2 in Experiment 2. 
C3H/HeJ mice (n=6) were ip immunised with unprocessed, thermally processed or AGE-rAra h 2 plus Alum three times. 

The levels of A IgG1, B IgG2a and C IgE binding to unprocessed rArah2 in the sera of  immunised mice was determined 

by ELISA using plates coated with unprocessed rAra h 2. NC; mouse immunised with PBS and Alum only. 
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Fig. 4.43 Allergen specific IgE antibody production in C3H/HeJ mice after ip immunisation with unprocessed, 
thermally processed or AGE-rAra h 2 in Experiment 1 
C3H/HeJ mice were ip immunised with unprocessed, thermally processed or AGE-rAra h 2 plus Alum three times. A The 

levels of anti-thermally processed rAra h 2 specific IgE antibodies in the sera of the mice was measured using plates 

coated with the processed allergen. B The levels of anti-AGE-rAra h 2 specific IgE antibodies in the sera of the mice was 

measured using plates coated with the glycated allergen. NC; mouse immunised with PBS and Alum only. 
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5. Discussion 
The majority of our food is modified by physical and chemical events during storage and 

processing. The formation of AGEs produced by the Maillard reaction during the thermal 

processing or storing of food has been suggested to exert important effects on the 

immunogenicity of food proteins. In this thesis, it was investigated how the T cell immunogenicity 

and antigenicity of allergens is influenced by glycation by the Maillard reaction using the hen egg 

white allergen OVA and one of the major peanut allergens, Ara h 2,  as model allergens.  

 
 

5.1 Glycation of OVA enhances the CD4+ T cell immunogenicity of the 
allergen in vitro 

First, the impact of AGEs derived from food allergens on DC function and the subsequent 

activation of allergen specific T cells was studied using AGE-OVA. Here, it was found that AGE-

OVA does not trigger the maturation of bone marrow derived mouse myeloid dendritic cells 

(mDCs) but enhances the activation of allergen specific CD4+ T cells. Moreover, it was 

demonstrated that the enhanced T cell immunogenicity of AGE-OVA depends on SR-AI/II-

mediated uptake of AGE-OVA by mDCs. 

 

5.1.1 Incubation of allergens with sugars efficiently induces modification by the 
Maillard reaction 

For the preparation of AGE-OVA, native OVA was incubated with glucose at 50°C for 6 weeks. 

On AGE-OVA, high levels of the glycation structures CEL, CML and GA-pyridine were detected 

(Fig. 4.2). The secondary structure was not affected by the treatment (Fig. 4.3). The preservation 

of the secondary structure of OVA during the medium temperature used here is consistent with a 

study which extensively examined the effect of thermal processing and glycation on the 

biochemical properties of OVA (Sun et al., 2004). 

It may be argued that the long incubation time at medium temperature applied in the protocol for 

AGE-OVA preparation is not appropriate since it does not reflect the conditions found when 

cooking or frying an egg. A medium temperature and consequently a longer incubation time for 

the preparation were chosen to limit thermal denaturation and aggregation of OVA. Higher 

temperatures lead to denaturation and aggregation of OVA due to unfolding. The aggregated 

OVA is insoluble in any buffer suitable for cell culture or in vivo use. Additionally, such medium 

temperatures are often used in (accelerated) trials mimicking long term storage of food, during 

which Maillard reaction products are also formed. Here, the aim was to study the influence of 

glycation structures on the immunogenicity of food allergens. CEL and GA-pyridine detected on 

AGE-OVA are also found on glycated rAra h 2 (Fig. 4.37) as well as in protein extracts of peanuts 

roasted using conditions resulting in peanuts similar to industrially processed peanuts in taste, 
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texture and browning (data not shown). Therefore AGE-OVA, as it was prepared here, is an 

appropriate model AGE for studying the T cell immunogenicity and antigenicity of food allergen 

derived AGEs. 

 

5.1.2 AGE-OVA has a higher CD4+ T cell immunogenicity than unglycated OVA 
In this study it was found that AGE-OVA induced a higher OVA specific CD4+ T cell activation 

than native and thermally processed OVA in vitro. As shown in Fig. 4.5 and Fig. 4.9, stimulation 

with AGE-OVA resulted in a higher IL-2 production by OVA specific CD4+ T cells as well as a 

stronger proliferation of these cells compared to stimulation with native or thermally processed 

OVAs when the T cells were co-cultured with mDCs. The results suggest that AGE-OVA could 

have a higher T cell immunogenicity than the unglycated forms of OVA. 

If the AGEs were capable of directly stimulating T cell activation in an allergen unspecific manner, 

this may result in harmful immune reactions in response to any glycated protein. It was found, 

however, that the glycation structures of AGE-OVA do not directly activate T cells unspecifically, 

but that CD4+ T cell activation depended on the presence of mDCs. Two different steps in the 

interaction of AGE-OVA with mDCs may play a role in the enhanced CD4+ T cell activation by the 

glycated allergen; namely mDC maturation and/or antigen uptake by the mDCs.  

 

5.1.2.1 Increased CD4+ T cell activation does not result from an AGE-OVA induced 
enhanced maturation of mDCs  
The maturation of DCs is characterised by the upregulation of the expression of co-stimulatory 

molecules (namely, CD40, CD80 and CD86) and MHC class II molecules (MHC II) on the cell 

surface, all of which are required for efficient T cell priming. Furthermore, activation of mDCs also 

results in the secretion of cytokines such as IL-10 and IL-12. Incubation of mDCs with AGE-OVA 

did not increase the expression of the aforementioned molecules nor induce cytokine secretion by 

mDCs (Fig. 4.12). The results indicate that the enhanced CD4+ T cell immunogenicity of AGE-

OVA was not due to a stimulatory effect of AGEs on the maturation and activation of mDCs. 

Previous studies have shown that AGEs may have an inhibitory as well as a stimulatory effect on 

human DC maturation (Price et al., 2004; Ge et al., 2005). The discrepancy among the 

observations, including those of the present study, may be due to variations in the expression of 

AGE receptors on the cell surface. Recent findings have shown that engagement of RAGE with its 

ligands triggers the maturation of DCs (Manfredi et al., 2008; Dumitriu et al., 2005). RAGE was 

not detected on mDCs in the experimental setting of the present study (Fig. 4.15 C); this may be a 

reason why AGE-OVA did not induce the maturation of the cells. In the study by Price et al, which 

also found that AGEs do not induce DC maturation, RAGE was also not detected on the DCs 

(Price et al., 2004). In contrast, the DCs used in the study by Ge et al expressed RAGE and it was 

found that AGEs induced enhanced maturation of these DCs (Ge et al., 2005). 

As described in chapter 1.8 of the introduction, maturation of DCs is vital for the efficient priming 

of T cells by these APCs. Although an enhanced expression of co-stimulatory molecules or MHC 
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II after stimulating with either form of OVA could not be detected, a robust T cell activation was 

achieved using these mDCs in co-culture with T cells. This can be explained by the fact that the 

bone marrow derived DCs generated in this study are not fully immature but do express co-

stimulatory molecules without needing additional stimulation (Fig. 4.12).  

 

5.1.2.2 Glycation of OVA by the Maillard reaction significantly enhances the uptake of the 
allergen by mDCs 
A very important finding in this thesis is that glycation of OVA by the Maillard reaction enhanced 

the uptake of the allergen by mDCs (Fig 4.14). This is highly interesting, since the increased 

uptake of AGE-OVA by mDCs would explain the enhanced CD4+ T cell activation by the glycated 

allergen. Three mechanisms are responsible for antigen uptake by DCs, namely pinocytosis, 

phagocytosis and receptor mediated endocytosis (chapter 1.9). It is very unlikely that 

phagocytosis is responsible for the uptake of soluble OVAs as the mechanism is generally used 

for particulate antigens. Pinocytosis would take up similar amounts of OVA, independent of the 

presence of glycation structures and would therefore not contribute to enhancing the uptake of 

OVA after glycation. Therefore, receptor mediated endocytosis was hypothesised to be the 

mechanism underlying the enhanced uptake of AGE-OVA by mDCs. 

Native OVA is glycosylated with a single carbohydrate side chain composed of N-acetyl-

glucosamine and mannose (Tai et al., 1975). It is well established that the endocytosis of native 

OVA is mediated by the mannose receptor (MR) which binds to the mannose residues of the 

carbohydrate side chain (Huntington 2001 et al., Burgdorf 2006, Autenrith et al., 2007). AGEs 

have been found to bind to several cell surface receptors such as SR-AI/II (Suzuki et al., 1997; 

Araki et al., 1999), RAGE (Schmidt et al., 1992; Neeper et al., 1992) and galectin-3 (Vlassara et 

al., 1995) which are expressed by DCs. In this study, SR-AI/II and the MR, but not galectin-3 and 

RAGE, were identified as important receptors mediating the uptake of AGE-OVA by mDCs. 

Deficiency of RAGE in mDCs (Fig. 4.16) and treatment of Wt mDCs with lactose, an inhibitor for 

galectin-3 mediated endocytosis, did not reduce the uptake of any form of OVA (Fig. 4.17). In 

contrast, SR-AI/II deficiency in mDCs significantly attenuated the uptake of AGE-OVA by the cells 

(Fig. 4.18). Treatment of SR-AI/II deficient mDCs with mannan, an inhibitor for MR mediated 

endocytosis, further reduced the uptake of AGE-OVA considerably (Fig. 4.19). The results clearly 

indicate that SR-AI/II and the MR mediate the uptake of AGE-OVA by mDCs. The minor uptake of 

AGE-OVA still observed in SR-AI/II deficient mDCs after treatment with mannan (Fig. 4.19) 

suggests a marginal involvement of further receptors in the uptake. As mDCs also express CD36 

and SR-BI (Fig. 4.15 E), which too bind AGEs (Ohgami et al., 2001, a; Ohgami et al., 2001, b), 

these receptors may be the ones engaged in the residual uptake by the mannan treated SR-AI/II 

deficient mDCs. 

Unexpectedly, the uptake of native OVA and thermally processed OVA was also reduced in the 

SR-AI/II deficient mDCs, although the reduction level was considerably lower than that observed 

for AGE-OVA (Fig. 4.18). Treatment of SR-AI/II deficient mDCs with mannan almost completely 
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abolished the uptake of native and thermally processed OVA (Fig. 4.19). The results indicate that, 

as expected, the MR is the main receptor mediating the uptake of native and thermally processed 

OVA by mDCs. SR-AI/II would also be involved in the uptake of the unglycated OVAs but its role 

is only a marginal one.  

 
5.1.2.3 SR-AI/II mediates the enhanced uptake of AGE-OVA by mDCs  
As described above, the natural mannose residue found on OVA facilitates the uptake of the 

allergen by the MR. In macrophages, scavenger receptors, in addition to the MR, were suggested 

to contribute to the uptake of native OVA (Burgdorf et al., 2007). However, the scavenger 

receptors constitute a heterogeneous and large receptor family and the specific scavenger 

receptor(s) participating in the OVA uptake was/were not previously identified. Here, it was found 

that SR-AI/II is the scavenger receptor involved in the uptake of native OVA by mDCs. SR-AI/II 

binds to a wide range of anionic ligands including natural carbohydrates and chemically modified 

residues of proteins (Platt and Gordon, 2001; Plüddemann et al., 2007). To test whether the 

natural carbohydrate side chain of OVA can bind to SR-AI/II, recombinant OVA was used. 

Recombinant OVA does not have any carbohydrate residues due to its production in E. coli where 

posttranslational enzymatic glycolsylation generally does not occur. First, the uptake of 

recombinant OVA by mDCs was less than the uptake of native OVA (Fig. 4.23 A). Furthermore, 

SR-AI/II deficiency of mDCs did not attenuate the uptake of recombinant OVA (Fig. 4.23 B) in 

contrast to the observations made with native OVA (Fig. 4.18). These results strongly indicate that 

the carbohydrate side chain of OVA facilitates the interaction of native OVA with SR-AI/II, 

resulting in the minor uptake by this receptor (Fig. 5.1).  

AGE-OVA would bind to SR-AI/II not only via the natural carbohydrate side chain but also via the 

glycation structures which result from the modification by the Maillard reaction. This hypothesis is 

supported by the experiments performed with AGE-BSA. AGE-OVA and AGE-BSA have a similar 

glycation profile (Fig. 4.2 and Fig. 4.4). The uptake of AGE-BSA by mDCs was considerably 

higher than native BSA uptake (Fig. 4.20). As BSA does not have any natural carbohydrate 

residues which may be recognised by the MR (Wada, 1996), the possibility that the MR mediates 

the uptake of AGE-BSA is therefore excluded. AGE-BSA inhibited the uptake of AGE-OVA by Wt 

mDCs (Fig. 4.21 A), but only induced very little inhibition of the uptake by SR-AI/II deficient cells 

(Fig. 4.21 B). In contrast, native BSA could not inhibit AGE-OVA uptake by mDCs at all (Fig. 

4.21). Those results strongly indicate that the glycation structures of AGE-OVA and AGE-BSA 

mediate the binding of the glycated proteins to SR-AI/II. Collectively the results suggest that 

native and thermally processed OVA interact with SR-AI/II via their natural carbohydrate side 

chain only, whereas AGE-OVA can interact with SR-AI/II via its glycation structures in addition to 

the natural carbohydrate residues (Fig. 5.1). Therefore, the presence of the glycation structures 

enhances the binding of AGE-OVA to SR-AI/II, which increases the overall uptake of the allergen 

by mDCs and subsequently induces higher allergen specific CD4+ T cell activation.  
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Fig. 5.1 Glycation of OVA enhances the binding affinity of the allergen for SR-AI/II 
Native and thermally processed OVA bind to SR-AI/II via their natural carbohydrate  side chain. AGE-OVA, in addition to 

the natural carbohydrate side chain, can bind to SR-AI/II via the glycation structures, resulting in an increased uptake of 

the glycated allergen by the receptor. 
 

5.1.3 CEL and CML contribute to the enhanced CD4+ T cell activation by AGE-OVA 
Thermal incubation of OVA with glucose results in the modification of the protein with a mixture of 

glycation structures. The glycation profile of AGE-OVA is not fully characterised but high 

concentrations of CEL and CML were detected (Fig. 4.2 and Tab. 4.1). Here it was found that 

OVA selectively modified with either CML or CEL only, enhanced the CD4+ T cell activation in a 

similar way as crude AGE-OVA did (Fig. 4.8). This further supports the conclusion that the 

glycation structures on AGE-OVA are indeed responsible for the increased CD4+ T cell 

immunogenicity. The presence of either CML or CEL, or both, on AGE-OVA may mediate the 

binding of the glycated allergen to SR-AI/II and contribute to the enhanced CD4+ T cell 

immunogenicity of AGE-OVA.  

Contradicting results have now been published concerning the binding of CML to RAGE. Some 

studies do show CML to be a ligand for RAGE (Kislinger 1999, Hudson 2003). More recently, on 

the other hand, it was also demonstrated that RAGE was actually unable to bind CML (Buetler et 

al., 2008; Wilton et al., 2006). The Maillard glycation structures which act as ligands for the other 

AGE binding receptors, galectin-3, SR-BI, CD36 and SR-AI/II, have not yet been identified. A 

common denominator found for all SR-AI/II ligands is that they are polyanionic but the exact 

molecular properties which enable a molecule to bind to SR-AI/II have not yet been fully 
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elucidated (Platt and Gordon, 1998). In studies characterising AGE-BSA produced by incubating 

the protein with glucose, glycation increases the number of negative charges on the protein (Wu 

et al., 1996; Westwood and Thornally, 1995). Therefore, the modification with glycation structures 

is likely to increase the negative charge of OVA. Although being polyanionic alone is not sufficient 

in order for a molecule to become a ligand for SR-AI/II (Horiuchi et al., 1986), the increased 

negative charge could be one factor responsible for enhancing the affinity of AGE-OVA for SR-

AI/II. Uptake studies using FITC-labelled CEL- and CML-OVA could help to elucidate whether 

these glycation structures are able to interact with the AGE-binding receptors.  

 

5.1.4 SR-AI/II plays a critical role in the activation of CD4+ T cells by (AGE-)OVA  
To closer investigate the role of SR-AI/II in OVA specific CD4+ T cell activation by mDCs, CD4+ T 

cells were cultured in the presence of fixed allergen pulsed Wt or SR-AI/II deficient mDCs. CD4+ T 

cell activation in response to native, thermally processed or AGE-OVA was significantly reduced 

in cultures with SR-AI/II deficient mDCs (Fig. 4.25). In contrast, SR-AI/II deficiency did not reduce 

T cell activation in response to recombinant OVA, which does not have a binding moiety for SR-

AI/II. The results are a further indicator that SR-AI/II mediates the uptake of all three OVAs by 

mDCs and that it is a critical component for optimal activation of OVA specific CD4+ T cells. 

Furthermore, IL-2 production in response to stimulation with native, thermally processed and 

AGE-OVA was comparable when SR-AI/II deficient mDCs were used. This clearly demonstrates 

that the enhanced uptake of glycated OVA by SR-AI/II is responsible for the increased CD4+ T cell 

activation by AGE-OVA when WT mDCs are used as APCs.  

The receptors which mediate the endocytosis of a particular antigen dictate the intracellular 

routing of the endocytosed antigen and consequently on which class of MHC molecule the 

antigen peptides will be presented (chapter 1.9.2). For example, antigens taken up by the glycan-

binding receptor DC-SIGN (CD209) are delivered to the MHC class II loading pathway (Engering 

et al., 2002). On the other hand, antigens taken up by the MR are targeted to the MHC class I 

loading pathway (Burgdorf et al., 2007). In the present study it was found that the glycation of 

OVA does not enhance its potential to stimulate CD8+ T cell activation. OVA-specific CD8+ T cells 

which were co-cultured with mDCs secreted comparable levels of IL-2 in response to stimulation 

with native and AGE-OVA (Fig. 4.11). The results suggest that SR-AI/II is a receptor targeting its 

ligands to the MHC class II, but not to the MHC class I loading pathway.  

Since the uptake of AGE-OVA by SR-AI/II is considerably higher than that of native or thermally 

processed OVA due to the glycation structures, an increased amount of AGE-OVA would be 

delivered to the MHC class II loading pathway. Subsequently, this would result in a substantial 

increase of the amount of OVA peptide-MHC class II complex on the surface of the mDCs, 

facilitating the enhanced OVA specific CD4+ T cell activation. This result is in good accordance 

with previous publications which have shown that the CD4+ T cell immunogenicity of an antigen is 

enhanced if it is chemically modified to function as a SR-AI/II ligand (Abraham et al., 1995; 

Nicoletti et al., 1999). 
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5.1.5 SR-AI/II targets AGE-OVA to MHC class II loading pathway 
The results in the present study allow the hypothesis that SR-AI/II channels OVA to the MHC 

class II loading pathway (Fig. 4.25, chapter 5.1.4). To further verify this hypothesis, it was 

attempted to identify the location of AGE-OVA within the mDCs using immunocytochemistry. After 

the uptake, the majority of AGE-OVA was found in EEA1 positive compartments, which are the 

early endosomes (Fig. 4.30 A). Previously, the MR has been shown to transport its ligands to the 

early endosomes. Here, it was observed that AGE-OVA co-localised with EEA1 even in MR 

deficient mDCs (Fig. 4.30 B). Since SR-AI/II was found to be the only other receptor besides MR 

which contributes significantly to AGE-OVA uptake by mDCs, it can be assumed, that AGE-OVA, 

which co-localises with EEA1 in MR deficient mDCs was transported to the early endosomes after 

uptake by SR-AI/II. These observations suggest that not only the MR but also SR-AI/II transports 

its ligands to the early endosomes (Fig. 5.2). 

As described in the introduction, nascent MHC II can be delivered from the endoplasmatic 

reticulum (ER) to the early endosomes (Brachet et al., 1999; Pond and Watts, 1997; Villadangos 

et al., 2000). In the present study MHC II was also found to co-localise with EEA1 (Fig. 4.29). In 

the early endosomes, there appears to be a H2-DM independent process of Ii degradation and 

peptide loading (Villadangos et al., 2000). Due to the open conformation of the peptide binding 

groove, MHC II can bind to peptides of undefined length (Watts, 1997). Therefore, proteins can 

bind to MHC II even before being processed to short peptides by the proteases in later 

endocytotic compartments (Lindner et al., 1996). Taken together, the data of the present study 

suggests that the majority of AGE-OVA could be targeted to the early endosomes by the SR-AI/II 

(Fig. 5.2). In the early endosomes some of it is processed to polypeptides and loaded onto MHC II 

(Fig. 4.27). The MHC II - OVA polypeptide complex may then continue along the endocytotic 

pathway to the increasingly proteolytic compartments where the unprotected regions of the 

polypeptide are clipped off (Villadangos, 2001). AGE-OVA which is not loaded onto MHC II in the 

early endosomes would be degraded to peptides in the late endosomes/lysosomes and the 

peptides loaded onto MHC II in the lysosomes (Fig. 5.2).  

In this study, co-localisation of AGE-OVA with the late endosome/lysosome marker Lamp1 or the 

lysosomal dye lysotracker was not detected (Fig. 4.27 and data not shown). The late 

endosome/lysosomes are compartments involved in the processing of the majority of antigens 

and the formation of MHC II - peptide complexes (Fig. 5.2). Inconsistent with the present study, 

Burgdorf et al have suggested (Burgdorf et al., 2007) that most of the OVA endocytosed by 

scavenger receptors is transported to the lysosomes for processing and loading onto MHC II. In 

order to visualise OVA in mDCs, the protein was labelled with FITC. The possibility that FITC was 

degraded in the lysosomes cannot be excluded. The lysosomes are very acidic compartments 

with a pH ranging from 4-5 (Poole and Ohkuma, 1981). FITC is sensitive to pH and its 

fluorescence intensity is quickly reduced in an acidic environment. The degradation of FITC in the 

lysosomes could be the reason why AGE-OVA could not be observed in this particular 

compartment.  In the previous study, Burgdorf et al identified the cellular location of native OVA in 
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the lysosomes using commercially available AlexaFluor 488 OVA conjugates (Burgdorf et al., 

2007). These are modified with a high amount of AlexaFluor 488, a dye which is more stable than 

FITC under acidic conditions. A further study using AGE-OVA labelled with AlexaFluor 488 would 

be necessary to verify whether AGE-OVA is also transported to the lysosomes. 

OVA endocytosed by the MR is transported into stable early endosomes before being exported 

into the cytosol where it is processed by the proteasome (Burgdorf et al, 2008). Subsequently, the 

processed antigenic peptides are reimported into the same endosomal compartment by TAP 

(transporter associated with antigen processing) to be loaded onto MHC I (Fig. 5.2) (Burgdorf et 

al, 2008). In contrast to SR-AI/II binding, glycation of OVA does not appear to alter the binding of 

OVA to the MR (Fig. 4.18 and 4.19). All three forms of OVA would therefore be taken up by the 

MR in similar amounts (Fig. 4.19). As a result, AGE-OVA and native OVA induced comparable 

activation of OVA specific CD8+ T cells (Fig. 4.11). Compared to native OVA, thermally processed 

OVA induced higher CD8+ T cell activation. Although the CD analysis showed identical spectra 

between native and thermally processed OVA (Fig. 4.3, A), SDS-PAGE analysis suggests that 

minor degradation and/or denaturation of the allergen might be induced by the thermal processing 

without glucose (Fig. 4.3., B). The enhanced CD8+ T cell activation by the thermally processed 

OVA may therefore be due to slight denaturation, which may facilitate a more efficient processing 

by the proteasome.  

Collectively, the results presented here suggest that SR-AI/II targets its ligands to the early 

endosomes for MHC class II loading. As described above, the MR also targets the ligands to the 

early endosomes but for MHC class I loading. It is still not sure whether both receptors target their 

ligands to the same early endosome population or not. It should however be noted that the early 

endosomes of a cell are not made up of a uniform pool of endocytotic compartments. Instead, it 

was recently shown that there are two distinct populations of endosomes, one which is highly 

mobile and quickly matures to late endosomes and subsequently lysosomes and a second, much 

more static population (chapter 1.9.2) (Lakadamyali et al., 2006). It appears that OVA 

endocytosed by the MR is delivered to the stable early endosome population and never enters the 

late endosomes or lysosomes (Burgdorf et al., 2007). On the other hand, OVA endocytosed by 

SR-AI/II may enter the rapidly maturing early endosomes. The model of the intracellular pathway 

of SR-AI/II endocytosed OVA presented here will have to be confirmed in future studies. 
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Fig. 5.2 Model for the processing of AGE-OVA taken up by mDCs via SR-AI/II 
AGE-OVA taken up by SR-AI/II  is delivered to the early endosomes where MHC II is found. Another fraction of the AGE-

OVA may progress from the early endosomes to the late endosomes/lysosomes for processing and MHC II loading. AGE-

OVA taken up by pinocytosis also enters the MHC II restricted processing and loading. The MHC II-peptide complex is 

subsequently transported to the cell surface  where it is recognised by OVA peptide specific CD4+ T cells.  AGE-OVA 

taken up by the MR enters stable early endosomes from where it is brought to the proteasome for processing. The OVA 

peptides re-enter the same early endosomes via TAP, are loaded onto MHC I and the MHC  I-peptide complex is then 

directly transported to the cell surface for presentation to CD8+ T cells.  Figure partially adopted from Burgdorf et al., 2007. 

 

5.2 Glycation of OVA by the Maillard reaction enhance the antigenicity and 
T cell immunogenicity of the allergen in vivo 

Next, the immunogenicity and antigenicity of AGE-OVA was evaluated in vivo.  Mice were used 

for the evaluation because access to human materials, e.g. peripheral blood monocytes (PBMC) 

and sera from patients with food allergy, is generally limited. In addition, many patients with egg 

allergy are small children and so it is even more difficult to obtain suitable amounts of blood 

samples for PBMC studies. The usage of mice also has the advantage that it is possible to 

investigate the sensitisation (priming) effect of AGEs on the induction of allergen specific T cell 

and antibody responses. Here, it was found that AGE-OVA induced a higher production of 

allergen specific IgE antibodies in BL6 mice, compared to native and thermally processed OVAs. 
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5.2.1 Antigenicity of AGE-OVA in intraperitoneal immunisation 
Intraperitoneal (ip) immunisation of mice with AGE-OVA resulted in a significantly higher IgE 

production than immunisation with native or thermally processed OVA (Fig. 4.36). These results 

indicate that AGE-OVA has a higher antigenicity than the unglycated forms of the allergen. 

Allergic reactions are induced by the association of allergens with IgE bound to the high affinity 

IgE receptor, FεcRI, on the surface of mast cells (chapter 1.2). Therefore, glycation by the 

Maillard reaction may also increase the allergenicity of OVA.  

Two components of the immune response could be involved in the enhanced IgE production by 

AGE-OVA: CD4+ T cell and B cell activation. CD4+ T cells play a crucial role in the induction of 

IgE production by B cells (chapter 1.13). The results of the experiments using in vitro co-culture of 

CD4+ T cells with mDCs (Fig. 4.5) and subcutaneous immunisation (Fig. 4.31) for the assessment 

of the CD4+ T cell immunogenicity of the three types of OVA strongly indicate that AGE-OVA has 

a higher T cell immunogenicity than native or thermally processed OVA. These results suggest 

that the enhanced IgE production results from increased CD4+ T cell activation by AGE-OVA. 

Furthermore, the increased CD4+ T cell activation by AGE-OVA also resulted in a higher amount 

of IL-4 being secreted by the activated T cells (Fig. 4.10). IL-4 is a key cytokine for the production 

of IgE antibodies by B cells. This would further explain why the production of IgE was 

considerably enhanced following immunisation with AGE-OVA. 

It may be argued that in the case of ip immunisation, all three OVAs had a comparable T cell 

immunogenicity (Fig. 4.32). The discrepancy may be the result of the immunisation protocol used; 

three immunisations with a relatively high dose of allergen were performed. Therefore, even if 

AGE-OVA does have an enhanced CD4+ T cell immunogenicity also with ip immunisation, the 

enhancing effect may not have been detectable if the antigen dose was so high as to induce a 

maximum activation even with less immunogenic antigens after three immunisations. The 

influence of the allergen dose is also supported by the in vitro data showing that higher 

concentrations of the different OVAs could induce comparable proliferation of CD4+ T cells but at 

lower doses, AGE-OVA was a much more potent inducer of T cell proliferation than native and 

thermally processed OVA (Fig. 4.9). 

When analysing the data of CD4+ T cell activation and the antibody production, it has to be taken 

into account that the data presented for the antibody production represents the situation after only 

two immunisations, whereas the ex vivo stimulation of CD4+ T cells to asses the T cell 

immunogenicity of AGE-OVA was performed after three immunisations. The antibody data after 

three immunisations was not used as the levels of antibody were so high, that no differences 

could be observed between serum dilutions (data not shown). This supports the notion that the T 

cell activation had reached a maximum after three immunisations. However, it is likely that after 

two immunisations, a difference in CD4+ T cell activation between the groups would be observed, 

with a stronger activation in AGE-OVA immunised mice as was found after subcutaneous 

immunisation (Fig. 4.31). This would explain the increased IgE production after just two ip 

immunisations with AGE-OVA. The ip immunisation should therefore be repeated with an altered 
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protocol to confirm that CD4+ T cell activation was higher in AGE-OVA immunised mice after only 

two immunisations. 

In addition to enhanced CD4+ T cell activation, the second component of the immune response 

being influenced by the glycated OVA could be the B cell activation. The glycation structures may 

act as novel immunepitopes for the immunoglobulins of B cells, the BCRs. This could result in the 

production of antibodies specific for the glycation structures found on OVA. However, the 

antibodies from AGE-OVA immunised mice bound equally well to native, thermally processed and 

AGE-OVA (Fig. 4.33, Fig. 4.34 and Fig. 4.36). Therefore, even if some antibodies with specificity 

for the glycation structures are produced in BL6 mice, their level would be rather low. Instead, the 

data suggests that antibodies from AGE-OVA immunised mice are likely to recognise the same 

epitopes as mice immunised with the unglycated forms of OVA.  These could be epitopes which 

remain unglycated or epitopes where the glycation does not affect immunoglobulin binding. 

Hence, glycation of OVA does not appear to directly alter the interaction of the allergen with B 

cells.  Therefore, the enhanced production of IgE induced by AGE-OVA immunisation would 

mainly be the result of increased CD4+ T cell activation.  

As shown in Fig. 4.19 and Fig. 4.25, it was found that SR-AI/II mediates the uptake of AGE-OVA 

by mDCs and that this contributes to the enhanced OVA specific CD4+ T cell activation by the 

glycated allergen. In order to verify the importance of SR-AI/II for the enhanced antigenicity of 

AGE-OVA in vivo, the usage of SR-AI/II deficient mice may be a choice. However, SR-AI/II does 

not only play a role in antigen uptake but also promotes cell adhesion to matrix molecules and 

other cells (Khoury et al., 1994; Gowen et al., 2000). This function could contribute to the 

involvement of SR-AI/II in limiting DC migration from the site of antigen uptake to the draining 

lymph nodes (Arredouani et al., 2007). Therefore, the absence of SR-AI/II itself can have an 

enhancing influence on the T cell activation in the lymph nodes.  For this reason, SR-AI/II deficient 

mice were not used to verify the role of SR-AI/II in vivo. Further study would be necessary to see 

whether DCs which express SR-AI/II predominantly take up AGE-OVA in vivo. This could for 

example be done using immunohistochemistry.  

 

5.2.2 The influence of AGEs on CD4+ T cell differentiation 
As illustrated in chapters 1.12.2.2 and 1.13, Th2 cells play a pivotal role in the IgE production by B 

cells and in the maturation and activation of inflammatory cells involved in allergic reactions. Th2 

cells are opposed by Th1 cytokines and regulatory T cells which inhibit the differentiation of CD4+ 

T cells to Th2 cells and suppress the activation of effector T cells respectively. Therefore, it was of 

utmost interest to see whether the glycation of food allergens influences the differentiation of 

CD4+ T cells.   

In this study it was found that neither AGE-OVA nor AGE-rAra h 2 influences the T cell 

differentiation. In in vitro co-cultures of mDCs and OVA specific CD4+ T cells, AGE-OVA 

enhanced the production of IL-4 but also IFN-γ (Fig. 4.10), giving no indication of a shift in T cell 

polarisation. Furthermore, in ip immunised mice, native, thermally processed and AGE-OVA 
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induced comparable IgG1/IgG2a antibody ratios (Fig. 4.34). These results indicate that AGE-OVA 

did not alter the CD4+ T cell differentiation towards a particular T helper cell phenotype.  

SR-AI/II plays a pivotal role in the uptake of AGE-OVA in vitro and possibly also in vivo. Previous 

data regarding the influence of SR-AI/II on T cell differentiation is controversial. Maleyated 

allergen, a modification which targets the protein for SR uptake, induced a Th1 dominated 

allergen response, e.g. predominant production of the Th1 cytokine IFN-γ by splenic T cells and 

increased IgG2a antibody production in response to the antigen (Bhatia et al., 2002). In contrast, 

other studies showed that OVA treated with formaldehyde, resulting in an aldehyde modified 

allergen which was taken up by macrophages via the SR, leads to a Th2 dominated immune 

response marked by higher IL-5 production by T cells and increased IgG1 production in 

comparison with the unmodified OVA (Moghaddam et al., 2002; Allison and Fearon 2000; Willis et 

al., 2002). The different observations could be due to different protein modifications which may 

bind to distinct binding sites of SR-AI/II and subsequently trigger different signalling pathways. 

The collagenous region of SR-AI/II has been identified as the binding site of the receptor, however 

within this at least two discrete binding sites exist. For instance, the SR-AI/II ligand acetylated LDL 

is a poor competitor for binding of oxidised LDL, also a SR-AI/II ligand (Platt and Gordon, 2001, 

Plüddemann et al., 2007). SR-AI/II ligands, by binding to distinct binding sites of the receptor, 

differentially modulate specific protein kinase signal transduction pathways (Coller and Paulnock, 

2001; Hsu et al., 2001). Therefore, the stimulatory effect of SR-AI/II-ligand interaction on 

maturation and cytokine production of DCs appears to be ligand dependent. The cytokines which 

are produced by DCs influence the differentiation of CD4+ T cells (chapter 1.12.2). However, 

AGE-OVA did not induce maturation of mDCs nor did it stimulate cytokine production by these 

cells (Fig. 4.12). In summary, binding to distinct binding sites and the triggering of different 

signalling pathways could offer an explanation for the contrasting immunomodulating effects 

observed by ligand binding to SR-AI/II. The AGEs may associate with a binding site of SR-AI/II 

which does not trigger maturation nor results in the release of cytokines which generates a 

different phenotype than the uptake of unglycated OVA.  

 

 

5.3 Glycation reduces the allergenicity of rAra h 2  
Ara h 2 is one of the major allergens of peanuts (Burks et al., 1992; Burks et al., 1995). Peanuts 

are usually not consumed raw but roasted, fried or boiled. Since peanuts contain a significant 

amount of reducing sugars (Vercellotti et al., 1995), the Maillard reaction occurs during the 

thermal treatment of peanuts (Maleki et al., 2000, Chung et al., 2003). Consequently, it was of 

major interest to elucidate what effect the Maillard reaction may have on the immunogenicity of 

this allergen. Several studies have shown that thermal treatment of peanuts or single allergens in 

the presence of carbohydrates enhances their binding activity for serum IgE from peanut allergic 

patients as a result of modifications by the Maillard reaction (Maleki et al., 2000; Chung SY et 

al.,2001; Gruber et al, 2005). However, so far no study has been performed to examine the 
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influence of the Maillard reaction on the immunogenicity, antigenicity and allergenicity of Ara h 2 

in vivo. Here, it was observed that glycation of Ara h 2 by the Maillard reaction reduced the 

immunostimulatory potential of rAra h 2 in C3H/HeJ mice. 

 

5.3.1 Thermal incubation of rAra h 2 with carbohydrates leads to glycation and 
loss of secondary structure 

First, different carbohydrates were tested for the glycation of rAra h 2, namely fructose, glucose, 

galatcose and mannose, which are naturally found in peanuts (Rudrapatnam et al., 1974). 

Lactose and maltose were also used; these are not present in peanut but are frequently used in 

peanut products. In a previous study it was observed that the binding properties of AGE-Ara h 2 

for serum IgE from peanut allergic patients is dependent on the carbohydrate used for the 

preparation of the particular AGE-Ara h 2 (Maleki et al., 2000). The data suggest that the 

carbohydrate present during the thermal processing could influence the development of the type 

and/or the amount of glycation structures and subsequently influences the binding properties of 

the prepared AGEs for serum IgE. It was therefore of interest to see whether the different 

carbohydrates resulted in different glycation structures on rAra h 2.  

CML and GA-pyridine but not CEL and pyrraline could be detected in rAra h 2 incubated with any 

one of the carbohydrates (Fig. 4.37). Galactose appeared to generate the highest level of GA-

pyridine. Whether this difference in the amount of GA-pyridine could be of relevance for the 

immunogenicity of the allergen was beyond the scope of this study. However, it was interesting, 

since a particularly high increase in the binding of serum IgE of peanut allergic patients was 

observed when Ara h 2 had been incubated with galactose (Maleki et al., 2000). CML and GA-

pyridine were also detected in extracts of roasted peanuts in our hands (data not shown). The 

presence of CML in roasted peanut extracts was also confirmed by another study (Chung et al., 

2001). As galactose induced the highest level of GA-pyridine as well as inducing high levels of 

CML and is a carbohydrate found in peanuts (Rudrapatnam et al., 1974), it was used for the 

preparation of AGE-rAra h 2 in the present study. 

Here, it was also observed that rAra h 2 was severely affected by thermal treatment. The CD 

spectrum of untreated rAra h 2 shows that rAra h 2 is a protein dominated by α-helices (Fig. 

4.38). This finding is in consent with the CD spectra published for rAra h 2 by Lehmann et al. and 

for native Ara h 2 (Lehmann et al., 2006; Maleki et al., 2003). However, the α-helical structure of 

rAra h 2 was lost after thermal treatment with or without galactose (Fig. 4.38). In contrast, 

Lehmann et al. found that when heating rAra h 2 up to 90°C, there was little change of the CD 

spectrum (Lehmann et al., 2006)  and Ara h 2 isolated from roasted peanut extracts exhibited only 

a very minor reduction of the α-helical structure in favour of β-sheets and random coils (Maleki et 

al., 2003). Intact disulfide bonds were found to be vital for the heat stability of rAra h 2 (Lehmann 

et al., 2006). The correct disulfide bond formation was not checked for rAra h 2 used in the 

present study. Although the CD spectrum of  rAra h 2 used here resembles that of rAra h 2 and 
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native Ara h 2 published previously, it is possible that the disulfide bonds of rAra h 2 used for this 

study were not formed correctly, which would make the protein more susceptible to heat 

degradation. Therefore, the loss of secondary structure observed for rAra h 2 after thermal 

incubation with and without galactose may be due to incompletely formed disulfide bonds. The 

discrepancy to the other publications may also be explained by the different incubation conditions 

used. In the present study rAra h 2 was heated in solution at 120°C for 2 h. Lehmann et al. heated 

rAra h 2 to 90°C, a considerably lower temperature, during CD spectroscopy. In the study by 

Maleki et al. Ara h 2 was isolated after the complete nuts had been roasted at 350°C for 20 min 

(Lehmann et al., 2006; Maleki et al., 2003). In the latter study the food matrix of the whole peanut 

may protect the conformation of Ara h 2 during roasting. 

 

5.3.2 The glycation of rAra h 2 by the Maillard reaction reduces the CD4+ T cell 
immunogenicity of the allergen in vivo 

In this thesis it was found that glycation of rAra h 2 by the Maillard reaction reduces the CD4+ T 

cell immunogenicity of the allergen. CD4+ T cells isolated from mice immunised with AGE-rAra h 2 

proliferated much better in response to unprocessed rAra h 2 and rAra h 2 thermally processed 

without galactose (Fig. 4.39) than to AGE-rAra h 2. One factor influencing the CD4+ T cell 

immunogenicity of the allergen may be the denaturation of the allergen induced by heating; CD4+ 

T cells isolated from all three immunisation groups responded better to stimulation with 

unprocessed rAra h 2 than to thermally processed rAra h 2. Since T cells recognise sequential 

epitopes, the loss of the conformation of rAra h 2 by thermal treatment is unlikely to directly 

influence the recognition of the allergen by TCRs. Thermal denaturation of proteins is often 

irreversible and this appears to also be true for the rAra h 2 used in this study as shown by the CD 

spectrum analysis performed at room temperature after heating (Fig. 4.38, discussed in 5.3.1). 

Generally, the cause for the irreversibility is aggregation of the heat unfolded polypeptide (Benjwal 

et al., 2006). Therefore both thermally processed and AGE-rAra h 2 are likely to be aggregated. In 

order for T cells to be activated by an allergen, the protein has to be processed by APCs and the 

allergen peptides loaded onto MHC molecules (chapter 1.10). It is possible that the aggregation of 

rAra h 2 inhibits or alters the processing of the allergen by the proteases in the endosomes and 

lysosomes where antigens are processed for MHC class II presentation. If this is the case, less 

MHC II-peptide rAra h 2 complexes would result from the intracellular processing of the 

aggregated allergen as opposed to processing of the rAra h 2 which had not been subjected to 

thermal treatment. Consequentially, less peptide would be presented on the cell surface of the 

APCs resulting in reduced CD4+ T cell activation by thermally processed and AGE-rAra h 2.  

The proliferate response was even lower in response to AGE-rAra h 2 than to thermally 

processed rAra h 2 stimulation. Therefore, the CD4+ T cell immunogenicity of AGE-rAra h 2 may 

be further reduced by the glycation structures on the allergen. In the amino acid sequence of Ara 

h 2 arginine is fairly abundant and some lysines are also present (Chatel et al., 2003). It could be 
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assumed that some of these residues are part of the T cell epitopes recognised by C3H/HeJ mice. 

Therefore, core amino acid residues recognised by TCRs of Ara h 2 specific T cells may be 

glycated by the Maillard reaction and this could influence the binding of TCRs to the MHC II – rAra 

h 2 peptide complex on the surface of APCs. There are two possible ways in which T cells could 

have been primed in mice immunised with AGE-rAra h 2 if core epitope residues of the allergen 

where glycated: (i) the T cells in AGE-rAra h 2 immunised mice were primed in vivo by Ara h 2 

epitopes which remained unglycated but of which less may be available on AGE-rAra h 2 than on 

the unglycated rArah 2 forms or (ii) they were primed by glycated epitopes but glycation impairs 

optimal binding to the TCRs. Both possibilities would result in a dampened T cell response to 

AGE-rAra h 2. In addition, glycation may further impair the intracellular processing of the allergen 

which may already be affected by aggregation, as discussed above. This could also further 

reduce the T cell immunogenicity of AGE-rArah 2.  

 

5.3.3 The glycation of rAra h 2 by the Maillard reaction reduces the antigenicity of 
the allergen in vivo 

The present study also showed that the glycation of rAra h 2 by the Maillard reaction significantly 

reduces the antigenicity of the allergen when C3H/HeJ mice were exposed to the allergen by ip 

immunisation. AGE-rAra h 2 was a poor inducer of rAra h 2 specific IgE as well as IgG1 and 

IgG2a (Fig. 4.41 and Fig. 4.42). The results suggested that glycation of the Maillard reaction could 

also reduce the allergenicity in some food allergens.  

As described in chapter 5.3.2, the activation of allergen specific CD4+ T cells in response to AGE-

rAra h 2 was lower than in response to unprocessed or thermally processed rAra h 2. Since 

activated CD4+ T cells are essential for the activation of B cells and the subsequent antibody 

production (chapter 1.14), the reduced activation of CD4+ T cells by AGE-rAra h 2 could be one 

reason why only very little amounts of antibody were produced in mice immunised with AGE-rAra 

h 2.  

The reduced antigenicity of AGE-rAra h 2 could also be explained by glycation of B cell epitopes 

of the allergen. It is unlikely that loss of secondary structure alone influences the antigenicity since 

rAra h 2 thermally processed without glucose induced a similar level of antibody production as 

unprocessed rAra h 2. Furthermore, the serum IgE from mice immunised with the unprocessed 

rAra h 2 was able to bind to thermally processed Ara h 2 (Fig. 4.43). In contrast, IgE antibodies 

from mice immunised with unprocessed or thermally processed rAra h 2 were not able to bind to 

AGE-rAra h 2 (Fig. 4.43). Ara h 2 has eleven IgE epitopes recognised by C3H/HeJ mice (Li et al., 

2000). Some of the epitopes, including two of the three major epitopes, contain lysine and/or 

arginine residues. Glycation of lysine and/or arginine residues within the B cell epitopes of Ara h 2 

may hamper the recognition of AGE-rAra h 2 by B cells and therefore contribute to the reduced 

antigenicity of AGE-rAra h 2.  
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The data obtained here in vivo in a mouse model is in contrast to studies showing that roasted 

peanut extracts or single glycated peanut allergens had a higher binding activity for peanut 

allergic patient serum IgE than extracts from raw peanuts or unmodified single allergens (Maleki 

et al., 2001; Chung et al., 2001; Gruber et al., 2005). More specifically, the binding activity for 

human IgE of peptide sequences containing complete sequences or parts of the sequence of two 

major Ara h 2 epitopes was increased after thermal incubation with carbohydrates, suggesting 

that the incubation may have transformed these residues into high affinity IgE binding sites 

(Gruber et al., 2005).  One reason why human IgE may show increased binding to glycated 

allergens may be that peanut allergic patients have some antibodies specific for the glycated form 

of the allergens as suggested by the work by Chung et al. where AGE-specific IgG antibodies 

inhibited binding of patient IgE to roasted peanut extracts (Chung et al., 2001). Increased binding 

of patient serum IgE to peanut allergens after heating may also result from antibodies which were 

produced in response to recognition of unmodified epitopes by the specific BCRs. That IgE 

antibodies primarily produced in response to unmodified Ara h 2 can indeed exhibit enhanced 

binding to the glycated allergen was demonstrated with serum from rabbits immunised with 

unprocessed Ara h 2 (Gruber et al., 2005). IgE binding to glycated proteins could be enhanced 

due to the polyanionic character and the alkylated lysines of the glycated protein (Sano et al., 

1999). The possible explanations why glycation enhances binding of peanut proteins to human or 

rabbit IgE do not appear to apply to the particular mouse model used here. The data in Fig. 4.43 

suggests that IgE antibodies produced in AGE-rAra h 2 immunised mice recognise only the 

unglycated allergen, indicating that recognition of unglycated epitopes underlies the antibody 

production even in mice immunised with the glycated allergen. In addition, antibodies primarily 

recognising unglycated allergen do not appear to be able to bind AGE-rAra h 2 and show no 

enhanced binding to rAra h 2 thermally processed without galactose (Fig. 4.43). It was shown that 

nine out of the eleven epitopes recognised by C3H/HeJ mice are essentially in the same regions 

as the epitopes identified as human-IgE binding epitopes, including the two major epitopes which 

displayed enhanced IgE binding after being glycated (Li et al., 2000; Stanley et al., 1997; Gruber 

et al., 2005). It may therefore be expected, that IgE antibodies from C3H/HeJ mice could also bind 

to these glycated epitopes, but this does not appear to be the case. The human immune system is 

able to respond to an enormous variety of antigens. The basis for this is the huge genetic variety 

of the genes encoding the MHC molecules, the TCRs and the BCRs/Immunoglobulins found in 

the population. Furthermore, the variability of these receptors is increased by mechanisms such 

as gene rearrangement and polygeny. In contrast to the enormous versatility of the human 

immune system, the immune system of an inbred mouse strain, such as the C3H/HeJ mouse, 

where individuals are homozygous and 99% genetically identical to each other, is rather 

restricted. Therefore, while Ara h 2 modified with glycation structures may be able to induce 

allergen specific IgE production in some human individuals and human IgE have been shown to 

bind glycated peanut allergen (Maleki et al., 2001, Gruber et al., 2005), the considerable more 
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limited variability of IgE antibodies in the mice may not have yielded IgE antibodies which can 

recognise glycated Ara h 2 despite recognising similar sequences of the allergen. 

One final possibility which has to be considered is that AGE-rAra h 2 was not bound efficiently to 

the plates used for the ELISAs. If this was the case, this could falsely give the impression that IgE 

antibodies from C3H/HeJ mice are not able to bind to AGE-rAra h 2. It was aimed to exclude this 

possibility by using different kinds of ELISA plates with coatings facilitating the capture of proteins 

with a variety of molecular properties. No difference between the plates used could be observed 

(data not shown). To further examine this issue, inhibition ELISAs could be performed in a future 

study.  

 

5.4 Differential effects of glycation on the T cell immunogenicity and 
antigenicity of OVA and rAra h 2 

In this study, the glycation of OVA enhanced the CD4+ T cell immunogenicity and antigenicity of 

the allergen. In contrast AGE-rAra h 2 was found to have a reduced T cell immunogenicity and 

antigenicity compared to unprocessed rAra h 2. Previous studies have also suggested that the 

influence of glycation on the immunostimulatory properties of a particular protein is partially 

dependent on the protein itself (Price et al., 2004; Ge et al., 2005). This highlights the complexity 

of the immune reaction against food allergens glycated by the Maillard reaction. 

A likely explanation for the differential effect of the glycation on the immunogenicity and 

antigenicity of the food allergens is that the glycation of amino acid residues within epitopes 

recognised by TCRs or BCRs could influence the interaction of the allergen with the receptors. In 

BL6 and BALB/c mice, the dominant epitope for OVA specific CD4+ T cells of OVA are the amino 

acid residues 323-339 (one letter coded amino acid sequence: ISQAVHAAHAEINEAGR). This 

region contains one arginine residue which may be glycated by the Maillard reaction. However, 

the arginine residue is not a core amino acid recognised by the TCR of the transgenic OT-II and 

DO11.10 CD4+ T cells, which represent a dominant clone of OVA specific CD4+ T cells in BL6 and 

BALB/c mice (Robertson et al., 2000). As the T cell epitope in OVA is not influenced by the 

glycation, only the enhanced binding of AGE-OVA with SR-AI/II expressed on mDCs is likely to 

play a role in the enhanced T cell immunogenicity of the glycated allergen.  

In contrast to OVA, T cell and/or B cell epitope(s) in rAra h 2 may be modified by glycation as was 

described in the previous sections (chapter 5.3.2 and 5.3.3). To assess the immunogenicity and 

antigenicity of AGE-rAra h 2, C3H/HeJ mice were used. This particular mouse strain was 

identified as a high responder strain for Ara h 2 by assessing immune responses against 

“unprocessed native Ara h 2” and raw peanut extract (Li et al., 2000; Proust et al., 2008). CD4+ T 

cells and B cells in C3H/HeJ mice may be the best responders to the native Ara h 2, but not to the 

glycated rAra h 2.  

While it was shown here that both AGE-OVA and AGE-rAra h 2 had been modified with CML and 

GA-pyridine by thermal processing with carbohydrates, the glycation profile of the two allergens 
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would not be exactly the same. For example, on AGE-OVA CEL could be detected (Fig. 4.2) but it 

was not found on AGE-rAra h 2 (Fig. 4.37). It is therefore possible that the different glycation 

profiles of the allergens contribute to the contrasting influence which the Maillard reaction has on 

the immunostimulatory properties of each allergen. The different modifications present could 

influence the recognition of the allergen by TCRs and BCRs or the antigen processing due to 

different sizes and molecular properties of the individual glycation structures.  

The particular glycation structures present on an allergen would also influence to which 

endocytotic receptors the allergen can bind. It was not tested whether AGE-rArah 2 binds to, for 

example, SR-AI/II. It was shown that enhanced CD4+ T cell activation by AGE-OVA is heavily 

dependent on the interaction of the glycated allergen with SR-AI/II. If AGE-rAra h 2 is not able to 

bind to SR-AI/II, this could also contribute to the differences seen in the immunogenic properties 

of the glycated forms of the two allergens.  

Collectively the presented data suggests that the influence which the glycation has on the 

immunogenic properties of a particular food allergen depends on the occurrence of glycation 

within T cell and/or B cell epitopes of the allergen. The interaction with endocytotic receptors 

expressed by APCs is also likely to play a role.  

 

 

5.5. Potential Allergenicity of AGEs of food allergens 

In this thesis it could be demonstrated that the Maillard reaction influences the CD4+ T cell 

immunogenicity of the hen egg white allergen OVA and the recombinant peanut allergen Ara h 2. 

CD4+ T cells are a critical component for the IgE production by B cells and subsequently the 

allergic responses. Hence, the results presented here suggest that the Maillard reaction could be 

capable of influencing the allergenicity of food allergens in allergic individuals. If the glycation by 

the Maillard reaction does not attenuate T cell and B cell epitope recognition, the glycated food 

allergens could enhance Th2 cell activation and subsequent IgE production by efficient SR-AI/II 

mediated uptake of the AGEs by DCs. In fact, AGE-OVA, which is capable of binding to SR-AI/II, 

induced higher CD4+ T cell activation and IgE production in mice than its unglycated counterparts. 

An increased amount of IgE could augment the activation of effector cells, e.g. mast cells, 

resulting in the release of more inflammatory mediators. This would lead to an increase in the 

severity of allergic symptoms. To our knowledge, the present study is the first to demonstrate that 

the formation of AGEs enhances the CD4+ T cell immunogenicity, antigenicity and potential 

allergenicity of a food allergen. The results strongly suggest that the influence of the Maillard 

reaction needs to be carefully considered in the evaluation of the allergenicity of food allergens. 

The results in this thesis show that AGE-OVA was able to enhance the production of Th1 as well 

as Th2 cytokines by allergen specific CD4+ T cells (Fig. 4.10). Therefore, while AGE stimulation 

can result in enhanced activation of allergen specific CD4+ T cells and a subsequent increase in 

cytokine production, the increase of both Th1 and Th2 cytokines in response to AGEs indicates 
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that they do not alter the differentiation of activated CD4+ T cells. In recent years, studies have 

been published which suggest that in healthy subjects IL-10 producing regulatory T cells (Tregs) 

are the dominant T cell subset specific for food allergens, in contrast, patients with allergy have 

increased numbers of allergen specific IL-4 producing T cells (Akdis M, et al., 2004; Akdis CA, et 

al., 2005). In healthy individuals, glycated allergens may enhance the activation of Tregs and help 

to maintain tolerance. In allergic patients, glycated allergens could enhance activation of Th2 T 

cells and promote allergic symptoms by increased production of cytokines which enhance 

allergen specific IgE production (mediated by IL-4, IL-13) or activation and infiltration of 

inflammatory cells such as eosinophils (IL-5).  

It has been speculated that the glycation structures in food allergens could act as novel B cell 

epitopes. The results presented here do not clearly show an induction of antibodies specifically 

binding to AGE structures in mice. However, this does not exclude the possibility that anti-AGE 

antibodies are induced in human subjects. Compared to the mouse immune system, the immune 

system of humans has a much greater diversity in regards to genes encoding MHC molecules, 

TCRs and BCRs/immunoglobulins. The vast genetic diversity enables the human immune system 

to respond to the enormous amount of different antigens which it encounters. In the genetic 

diversity among different individuals some would produce antibodies specific for the glycated form 

of a particular allergen while others may not. This notion is supported by observation that some 

but not all allergic patients have IgE antibodies exclusively to determinants found in a particular 

food only after thermal processing or storage or have allergic reactions only to the cooked form of 

a food (Prausnitz and Kustner, 1921; Malanin, 1995; Rosen et al., 1994). Furthermore, several 

studies have shown the existence of T cells specially recognising glycoepitopes (Dudler et al., 

1995; Corthay et al., 1995; Michaelsson et al., 1996; Haurum et al., 1994), suggesting that T cells 

specific for glycation structures could also be induced in humans. Studies with human cell culture 

systems, preferably employing APCs and T cells from food allergic individuals, would give further 

insight to how the glycation of food allergens could influence the immune response in food allergy. 

In the past decade, the prevalence of food allergy has increased and currently no effective 

treatment has been established. It is therefore a pressing concern to gain further understanding of 

the mechanisms underlying food allergy in order to develop new strategies of treatment and 

prevention. One important aspect to study would be the properties of the food allergens 

themselves. While many food allergens have been isolated and characterised, the influence which 

food processing has on the allergenic properties of allergens has not been studied in great detail. 

In the present study it could be shown that the Maillard reaction, as it occurs during thermal 

processing and storage of food, can severely alter the T cell immunogenicity and antigenicity of 

food allergens which could potentially contribute in the enhancement in the severity of allergic 

reactions. The results of this thesis unequivocally show that the influence of the Maillard reaction 

is an important factor to be considered when studying the pathology of food allergy. This study 

can help to increase our understanding of the mechanisms contributing to food allergy. 
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6 Summary 
 
The Maillard reaction takes place between proteins and reducing sugars during thermal 

processing and storage of foods. The reaction produces protein derivates with glycation structures 

such as Nε-carboxyethyllysine (CEL), Nε-carboxymethyllysine (CML), pyrralin and GA-pyridine, 

collectively called advanced glycation end products (AGE). As many foods are cooked in some 

form before being consumed, a potential involvement of AGEs in the pathology of food allergy is 

of great interest. This assumption is corroborated by the fact that some food allergic patients show 

anaphylactic reactions only against stored or heated foods. The Maillard reaction may create new 

pathogenesis related immune epitopes in food allergy. The aim of this thesis was to examine the 

influence of the Maillard reaction on the immunogenic properties of food allergens. 

In the first part of the thesis, the influence of the Maillard reaction on the T cell immunogenicity of 

the egg white allergen OVA was studied. The uptake mechanisms of mDCs for AGE-OVA were 

investigated using inhibitors of putative cell surface receptors for AGEs as well as mDCs which 

are deficient of one of these receptors. Here, it was shown for the first time that an AGE of a food 

allergen has a higher T cell immunogenicity than its native counterpart. AGE-OVA was prepared 

by thermal processing of OVA in the presence of glucose. Activation and proliferation of OVA 

specific CD4+ T cells by AGE-OVA was evaluated in co-cultures with mDCs as antigen presenting 

cells. Compared to the controls (native OVA and OVA thermally processed without glucose), 

AGE-OVA enhanced the activation of OVA-specific CD4+ T cells upon co-culture with mDCs. The 

result indicates that glycation of OVA by the Maillard reaction enhances the T cell immunogenicity 

of the allergen. Antigen specific T cell activation is preceded by the uptake of antigens by DCs. In 

the present study, it was found that mDC uptake of AGE-OVA was significantly higher than that of 

the controls. Additionally, the scavenger receptor class A type I and II (SR-AI/II) was identified as 

a mediator of AGE-OVA uptake, whereas the receptor for AGEs (RAGE) and galectin-3 were not 

involved. CD4+ T cell activation in response to stimulation with AGE-OVA was significantly 

inhibited when the T cells were cultured with SR-AI/II deficient mDCs. Furthermore, 

immunocytochemistry data showed co-localisation of AGE-OVA with SR-AI/II and MHC II in 

mDCs incubated with the glycated allergen. The presentation of soluble antigens by APCs is 

governed by endocytotic receptors, which determine the intracellular routing of the endocytosed 

molecules. The results of this thesis suggest that SR-AI/II targets its ligands to the MHC class II 

loading pathway in DCs. Taken together, the presented data allows the following hypothesis. The 

glycation of OVA results in an enhanced association of the allergen with SR-AI/II which leads to 

the observed increased uptake of the allergen by mDCs. Therefore, larger amounts of the 

allergen enters the MHC class II loading pathway, leading to a greater amount of OVA peptide-

MHC II complex being presented on the cell surface of mDCs. This in turn results in the observed 

enhanced activation and proliferation of the OVA specific CD4+ T cells by AGE-OVA. Collectively, 

the data shown in this thesis indicate that mDC expressed SR-AI/II is critical for the enhanced 

CD4+ T cell immunogenicity of AGE-OVA. 
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Next, T cell immunogenicity and antigenicity of AGE-OVA was evaluated in vivo. C57BL/6 mice 

received subcutaneous (sc) or intraperitoneal (ip) immunisation with native, thermally processed 

or AGE-OVA. For the evaluation of the T cell immunogenicity, CD4+ T cells were isolated from 

lymph nodes of immunised mice and the activation/proliferation of T cells upon recall stimulation 

with the allergens was measured. To assess the antigenicity, levels of allergen specific antibodies 

in sera of ip immunised mice were measured by ELISA. Importantly, AGE-OVA showed a higher 

T cell immunogenicity in mice which had received sc immunisation with either form of OVA. 

Furthermore, when the mice received OVA by ip immunisation, AGE-OVA induced a higher IgE 

production than native or thermally processed OVA. These results indicate that AGE-OVA has a 

higher CD4+ T cell immunogenicity as well as an enhanced antigenicity in vivo in comparison to 

the unglycated forms of OVA. Since CD4+ T cells play a pivotal role in the IgE production by B 

cells, the enhanced T cell immunogenicity of AGE-OVA would explain the higher IgE production 

following immunisation with the glycated allergen. IgE antibodies are critical components in the 

induction of allergic responses. Therefore, the results of this thesis suggest that the Maillard 

reaction would be capable of enhancing the allergenicity of food allergens.  

In the final part of the thesis, the influence of glycation by the Maillard reaction on the T cell 

immunogenicity and antigenicity of the major peanut allergen rAra h 2 was studied. As peanuts 

are responsible for the majority of the more severe allergic reactions to food and are usually eaten 

after thermal processing, it is of major interest to elucidate how the Maillard reaction affects the 

allergenic potential of the peanut allergen. In order to evaluate the T cell immunogenicity and 

antigenicity of AGE-rAra h 2, C3H/HeJ mice were ip immunised with unprocessed rAra h 2, rAra h 

2 thermally processed without carbohydrate or AGE-rAra h 2. AGE-rAra h 2 showed a lower T cell 

immunogenicity in mice receiving ip immunisation than unprocessed or thermally processed rAra 

h 2. Furthermore, the ip immunisation with AGE-rAra h 2 induced a lower IgE production than ip 

immunisation with its unglycated counterparts. Collectively these results suggest that the glycation 

of rAra h 2 may reduce the allergenicity of the allergen.  

In conclusion, the present study shows that the Maillard reaction alters the allergenic properties of 

food allergens considerably by influencing the T cell immunogenicity of the allergens. The results 

of this thesis strongly support the significance of Maillard glycation products as pathogenesis-

related factors in food allergy. Here, the immune mechanisms underlying the influence of 

glycation structures on T cell immunogenicity of food allergens were elucidated. If the glycation by 

the Maillard reaction does not attenuate the recognition of T cell or B cell epitopes, glycation of 

food allergen can enhance allergen specific CD4+ T cell activation and subsequent IgE production 

by efficient SR-AI/II mediated uptake of the allergens by DCs. Together, this study provides 

valuable information about the allergenicity of glycated proteins in thermally processed foods and 

helps to increase our knowledge on the respective mechanisms of food allergy. 
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7 German Summary 
Die allergische Reaktion ist eine Überempfindlichkeit des Immunsystems gegenüber harmlosen, 

nicht-infektiösen Substanzen, sogenannten Allergenen. Stoffe die allergische Reaktionen vom 

Soforttyp (IgE-vermittelt) hervorrufen können sind z.B. Pflanzenpollen, tierische Epithelzellen, 

Staubmilben, Insektengifte und Lebensmittel. Die darin sich befindenden Allergene sind meist 

Proteine. Für die Ausbildung einer allergischen Erkrankung ist ein wiederholter Kontakt mit den 

Allergenen nötig. Während des ersten Kontaktes mit dem Allergen wird das Immunsystem 

sensibilisiert, dabei werden Immunzellen wie z.B. dendritische Zellen, T-Zellen und B-Zellen 

aktiviert und Allergen-spezifische Antikörper gebildet. Insbesondere IgE Antikörper spielen bei der 

Allergie eine wichtige Rolle. Bei dem ersten Kontakt mit dem Allergen kommt es noch nicht zur 

Manifestation von Symptomen. Erst bei einem wiederholten Kontakt mit dem Allergen werden 

Symptome induziert. Die Symptome können lokal sein wie zum Beispiel Juckreiz in Mundhöhle 

und Pharynx bei Nahrungsmittelallergien oder die allergische Rhinitis bei der die oberen 

Atemwege betroffen sind. Es kann aber auch zu systemischen Reaktionen wie einem 

anaphylaktischen Schock kommen, der zum Tode führen kann. 

Die Prävalenz von Lebensmittelallergien hat in den vergangenen Jahrzehnten in der Bevölkerung 

der westlichen Welt deutlich zugenommen (Sicherer 2002; Sampson 2003) und aktuell gibt es 

keine wirkungsvolle kausale Behandlung. Es ist deshalb von hohem Interesse die Mechanismen 

der Nahrungsmittelallergie weiter zu untersuchen, um neue Strategien für die Prophylaxe und 

Therapie entwickeln zu können. Ein wichtiger Faktor dabei ist es, die Eigenschaften der Allergene 

besser einordnen zu können. Dabei muss bedacht werden, dass Lebensmittel vor dem Verzehr 

häufig verschiedenen Prozessen, wie z.B. Garen durch Hitze unterzogen werden, die sich 

erheblich auf die immunogenen Eigenschaften der Allergene auswirken können. Abhängig von 

den Bedingungen der Prozessierung und der Hitzestabilität des Proteins, kann sich die 

Allergenität eines Allergens durch Hitze verringern, aber ebenso auch erhöhen. Einer Erhöhung 

der Allergenität können ein oder mehrere Dinge zugrundeliegen, so kann das Allergen z.B. 

resistenter gegenüber Verdauungsenzymen werden (Maleki et al., 2001). Durch die 

Denaturierung des Proteins können möglicherweise IgE-Bindungsstellen leichter zugänglich 

werden, oder auch neue entstehen. Auch durch chemische Modifikation können neue IgE-

Bindungsstellen auftauchen. Durch das Entstehen neuer Bindungsstellen können somit 

sogenannte Neoallergene gebildet werden. Ein biochemischer Prozess der während der 

Lagerung bzw. der Verarbeitung von Lebensmitteln unter Hitzeeinwirkung abläuft und zur Bildung 

von Neoallergenen führen, bzw. die allergenen Eigenschaften von bestehenden Allergenen 

verändern kann, ist die Maillard-Reaktion. 

Die Maillard Reaktion ist verantwortlich für die nicht-enzymatische Bräunung der Lebensmittel. 

Während der Reaktion werden die Aminosäure-Gruppen der Proteine durch nicht-enzymatische 

Kondensation mit reduzierenden Zuckern modifiziert. Die dabei entstehenden Glykosylamine 

bilden durch Umlagerung die ersten stabilen Produkte der Reaktion, die sogenannten Amadori-
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Produkte. Diese können zu reaktiven Dicarbonyl-Intermediaten degradiert werden, welche mit 

weiteren Aminosäureresten reagieren und durch Quervernetzungen oder Umlagerungen stabile 

Endprodukte bilden (Henle, 2005). Beispiele solcher Endprodukte sind Nε-Carboxyethyl-Lysin 

(CEL), Nε-Carboxymethyl-Lysin (CML), Pyrraline und Glykoaldehyde-Pyridine (GA-pyridine). 

Proteine die auf diese Weise durch die Maillard-Reaktion modifiziert wurden, nennt man 

advanced glycation end products (AGEs). Um den Prozess von der enzymatischen 

Glykosylierung zu unterscheiden, wurde der Begriff Glykierung eingeführt (Ledl and Schleicher, 

1990). 

Bereits veröffentliche Studien deuten darauf hin, dass die Maillard-Reaktion eine wichtige Rolle im 

Pathomechanismus der Lebensmittelallergie spielt. So gibt es eine Reihe von Veröffentlichungen 

die Fälle beschreiben bei denen allergische Reaktionen auf gekochte, aber nicht auf rohe 

Lebensmittel beobachtet wurden (Prausnitz and Kustner, 1921; Malanin, 1995). Des Weiteren 

wurde gezeigt, dass die Glykierung von Allergenen durch die Maillard-Reaktion deren Fähigkeit 

Serum-IgE von Patienten mit einer Sensibilisierung für das entsprechende Allergen zu binden 

signifikant erhöhen (Gruber et al., 2005; Chung et al., 2001; Chung et al., 2003). Diese 

Beobachtungen sprechen deutlich dafür, dass durch die Maillard-Reaktion neue, für die 

Pathogenese  der Lebensmittelallergie relevante, Immunepitope entstehen.  

Bei der Sensibilisierung und auch bei den allergischen Reaktionen nach wiederholten 

Allergenkontakt spielen dendritische Zellen und T-Zellen, insbesondere CD4+ T-Zellen, eine 

zentrale Rolle. Bisherige Studien haben unterschiedliche Auswirkungen von AGEs auf 

dendritische Zellen gezeigt. AGE-Derivate von BSA induzierten verstärkt die Reifung der 

dendritischen Zellen und erhöhten auch deren Fähigkeit die Aktivierung von T-Zellen zu 

induzieren (Ge et al., 2005). Im Gegensatz dazu, zeigte sich, dass AGE-Derivate des 

Adrenocorticotrophen Hormons die Reifung von dendritischen Zellen inhibiert und deren Kapazität 

T-Zellen zu stimulieren verringert (Price et al., 2001). Diese Ergebnisse zeigen, dass die T-Zell-

Immunogenität von Antigenen durch die Maillard-Reaktion beeinflusst werden kann. Allerdings ist 

der Einfluss von AGE-Derivaten von Lebensmittelallergenen auf die Funktion von dendritischen 

Zellen und die Aktivierung von T-Zellen weitgehend unbekannt, insbesondere gab es bisher keine 

in vivo Studien die den Einfluss der Maillard-Reaktion auf die immunogenen Eigenschaften von 

Allergenen untersucht haben. 

Der Aktivierung von T-Zellen geht die Aufnahme des Allergens durch die dendritischen Zellen 

voran. Häufig vermitteln Rezeptoren auf der Oberfläche der dendritischen Zellen die Aufnahme. 

Für einige Rezeptoren wurde gezeigt, dass sie AGEs binden können, zu diesen gehört RAGE 

(Receptor for AGEs) (Schmidt et al., 1992; Neeper et al., 1992), Galectin-3 (Vlassara et al., 1995), 

macrophage scavenger receptor class A type I/II (SR-AI/II) (Suzuki et al., 1997; Araki et al., 1999) 

sowie scavenger receptor class B type I und CD36 (Ohgami et al., 2001 a; Ohgami et al., 2001). 

Welche Rezeptoren für die Aufnahme von AGEs durch dendritische Zellen verantwortlich sind, 

wurde bisher nicht genau untersucht.  
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In dieser Dissertation sollte der Einfluss der Maillard-Reaktion auf die immunogenen 

Eigenschaften von Lebensmittelallergenen in vitro und in vivo untersucht werden. Dafür wurde 

zum einen das Modelallergen Ovalbumin (OVA) und zum anderen ein Majorallergen der Erdnuss, 

Ara h 2, in rekombinanter Form verwendet (rAra h 2). Von beiden Allergenen wurde durch 

Erhitzen zusammen mit einem Kohlenhydrat ein AGE-Derivat hergestellt, AGE-OVA bzw. AGE-

rAra h 2. Für alle Versuche wurden als Kontrollen unbehandeltes Allergen und Allergen welches 

ohne Kohlenhydrate erhitzt wurde verwendet.  

Im ersten Teil der Arbeit wurden die immunogenen Eigenschaften von AGE-OVA in vitro in 

murinen Zellkulturen untersucht. Verwendet wurden dabei aus Knochenmarkzellen der Maus 

generierte dendritische Zellen. Des Weiteren wurden T-Zellen verwendet die aus der Milz von 

transgenen Mäusen isoliert wurden. Diese T-Zellen besitzen T-Zellrezeptoren die spezifisch OVA 

erkennen. Es konnte gezeigt werden, dass die Modifizierung von OVA durch die Maillard-

Reaktion die CD4+T-Zell-Immunogenität des Allergens deutlich erhöht: AGE-OVA induzierte eine 

verstärkte Aktivierung und Proliferation von CD4+ T-Zellen die mit dendritischen Zellen co-

kultiviert wurden. Die erhöhte Stimulation der CD4+ T-Zellen durch AGE-OVA wurde nur 

beobachtet, wenn die T-Zellen mit dendritischen Zellen kultiviert wurden. AGE-OVA kann daher 

die T-Zellen nicht direkt aktivieren, sondern muss von den dendritischen Zellen aufgenommen, 

prozessiert und auf MHC Klasse II Molekülen (MHC II) präsentiert werden, um von den T-Zellen 

erkannt zu werden. Daraus ließ sich schlussfolgern, dass die erhöhte Aktivierung der CD4+ T-

Zellen durch AGE-OVA von der Interaktion des glykierten Allergens mit den dendritischen Zellen 

abhängig ist. Im Folgenden wurde gezeigt, dass AGE-OVA besser von den dendritischen Zellen 

aufgenommen wird, als natives OVA oder OVA welches ohne Glukose erhitzt wurde. Es war 

deshalb von Interesse den oder die Rezeptor(en) zu identifizieren welche die Aufnahme von 

AGE-OVA vermitteln. OVA besitzt durch enzymatische, postranslationale Glykosilierung eine 

Kohlenhydratseitenkette aus N-Acetyl-Glukosamin und Mannose. Es ist bekannt, dass Mannose 

die Bindung an den Mannoserezeptor (MR) erlaubt und OVA durch diesen Rezeptor 

aufgenommen wird (Huntington 2001 et al., Burgdorf 2006, Autenrith et al., 2007). Das konnte in 

der vorliegenden Arbeit für alle drei OVA-Formen bestätigt werden. Zusätzlich stellte sich heraus, 

dass SR-AI/II eine elementare Rolle bei der Aufnahme von AGE-OVA spielt. Für die Aufnahme 

von nativen und ohne Glukose erhitztem OVA spielte er dagegen nur eine untergeordnete Rolle. 

Es wurde in früheren Publikationen gezeigt, dass Antigene die über Scavenger Rezeptoren 

aufgenommen werden hauptsächlich auf MHC II präsentiert werden und CD4+ T-Zellen aktivieren 

(Burgdorf et al., 2007). Auch die Ergebnisse der vorliegenden Arbeit deuten darauf hin, dass 

AGE-OVA welches von SR-AI/II aufgenommen wird auf MHC II präsentiert wird. Zum einen führte 

die Kultivierung von OVA-spezifischen CD4+ T-Zellen mit SR-AI/II defizienten dendritischen Zellen 

zu einer signifikanten Reduktion der CD4+ T-Zell-Aktivierung was darauf hindeutet, dass die SR-

AI/II-vermittelte Aufnahme des Allergens zur Aktivierung der CD4+ T-Zellen beiträgt. Zum anderen  

zeigte sich, dass die Glykierung von OVA nicht zu einer erhöhten CD8+ T-Zell-Aktivierung führte. 

Das deutete darauf hin, dass OVA welches vom SR-AI/II aufgenommen wurde nicht auf MHC I 
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präsentiert wurde. In vorhergehenden Studien wurde gezeigt, dass OVA-spezifische CD8+ T-

Zellen durch OVA aktiviert werden, welches vom MR aufgenommen wurde (Burgdorf et al., 2007). 

Da alle drei OVA-Formen ähnlich gut vom MR aufgenommen wurden, entspricht das Ergebnis 

den Erwartungen. Weitere Hinweise darauf, dass OVA, welches vom SR-AI/II aufgenommen 

wurde auf MHC II präsentiert wird, stammen von Experimenten mit rekombinanten OVA. 

Rekombinantes, in E. coli hergestelltes, OVA besitzt keine natürlichen Kohlenhydratseitenketten 

die ein Aufnahme durch Rezeptoren ermöglicht und wird deshalb nur durch Pinozytose 

aufgenommen. Im Gegensatz zur Aufnahme von nativen, ohne Glukose erhitzten und AGE-OVA, 

wurde die Aufnahme von rekombinanten OVA deshalb nicht durch die Abwesenheit von SR-AI/II 

auf den dendritischen Zellen beeinflusst. Gleiches galt für die Aktivierung von CD4+ T-Zellen 

durch rekombinantes OVA. Zusätzlich war die Aufnahme des rekombinanten OVAs und auch die 

Aktivierung der T Zellen sehr gering. Durch Pinozytose aufgenommenes OVA wird ebenfalls auf 

MHC II präsentiert (Burgdorf et al., 2007). Natives, ohne Glukose erhitztes, wie auch AGE-OVA 

werden zusätzlich zur Pinozytose vor allem durch MR bzw. SR-AI/II vermittelte Endozytose 

aufgenommen. Die Ergebnisse der vorliegenden Arbeit lassen folgende Hypothese zu: Sowohl 

natives als auch ohne Glukose erhitztes OVA können durch ihre Kohlenhydratseitenkette an SR-

AI/II binden und der Rezeptor vermittelt eine partielle Aufnahme dieser nicht-glykierten OVA-

Formen. AGE-OVA hat zusätzlich zu der natürlichen Kohlenhydratseitenkette die AGE-Strukturen 

auf der Oberfläche, die eine stärkere Bindung an SR-AI/II erlauben und daraus folgt eine erhöhte 

Aufnahme von AGE-OVA durch die dendritischen Zellen. Das führt dazu, dass eine größere 

Menge des Allergens für die MHC II-Beladung prozessiert wird. Dadurch erhöht sich die Menge 

an MHC II-OVA-Peptid-Komplexen auf der Oberfläche der dendritischen Zellen, wodurch 

wiederum eine stärkere Aktivierung der CD4+ T-Zellen stattfinden kann. Dieses Ergebnis wird 

durch frühere Publikationen unterstützt, die gezeigt haben, dass die CD4+ T-Zell-Immunogenität 

erhöht wird, wenn Proteine chemisch so modifiziert werden, dass sie an SR-AI/II binden können 

(Abraham et al., 1995; Nicoletti et al., 1999). 

Ein Einfluss der Glykierung durch die Maillard-Reaktion auf die Fähigkeit von OVA die Reifung 

der dendritischen Zellen zu induzieren konnte dagegen nicht beobachtet werden. Eine Erklärung 

dafür könnte das Fehlen von RAGE auf den hier verwendeten Zellen sein, wurde doch in einer 

früheren Studie gezeigt, dass die verstärkte Reifung der dendritischen Zellen nach Stimulation mit 

AGE-BSA von der Anwesenheit von RAGE abhing (Ge et al., 2005), dessen Bedeutung für die 

Reifung von dendritischen Zellen auch in anderen Studien gezeigt wurde (Dimitriu et al., 2005; 

Manfredi et al., 2008).  

Im zweiten Teil der Arbeit wurde der Einfluss der Glykierung auf die T-Zellen Immunogenität und 

die Antigenität von OVA in vivo untersucht. Hierfür wurden C57BL/6-Mäuse subkutan oder 

intraperitoneal mit AGE-OVA, oder einer der Kontrollen immunisiert. Zur Bestimmung der T-Zell-

Immunogenität wurden die CD4+ T-Zellen der Lymphknoten bzw. der Milz isoliert und in vitro mit 

den Allergenen restimuliert. Daraufhin wurde die Aktivierung bzw. die Proliferation der T-Zellen 

gemessen. Es konnte gezeigt werden, dass bei der subkutanen Immunisierung der Mäuse, AGE-
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OVA eine deutlich höhere T-Zellen-Immunogenität besitzt als natives oder ohne Glucose erhitztes 

OVA. Weiterhin induzierte AGE-OVA in Mäusen denen die Allergene intraperitoneal verabreicht 

wurden eine höhere allergenspezifische IgE-Produktion, als die Kontrollen. Somit konnte gezeigt 

werden, dass die Glykierung von OVA nicht nur dessen OVA-spezifische CD4+ T-Zell-

Immunogenität in vitro und in vivo erhöht, sondern auch die Antigenität des Allergens verstärkt. 

Da die B-Zell-Aktivierung und die IgE-Produktion dieser Zellen maßgeblich von CD4+ T-Zellen 

beeinflusst wird, ist die erhöhte IgE-Produktion nach Immunisierung mit AGE-OVA mit großer 

Wahrscheinlichkeit auf die verstärkte Aktivierung der allergenspezifischem CD4+ T-Zellen 

zurückzuführen.   

Schlussendlich sollte der Einfluss der Maillard-Reaktion auf die immunstimulatorischen 

Eigenschaften eines Hauptallergens der Erdnuss, Ara h 2, untersucht werden. Erdnüsse sind die 

häufigsten Verursacher von sehr starken allergischen Reaktionen nach dem Verzehr von 

Nahrungsmitteln, diese können mitunter auch letal sein (Burks et al., 1992; Burks et al., 1995). 

Erdnüsse werden meist erst nach thermischer Verarbeitung verzehrt. Es wurde gezeigt, dass die 

Maillard-Reaktion in Erdnüssen stattfindet (Maleki et al., 2001, Chung et al., 2003). Es sollte 

deshalb auch hier untersucht werden wie die Glykierung des Allergens dessen T-Zell-

Immunogenität und die Antigenität in vivo beeinflusst. Dafür wurden C3H/HeJ-Mäuse 

intraperitoneal mit AGE-rAra h 2, oder einer der Kontrollen immunisiert und die Immunogenität 

und die Antigenität wie für OVA beschrieben analysiert. Es stellte sich heraus, dass die 

Glykierung von rAra h 2 zu einer deutlichen Reduktion von sowohl der T-Zell-Immunogenität als 

auch der Antigenität führte. Es scheint möglich, dass durch die Glykierung T-Zellen-Epitope 

verändert wurden und dadurch eine effektive Aktivierung der CD4+ T-Zellen eventuell durch 

verminderte Bindung des T-Zellen-Rezeptors verhindert wurde. Es besteht auch die Möglichkeit, 

dass im Falle von rAra h 2 die Glykierung eine reduzierte Prozessierung und Präsentation des 

Allergens durch Antigen-präsentierende Zellen zur Folge hat. Die verringerte Antigenität ist 

höchstwahrscheinlich eine direkte Folge der geringen T-Zell-Aktivierung durch AGE-rAra h 2. 

Mitunter könnten auch die B-Zell-Epitope glykiert sein und ebenfalls die Bindung des Allergens an 

die Rezeptoren behindern.  

Zwar beeinflusste die Maillard-Reaktion die immunstimulatorischen Eigenschaften sowohl von 

OVA als auch von rAra h 2, der Effekt für die beiden Allergene war aber gegensätzlich. Auch 

andere Studien haben gezeigt, dass der Einfluss den die nicht-enzymatische Glykierung auf ein 

Protein haben kann, nicht zuletzt auch von der Eigenschaft des Proteins selber abhängig ist 

(Price et al., 2004; Ge et al., 2005). Eine Möglichkeit für den Unterschied kann die Positionen 

sein, an denen die beiden Allergene modifiziert wurden. Während die Epitope von OVA die für die 

Bindung des Allergens durch T- und B-Zellen benötigt werden evtl. nicht modifiziert wurden bzw. 

nur an Stellen wo die Bindung nicht behindert wurde, könnten die Epitope von rAra h 2 so 

modifiziert wurden sein, dass die Bindungen teilweise blockiert wurden.  

Th2-Lymphozyten spielen eine kritische Rolle in der Pathogenese der Allergie. AGE-OVA konnte 

in vitro sowohl die Sekretion des Th1-Zytokins IFN-γ, als auch des Th2-Zytokins IL-4 durch die 
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CD4+ T-Zellen erhöhen. Es fand dabei aber keine Polarisierung der Zytokin-Produktion statt. Die 

Zytokine beeinflussen die Antikörperantwort; während Th1-Zytokine die Produktion von IgG2a 

fördern, führt die Ausschüttung von Th2-Zytokinen zur Produktion von IgG1 und IgE (Kopf et al., 

1993; Coffman et al, 1986; Snapper et al., 1987). In vivo führte die Immunisierung mit AGE-OVA 

im Vergleich zur Immunisierung mit nativen oder ohne Glucose erhitztes OVA nicht zu einer 

nennenswerten Veränderung des Verhältnisse von IgG1 zu IgG2a. Daher zeigen zwar sowohl die 

in vitro als auch die in vivo Daten, dass AGE-OVA die Aktivierung der CD4+ T-Zellen erhöht aber 

keine Polarisierung in Richtung eines bestimmtes Th Phenotypes bewirkt. In gesunden Individuen 

sind IL-10 produzierende regulatorische T-Zellen der dominierende Allergen-spezifische T-Zellen 

Subtyp, während bei Allergikern eine erhöhte Anzahl an IL-4 produzierenden Allergen-

spezifischen T-Zellen festgestellt werden konnte (Akdis M, et al., 2004;  Akdis CA, et al., 2005). In 

gesunden Menschen könnte es daher zu eine verstärkten Aktivierung der regulatorischen T-

Zellen durch glykierte Allergene kommen und die Toleranz gegenüber harmlosen Allergenen 

fördern, während es womöglich in Allergikern zu einer verstärkten Aktivierung von Allergen-

spezifischen Th2 Zellen kommt. Die dementsprechend erhöhte Ausschüttung an Th2-typischen 

Zytokinen würde zu einem Anstieg der IgE-Produktion (durch IL-4, IL-13) oder zur Einwanderung 

und Aktivierung von Eosinophilen (IL-5) führen. Das wiederum hätte eine Verschlimmerung der 

allergischen Symptome zur Folge.  

Es wurde gemutmaßt, dass Glykierungs-Strukturen die durch die Maillard-Reaktion bei 

Lebensmitteln entstehen als neue B-Zellen-Epitope fungieren könnten. Die Ergebnisse der 

vorliegenden Arbeit zeigen keine eindeutigen Hinweise darauf, dass in den immunisierten 

Mäusen Antikörper, die spezifisch Glykierungs-Strukturen binden, induziert wurden. Diese 

Feststellung schließt aber nicht aus, dass in Allergikern anti-AGE-Antikörper gebildet werden. Im 

Vergleich zum Immunsystem der Maus, besitzt das humane Immunsystem eine wesentlich 

grössere Variabilität hinsichtlich der Gene welche für die MHC-Moleküle, T-Zell-Rezeptoren und 

B-Zellen-Rezeptoren/Immunoglobuline kodieren. Die große genetische Variabilität ermöglicht es 

dem menschlichen Immunsystem auf die enorme Vielfalt an Antigenen zu reagieren. Zieht man 

die genetische Diversität zwischen einzelnen Individuen in Betracht, so erscheint es realistisch, 

dass einige Menschen Antikörper spezifisch für AGE-Derivate von Lebensmittelallergenen 

produzieren, andere dagegen nicht. Diese Ansicht wird auch dadurch unterstützt, dass einige 

Allergiker nur auf erhitzte Nahrungsmittel reagieren, andere aber nur auf rohe. Zudem haben 

einige Studien gezeigt, dass es T-Zellen gibt, die spezifisch Glykanepitope erkennen (Dudler et 

al., 1995; Corthay et al., 1995; Michälsson et al., 1996; Haurum et al., 1994), was darauf 

hindeutet, dass es auch T-Zellen mit einer Spezifität für Glykierungs-Strukturen geben könnte. 

Studien in humanen Zellkulturen, vorzugsweise mit Antigen-präsentierenden Zellen von 

Lebensmittelallergikern könnten dazu beitragen weitere Erkenntnisse darüber zu gewinnen wie 

die Glykierung von Nahrungsmittelallergenen die humane Immunantwort auf das respektive 

Allergen beeinflussen kann.  
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Zusammengefasst konnte in dieser Arbeit gezeigt werden, dass die Maillard Reaktion die CD4+ T-

Zellen-Immunogenität des Hühnereiweiss-Allergens OVA und des Erdnuss-Allergens Ara h 2 

beeinflussen kann. Da CD4+ T-Zellen ein zentrale Rolle bei der Produktion von IgE-Antikörpern 

durch B-Zellen spielen, und somit auch für die darauf folgenden Symptome, zeigen die hier 

präsentierten Ergebnisse, dass die Maillard-Reaktion die Allergenität von Nahrungsmittel-

Allergenen in Individuen mit Nahrungsmittelallergie beeinflussen könnte. Es besteht die 

Möglichkeit, dass die Glykierung durch die Maillard-Reaktion die Erkennung von T- und B-

Zellepitope inhibieren kann. Ist diese jedoch nicht der Fall, wie höchst wahrscheinlich bei OVA, so 

könnten glykierte Lebensmittelallergene die Th2-Akitiveirung und die IgE-Produktion erhöhen 

indem sie effizienter durch SR-AI/II-vermittelte Endozytose von dendritischen Zellen 

aufgenommen werden als das native Protein. Diese These wird dadurch unterstützt, dass in 

dieser Arbeit gezeigt wurde, dass AGE-OVA auch in vivo eine erhöhte CD4+ T-Zell-Aktivierung 

und IgE-Produktion auslösen kann, wahrscheinlich durch Interaktion mit SR-AI/II. Soweit bekannt, 

ist die vorliegende Arbeit die erste Studie die zeigt, dass die Bildung von AGEs die CD4+ T-Zell-

Immunogenität, Antigenität und potentiell die Allergenität von Lebensmittelallergenen erhöhen 

kann. Schlussfolgernd zeigen die Ergebnisse, dass der Einfluss der Maillard-Reaktion bei der 

Bewertung der Allergenität von Lebensmitteln bedacht werden sollte. In zukünftigen Studien muss 

zu einem geklärt werden welche AGE-Strukturen an SR-AI/II binden können, zum anderen wäre 

es von Interesse, dass in vitro Studien mit Immunzellen durchgeführt werden die von Allergikern 

isoliert wurden.   
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8 Abbreviations 
 
°C  Degree Celcius 

µCi Microcurie 

µg Microgram 

µl Microlitre 
3H Tritium 

Ax Absorbance at x nm 

aa Amino acid 

Ab Antibody 

AD Alzheimers disease 

APC Antigen presenting cell 

APC  Allophycocyanin 

AGE Advanced glycation end products 

Ara h  Arachis hypogaea (peanut)  

BCA Bicinchoninic acid 

BCR B cell receptor 

Bet v  Betula verrucosa (common birch)  

BL6 C57BL/6 mice, immunocompetent black Wt mice 

BSA Bovine serum albumin  

CD Cluster of differentiation 

CFSE Carboxyfluorescein succinimidyl ester 

CD Circular dichroism 

CEL N-ε-cyrboxyethyllysine 

CML N-ε-cyrboxymethyllysine 

Con A Concanavalin A 

Cor a  Corylus avellana (hazelnut)  

cpm Counts per minute 

CRD Carbohydrate recognition domain 

CT Cholera toxin 

DC Dendritic cells 

DNA Desoxyribonucleic acid 

dNTP  Desoxyribonucleosidtriphosphat  

DO11.10  C.Cg-Tg(DO11.10)10Dlo/J mice, transgenic mice with OVA specific TCR 

on CD4+ T cells 

EAACI  European Academy of Allergology and Clinical Immunology  

EDTA  Ethylendiamintetraacetat  

EEA1 Early Endosome Antigen 1 
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e.g. For example 

ELISA Enzyme linked immunosorbent assay 

ER Endosplasmatic reticulum 

FACS Fluorescence-activated cell sorting 

FcεRI/II  Receptor for the constant region (Fc) of IgE  

FCS Fetal calf serum 

Fig Figure 

FITC Fluorescein isothiocyanate 

g gram 

G Gauge  

GA-pyridine Glycolaldehyde-pyridine 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GNac N-Acetylglucoseamine 

h hour 

HEPES  N-2-hydroxyethylpiperazin-N2`-ethansulfonic acid  

HRP Horseradisch Peroxidase 

i.e. That is 

IL Interleukin  

IFN Interferon 

IgE Immunoglobulin E 

IgG Immunoglobulin G 

ip intraperitoneal 

kDa Kilodalton  

l Litre 

LPS Lipopolysaccharides 

LN Lymph node 

M Molar 

mA Milliampere 

MACS Magnetic adsorption cell sorting 

mDC Myeloid dendritic cell 

mg Milligram 

min Minutes 

MHC Major histocompatibility complex 

MHC I MHC class I molecule 

MHC II MHC class II molecule 

ml Millilitre 

MLN Mesenteric lymph nodes 

mM Millimolar 

MMC Mytomycin C 
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MR Mannose receptor 

mRNA  messenger RNA  

MW Molecular weight 

NC Negative control 

n.d. Not detected 

Num. Number 

ng nanogram 

nm nanometre 

OAS  Oral allergy syndrome 

OD  Optical density 

OT-1 C57BL/6-Tg(TcraTcrb)1100Mjb/J mice, transgenic mice with OVA specific 

TCR on CD4+ T cells 

OT-2 C57BL/6-Tg(TcraTcrb)425Cbn/J mice, transgenic mice with OVA specific 

TCR on CD8+ T cells 

OVA Ovalbumin  

PBS  Phosphate Buffered Saline  

pDC Plasmacytoid dendritic cells 

PCR Polymerase chain reaction  

PE Phycoerythrin  

PEI Paul-Ehrlich-Institut 

PFA Paraformaldehyde 

pg picogram 

Pru av  Prunus avium (cherry)  

RNA  Ribonucleic acid 

RT-PCR Reverse trancriptase polymerase chain reaction 

SD Standard deviation 

SDS  Sodiumdodecylsulfat  

SDS-PAGE  sodium dodecylsulfate polyacrylamide gel electrophoresis  

sec Seconds 

sc Subcutaneous  

SR-AI/II Scavenger receptor class A type I and II 

SR-BI Scavenger receptor class B type I 

Tab Tabel 

TAE  Tris-Acetat EDTA  

TAP Transporter associated with antigen processing 

TCR T cell receptor 

TEMED  Tetramethylethylendiamin  

TGF Transforming growth factor 

Th1 T helper cell subtype 1 
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Th2 T helper cell subtype 2 

TMB Tetramethylbenzidine 

TNF Tumour necrosis factor 

Treg Regulatory T cell 

Tris  Tris-(hydroxymethyl)-aminomethan  

Vol. Volume 

Wt Wild type 
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