
Journal of Banking and Finance 134 (2022) 106333 

Contents lists available at ScienceDirect 

Journal of Banking and Finance 

journal homepage: www.elsevier.com/locate/jbf 

Sensitivity-implied tail-correlation matrices 

� 

Joachim Paulusch 

a , Sebastian Schlütter b , c , ∗

a R+V Lebensversicherung AG, Raiffeisenplatz 2, Wiesbaden 65389, Germany 
b Mainz University of Applied Sciences, School of Business, Lucy-Hillebrand-Str. 2, Mainz 55128, Germany 
c Fellow of the International Center for Insurance Regulation, Goethe University Frankfurt, Germany 

a r t i c l e i n f o 

Article history: 

Received 15 October 2020 

Accepted 9 October 2021 

Available online 13 October 2021 

JEL classification: 

G11 

G22 

G28 

G32 

Keywords: 

Risk aggregation 

Tail correlation 

Portfolio optimization 

a b s t r a c t 

Tail-correlation matrices are an important tool for aggregating risk measurements across risk cate- 

gories, asset classes and/or business segments. This paper demonstrates that traditional tail-correlation 

matrices—which are con ventionally assumed to have ones on the diagonal—can lead to substantial bi- 

ases of the aggregate risk measurement’s sensitivities with respect to risk exposures. Due to these biases, 

decision-makers receive an odd view of the effects of portfolio changes and may be unable to identify the 

optimal portfolio from a risk-return perspective. To overcome these issues, we introduce the “sensitivity- 

implied tail-correlation matrix”. The proposed tail-correlation matrix allows for a simple deterministic 

risk aggregation approach which reasonably approximates the true aggregate risk measurement accord- 

ing to the complete multivariate risk distribution. Numerical examples demonstrate that our approach is 

a better basis for portfolio optimization than the Value-at-Risk implied tail-correlation matrix, especially 

if the calibration portfolio (or current portfolio) deviates from the optimal portfolio. 

© 2021 The Authors. Published by Elsevier B.V. 
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1 Apart from investment portfolio optimization, the mean-variance frame- 

work has been employed in an insurance context. For example, Eckert and 

Gatzert (2018) identify an insurer’s optimal risk-return combination against the 

background of policyholders’ willingness to pay depending on the insurer’s solvency 

level. Braun et al., 2017 investigate insurers’ asset allocations in a mean-variance 

h

0

. Introduction 

Tail-correlation matrices offer an approach to aggregate risks in 

 simple deterministic manner. The correlation-based risk aggrega- 

ion is employed in various contexts, including the calculation of 

egulatory capital requirements or a firm’s economic capital. Re- 

arding a n -risks-portfolio, the approach starts from n univariate 

isk measurements, which are collected in a vector x ∈ R 

n . Then, 

 n × n -matrix R of correlation parameters is used to calculate the 

ggregate risk measurement as 
 

x T R x (1) 

he approach in line (1) is employed in the Solvency II standard 

ormula, which is used to determine the regulatory capital require- 

ent for most insurance companies in the European Union (EU). 

part from the EU, the approach (1) is used in insurance regula- 

ion in the United States (“Risk-Based Capital”), China (“C-ROSS”) 

nd the International Capital Standard. In the banking industry, the 

pproach is referred to as the variance-covariance approach and 
� This paper represents the authors’ personal opinions, not necessarily those of 

heir employers. Our research did not receive any specific grant from funding agen- 

ies in the public, commercial, or not-for-profit sectors. 
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s popular in banks’ internal risk assessments ( Mathur, 2015 , pp. 

72–274; Li et al., 2015 ). Moreover, the approach can be used for 

nvestment portfolio optimization ( Mittnik, 2014 ). Structurally, the 

alculation of the portfolio risk using (1) mimics the calculation of 

he standard deviation of portfolio risk. Hence, portfolio selection 

roblems in connection with the risk measurement in (1) can be 

tudied analogously to those of the mean-variance framework of 

arkowitz (1952) . 1 

Using correlation parameters derived from the covariance ma- 

rix, approach (1) can guarantee an exact aggregation of risk mea- 

urements only if risks follow a multivariate elliptical risk dis- 

ribution ( McNeil et al., 2015 , pp. 295 ff.). If risks exhibit heavy

ails or non-linear dependencies, 2 the aggregate risk measurement 
ramework when they face a regulatory capital requirement determined by the Sol- 

ency II standard formula. Braun et al., 2017 find that the standard formula tends 

o promote inefficient portfolios over efficient ones. 
2 Empirical evidence indicates that correlations between asset returns are 

igher during periods of (stressful) downside moves, cf. Longin and Solnik, 2001 , 

ampbell et al., 2002 and Ang and Chen, 2002 . In addition, risk types such as oper- 

tional risks or non-life insurance risks follow more heavily tailed distribution, see 

or example Bernard et al., 2018 . 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ased on (1) can substantially differ from the “true” result in ac- 

ordance with the complete multivariate risk distribution ( Li et al., 

015; Pfeifer and Strassburger, 2008 ). 3 To eliminate this bias and 

n connection with the risk measure Value-at-Risk (VaR), so-called 

aR-implied tail-correlations have been proposed ( Campbell et al., 

002; Mittnik, 2014 ). According to European Insurance and Occu- 

ational Pensions Authority (EIOPA) ( 2014 , p. 9), the risk aggrega- 

ion in the Solvency II standard formula has been calibrated based 

n VaR-implied tail-correlations. 

Chen et al., 2019 empirically study the sensitivities of the 

orrelation-based risk aggregation approach with regard to the 

egulatory Risk-Based Capital (RBC) for US insurance companies, 

hich is referred to as the “square-root formula” in this context. 4 

he authors find that the insurers’ optimal investment policy is 

riven by marginal capital requirements, i.e. by sensitivities of the 

ggregate capital requirement with respect to the size of univari- 

te risks. Moreover, the authors demonstrate that the square-root 

ormula has understated the marginal capital requirement of fixed- 

ncome investments and has thereby incentivized insurers to in- 

rease those investments. The insurers’ overall risks have thus in- 

reased. 

Our paper elaborates on the observations of Chen et al., 2019 in 

 stylized set-up. We demonstrate that the sensitivities of approach 

1) can be substantially biased if R is a traditional tail-correlation 

atrix with ones on the diagonal, even if the calibration of R is 

onducted based on the complete multivariate risk distribution. 

To make the correlation-based risk aggregation approach a suit- 

ble basis for portfolio management decisions, we propose taking 

 different view of matrix R . We show that for elliptical distribu- 

ions, the entries of R globally coincide with the second-order par- 

ial derivatives of the squared aggregate risk measurement with re- 

pect to changes in the risk measurements of the univariate risks. 

or general distributions, these second-order partial derivatives 

niquely define a symmetric matrix. We show that approach (1) in 

onnection with this “sensitivity-implied tail-correlation matrix” ap- 

roximates the true aggregate risk measurement in the sense of a 

econd-order Taylor polynomial: hence, for the calibration portfo- 

io, it yields the aggregate risk and all first and second-order sen- 

itivities with respect to risk exposures in line with the respec- 

ive results based on the true risk distribution. The deterministic 

isk aggregation approach (1) thereby accurately reflects diversifi- 

ation effects and how diversification changes when the portfolio 

s changed in a neighborhood of the calibration portfolio. 

Our method locally approximates the true risk measurement 

t the calibration portfolio, but can misstate the risk of portfo- 

ios distant from the calibration portfolio. We demonstrate that the 

iagonal elements of the matrix R inform about the approxima- 

ion error of approach (1) for stand-alone risks. For non-elliptical 

istributions, the diagonal elements of the sensitivity-implied tail- 

orrelation matrix can substantially deviate from one, and the ma- 

rix can hence cause a misstatement of stand-alone risks. 

To analyze the implications of the calibration of the matrix R 

or portfolio optimization and business steering, we consider an 

xample of a multiline-insurance company whose objective is the 
3 In addition, Christiansen et al., 2012 estimate correlation coefficients between a 

ife insurer’s different types of biometric risks. The authors find that the correlation- 

ased risk aggregation in connection with the estimated correlation coefficients 

eads to a conservative assessment of the aggregate risk. Breuer et al., 2010 study 

anks’ summation of the regulatory capitals for market risks and credit risks—which 

an be viewed as a special case of (1) with R including only ones. The authors find 

hat the summation is not necessarily conservative. 
4 More precisely, Chen et al., 2019 consider property and casualty insurance com- 

anies. For these insurers, the RBC includes six risk categories, such as stock risk, 

nderwriting risk and reserving risk. Five of the risk categories are assumed to be 

ncorrelated and one of them (affiliated investments) is added up on the result of 

he square-root formula. 
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2 
aximization of Economic Value Added (EVA) in connection with 

he risk measure 99.5% VaR. As a basis of comparison, we iden- 

ify the “true” EVA-optimal strategy by calculating the risk mea- 

ure based on the true multivariate risk distribution. Afterwards, 

e derive the EVA-maximizing strategy if the correlation-based 

isk aggregation approach is used in connection with either a tra- 

itional tail-correlation matrix or our proposed sensitivity-implied 

ail-correlation matrix. We find that the use of a traditional tail- 

orrelation matrix induces a strategy which achieves a reduced 

VA and goes along with a lower safety level than the true EVA- 

ptimal strategy. In combination with the sensitivity-implied tail- 

orrelation matrix, these distortions are very small, even if the cal- 

bration portfolio of the sensitivity-implied tail-correlation matrix 

learly differs from the true EVA-optimal portfolio. 

The remainder of this paper is structured as follows. 

ection 2 introduces the “sensitivity-implied tail-correlation” ma- 

rix and discusses its properties and calibration. Section 3 provides 

n overview of traditional tail-correlation matrices. Section 4 pro- 

ides numerical examples including an analysis in terms of EVA 

ptimization. Section 5 concludes and outlines possible areas of 

pplication of the sensitivity-implied tail-correlation matrix. 

. Introducing the sensitivity-implied tail-correlation matrix 

.1. Mathematical background 

The mathematical core of the sensitivity-implied tail-correlation 

atrix is the observation that for any function f (u ) which is pos- 

tive homogeneous of degree one and twice continuously differen- 

iable, the second-order Taylor polynomial for f 2 (u ) can be pre- 

ented in a simple matrix form. 5 

heorem 1. Let n ∈ N , U ⊆ R 

n be an open and convex cone, and the

unction f : U → R be twice continuously differentiable in a neighbor- 

ood of u 0 ∈ U. Assume that f (u ) is positive homogeneous of degree 

ne on U, i.e. 

f (λu ) = λ · f (u ) for all λ > 0 and all u ∈ U 

hen 

f 2 : U → R , u �→ ( f (u )) 2 

s positive homogeneous of degree two. Let D f 2 (u 0 ) and D 

2 f 2 (u 0 )

enote the gradient and Hesse matrix of f 2 (u ) with respect to u eval-

ated at u 0 . Then, the second-order Taylor polynomial for f 2 at u 0 , 

 f 2 ( u ) = f 2 ( u 0 ) + ( u − u 0 ) 
T · D f 2 ( u 0 ) 

+ 

1 
2 ( u − u 0 ) 

T · D 

2 f 2 ( u 0 ) · ( u − u 0 ) 

an be rewritten as 

 f 2 (u ) = u 

T · 1 

2 

D 

2 f 2 (u 0 ) · u 

nd is positive homogeneous of degree two. 

Let f (u 0 ) > 0 . Thanks to Theorem 1 , the original function f (u )

an be approximated at the point u 0 by the function 

(u ) = 

√ 

P f 2 (u ) = 

√ 

u 

T · 1 

2 

D 

2 f 2 (u 0 ) · u 

he approximation yields g(u 0 ) = f (u 0 ) , and all first and second- 

rder derivatives of g and f coincide at u 0 . Moreover, the function 

(u ) —like f (u ) —is positive homogeneous of degree one. The latter 

roperty of g(u ) is in general not fulfilled by the straightforward 

econd-order Taylor polynomial for f (u ) . 
5 Throughout the article, we call the argument of the function f u instead of x , 

hich is merely for better presentation in line with the literature, specifically with 

asche (2008) and Buch et al., 2011 . 
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The remainder R f 2 (u ) = f 2 (u ) − P f 2 (u ) allows an assessment of

he approximation error of g(u ) in terms of 

f (u ) − g(u ) = 

√ 

R f 2 (u ) + g 2 (u ) − g(u ) (2) 

rovided 

∣∣R f 2 (u ) 
∣∣ ≤ g 2 (u ) which can be guaranteed in a neighbor- 

ood of u 0 . 
6 Proposition 1 shows that—by homogeneity—the anal- 

sis of R f 2 (u ) may be restricted to a unit sphere, i.e. an (n − 1) -

imensional submanifold of U . 

roposition 1. Under the definitions and assumptions of Theorem 

 , the remainder R f 2 (u ) = f 2 (u ) − P f 2 (u ) is positive homogeneous of

egree two. Assume n ≥ 2 and let 

˜ 
 = { u ∈ U such that ‖ u ‖ = 1 } 
e the intersection of U and a unit sphere with respect to some norm 

 . ‖ . Then for any u ∈ U\{ 0 \} , we have 

 f 2 (u ) = ‖ u ‖ 

2 · R f 2 

(
u 

‖ u ‖ 

)
ith u 

‖ u ‖ ∈ 

˜ U . 

As an alternative to analyzing R f 2 (u ) on a unit sphere, one 

ould identify the set U 

∗ = { u ∈ U such that f (u ) = f (u 0 ) } , which

s an (n − 1) -dimensional submanifold under suitable conditions 

n f . Each u ∗ ∈ U 

∗ allows an assessment of f (λu ∗) = λ f (u ∗) =
f (u 0 ) for all λ > 0 and the remainder at λu ∗ is hence known.

n total, the challenging task is either to identify the remainder (or 

hresholds of it) on a unit sphere or to identify the submanifold 

 

∗. 

.2. Translation to a risk measurement context 

Suppose the loss of a portfolio over a specified period of time 

s given by 

 

T X = 

n ∑ 

i =1 

u i · X i , (3) 

here n ∈ N denotes the number of relevant risks, X = 

X 1 , . . . , X n ) 
T is a random vector with E [ X i ] < ∞ for all i ∈ { 1 , . . . , n }

nd the vector u = (u 1 , . . . , u n ) 
T ∈ R 

n reflects the exposures to each

isk. Going forward, we assume that the multivariate distribution 

f X is fixed and that the variable u fully specifies the portfolio. 7 

oreover, in line with Tasche (2008) , we assume that the X i are 

caled such that the coordinates u = 1 n = (1 , . . . , 1) T reflect the

urrent portfolio. Following the notation in Tasche (2008) , the 

unction f �,X measures the “true” aggregate risk of portfolio u , 

f �,X : U → R , 

 = ( u 1 , . . . , u n ) 
T �→ f �,X (u ) = � 

(
u 

T X 

)
, 

(4) 

ith � being a risk measure which is positive homogeneous of 

egree one and 1 n ∈ U ⊆ R 

n . 8 Let e ∈ R 

n denote a vector which
k 

6 For error estimation, it is common to consider the term | f (u ) − g(u ) | . 
q. (2) immediately implies that the absolute values of both sides of the equation 

oincide. 
7 The assumption of a linear relationship between the portfolio return and the 

xposure vector u is popular in the related literature, for example Gourieroux et al., 

0 0 0 ; Zanjani (20 02) ; Tasche (20 08) ; Buch et al., 2011 ; Mittnik (2014) . An approach 

o generalize the relationship is presented by Boonen et al., 2017 . 
8 Following McNeil et al. (2015 , p. 275 ff.), consider a probability space (�, F, P) , 

et L 0 (�, F, P) be the set of all random variables on (�, F, P) that are almost surely 

nite, and consider a linear space of random variables M ⊂ L 0 (�, F, P) . A risk 

easure is a mapping � : M → R . Axioms on � are defined as follows. Positive 

omogeneity: for λ ≥ 0 , �(λL ) = λ�(L ) . Monotonicity: for L 1 ≤ L 2 , �(L 1 ) ≤ �(L 2 ) . 

ranslation invariance: for m ∈ R , �(L + m ) = �(L ) + m . Subadditivity: for L 1 , L 2 ∈ 
 , �(L 1 + L 2 ) ≤ �(L 1 ) + �(L 2 ) . Convexity: for 0 ≤ γ ≤ 1 , L 1 , L 2 ∈ M , �(γ L 1 + (1 −
) L 2 ) ≤ γ �(L 1 ) + (1 − γ ) �(L 2 ) . Law invariance: if L 1 , L 2 ∈ M have the same distri- 

ution functions, �(L 1 ) = �(L 2 ) . A risk measure satisfying the positive homogeneity, 

onotonicity, translation invariance and subadditivity axioms is called coherent. 

s

t

o

b

a

c

m

a

c

c

t

3 
akes the value one at the k -th position and zero elsewhere. As- 

uming that e k ∈ U , let x ∈ R 

n be the univariate risk measurements

n accordance with �, namely 

 k = f �,X (e k ) = �(X k ) , k = 1 , . . . , n (5)

he function g measures the aggregate risk of portfolio u based on 

he risk aggregation approach (1) , depending on the risk measure- 

ent x and the matrix R = (� i j ) 
n 
i, j=1 

∈ R 

n ×n : 

 : u = ( u 1 , . . . , u n ) 
T �→ g(u ) = 

√ 

( u ◦ x ) 
T R ( u ◦ x ) , (6) 

here ◦ denotes the Hadamard product, i.e. u ◦ x = 

u 1 x 1 , . . . , u n x n ) 
T ∈ R 

n . For the case of f �,X (u ) being twice

ontinuously differentiable, 9 Proposition 2 states that g(u ) lo- 

ally approximates f �,X (u ) if R is chosen based on second-order 

ensitivities of f 2 �,X 
(u ) . 

roposition 2. Let � be a risk measure which is positive homoge- 

eous of degree one and let X = (X 1 , . . . , X n ) 
T be a random vector.

et U ⊆ R 

n be a convex cone with 1 n , e 1 , . . . , e n ∈ U. Assume that the

unction f �,X (u ) , as defined in formula (4) , is twice continuously dif-

erentiable in a neighborhood of 1 n and f �,X ( 1 n ) > 0 . Let x ∈ R 

n be

efined as in (5) and assume that x k > 0 for all k = 1 , . . . , n . Then,

he matrix R = (ρk� ) 
n 
k,� =1 

defined by 

k� = 

1 

2 x k x � 

∂ 2 

∂ u k ∂ u � 

f 2 �,X (1 n ) (7) 

= 

1 

x k x � 

(
∂ f �,X (1 n ) 

∂u k 

∂ f �,X (1 n ) 

∂u � 

+ f �,X (1 n ) 
∂ 2 

∂ u k ∂ u � 

f �,X (1 n ) 

)
(8) 

s symmetric. In combination with this matrix R , let the function g be 

iven as in (6) . Then, g(u ) is defined in a neighborhood of 1 n . g 
2 (u ) =

g(u )) 2 is the second-order Taylor polynomial for f 2 �,X 
(u ) . Moreover, 

e have 

(1 n ) = f �,X (1 n ) , (9) 

∂ 

∂u � 

g(1 n ) = 

∂ 

∂u � 

f �,X (1 n ) , 1 ≤ � ≤ n, (10) 

∂ 2 

∂ u k ∂ u � 

g(1 n ) = 

∂ 2 

∂ u k ∂ u � 

f �,X (1 n ) , 1 ≤ k, � ≤ n (11) 

We call the matrix R , whose entries are defined in (7) , the

sensitivity-implied tail-correlation matrix”. In connection with 

his matrix R , g(u ) approximates f �,X (u ) in the sense that it cor-

ectly determines the aggregate risk of the current portfolio, the 

ensitivities of the aggregate risk with respect to the exposures of 

ll risks (starting at the current portfolio) 10 as well as the corre- 

ponding second-order sensitivities with respect to all combina- 

ions of risks. 

The terms in line (8) have been studied in the literature. First- 

rder derivatives of Value-at-Risk and Expected Shortfall (ES) can 

e viewed as expectations conditioned on the rare event that the 

ggregate portfolio loss coincides with the Value-at-Risk (or ex- 

eeds it in case of Expected Shortfall). 11 Analogously, the Hesse 

atrix of the Value-at-Risk can be presented in terms of the 
9 Differentiability of f �,X is commonly assumed in the context of Euler capital 

llocation, for example in Tasche (2008) . Moreover, using second-order derivatives 

an be essential in the context of portfolio optimization, cf. Buch et al., 2011 . 
10 The first-order sensitivities are also known as the Euler capital allocation prin- 

iple, cf. Tasche (2008) . 
11 This applies under quite general conditions concerning the multivariate risk dis- 

ribution; ( Targino et al., 2015 , p. 209) provide an overview. 
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12 McNeil et al. (2015 , p. 200–205) discuss estimating these quantities. 
13 More precisely, for any random vector in the class of continuous distributions 

with non-negative support, a sequence of mixed gamma distributed random vectors 

can be constructed which converges in distribution to the given random vector. 
ovariance matrix of risk drivers conditioned on the rare event 

 Gourieroux et al., 20 0 0 , p. 229). Therefore, the sensitivity-implied

orrelation parameter ρk� is driven by the interaction of risks con- 

itioned on (tail) events that are relevant for the aggregate risk 

easurement. In general, ρk� is not determined solely by the bi- 

ariate distribution of the random variables X k and X � , but rather 

epends on the joint distribution of the whole random vector X . 

In connection with the sensitivity-implied tail-correlation ma- 

rix, g 2 (u ) is the second-order Taylor polynomial of f 2 �,X 
(u ) . There-

ore, there are well-elaborated methods for estimating the Taylor 

emainder which can help to assess the error between g(u ) and 

f �,X (u ) . Making use of Proposition 1, Appendix I demonstrates a 

ossible procedure for n = 2 risks. For large n , the error estimation

omes up against the challenge that a threshold for a large number 

f third-order derivatives of f 2 �,X (u ) is needed. 

.3. Examples 

A. Risk measure is standard deviation 

Assume that risk is measured by the standard deviation: 

f �,X (u ) = sd 

( 

n ∑ 

i =1 

u i · X i 

) 

et 	 and R P = 

(
ρ(P) 

i j 

)n 

i, j=1 
denote the covariance matrix and Pear- 

on correlation matrix of the random vector X = (X 1 , . . . , X n ) 
T , and

et x = σ = ( sd (X 1 ) , . . . , sd (X n )) T denote the vector of univariate

tandard deviations. Assume that all these moments exist. We 

ave 

f �,X (u ) = 

√ 

u 

T · 	 · u = 

√ 

(u ◦ σ ) T · R P · (u ◦ σ ) 

= 

√ 

(u ◦ x ) T · R P · (u ◦ x ) 

= 

√ 

n ∑ 

i =1 

n ∑ 

j=1 

ρ(P) 
i j 

u i x i u j x j (12) 

nd hence 

f 2 �,X (u ) = 

n ∑ 

i =1 

n ∑ 

j=1 

ρ(P) 
i j 

u i x i u j x j (13) 

ifferentiating the left-hand and right-hand sides of Eq. (13) with 

espect to u k , k ∈ { 1 , . . . , n } , implies 

∂ 

∂u k 

f 2 �,X (u ) = 2 x k 

n ∑ 

j=1 

ρ(P) 
k j 

u j x j (14) 

ifferentiating both sides of Eq. (14) again with respect to u � , � ∈
 1 , . . . , n } implies 

∂ 2 

∂ u k ∂ u � 

f 2 �,X (u ) = 2 x k x � ρ
(P) 
k� 

⇒ ρ(P) 
k� 

= 

1 

2 x k x � 

∂ 2 

∂ u k ∂ u � 

f 2 �,X (u ) (15) 

ence, in the outlined situation, all entries of the sensitivity- 

mplied tail-correlation matrix coincide with those of the Pearson 

orrelation matrix, irrespective of the multivariate risk distribution. 

B. Multivariate elliptical distribution 

Assume that the random vector X = (X 1 , . . . , X n ) 
T follows an el-

iptical distribution with a finite mean vector and dispersion ma- 

rix 	 = 

(
σi j 

)n 

i, j=1 
. Moreover, assume that 

f �,X (u ) = � 

(
u 

T X 

)
= ˜ � 

(
u 

T X 

)
− E 

[
u 

T X 

]
(16) 

ith ˜ � being a positive homogeneous, translation-invariant and 

aw-invariant risk measure. McNeil et al. (2015 , pp. 295) show 
4 
hat f �,X (u ) can be presented analogous to line (12) . If the co-

ariance matrix of X exists, the sensitivity-implied tail-correlation 

atrix coincides with the Pearson correlation matrix. In general, 

he entries of the sensitivity-implied tail-correlation matrix are 

k� = σk� / 
√ 

σkk σ�� . 
12 

C. Independent gamma distributions and multivariate mixed 

amma distribution 

We now outline situations in which the sensitivity-implied tail- 

orrelation matrix can be calculated without Monte Carlo simula- 

ions, but instead in a way which is numerically less elaborate and 

ot subject to sampling error. 

Assume that the entries of the random vector X = (X 1 , . . . , X n ) 
T 

re independent and gamma distributed with shape parame- 

er γi > 0 and rate parameter ϑ i > 0 . If all rate parameters are

qual, ϑ 1 = . . . = ϑ n =: ϑ , the aggregate loss 
∑ n 

i =1 X i is gamma dis- 

ributed with shape parameter γ1 + . . . + γn and rate parameter 

. For the case that the rate parameters are not all the same, 

oschopoulos (1985 , p. 543) provides an analytical representation 

f the distribution function of X , which we denote by 

 X (x ) = F �+ (x ;γ1 , . . . , γn , ϑ 1 , . . . , ϑ n ) (17)

or scalars u i > 0 , the product u i · X i is gamma distributed with

hape parameter γi and rate parameter ϑ i /u i . Hence, the distribu- 

ion function of u T X = 

∑ n 
i =1 u i X i , with u i > 0 for all i , is given by

 u T X (x ) = F �+ (x ;γ1 , . . . , γn , ϑ 1 /u 1 , . . . , ϑ n /u n ) (18)

f the risk measure � is law-invariant, line (18) offers a starting 

oint for calculating the sensitivity-implied tail-correlation matrix. 

pecifically, the Value-at-Risk of u T X , 

aR 1 −α

(
u 

T X 

)
= F −1 

u T X 
(1 − α) , (19) 

an be calculated by inverting F u T X (x ) from line (18) numerically 

sing the Newton method. First and second-order derivatives of 

aR 1 −α

(∑ n 
i =1 u i X i 

)
with respect to scalars u i can also be calculated 

umerically. 

Furman et al., 2020 introduce the class of multivariate mixed 

amma distributions. This class of distributions is dense in the 

lass of all continuous distributions with non-negative support. 13 

ence, mixed gamma distributions are flexible in terms of the 

hape of the univariate distributions and the stochastic dependen- 

ies between them. Appendix D demonstrates that the distribution 

unction of u T X has an analytical representation if the random vec- 

or X is mixed gamma distributed. Hence, the calculation of a law- 

nvariant risk measure and its sensitivities is again possible with- 

ut Monte-Carlo simulations. 

.4. Properties of the sensitivity-implied tail-correlation matrix 

Apart from the situations in the examples A and B from 

ection 2.3 , the sensitivity-implied tail-correlation matrix does not 

ecessarily satisfy the properties of the Pearson correlation matrix. 

Firstly, the sensitivity-implied matrix is not always positive 

emi-definite (psd). If it is not psd, there are exposure vectors u 

uch that ( u ◦ x ) T R ( u ◦ x ) is negative, and g(u ) is hence not defined 

n real numbers. Apart from this issue, the missing psd’ness may 

esult in optimization problems involving g(u ) in the target func- 

ion not being convex. Section 4.3 shows a situation in which di- 

ersification based on the true multivariate risk distribution does 

ot necessarily increase value. In this situation, the sensitivity- 

mplied matrix is not psd and the optimization problem is not 
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onvex—neither on the basis of the function f �,X (u ) nor on the ba-

is of g(u ) . Proposition 3 shows that the psd’ness of the sensitivity-

mplied matrix can be guaranteed by the risk measure satisfying 

he convexity axiom as defined in footnote 8. 

roposition 3. Under the assumptions and definitions in Proposition 

 , the matrix R with entries defined in (7) is positive semi-definite if

he risk measure � satisfies the convexity axiom. 

Given that we generally assume the risk measure to be pos- 

tive homogeneous, the convexity axiom is always fulfilled if the 

isk measure is coherent. 14 Hence, the sensitivity-implied matrix is 

lways psd in connection with the risk measure Expected Short- 

all 15 or Gini Shortfall (GS) with loading parameter λ ∈ [0 , 0 . 5]

 Furman et al., 2017 , p. 74 f.). Consequently, in Section 4.3 , the

ensitivity-implied matrix is indefinite in connection with Value- 

t-Risk, but psd in connection with ES and GS. 

Secondly, in contrast to the Pearson correlation matrix, 

he sensitivity-implied tail-correlation matrix does not gener- 

lly have ones on its diagonal. Appendix F provides an exam- 

le based on a discrete distribution where the diagonal ele- 

ents of the sensitivity-implied matrix can become arbitrarily 

arge. Even negative diagonal entries are possible, as the exam- 

le in Section 4.3 —building on the mixed gamma distribution—

emonstrates. Proposition 4 states a sufficient condition for the di- 

gonal elements being one. 

roposition 4. Under the assumptions and definitions in Proposition 

 , assuming that f �,X (u ) is twice continuously differentiable on U, the 

ntries of the sensitivity-implied tail-correlation matrix satisfy 

kk = 

∂ 2 

(∂u k ) 2 
f 2 �,X (1 n ) 

∂ 2 

(∂u k ) 2 
f 2 �,X 

(e k ) 
(20) 

ence, we have ρkk = 1 for all k ∈ { 1 , . . . , n } if f 2 �,X 
(u ) is quadratic

n u on some open and convex subspace ˜ U ⊆ R 

n containing 1 n and e k 
or all k = 1 , . . . , n . 

The next Proposition shows that the distance between the di- 

gonal elements and one informs about the relative error between 

(u ) and f �,X (u ) for stand-alone risks. 

roposition 5. Based on the definitions in lines (4) and (6) , assuming 

hat f �,X (e k ) > 0 , we have 

f 2 �,X (e k ) − g 2 (e k ) 

f 2 �,X 
(e k ) 

= 1 − ρkk (21) 

ssuming ρkk ≥ 0 , this translates into 

f �,X (e k ) − g(e k ) 

f �,X (e k ) 
= 1 − √ 

ρkk (22) 

Proposition 5 is not restricted to the sensitivity-implied tail- 

orrelation matrix, as it holds for any matrix R underlying the 

unction g(u ) . Hence, the traditional notion of the diagonal ele- 

ents of a tail-correlation matrix being one refers to g(u ) accu- 

ately reflecting stand-alone risks. Based on the sensitivity-implied 

atrix, g(u ) can reflect stand-alone risks with an error that can 

ven become arbitrarily large (cf. Appendix F ). 
14 Cf. McNeil et al. (2015 , p. 276). 
15 On the coherence of ES, see Acerbi and Tasche, 2002 . The authors propose a 

efinition of ES according to which the risk measure is coherent even for loss dis- 

ributions with discontinuities. For continuous loss distributions, their definition co- 

ncides with most alternative definitions of ES. 

i

“  

7

a

t

5 
.5. Estimation 

Estimating the sensitivity-implied tail-correlation matrix in sit- 

ations other than the examples in Section 2.3 can be based on 

ernel estimation. The literature proposes consistent estimators 

or the first-order derivatives of Value-at-Risk ( Tasche, 2009 , p. 

84) and Expected Shortfall ( Scaillet, 2004 , p. 118 f.). Similarly, 

ourieroux et al., 20 0 0 derive consistent estimates for a portfo- 

io’s Value-at-Risk and its second-order derivatives, which the au- 

hors apply for daily stock return data. At least for Value-at-Risk, 

herefore, all items in line (8) can be consistently estimated. Slut- 

ky’s theorem (cf. Casella and Berger, 2002 , p. 239 f.) implies that 

he composition of consistent estimators in terms of line (8) pro- 

ides a consistent estimator for ρk� . Appendix J applies the pre- 

iously mentioned kernel estimators to the example specified in 

ection 4.2 . 

The literature proposes a wide range of variance reduction tech- 

iques in the context of estimating expectations conditioned on 

are events (i.e. first-order derivatives) from Monte-Carlo simula- 

ions. Several papers estimate marginal risk contributions for credit 

ortfolios which are subject to systematic risk factors by employ- 

ng Importance Sampling ( Glasserman, 2005 ), kernel estimation 

n combination with Importance Sampling ( Tasche, 2009 ), or the 

ast Fourier Transform technique for risk aggregation ( Siller, 2013 ). 

argino et al., 2015 employ Sequential Monte Carlo simulation to 

stimate the Euler capital allocation of a portfolio with stochas- 

ic dependencies being modeled by a copula. To efficiently es- 

imate the sensitivity-implied tail-correlation matrix, the above- 

entioned kernel estimators use the conditioned covariance, i.e. 

he expectation of products of random variables. To the best of our 

nowledge, an algorithm designed to address this problem is not 

mmediately available and is left for future research. 16 

. Traditional tail-correlation matrices 

Traditionally, a tail-correlation matrix is assumed to be a sym- 

etric matrix with ones on its diagonal. For n = 2 risks and 

isk measurements x 1 > 0 , x 2 > 0 , there is only one free corre-

ation parameter ρ1 , 2 , which is to be set such that approach 

1) correctly determines the aggregate risk of the current portfo- 

io ( Campbell et al., 2002 , p. 89): 

g ( 1 2 ) = f �,X ( 1 2 ) 

⇒ x 2 1 + 2 ρ1 , 2 x 1 x 2 + x 2 2 = 

(
f �,X ( 1 2 ) 

)2 

⇒ ρ1 , 2 = 

(
f �,X ( 1 2 ) 

)2 − x 2 1 − x 2 2 

2 x 1 x 2 
(23) 

or n ≥ 3 risks, Mittnik (2014 , p. 70 f.) proposes defining the ma- 

rix R based on a set of � benchmarking portfolio weight vectors 

 1 , . . . , w � ∈ R 

n , assuming that R is symmetric with ones on the

iagonal. The n ·(n −1) 
2 free correlation parameters in R can be deter- 

ined in light of the errors 

f 2 �,X ( w k ) − g 2 ( w k ) (24) 

or the benchmark portfolios w k , k = 1 , . . . , � . Mittnik (2014 , p. 70

.) shows that the term in (24) is linear in the correlation parame- 

ers ρi j . For � = n (n − 1) / 2 , the correlation parameters can be de-

ermined such that the risk assessments of g(u ) and f �,X (u ) co-

ncide for all benchmark portfolios and the identification is called 

exact”. For � > n (n − 1) / 2 , there are more benchmark portfolios
16 To enhance the efficiency of kernel estimation, Epperlein and Smillie (2006 , p. 

1) and Tasche (2009 , p. 584) use an adjustment to ensure that the Euler allocation 

dds up to f �,X ( 1 n ) . In our context, an additional restriction about the row sums of 

he Hesse matrix of f 2 �,X (u 0 ) can be used, cf. Eq. (A.3) . 
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20 The objective is analogous to the analysis of Chen et al., 2019 . It can be justified 

by assuming that the insurer jointly decides on its level of equity capital and on the 

volumes u , . . . , u ; the regulatory capital requirement is based on VaR and bind- 
han correlation parameters in g(u ) . In general, it is then not possi-

le to choose correlation parameters bringing the errors in (24) to 

ero for all k = 1 , . . . , � , but the parameters are described by an

verdetermined equation system. 

Mittnik (2014 , p. 71) proposes identifying the correlation 

arameters by a least-squares estimator minimizing the mean 

quared error (MSE) 

1 

� 

� ∑ 

k =1 

(
f 2 �,X ( w k ) − g 2 ( w k ) 

)2 
. (25) 

oing forward, we call the calibration with � > n (n − 1) / 2 cali-

ration portfolios “least-squares”. The matrix R calibrated as ex- 

lained so far in this section is called the “benchmark-implied tail- 

orrelation matrix ”. 17 

Devineau and Loisel (2009 , section 5) define R as the “minimal 

tandard R ” which solves the optimization problem 

‖ R ‖ → min 

subject to f ( 1 n ) = g ( 1 n ) , (26) 

ith the norm ‖ · ‖ being defined as ‖ D ‖ = 

√ 

trace (D · D 

T ) . 

evineau and Loisel (2009) employ the approach only for n = 2 

isks. For this case, the authors state that the problem in (26) is 

olved by (23) . 18 For n ≥ 3 risks, the matrix R calibrated accord- 

ng to (26) does not reflect which of the risks are more or less 

nterdependent, since the calibration is only based on the diver- 

ified risk measurement and the stand-alone risk measurements. 

ur numerical examples in Section 4 will illustrate this issue. More 

enerally, our examples will demonstrate that the function g(u ) in 

onnection with a traditional tail-correlation matrix can misstate 

he slope and curvature of f �,X (u ) , and that these misstatements 

an induce severe distortions in portfolio optimization. 

. Numerical examples 

.1. Set-up 

We consider an insurance company with n lines of business 

lobs). The scalars u 1 , . . . , u n represent the volume of lob i in terms

f the number of insurance contracts. We assume that the u i are 

caled, for example, in 10 0,0 0 0 contracts such that we may disre-

ard the integer restriction. Moreover, we assume that the diversi- 

cation within each lob does not vary in u i such that the claims 

osts of lob i are modeled by u i · X i . In line with Solvency II regu-

ations, risk is measured by the 99 . 5% Value-at-Risk of unexpected 

osses. 

The connections between the volume u i and the premium p i 
f each lob i ∈ { 1 , . . . , n } are determined by an isoelastic demand

unction, 19 

 i (p i ) = n i · p εi 

i 
, (27) 

here n i > 0 calibrates demand to market size and εi < −1 is the

rice elasticity of demand which is constant in p . We consider 
i 

17 For two reasons, we depart from the usual term “VaR-implied tail-correlation 

atrix ”. Firstly, the definitions in lines (23) and (25) are compatible with risk mea- 

ures other than Value-at-Risk (e.g. with Expected Shortfall). Secondly, contrast- 

ng the benchmark-implied tail-correlation matrix with the sensitivity-implied tail- 

orrelation matrix makes it clearer how the two concepts differ: the first matrix is 

nduced by the risk measurements of a finite set of benchmarking portfolio weight 

ectors, whereas the second is induced by sensitivities of the risk measurement at 

 single calibration portfolio. 
18 It thereby becomes clear that Devineau and Loisel (2009) restrict R to have ones 

n the diagonal. 
19 To simplify the notation, p i is also scaled. If u i are specified per 10 0,0 0 0 con- 

racts, p i is the premium income per 10 0,0 0 0 contracts. 
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6 
 representative insurer whose objective is to maximize its eco- 

omic value added (EVA). 20 In our model, the insurer’s EVA is 

he expected profit minus the cost of capital, which is modeled 

y a hurdle rate r h times the 99 . 5% Value-at-Risk of the aggregate 

isk. In our baseline calibration, we set εi = −9 for all lobs i , 21 and

 h = 5% . 22 

On the one hand, we consider the EVA in connection with the 

isk measurement based on the true multivariate risk distribu- 

ion: 

VA true (u ) = 

n ∑ 

i =1 

u i · ( p i (u i ) − E [ X i ] ) − r h · f �,X (u ) 

= 

n ∑ 

i =1 

u i · ( p i (u i ) − E [ X i ] ) 

− r h · VaR 99 . 5% 

( 

n ∑ 

i =1 

u i · ( X i − E [ X i ] ) 

) 

(28) 

ith p i (u i ) denoting the inverse of the demand function in 

q. (27) . We call the portfolio u , which maximizes EVA true (u ) , the

true optimal portfolio”. On the other hand, we identify which 

ortfolio u an insurer chooses if the risk measurement is con- 

ucted in connection with a tail-correlation matrix R , i.e. the port- 

olio maximizing 

VA R (u ) = 

n ∑ 

i =1 

u i · ( p i (u i ) − E [ X i ] ) − r h · g(u ) 

= 

n ∑ 

i =1 

u i · ( p i (u i ) − E [ X i ] ) 

− r h ·
√ 

( u ◦ x ) 
T R ( u ◦ x ) (29) 

he chosen set-up allows us to distinguish the distortions caused 

y the function g(u ) in terms of EVA and in terms of the insurer’s

afety level. The insurer’s safety level is measured by the true VaR 

onfidence level which corresponds to g(u ) , i.e. the solution ˜ α of 

aR 1 − ˜ α

( 

n ∑ 

i =1 

u i · ( X i − E [ X i ] ) 

) 

= g(u ) (30) 

.2. Relevance of first-order sensitivities 

This section demonstrates that an inappropriate calibration of 

he matrix R can lead to biased first-order sensitivities of the ag- 

regate risk measurement and can induce a suboptimal portfolio. 

We model the basic losses of n = 5 lobs using stochastically in- 

ependent and gamma distributed random variables ˜ X 1 , . . . , ˜ X 5 . 
23 

pecifically, we assume that ˜ X 1 , ˜ X 2 ∼ �( 1 3 , 
2 
3 ) , 

˜ X 3 , ˜ X 4 ∼ �(2 , 2) and

˜ 
 5 ∼ �(1 , 2) , where �(γ , ϑ) denotes the gamma distribution with 
1 n 

ng. The objective can easily be modified to a situation in which the insurer sticks 

o a fixed capital requirement ratio (in terms of equity capital over capital require- 

ent). In the context of Solvency II regulations, this ratio is relevant when insurers 

ransmit information about their solvency level, cf. Gatzert and Heidinger, 2020 . In 

elated analyses, the Economic Value Added has been employed by Stoughton and 

echner, 2007 and Diers (2011) . 
21 According to the empirical results of Yow and Sherris, 2008 , p. 318), this may 

eflect the price elasticity of compulsory third party or motor insurance. 
22 Zanjani (2002 , p. 297) estimates that the discounted cost of holding capital is 

% in commercial automobile insurance. 
23 The calculations of f �,X (u ) and its sensitivities are conducted according to 

ection 2.3 , example C, and are hence unaffected by sampling error. For calculat- 

ng F u T X (x ) in (18) , we make use of the R package coga , which implements the 

ethodology of Hu et al. (2020) . 
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hape parameter γ and rate parameter ϑ . In addition, lobs 1, 2 and 

 are exposed to a common risk factor Y ∼ �(1 , 1) , which is inde-

endent from the ˜ X i . The total claims costs of the three lobs are 

 i = 

˜ X i + 0 . 5 Y for i ∈ { 1 , 2 , 5 } and X j = 

˜ X j for j ∈ { 3 , 4 } . 24 

The vector of stand-alone capital requirements is 

 = (4 . 679 , 4 . 679 , 2 . 715 , 2 . 715 , 2 . 715) T (31)

nd the Pearson correlation matrix is 

 P = 

⎛ ⎜ ⎜ ⎝ 

1 0 . 25 0 0 0 . 354 

0 . 25 1 0 0 0 . 354 

0 0 1 0 0 

0 0 0 1 0 

0 . 354 0 . 354 0 0 1 

⎞ ⎟ ⎟ ⎠ 

(32) 

he insurer’s current portfolio is u = 1 5 = (1 , 1 , 1 , 1 , 1) T and the

orresponding aggregate risk measurement—based on the true 

ultivariate risk distribution—is 

f �,X ( 1 5 ) = VaR 0 . 995 ( X 1 + . . . + X 5 ) − E [ X 1 + . . . + X 5 ] = 8 . 115 

(33) 

he true sensitivities of the aggregate risk measurement—i.e. the 

uler allocation—are obtained as 

f �,X (u ) 

∣∣∣
u = 1 5 

= (2 . 830 , 2 . 830 , 0 . 416 , 0 . 416 , 1 . 623) T (34)

ccording to line (34) , the first two lobs have the strongest impact 

n the insurer’s aggregate risk. The fifth lob follows next—due to 

ts positive correlation with the risks of the first lobs. The third 

nd fourth lobs are less influential due to their independence from 

he other risks. 

We calibrate the sensitivity-implied tail-correlation matrix as 

efined in Proposition 2 with the calibration portfolio being the 

nsurer’s current portfolio u = 1 5 by numerical differentiation as 

iscussed in Section 2.3 , example C. In Appendix J , moreover, 

e estimate the matrix from Monte-Carlo simulations. To cali- 

rate the benchmark-implied tail-correlation matrix in line with 

ittnik (2014) , we need to choose a set of � ≥ 5 ·(5 −1) 
2 = 10 cali-

ration portfolios. We consider three of those sets. Firstly, we con- 

uct a pairwise calibration based on all equally weighted two-risk 

ortfolios. Hence, we set w 1 = (1 , 1 , 0 , 0 , 0) T , w 2 = (1 , 0 , 1 , 0 , 0) T ,...,

 10 = (0 , 0 , 0 , 1 , 1) T . Secondly, we consider an exact calibration:

e take w 1 ,..., w 9 as before and set w 10 = (1 , 1 , 1 , 1 , 1) T . Thirdly,

e use the least-squares estimator minimizing (25) in connection 

ith all 26 portfolios consisting of two, three, four or five assets. 

inally, we calculate the “minimal standard” tail-correlation ma- 

rix as proposed by Devineau and Loisel (2009) for u = 1 5 . Table 1

resents all five calculated tail-correlation matrices. The upper part 

f Fig. 4 visualizes the relative error between g(u ) —in connection 

ith three different tail-correlation matrices—and f �,X (u ) depend- 

ng on the exposure vector u . In connection with the sensitivity- 

mplied tail-correlation matrix, g(u ) is relatively accurate as long 

s u is close at 1 5 and underestimates the true risk by about -6%

or u = (0 . 25 , 0 . 25 , 1 . 75 , 1 . 75 , 1) T , which is in the top left corner

f the considered plane of exposures. In connection with a pair- 

ise calibrated tail-correlation matrix, g(u ) is specifically biased 
24 The expected claims costs of all three lobs are 1, e.g. we calculate E [ X 1 ] = 

 [ ̃ X 1 ] + 0 . 5 E [ Y ] = 

(
1 
3 

)
/ 
(

2 
3 

)
+ 0 . 5 · 1 / 1 = 1 . Moreover, the variances are var [ X 1 ]= 

ar [ X 2 ]= var [ ̃ X 1 ] + 0 . 5 2 var [ Y ] = 

(
1 
3 

)
/ 
(

2 
3 

)2 + 0 . 5 2 · 1 / 1 2 = 1 and var [ X 3 ] = var [ X 4 ] = 

ar [ X 5 ]= 0 . 5 . The risks of lobs 1 and 2 have a relatively heavy tail, the risks of 

obs 3, 4 and 5 have a relatively light tail. The ratios of the 99.5% VaR and the 

0% VaR are 3.89 for lobs 1 and 2 and 2.87 for lobs 3, 4 and 5. For comparison, 

ernard et al., 2018 , p. 847) assume the distribution 200 · LogNormal (0 , 1) for ag- 

regate non-life insurance risks. This implies a corresponding VaR ratio of 5.88. For 

he aggregate market risk, Bernard et al., 2018 , p. 847) assume a normal distribu- 

ion, for which the corresponding VaR ratio is 2.01. This value is achieved by the 

amma distribution when setting the shape parameter to infinity. 
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t u = (0 . 57 , 0 . 57 , 1 . 11 , 1 . 11 , 1) T with a relative error of -22%; with

he least-squares estimator, g(u ) has an error of -10.5% at u = 

0 . 4 4 , 0 . 4 4 , 0 . 67 , 0 . 67 , 1) T . 

Table 2 reports the aggregate risk of the current portfolio, u = 

 5 , and the Euler allocations in connection with all considered tail- 

orrelation matrices. The results for the traditional tail-correlation 

atrices clearly depend on the type of calibration. Moreover, based 

n a benchmark-implied matrix, the aggregate risk of the cur- 

ent portfolio can be underestimated by 9% (least-squares) or even 

9% (pairwise calibration). 25 In connection with all considered cal- 

brations, the traditional tail-correlation matrices lead to substan- 

ially biased Euler allocations. For instance, the risk of lob 4 can 

e underestimated by 86% (pairwise calibration) or overestimated 

y 250% (exact calibration). In contrast, the use of the sensitivity- 

mplied tail-correlation matrix leads to an accurate measurement 

f the aggregate risk and Euler allocations. 

In terms of the EVA analysis, we set the demand function pa- 

ameters to n 1 = n 2 = 9 . 497 , n 3 = n 4 = 3 . 474 and n 5 = 5 . 826 . These

arameter values imply that the true EVA-optimal strategy is u = 

 5 . The same strategy maximizes the EVA in line (29) if R is the

ensitivity-implied tail-correlation matrix. However, the distorted 

isk measurement based on the traditional tail-correlation matri- 

es lead the insurer away from the truly optimal strategy. For ex- 

mple, in the case of a pairwise calibration, the insurer chooses 

 new 

= (1 . 102 , 1 . 102 , 1 . 157 , 1 . 157 , 1 . 190) T . Based on the true multi-

ariate risk distribution, the aggregate risk of the chosen portfolio 

s f �,X (u new 

) = 9 . 135 . The benchmark-implied correlation matrix in 

onnection with a pairwise calibration, however, understates the 

isk of this portfolio by g(u new 

) / f �,X (u new 

) − 1 =7 . 339 / 9 . 135 − 1 =
19 . 7% . The true VaR-confidence level of the chosen strategy is 

learly too high and amounts to 1.3%. In addition, the true EVA of 

he chosen portfolio, EVA true ( u new 

) , is 0.9% lower than the maxi- 

al EVA, i.e. EVA true ( 1 5 ) . 

In the analyses so far, the calibrations of the tail-correlation ma- 

rices were centered at the true optimal portfolio, u = 1 5 . Next, we

tudy how insurance companies with different properties—and dif- 

erent true optimal portfolios—choose their portfolios if their risk 

easurement is based on the tail-correlation matrices calibrated 

t 1 5 . We modify eleven parameters—namely the values of the 

emand function parameters, n 1 , . . . , n 5 , ε1 , . . . , ε5 , as well as the

urdle rate r h —by multiplying them with scalars. To this end, we 

andomly choose eleven scalars as independent realizations of uni- 

orm random variables on the interval 0.6 to 1.4. This process is 

xecuted 500 times to generate 500 heterogeneous insurance com- 

anies. The true optimal portfolios of the 500 insurers differ from 

 = 1 5 with a root mean squared error (RMSE) of 0.260 on aver- 

ge across the 500 insurers. The risk of the true optimal portfo- 

ios is not measured accurately by any of the tail-correlation ma- 

rices. Nevertheless, the sensitivity-implied matrix guides insurers 

o a portfolio which achieves almost the same EVA as the true op- 

imal portfolio (cf. Table 3 : for 95% of insurers, the relative loss in

VA does not exceed 0.01%). In contrast, measuring risk based on 

 traditional tail-correlation matrix goes along with a considerable 

oss in EVA. For example, the “exact” calibration of the benchmark- 

mplied matrix leads to a relative loss in EVA of 1.445% on average 

nd of 3.107% or higher for those 5% of insurers with the high- 

st loss. Moreover, when using the sensitivity-implied matrix, the 

rue VaR confidence level of insurers’ aggregate risk is close to the 

upposed value of 0.5%. With respect to traditional tail-correlation 

atrices, each of the four calibration methods guides more than 

5% of insurers to strategies with a true VaR confidence level above 
25 As explained in Section 3 , the benchmark-implied tail-correlation matrix leads 

o a correct risk assessment of the current portfolio only if the number of bench- 

ark portfolios coincides with the number of correlation parameters and the cur- 

ent portfolio is one of the benchmark portfolios. 
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Table 1 

Calculated tail-correlation matrices. 

Sensitivity-implied 

Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 

Lob 1 0.999 -0.035 -0.049 -0.049 0.243 

Lob 2 -0.035 0.999 -0.049 -0.049 0.243 

Lob 3 -0.049 -0.049 0.649 0.013 -0.036 

Lob 4 -0.049 -0.049 0.013 0.649 -0.036 

Lob 5 0.243 0.243 -0.036 -0.036 1.021 

Benchmark-implied 

Pairwise ( Mittnik, 2014 ) Exact ( Mittnik, 2014 ) 

Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 

Lob 1 1.000 -0.071 -0.174 -0.174 0.110 1.000 -0.071 -0.174 -0.174 0.110 

Lob 2 -0.071 1.000 -0.174 -0.174 0.110 -0.071 1.000 -0.174 -0.174 0.110 

Lob 3 -0.174 -0.174 1.000 -0.174 -0.174 -0.174 -0.174 1.000 -0.174 -0.174 

Lob 4 -0.174 -0.174 -0.174 1.000 -0.174 -0.174 -0.174 -0.174 1.000 1.376 

Lob 5 0.110 0.110 -0.174 -0.174 1.000 0.110 0.110 -0.174 1.376 1.000 

Least-squares ( Mittnik, 2014 ) Minimum standard 

( Devineau and Loisel, 2009 ) 

Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 

Lob 1 1.000 -0.029 -0.131 -0.131 0.163 1.000 -0.0004 -0.0002 -0.0002 -0.0002 

Lob 2 -0.029 1.000 -0.131 -0.131 0.163 -0.0004 1.0000 -0.0002 -0.0002 -0.0002 

Lob 3 -0.131 -0.131 1.000 -0.120 -0.123 -0.0002 -0.0002 1.0000 -0.0001 -0.0001 

Lob 4 -0.131 -0.131 -0.120 1.000 -0.123 -0.0002 -0.0002 -0.0001 1.0000 -0.0001 

Lob 5 0.163 0.163 -0.123 -0.123 1.000 -0.0002 -0.0002 -0.0001 -0.0001 1.0000 

Table 2 

Chosen portfolios of the model insurer. The risk measurement is conducted based on the true multivariate risk measure- 

ment, the sensitivity-implied tail-correlation matrix or a traditional tail-correlation matrix. The bracket terms show the 

relative error compared to the true risk measurement. 

Type of calculation True distribution Sensitivity-implied Benchmark-implied Min. Std. 

Pairwise Exact Least-squares 

Aggregate risk measurement 

8.115 8.115 6.557 8.115 7.360 8.115 

( ±0% ) ( −19% ) ( ±0% ) ( −9% ) ( ±0% ) 

Euler allocation 

Lob 1 2.830 2.830 2.641 2.134 2.716 2.696 

( ±0% ) ( −7% ) ( −25% ) ( −4% ) ( −5% ) 

Lob 2 2.830 2.830 2.641 2.134 2.716 2.696 

( ±0% ) ( −7% ) ( −25% ) ( −4% ) ( −5% ) 

Lob 3 0.416 0.416 0.059 0.048 0.306 0.908 

( ±0% ) ( −86% ) ( −88% ) ( −27% ) ( +118% ) 

Lob 4 0.416 0.416 0.059 1.456 0.306 0.908 

( ±0% ) ( −86% ) ( +250% ) ( −27% ) ( +118% ) 

Lob 5 1.623 1.623 1.157 2.343 1.318 0.908 

( ±0% ) ( −29% ) ( +44% ) ( −19% ) ( −44% ) 

Chosen portfolio 

Lob 1 1.000 1.000 1.102 1.156 1.052 1.041 

Lob 2 1.000 1.000 1.102 1.156 1.052 1.041 

Lob 3 1.000 1.000 1.157 1.133 1.054 0.861 

Lob 4 1.000 1.000 1.157 0.784 1.054 0.861 

Lob 5 1.000 1.000 1.190 0.876 1.115 1.247 

True EVA 0.676 0.676 0.670 0.666 0.674 0.668 

( ±0 . 0% ) ( −0 . 9% ) ( −1 . 5% ) ( −0 . 2% ) ( −1 . 1% ) 

True VaR conf. level 0.50% 0.50% 1.30% 0.65% 0.79% 0.60% 

0

d

t

i

o

4

s

t

l  

t

n

d

t

o

H

d

D

26 Appendix D provides more details about this distribution. 
.5%. Fig. 1 visualizes the loss in EVA and the true VaR confi- 

ence level of the portfolios that the 500 insurers choose based on 

he tail-correlation matrices. The figure depicts that the sensitivity- 

mplied matrix leads to substantially smaller distortions than any 

f the traditional tail-correlation matrices. 

.3. Relevance of second-order sensitivities 

This section studies the implications of biased second-order 

ensitivities of the aggregate risk measurement based on a tradi- 

ional tail-correlation matrix with ones on the diagonal. The three 
8 
obs’ claims costs, X 1 , X 2 and X 3 , now follow a mixed gamma dis-

ribution with the parameters defined in Table 4 . 26 

With a large weight in terms of p κ , the distribution consists of 

 = 3 independent and identically distributed risks. However, con- 

itioning on a high aggregate loss, the risks X 1 and X 2 are nega- 

ively correlated. In this set-up, the marginal capital requirement 

f X 1 decreases when increasing the exposure to X 1 . Hence, the 

esse matrix of f �,X with respect to u has negative entries on the 

iagonal: 

 

2 f �,X (u ) = 

( −3 . 850 3 . 632 0 . 218 

3 . 632 −3 . 850 0 . 218 

0 . 218 0 . 218 −0 . 437 

) 
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Table 3 

Chosen portfolios of 500 randomly parameterized insurers. The risk measurement is conducted based on the true mul- 

tivariate risk measurement, the sensitivity-implied tail-correlation matrix or a traditional tail-correlation matrix. The 

table reports the means across the 500 insurers as well as the 5% and 95% percentiles. 

Type of calculation True distribution Sensitivity-implied Benchmark-implied Min. Std. 

Pairwise Exact Least-squares 

RMSE between chosen portfolio and “true” optimal portfolio 

Mean 0.000 0.004 0.140 0.154 0.067 0.137 

p 5% 0.000 0.001 0.105 0.102 0.052 0.103 

p 95% 0.000 0.010 0.178 0.205 0.084 0.173 

Relative loss in EVA of chosen portfolio versus “true” optimal portfolio 

Mean 0.000% 0.002% 0.867% 1.445% 0.216% 1.022% 

p 5% 0.000% 0.000% 0.340% 0.366% 0.090% 0.385% 

p 95% 0.000% 0.008% 1.559% 3.107% 0.381% 1.784% 

True VaR confidence level 

Mean 0.500% 0.500% 1.253% 0.653% 0.772% 0.587% 

p 5% 0.500% 0.498% 1.051% 0.572% 0.712% 0.503% 

p 95% 0.500% 0.503% 1.453% 0.728% 0.827% 0.686% 

Fig. 1. Loss in EVA and true VaR confidence level for 500 randomly parameterized insurers. The risk measurement is conducted based on the sensitivity-implied tail- 

correlation matrix or a traditional tail-correlation matrix. The results show that portfolio optimization in connection with the sensitivity-implied tail-correlation matrix 

hardly induces distortions in terms of the VaR confidence level or the achieved EVA. 

Table 4 

Parameters of the mixed gamma distri- 

bution. 

i ϑ i γk 1 γk 2 γk 3 

1 0.5 0.5 9.5 0.5 

2 0.5 0.5 0.5 9.5 

3 0.5 0.5 4.5 4.5 

p κ 0.99 0.005 0.005 
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28 Table 5 presents the calculated sensitivity-implied tail-correlation matrix in 

connection with the 99.5% VaR, which is the underlying risk measure of all analyses 

in Section 4 . The calculated eigenvalues show that the sensitivity-implied matrix is 

indefinite in this situation. For comparison, Table 5 also presents the sensitivity- 

implied tail-correlation matrix in connection with the 99.5% ES and the 99.5% GS 

with loading parameter λ = 0 . 1 . According to Proposition 3 , the sensitivity-implied 
he aggregate Value-at-Risk can be reduced by shifting the expo- 

ures from u = (1 , 1 , 1) T to u = (1 + h, 1 − h, 1) T for a small value

f h . 27 We embed this distribution into the EVA-optimization prob- 

em as studied in Section 4.2 . By setting n 1 = n 2 = 128 . 082 and

 3 = 90 . 209 , all first-order derivatives of the function EVA true (u )

re zero at u = 1 3 . The Hesse matrix of EVA true (u ) is indefinite at

 = 1 3 , reflecting the fact that it is a saddle point, as illustrated

n the left side of Fig. 2 . To keep the example graphically fully

ractable, we assume from now on that u 3 = 1 is fixed and only u 1 
nd u 2 are decision variables. The function EVA true (u 1 , u 2 | u 3 = 1)

hen has a global maximum at (u 1 , u 2 ) = (1 . 8365 , 0 . 5998) and,
27 This can be seen by approximating f �,X (u ) by a Taylor polynomial of degree 2 

nd noting that ∂ /∂ u 1 f (u ) = ∂ /∂ u 2 f (u ) at u = (1 , 1 , 1) T . 

m

m

t

p

9 
ue to symmetry, another global maximum at (0 . 5998 , 1 . 8365) ; cf.

oints B and B’ in Fig. 2 . 

We calibrate two tail-correlation matrices, R 1 and R 2 , both with 

he calibration portfolio u = 1 3 . R 1 is the sensitivity-implied tail- 

orrelation matrix. 28 R 2 is calibrated such that the function g(u ) re- 

ects the true first-order sensitivities: 

g ( 1 3 ) = D f ( 1 3 ) (35) 

n accordance with the traditional view of tail-correlation matrices, 

e restrict R 2 to be a symmetric matrix with ones on its diagonal. 

he three correlation parameters in R 2 are thereby uniquely de- 

ned by (35) . 29 

The right side of Fig. 2 depicts the EVA function in connec- 

ion with the matrix R 2 . By construction, all first-order deriva- 

ives of this EVA function are zero at u = 1 3 . However, the
atrix is positive semi-definite in connection with the latter two coherent risk 

easures. 
29 Specifically, the three correlation parameters are the solution of a linear equa- 

ion system. As shown by Eq. (K.2) in Appendix K , Dg ( 1 3 ) is linear in the correlation 

arameters when fixing 
√ 

x T R 2 x at f �,X ( 1 3 ) . 
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Fig. 2. EVA based on volumes u 1 and u 2 and for fixed u 3 = 1 . Point A reflects u 1 = u 2 = 1 ; points B and B’ are optimal based on the true risk distribution. 
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esse matrix of this EVA function is negative definite, and this 

unction hence has a global maximum at u = (1 , 1 , 1) T —in con-

rast to the true EVA function. The lower part of Fig. 2 shows 

he EVA function in connection with the sensitivity-implied tail- 

orrelation matrix R 1 . This EVA function correctly approximates 

he true EVA function at the calibration portfolio u = 1 3 , and 

he company hence does not mistake the saddle point for an 

ptimum. 

Finally, as previously for the example in Section 4.2 , the lower 

art of Fig. 4 visualizes the relative error between g(u ) and f �,X (u )

or the sensitivity-implied and two benchmark-implied tail- 

orrelation matrices. The sensitivity-implied tail-correlation ma- 

rix again induces the largest errors in the corners of the consid- 

red plane of exposures (i.e. -12% for u = (0 . 25 , 1 . 75 , 1) T ). In con-

ection with a pairwise or least-squares calibration, g(u ) has the 

argest displayed errors at u = (0 . 76 , 0 . 76 , 1) T , amounting to -12%

pairwise) and -7.5% (least-squares). 
h

s

10 
. Conclusion 

This paper demonstrates that the traditional notion of (tail-) 

orrelation matrices having ones on their diagonal can make it im- 

ossible to fit them in accordance with the true risk distribution. 

hose misstatements can distort portfolio management decisions 

n terms of risk and return. We show that the square-root formula 

or risk aggregation is structurally related to a second-order Taylor 

olynomial of a positive homogeneous risk measure. Based on this 

esult, we propose so-called “sensitivity-implied” tail-correlation 

atrices, which approximate the risk measurement according to 

he true distribution up to second-order derivatives with respect 

o exposures. We see several areas of application. 

In the context of regulation, the proposed method may help to 

ircumvent moral hazard effects arising from misstated marginal 

apital requirements, as empirically detected by Chen et al., 2019 . 

ur example in Section 4.2 indicates that the matrix R would not 

ave to be calibrated for every insurer individually. Instead, the 

ensitivity-implied tail-correlation leads to a relatively stable risk 
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easurement and steering signals even if the insurers’ optimal 

ortfolios differ from the calibration portfolio of R . 

In the context of a firm’s internal economic capital assessment, 

he use of the correlation-based risk aggregation is sometimes 

alled the “hybrid approach” ( Rosenberg and Schuermann, 2006 , 

. 575; Hull, 2018 , p. 594). In comparison with a risk aggregation 

ased on a Monte-Carlo simulation, the correlation-based approach 

acilitates the risk measurement process, since changes in the uni- 

ariate risk assessments do not require new simulations of the en- 

ire firm. Once the matrix R has been calibrated, various methods 

including scenario analyses, expert surveys, etc.) can be used for 

he measurement of the univariate risks. 

Finally, the proposed tail-correlation matrix can be helpful for 

ortfolio optimization in general when risk is to be measured us- 

ng a positive homogeneous risk measure. For instance, optimiza- 

ion problems with a VaR or ES constraint thereby become struc- 

urally identical to mean-variance portfolio optimization. However, 

iven that the sensitivity-implied matrix is locally calibrated, the 

olution of the simplified problem may only be useful if the opti- 

al portfolio is not too far away from the calibration portfolio. 

eclaration of Competing Interest 

None. 

ppendix A. Proof of Theorem 1 

Given that the function f (u ) is positive homogeneous of degree 

ne, f 2 (u ) is positive homogeneous of degree two: for all λ > 0 we

ave 

f 2 (λu ) = λ2 f 2 (u ) (A.1) 

nd Euler’s theorem for homogeneous functions implies 

1 

2 

u 

T · D f 2 (u ) = f 2 (u ) (A.2) 

ifferentiating both sides of Eq. (A.1) with respect to u implies that 

 f 2 (u ) is positive homogeneous of degree one: for all λ > 0 we 

ave 

D f 2 (λu ) · λ = λ2 D f 2 (u ) 

⇒ D f 2 (λu ) = λD f 2 (u ) 

uler’s theorem for homogeneous functions thus implies that 

 

T · D 

2 f 2 (u ) = D f 2 (u ) (A.3) 

he second-order Taylor polynomial of f 2 (u ) can be presented as 

 f 2 (u ) = f 2 (u 0 ) + (u − u 0 ) 
T · D f 2 (u 0 ) 

+ 

1 

2 

(u − u 0 ) 
T · D 

2 f 2 (u 0 ) · (u − u 0 ) 

(A.2) = 

1 

2 

u 

T 
0 · D f 2 (u 0 ) + (u − u 0 ) 

T · D f 2 (u 0 ) 

+ 

1 

2 

(u − u 0 ) 
T · D 

2 f 2 (u 0 ) · (u − u 0 ) 

(A.3) = 

1 

2 

u 

T 
0 · D 

2 f 2 (u 0 ) · u 0 + (u − u 0 ) 
T · D 

2 f 2 (u 0 ) · u 0 

+ 

1 

2 

(u − u 0 ) 
T · D 

2 f 2 (u 0 ) · (u − u 0 ) 

= 

1 

2 

u 

T 
0 · D 

2 f 2 (u 0 ) · u 0 + (u − u 0 ) 
T · D 

2 f 2 (u 0 ) · u 0 

+ 

1 

2 

u 

T · D 

2 f 2 (u 0 ) · u − u 

T · D 

2 f 2 (u 0 ) · u 0 

+ 

1 

2 

u 

T 
0 · D 

2 f 2 (u 0 ) · u 0 

= 

1 

u 

T · D 

2 f 2 (u 0 ) · u 
2 

11 
inally, for all λ > 0 we have P f 2 (λu ) = 

1 
2 (λu ) T · D 

2 f 2 (u 0 ) · (λu ) =
2 P f 2 (u ) . 

ppendix B. Proof of Proposition 1 

For all λ > 0 we have R f 2 (λx ) = f 2 (λx ) − P f 2 (λx ) = λ2 ( f 2 (x ) −
 f 2 (x )) = λ2 R f 2 (x ) . For any u ∈ U\{ 0 } this implies 

 f 2 (u ) = R f 2 

(
‖ u ‖ · u 

‖ u ‖ 

)
= ‖ u ‖ 

2 · R f 2 

(
u 

‖ u ‖ 

)
ppendix C. Proof of Proposition 2 

Function f �,X (u ) with u 0 = 1 n fulfills the assumptions of 

heorem 1 . Hence, P 
f 2 
�,X 

(u ) = u T · 1 
2 D 

2 f 2 �,X 
(1 n ) · u is the second-

rder Taylor polynomial of f 2 �,X (u ) . We have 

 

2 (u ) 
(6) = ( u ◦ x ) 

T R ( u ◦ x ) 

= 

n ∑ 

i, j=1 

ρi, j u i x i u j x j 
(7) = 

n ∑ 

i, j=1 

1 

2 x i x j 

∂ 2 

∂u i ∂u j 

f 2 �,X (1 n ) u i x i u j x j 

= 

n ∑ 

i, j=1 

1 

2 

∂ 2 

∂ u i ∂ u j 

f 2 �,X (1 n ) u i u j = P f 2 �,X 
(u ) 

Hence, the assertions in lines (9), (10) and (11) follow. 

ppendix D. Distribution of portfolio loss for mixed gamma 

istributed risks 

According to Furman et al., 2020 , p. 8 f.), the n -dimensional 

ixed gamma distribution is defined as follows: let κ = 

κ1 , . . . , κn ) be a vector of discrete random variables which 

an assume non-negative integer values, and let p κ( k ) = P (κ1 = 

 1 , . . . , κn = k n ) denote the probability mass function of κ with 

 = (k 1 , . . . , k n ) ∈ N 

n 
0 
. Let f �(x ;γ , ϑ) denote the density function

f the univariate gamma distribution with shape parameter γ and 

ate parameter ϑ . The random vector �( κ) = (�
(κ1 ) 
1 

, . . . , �(κn ) 
n ) is 

istributed n -variate mixed gamma if its density function is given 

y 

f 
�( κ) (x 1 , . . . , x n ) = 

∑ 

k ∈ N 

n 
0 

p κ( k ) 
n ∏ 

i =1 

f �(x i ;γk i 
, ϑ i ) (D.1)

here the shape parameters are determined by γk i 
= γi + k i with 

i > 0 . Recall that F �+ (x ;γ1 , . . . , γn , ϑ 1 , . . . , ϑ n ) in (17) is the distri-

ution function of the sum of independent gamma distributed ran- 

om variables with different shape and rate parameters. Assuming 

hat there is only a finite number of vectors k with positive prob- 

bility p κ( k ) , the distribution function of X = �
(κ1 ) 
1 

+ . . . + �
(κ1 ) 
n is

iven by 

 X (x ) = 

∫ 
. . . 

∫ 
{ y ∈ R n + such that 

∑ n 
i =1 y i ≤x } 

∑ 

k ∈ N 

n 
0 

p κ( k ) 
n ∏ 

i =1 

f �(y i ;γk i 
, ϑ i ) d y 1 . . . . d y

= 

∑ 

k ∈ N 

n 
0 

p κ( k ) 

∫ 
. . . 

∫ 
{ y ∈ R n + such that 

∑ n 
i =1 y i ≤x } 

n ∏ 

i =1 

f �(y i ;γk i 
, ϑ i ) d y 1 . . . . d y

= 

∑ 

k ∈ N 

n 
0 

p κ( k ) F �+ (x ;γk 1 , . . . , γk n , ϑ 1 , . . . , ϑ n ) , 

nd the distribution function of the linear combination u 1 �
(κ1 ) 
1 

+ 

 . . + u n �
(κ1 ) 
n is given by ∑ 

p κ( k ) F �+ (x ;γk 1 , . . . , γk n , ϑ 1 /u 1 , . . . , ϑ n /u n ) 
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ppendix E. Proof of Proposition 3 

We show that f �,X is convex on U . Let u 1 , u 2 ∈ U and γ ∈ [0 , 1] .

hen, by positive homogeneity and convexity of �, 

f �,X (γ u 1 + (1 − γ ) u 2 ) = � 

(
γ u 

T 
1 X + (1 − γ ) u 

T 
2 X 

)
≤ γ � 

(
u 

T 
1 X 

)
+ (1 − γ ) � 

(
u 

T 
2 X 

)
= γ f �,X (u 1 ) + (1 − γ ) f �,X (u 2 ) 

ue to f �,X being continuous with f �,X ( 1 n ) > 0 , there is some Ũ 

pen with 1 n ∈ ̃

 U ⊆ U and f (u ) > 0 for all u ∈ ̃

 U . Given that h :

0 , ∞ ) → [0 , ∞ ) , x �→ x 2 is non-decreasing and convex, the compo-

ition h ( f �,X (u )) = f 2 �,X (u ) is convex on 

˜ U . Hence, the Hesse matrix

f f 2 �,X (u ) at u = 1 n , D 

2 f 2 �,X (1 n ) , is positive semidefinite. Moreover,

he sensitivity-implied tail-correlation matrix R is positive semidef- 

nite: for any v ∈ R 

n we have 

 

T R v (7) = 

n ∑ 

i, j=1 

1 

2 x i x j 

∂ 2 

∂ u i ∂ u j 

f 2 �,X (1 n ) v i v j 

= 

1 

2 

(v ◦ x̄ ) T D 

2 f 2 �,X (1 n )(v ◦ x̄ ) ≥ 0 , 

ith the entries of the vector x̄ being defined as x̄ i = x −1 
i 

for all 

 = 1 , . . . , n . 

ppendix F. Example: No upper threshold for diagonal 

lements of sensitivity-implied matrix 

Consider two independent random variables defining losses 

 1 , X 2 with 0 < c ≤ 1 , 

P (X 1 = c) = 96% , P (X 1 = 1) = 4% , 

 (X 2 = 2 c) = 96% , P (X 2 = 2) = 4% , 

nd the risk measure � = VaR 95% . Then 

 1 = �(X 1 ) = c, x 2 = �(X 2 ) = 2 c, 

f �,X (u ) = min { cu 1 + 2 u 2 , u 1 + 2 cu 2 } = 

{
u 1 + 2 cu 2 , u 1 ≤ 2 u 2 

cu 1 + 2 u 2 , u 1 > 2 u 2 

ence, for u 1 ≤ 2 u 2 , we have 

f 2 �,X (u ) = 2(u 1 + 2 cu 2 ) 

(
1 

2 c 

)
, D 

2 f 2 �,X (u ) = 

(
2 4 c 

4 c 8 c 2 

)
, 

uch that the sensitivity-implied tail-correlation matrix at 

u 1 , u 2 ) 
T = (1 , 1) T according to (7) is 

 = 

(
1 
c 2 

1 
c 

1 
c 

1 

)
s c can be small, the first diagonal element of R can be arbitrarily 

arge. Note that g(u ) = u 1 + 2 cu 2 coincides with f �,X (u ) for u 1 ≤
 u 2 . For c = 1 , f 2 �,X 

(u ) is quadratic, and the diagonal elements of R

re hence 1 (cf. Proposition 4 ). 

ppendix G. Proof of Proposition 4 

Given that f 2 �,X (u ) is positive homogeneous of degree two, 

heorem 1 implies for all u ∈ U

 

T · 1 

2 

D 

2 f 2 �,X (u ) · u = f 2 �,X (u ) (G.1) 

e have 

kk 
(7) = 

1 

2 

∂ 2 

(∂u k ) 2 
f 2 �,X (1 n ) 

f 2 �,X 
(e k ) 

(G.1) = 

1 

2 

∂ 2 

(∂u k ) 2 
f 2 �,X (1 n ) 

e T 
k 

· 1 
2 

D 

2 f 2 �,X 
(e k ) · e k 

= 

∂ 2 

(∂u k ) 2 
f 2 �,X (1 n )

∂ 2 

(∂u ) 2 
f 2 �,X 

(e k )

k 

12 
f f 2 �,X 
(u ) is quadratic on 

˜ U containing 1 n and e k for all k = 1 , . . . , n ,

hen 

∂ 2 

(∂u k ) 
2 f 

2 
�,X 

(u ) is constant in u on 

˜ U and hence ρkk = 1 for all

 = 1 , . . . , n. 

ppendix H. Proof of Proposition 5 

According to the definitions in lines (5) and (6) and with the 

ssumption f �,X (e k ) > 0 , we derive 

g 2 (e k ) 

f 2 �,X 
(e k ) 

= 

x 2 
k 

ρkk 

x 2 
k 

= ρkk 

ssuming ρkk ≥ 0 we can take the square-root on the left-hand 

ide and right-hand side of the equation. The assertions of 

roposition 5 immediately follow. 

ppendix I. Example: Assessing the error between g(u ) and 

f �,X (u ) with n = 2 risks 

Suppose we want to estimate f �,X (u ) − g(u ) for n = 2 risks

nd some u which is entrywise non-negative. In light of 

roposition 1 in connection with the norm ‖ u ‖ = 0 . 5 · ∑ n 
i =1 | u i | , we

onsider u = 1 2 + α · (1 , −1) T with α ∈ [ −1 , 1] . We define 

˜ f 2 : [ −1 , 1] → R , α �→ f 2 �,X 

(
1 2 + α · (1 , −1) T 

)
˜ 
 

2 : [ −1 , 1] → R , α �→ g 2 
(
1 2 + α · (1 , −1) T 

)
 ˜ f 2 

: [ −1 , 1] → R , α �→ 

˜ f 2 (α) − ˜ g 2 (α) 

ue to the mean value theorem, the remainder can be presented 

ased on the third order derivative of ˜ f 2 (α) , i.e. 

 ˜ f 2 
(α) = ( ̃  f 2 ) (3) ( ̄α) 

α3 

3! 
(I.1) 

or some ᾱ between 0 and α. 30 Therefore, a lower and upper 

hreshold for R ˜ f 2 
(α) are given by 

in 

{ 

( ̃  f 2 ) (3) ( ̄α) with ᾱ between 0 and α
} 

· α3 

3! 
(I.2) 

nd 

ax 

{ 

( ̃  f 2 ) (3) ( ̄α) with ᾱ between 0 and α
} 

· α3 

3! 
(I.3) 

oreover, at α = 1 and α = −1 , the mean value theorem implies 

hat there are some 0 < ᾱ1 < 1 and −1 < ᾱ2 < 0 such that 

( ̃  f 2 ) (3) ( ̄α1 ) 
1 

3 

3! 
= R ˜ f 2 

(1) 
Eq. (21) = ( f 2 �,X (2 · e 1 ) − g 2 (2 · e 1 )) 

= 4 · (1 − ρ11 ) · x 2 1 

 ̃

 f 2 ) (3) ( ̄α2 ) 
(−1) 3 

3! 
= R ˜ f 2 

(−1) 
Eq. (21) = ( f 2 �,X (2 · e 2 ) − g 2 (2 · e 2 )) 

= 4 · (1 − ρ22 ) · x 2 2 

f α is close to 1 or −1 , we approximate ᾱ from Eq. (I.1) by ᾱ1 , or

¯ 2 respectively, and thus have 

 ˜ f 2 
(α) ≈

{
( ̃  f 2 ) (3) ( ̄α1 ) 

α3 

3! 
= 4 · (1 − ρ11 ) · x 2 1 · α3 if α > 0 

( ̃  f 2 ) (3) ( ̄α2 ) 
α3 

3! 
= −4 · (1 − ρ22 ) · x 2 2 · α3 if α < 0 

(I.4) 

s an example, consider n = 2 independent Gamma distributed 

isks with shape and rate parameters γ1 = ϑ 1 = 1 for risk 1 

nd γ2 = ϑ 2 = 2 for risk 2. We consider f �,X (u ) = VaR 99 . 5% 

(
u T X 

)
−

 

(
u T X 

)
. We have evaluated the remainder R ˜ f 2 

for α ∈ [ −1 , 1] .
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Fig. 3. Error between g(u ) and f �,X (u ) and corresponding estimates as a percentage of f �,X (u ) . 

Fig. 4. Contour plot of the relative error between g(u ) and f �,X (u ) according to the examples in sections 4.2 and 4.3 . Upper part: x-axis reflects value of u 1 = u 2 be- 

tween 0.25 and 1.75; y-axis reflects corresponding values of u 3 = u 4 ; u 5 = 1 is held constant. For example, the upper left corner of the figures correspond to u = 

(0 . 25 , 0 . 25 , 1 . 75 , 1 . 75 , 1) T . Lower part: x-axis reflects the exposures u 1 ; y-axis reflects the exposures u 2 ; u 3 = 1 is held constant. 

H  

w

p  

l

 

c

a  

a

c

o

0

t

i

ence, we have evaluated the error between g 2 (u ) and f 2 �,X (u ) (as

ell as the corresponding thresholds) for all weighted sums of the 

ortfolios u 1 = (2 , 0) T and u 2 = (0 , 2) T . Afterwards, we have trans-

ated the error and thresholds into the error between g(u ) and 

f �,X (u ) according to Eq. (2) . Fig. 3 depicts the latter error (red

urve) and estimates of it (gray and black curves) as a percent- 

ge of f �,X (u ) . The black curve in Fig. 3 shows the error estimate

ccording to line (I.4) . While this estimate does not require the cal- 

(

13 
ulation of any third-order derivatives, it is not necessarily accurate 

r conservative if α is in the middle between −1 and 0 or between 

 and 1. The gray curves in Fig. 3 reflect the thresholds according 

o (I.2) and (I.3) . We have calculated third-order derivatives numer- 

cally by 

 ̃

 f 2 ) (3) (α) ≈ ( ̃  f 2 ) ′ (α − �α) − 2 · ( ̃  f 2 ) ′ (α) + ( ̃  f 2 ) ′ (α + �α) 

(�α) 2 
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Table 5 

Calculated sensitivity-implied tail-correlation matrices and their eigenvalues for three risk measures. 

Risk measure 99.5% VaR 99.5% ES 99.5% GS with λ = 0 . 1 

Matrices -0.181 1.421 0.748 1.205 -0.429 0.402 1.272 -0.512 0.384 

1.421 -0.181 0.748 -0.429 1.205 0.402 -0.512 1.272 0.384 

0.748 0.748 0.606 0.402 0.402 0.926 0.384 0.384 0.945 

Eigenvalues 2.03 -0.18 -1.60 1.63 1.42 0.28 1.78 1.40 0.30 

Table 6 

Estimation results from Monte-Carlo simulations for some ingredients of the sensitivity-implied tail-correlation matrix, 

cf. line (8) ; n sim = 50 , 0 0 0 . 

f (1 5 ) f �,X (e 1 ) 
∂ 

∂u 1 
f �,X (1 5 ) 

∂ 2 

∂ u 1 ∂ u 2 
f �,X (1 5 ) 

True values 

8.115 4.679 2.830 -1.080 

Bandwidth factor, c RMSE 

1 0.081 0.067 0.193 1.183 

2 0.110 0.125 0.154 0.460 

3 0.203 0.270 0.152 0.270 

4 0.349 0.486 0.181 0.237 

5 0.543 0.774 0.238 0.296 

w  

(

a

A

t

a

c

5  

t  

s  

s  

p

W

(  

a  

e

s

t

b  

p  

t  

t

w

f

b  

t

0  

l

A

 

0  

o

o

I  

a

D

C

F

C

–

R

A  

A  

B  

B  

B  

B  

B  

C

C

C  

C  

D  

D

E

E
E

F

F  

F  

G  

G

G  
ith �α = 0 . 1 . As shown in Fig. 3 , the thresholds from (I.2) and

I.3) are conservative, but not necessarily close at R ˜ f 2 
(α) if α is 

way from 0. 

ppendix J. Example: Estimating the sensitivity-implied 

ail-correlation matrix from Monte-Carlo simulations 

We consider the example from Section 4.2 . We perform 

 simulation-based estimation of the sensitivity-implied tail- 

orrelation matrix similarly to the example in Tasche (2009 , pp. 

86 ff.). We draw n sim 

= 50 , 0 0 0 simulations of the random vec-

or (X 1 , . . . , X 5 ) 
T and repeat the simulation 50 times. The risk mea-

urements f �,X (1 5 ) and f �,X (e k ) are estimated based on the Gaus-

ian kernel and recursion formula (4.2) in Gourieroux et al. (20 0 0 ,

. 234). The gradient D f �,X (1 5 ) is estimated by the Nadaraya- 

atson kernel estimator for conditional expectations, cf. Tasche 

2009 , p. 584, Eq. (11)). The Hesse matrix D 

2 f �,X (1 5 ) is estimated

ccording to Gourieroux et al. (20 0 0 , p. 235, Eq. (4.4)). In each

stimation, we set the bandwidth initially in line with the clas- 

ical proportionality rule, i.e. h = 

(
4 
3 

)1 / 5 · σP · n −1 / 5 
sim 

with σP being 

he estimated standard deviation of 
∑ 5 

i =1 X i . Moreover, we vary the 

andwidth by multiplying it by factors c ∈ { 1 , 2 , 3 , 4 , 5 } . Table 6 re-

orts the RMSE of the aggregate VaR, the VaR of X 1 , the first en-

ry of D f �,X (1 5 ) and entry (1,2) of D 

2 f �,X (1 5 ) , each depending on

he bandwidth factor. To calculate the sensitivity-implied matrix, 

e use an increased bandwidth by factor 3 for the gradient and by 

actor 4 for the Hesse matrix, given that these choices seem to sta- 

ilize the estimates (cf. Table 6 ). On average, the entries of the es-

imated sensitivity-implied tail-correlation matrix have a RMSE of 

.050. This RMSE can be reduced to 0.032 if n sim 

= 50 0 , 0 0 0 simu-

ations are used. 

ppendix K. Gradient of the function g(u ) 

Let n ∈ N , R be a symmetrix matrix and x ∈ R 

n such that x T Rx >

 . We consider the function g(u ) as defined in line (6) . The first-

rder partial derivative of g with respect to an entry u k of u is 

btained as 

∂ 

∂u k 

g(u ) = 

∑ n 
i =1 ρki u i x i √ 

( u ◦ x ) 
T R ( u ◦ x ) 

· x k (K.1) 

n matrix notation and at u = 1 n , the gradient of g is determined

s 

 g ( 1 n ) = 

(Rx ) ◦ x √ (K.2) 

x T R x 

14 
RediT authorship contribution statement 

Joachim Paulusch: Conceptualization, Methodology, Validation, 

ormal analysis, Writing – review & editing. Sebastian Schlütter: 

onceptualization, Methodology, Software, Formal analysis, Writing 

original draft, Visualization. 

eferences 

cerbi, C. , Tasche, D. , 2002. On the coherence of expected shortfall. J Bank Financ
26 (7), 1487–1503 . 

ng, A. , Chen, J. , 2002. Asymmetric correlations of equity portfolios. J Financ Econ
63 (3), 443–494 . 

ernard, C. , Denuit, M. , Vanduffel, S. , 2018. Measuring portfolio risk under partial

dependence information. J Risk Insur 85 (3), 843–863 . 
oonen, T.J. , Tsanakas, A. , Wüthrich, M.V. , 2017. Capital allocation for portfolios with

non-linear risk aggregation. Insur Math Econ 72, 95–106 . 
raun, A. , Schmeiser, H. , Schreiber, F. , 2017. Portfolio optimization under solvency II:

implicit constraints imposed by the market risk standard formula. J Risk Insur 
84 (1), 177–207 . 

reuer, T. , Janda ̌cka, M. , Rheinberger, K. , Summer, M. , 2010. Does adding up of eco-

nomic capital for market-and credit risk amount to conservative risk assess- 
ment? J Bank Financ 34 (4), 703–712 . 

uch, A. , Dorfleitner, G. , Wimmer, M. , 2011. Risk capital allocation for RORAC opti-
mization. J Bank Financ 35 (11), 30 01–30 09 . 

ampbell, R. , Koedijk, K. , Kofman, P. , 2002. Increased correlation in bear markets. 
Financ Anal J 58 (1), 87–94 . 

asella, G. , Berger, R. , 2002. Statistical inference, 2nd edition. Duxbury . 

hen, T. , Goh, J.R. , Kamiya, S. , Lou, P. , 2019. Marginal cost of risk-based capital and
risk-taking. J Bank Financ 103, 130–145 . 

hristiansen, M.C. , Denuit, M.M. , Lazarc, D. , 2012. The solvency II square-root for-
mula for systematic biometric risk. Insur Math Econ 50 (2), 257–265 . 

evineau, L. , Loisel, S. , 2009. Risk aggregation in solvency II: how to converge the
approaches of the internal models and those of the standard formula? Bulletin 

Français d’Actuariat 9 (18), 107–145 . 

iers, D. , 2011. Management strategies in multi-year enterprise risk management. 
Geneva Pap Risk Ins 36 (1), 107–125 . 

ckert, J. , Gatzert, N. , 2018. Risk-and value-based management for non-life insurers 
under solvency constraints. Eur J Oper Res 266 (2), 761–774 . 

pperlein, E. , Smillie, A. , 2006. Cracking VAR with kernels. Risk 19, 70–74 . 
uropean Insurance and Occupational Pensions Authority (EIOPA) , 2014. The Under- 

lying Assumptions in the Standard Formula for the Solvency Capital Require- 

ment Calculation, EIOPA-14-322 . 
olland, G.B. , 2001. Advanced calculus. Pearson . 

urman, E. , Kye, Y. , Su, J. , 2020. A reconciliation of the top-down and bottom-up
approaches to risk capital allocations: proportional allocations revisited. N Am 

Actuar J 1–22 . 
urman, E. , Wang, R. , Zitikis, R. , 2017. Gini-type measures of risk and variability: gini

shortfall, capital allocations, and heavy-tailed risks. J Bank Financ 83, 70–84 . 
atzert, N. , Heidinger, D. , 2020. An empirical analysis of market reactions to the first

solvency and financial condition reports in the european insurance industry. J 

Risk Insur 87 (2), 407–436 . 
lasserman, P. , 2005. Measuring marginal risk contributions in credit portfolios. 

FDIC Center for Financial Research Working Paper (2005-01) . 
ourieroux, C. , Laurent, J.-P. , Scaillet, O. , 20 0 0. Sensitivity analysis of values at risk.

J Empir Financ 7 (3–4), 225–245 . 

http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0001
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0001
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0001
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0002
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0002
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0002
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0003
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0003
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0003
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0003
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0004
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0004
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0004
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0004
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0005
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0005
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0005
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0005
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0006
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0006
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0006
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0006
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0006
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0007
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0007
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0007
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0007
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0008
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0008
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0008
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0008
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0009
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0009
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0009
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0010
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0010
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0010
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0010
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0010
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0011
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0011
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0011
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0011
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0012
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0012
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0012
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0013
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0013
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0014
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0014
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0014
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0015
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0015
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0015
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0016
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0016
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0017
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0017
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0018
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0018
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0018
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0018
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0019
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0019
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0019
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0019
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0020
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0020
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0020
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0021
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0021
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0022
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0022
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0022
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0022


J. Paulusch and S. Schlütter Journal of Banking and Finance 134 (2022) 106333 

H  

H

L  

L  

M

M

M

M

M

P  

R  

S

S

S

T  

T
 

T

Y

Z

u, C. , Pozdnyakov, V. , Yan, J. , 2020. Density and distribution evaluation for convo-
lution of independent gamma variables. Comput Stat 35 (1), 327–342 . 

ull, J.C. , 2018. Risk management and financial institutions. Fifth edition. Wiley Fi- 
nance Series . 

i, J. , Zhu, X. , Lee, C.-F. , Wu, D. , Feng, J. , Shi, Y. , 2015. On the aggregation of credit,
market and operational risks. Rev Quant Finance Account 44 (1), 161–189 . 

ongin, F. , Solnik, B. , 2001. Extreme correlation of international equity markets. J
Financ 56 (2), 649–676 . 

arkowitz, H.M. , 1952. Portfolio selection. J Financ 7 (1), 77–91 . 

athur, S. , 2015. Risk Aggregation and Capital Management. In: Baker, H.K., Fil- 
beck, G. (Eds.), Investment Risk Management. Oxford University Press, Oxford, 

pp. 261–279 . 
cNeil, A.J. , Frey, R. , Embrechts, P. , 2015. Quantitative risk management: Concepts, 

techniques and tools - Revised edition. Princeton Series in Finance . 
ittnik, S. , 2014. VaR-Implied tail-correlation matrices. Econ Lett 122 (1), 69–73 . 

oschopoulos, P.G. , 1985. The distribution of the sum of independent gamma ran- 

dom variables. Ann Inst Stat Math 37 (3), 541–544 . 
feifer, D. , Strassburger, D. , 2008. Solvency II: stability problems with the SCR ag-

gregation formula. Scand Actuar J 1, 61–77 . 
osenberg, J.V. , Schuermann, T. , 2006. A general approach to integrated risk man-

agement with skewed, fat-tailed risks. J Financ Econ 79 (3), 569–614 . 
15 
caillet, O. , 2004. Nonparametric estimation and sensitivity analysis of expected 
shortfall. Math Financ 14 (1), 115–129 . 

iller, T. , 2013. Measuring marginal risk contributions in credit portfolios. Quant Fi- 
nanc 13 (12), 1915–1923 . 

toughton, N.M. , Zechner, J. , 2007. Optimal capital allocation using RAROC and EVA. 
J Financ Intermed 16 (3), 312–342 . 

argino, R.S. , Peters, G.W. , Shevchenko, P.V. , 2015. Sequential monte carlo samplers
for capital allocation under copula-dependent risk models. Insur Math Econ 61, 

206–226 . 

asche, D. , 2008. Capital Allocation to Business Units and Sub-portfolios: The Euler 
Principle. In: Resti, A. (Ed.), Pillar II in the New Basel Accord: The Challenge of

Economic Capital. Risk Books, London, pp. 423–453 . 
asche, D. , 2009. Capital allocation for credit portfolios with kernel estimators. 

Quant Financ 9 (5), 581–595 . 
ow, S. , Sherris, M. , 2008. Enterprise risk management, insurer value maximization, 

and market frictions. Astin Bull 38 (1), 293–339 . 

anjani, G. , 2002. Pricing and capital allocation in catastrophe insurance. J Financ 
Econ 65 (2), 283–305 . 

http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0023
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0023
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0023
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0023
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0024
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0024
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0025
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0026
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0026
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0026
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0027
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0027
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0028
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0028
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0029
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0029
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0029
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0029
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0030
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0030
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0031
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0031
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0032
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0032
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0032
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0033
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0033
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0033
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0034
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0034
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0035
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0035
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0036
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0036
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0036
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0037
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0037
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0037
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0037
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0038
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0038
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0039
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0039
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0040
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0040
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0040
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0041
http://refhub.elsevier.com/S0378-4266(21)00284-3/sbref0041

	Sensitivity-implied tail-correlation matrices
	1 Introduction
	2 Introducing the sensitivity-implied tail-correlation matrix
	2.1 Mathematical background
	2.2 Translation to a risk measurement context
	2.3 Examples
	2.4 Properties of the sensitivity-implied tail-correlation matrix
	2.5 Estimation

	3 Traditional tail-correlation matrices
	4 Numerical examples
	4.1 Set-up
	4.2 Relevance of first-order sensitivities
	4.3 Relevance of second-order sensitivities

	5 Conclusion
	Declaration of Competing Interest
	Appendix A Proof of Theorem 1
	Appendix B Proof of Proposition 1
	Appendix C Proof of Proposition 2
	Appendix D Distribution of portfolio loss for mixed gamma distributed risks
	Appendix E Proof of Proposition 3
	Appendix F Example: No upper threshold for diagonal elements of sensitivity-implied matrix
	Appendix G Proof of Proposition 4
	Appendix H Proof of Proposition 5
	Appendix I Example: Assessing the error between  and  with  risks
	Appendix J Example: Estimating the sensitivity-implied tail-correlation matrix from Monte-Carlo simulations
	Appendix K Gradient of the function 
	CRediT authorship contribution statement
	References


