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Chapter 1

Introduction

The impressive experimental progress in the field of ultracold atoms in the last decade has
brought it to the forefront of research on strongly correlated quantum many-body systems.
The possibility to confine and manipulate atoms in optical lattices created by standing waves
of laser light gives the opportunity to realize some of the model Hamiltonians of condensed-
matter physics, and this way shed light on notoriously difficult problems [1–3]. Going beyond
that, also systems without clear analog in “conventional” condensed matter systems can be
realized. In particular, cold atomic gases offer the possibility to realize mixtures of fermions
and bosons [4–19]. This yields a very rich system, which at this moment is far from fully
explored.

This system bears some analogy with the well-known two-component Fermi-Fermi mixture,
but is in fact much richer. By replacing one of the fermionic components by bosons, one
keeps the instability of half-filled fermions towards charge-density wave (CDW) ordering. For
historical reasons we keep this terminology throughout this thesis, although the fermionic
atoms under consideration do not carry a charge. At the same time the bosonic species can
be superfluid, allowing for supersolid behavior, where diagonal CDW order coexists with off-
diagonal superfluid long-range order. Several previous theoretical works have studied mixtures
of fermions and bosons in an optical lattice [20–45].

Investigating a strongly correlated Bose-Fermi mixture in an optical lattice is a difficult
problem, to which powerful numerical and analytical techniques have been applied. In one
dimension this involved Bethe-Ansatz technique [25], bosonization [26, 28], Density Matrix
Renormalization Group [32, 35], and quantum Monte Carlo (QMC) [23, 36–40]. In higher di-
mensions, however, non-perturbative calculations are sparse. In two dimensions Renormaliza-
tion Group studies [24, 31] have been carried out. Although able to describe non-perturbative
effects, this technique is limited to weak couplings. Another powerful technique that has
been applied in two [29], and recently also three dimensions [33, 34] is to integrate out the
fermions. In this way one generates a long-ranged, retarded interaction between the bosons,
which means that the resulting bosonic problem is still hard to solve. Important progress has
recently been made in mapping out the Mott-insulating lobes. A composite fermion approach
[30] was used to qualitatively describe possible quantum phases of the Bose-Fermi mixture.

In this thesis we introduce and apply Generalized Dynamical Mean-Field Theory (GDMFT)
to study this problem. This is a non-perturbative method which becomes exact in infinite di-
mensions and is a good approximation for three spatial dimensions (see section 3.2). The only
small parameter is 1/z, where z is the coordination number. For this reason, the method
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6 1. Introduction

reliably describes the full range from weak to strong coupling. The advantage of this method
is that in contrast to QMC calculations, this method works in high dimension and not only
allows to map out the phase borders but also gives reliable results away from it (in contrast
to the Refs. [29, 33, 34]). As we will show in section 3.2 GDMFT has a systematic derivation
in contrast to the composite fermion approach.

We apply the GDMFT to a variety of cases. In particular, we study commensurate mixture
of the spinless (spin-polarized) fermions and bosons, as well as a mixture of hard-core bosons
and two-component fermions in an optical lattice. The reason why we chose commensurate
filling is that in this case interesting phases, like the supersolid can occur, which break the
translation symmetry. We also take into account the effect of the harmonic trap. For this
purpose we develop Real Space Dynamical Mean-Field Theory (R-DMFT) (see section 3.3).

This thesis is structured as follows: In chapter 2 we present a short overview of the
physics of ultracold atoms. We start with a short historical outlook (section 2.1). Then we
briefly review the cooling methods (section 2.1), Feshbach resonance (section 2.3), BCS-BEC
crossover (section 2.4), optical lattices (section 2.5) and in the end of the chapter we derive
the model Hamiltonians that will be dealt with the rest of the thesis (section 2.6).

In chapter 3 we describe the methods used in this thesis. In particular, dynamical mean
field theory (section 3.1), GDMFT (section 3.2), R-DMFT (section 3.3). In this chapter we
also consider impurity solvers which we use during our calculation: exact diagonalization
(section 3.4.1) and numerical renormalization theory (section 3.4.2).

In chapter 4 we study the mixture of the spinless fermions and bosons for commensurate
fillings. In particular, in section 4.1.1 we study this mixture when both of them are half-filled,
while in the section 4.1.2 we study the case when the fermions are again half-filled while the
filling of the bosons is 3/2. In this chapter we also study a mixture of hard-core bosons and
two-component fermions (section 4.2).

In chapter 5 we study the effect of the harmonic trap. First we study a repulsively in-
teracting two component Fermi gas in a harmonic trap. We investigate the stability of the
antiferromagnetic order against the presence of the harmonic potential (section 5.1). Later
on we consider a mixture of spinless fermions and bosons and investigate the stability of the
supersolid in the presence of the trap (section 5.2).

In chapter 6 we study an ultracold atomic gas of fermionic atoms and bosonic molecules
close to a Feshbach resonance. We consider the process when due to the Feshbach resonance
two fermionic atoms with opposite spin can form a bosonic molecule. Varying the magnetic
field one can detune the bosonic level compared to fermionic one. Doing this one can vary the
ratio of the filling of fermions and bosons. We find a phase transition between the BEC/BCS
phase and a fermionic Mott insulator.



Chapter 2

Ultracold atomic Physics

In this chapter we overview the main background of the physics considered in this thesis.
Since it is one of our main goals to study the BCS-BEC crossover in an optical lattice, we
elaborate on this theme, paying also attention to the historical development. Besides that, we
discuss the various cooling techniques and the main characteristics of optical lattices. Finally,
we derive the Hamiltonians that will be studied in the following chapters.

2.1 Short Overview

The history of superconductivity/superfluidity started in early 20th century when H. Kamer-
lingh Onnes discovered that if a metallic sample of mercury is cooled below 4.2K the resistance
reduces to zero [46]. Later on, in 1938, two different groups independently observed superflu-
idity of bosonic Helium (4He) [47, 48]. They observed that below 2.17K the viscosity vanishes.
Much later it was observed that also fermionic Helium (3He) becomes superfluid below a critical
temperature of 2.7mK [49]. In 1938 F. London suggested a connection between superfluidity
and Bose-Einstein condensation (BEC) [50], which was predicted by S.N. Bose [51] and A.
Einstein [52, 53] in 1924-1925. For the first phenomenological understanding of superfluidity
[54, 55] L. D. Landau received the Nobel prize in 1962. A microscopic understanding of this
phenomenon was developed by N. N. Bogoliubov [56]. The theoretical understanding of super-
conductivity took considerably longer. It was not until 1956, that the key idea emerged by L.
Cooper [57]. He showed that an arbitrary small interaction between two fermions (electrons)
with opposite spin and momenta, in the presence of many other fermions (electrons) can lead
to the formation of bound pairs thereby reducing the total energy. The presence of the other
fermions, forming a Fermi sea, is crucial, because without them a critical interaction strength
is required for the formation of a bound pair in three dimension. A microscopic theory for
superconductivity, the BCS theory [58], was developed one year after L. Cooper’s work by J.
Bardeen, L. N. Cooper, and J. R. Schrieffer.

Even earlier than the formulation of the BCS theory, in 1954, M. R. Schafroth proposed
that superconductivity occurs due to the existence of a charged Bose gas of two-electron bound
states that condenses below the critical temperature [59]. This theory was not able to explain
experiments, and the idea was not appreciated at that time. It was thought that there were
fundamental differences rather than similarities between the BCS state and the BEC.

The first theoretical explanation of the crossover from the BCS state to the BEC was
given by D. M. Eagles [60] in the late sixties, in the context of studying the BCS states at
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8 2. Ultracold atomic Physics

low carrier concentrations in superconducting semiconductors at T = 0. Only in 1980, A.
Leggett reconciled the BCS picture of the Cooper pairs and Schafroth’s BEC [61]. Leggett
considered a dilute gas of fermions within a mean-field framework at T = 0 and showed that
the BCS state was applicable in more general frame than just in the weakly interacting limit.
In the weak coupling limit it describes the BCS theory of Cooper pairs, while in the strong
coupling limit it describes the BEC state of strongly bounded pairs, which are bosonic in
nature. Thus changing the interaction between fermions, there is a smooth crossover from
BCS Cooper pairs to the BEC of composed bosons. Later on, P. Nozières and S. Schmitt-
Rink used a diagrammatic method with a finite-ranged attraction and generalized Leggett’s
work for temperatures close to the critical temperature for superfluidity [62].

The discovery of high-Tc superconductivity in 1986 [63] showed that BCS theory fails to
describe important regions of the phase diagram. It was shown that the size of Cooper pairs
is much smaller than in conventional superconductors, but is larger than the size of tightly
bound bosons on the BEC side. Due to this reason, the BCS-BEC crossover became a popular
subject for investigation during the last two decades.

The first experimental realization of a Bose-Einstein condensate in dilute atomic gases
for rubidium [64], lithium [65] and sodium [66], even more motivated scientists to study the
BEC-BCS crossover. Cold atomic gases provide a perfect laboratory for comparing theoretical
and experimental results with high accuracy. This can be considered as the starting point of
this new area of research. The first experiments were performed on ultracold bosonic gases.
In particular the important consequences of the Bose-Einstein condensation were investigated,
which up to 1995 had remained an elusive and inaccessible phenomenon in experiment. In
the last 15 years there has been significant experimental progress. These include accessing
of hydrodynamic nature of collective oscillations [67, 68], the observation of the interference
of matter waves [69], realization of: spinor condensates [70], Josephson like effects [71, 72],
superfluid-Mott insulator transition [1, 73–76], Hanbury-Brown-Twiss effect [77], and many
other phenomenon.

It did not take too long, after the first realization of the BEC until ultracold fermionic
gases were studied experimentally as well. The first important results of quantum degeneracy
in trapped Fermi gases were obtained in 1999 by the JILA group [78] and later on by other
groups [4, 17]. More recent experimental works concentrated on studying the effect of spin
imbalance on the BCS state, i.e. the case when an unequal number of fermions occupies two
different spin states [79–82], the effect of periodic potentials on trapped Fermi gases [83–86]
as well as mixtures of fermions with unequal masses, such as 6Li and 40K [87, 88]. Recently,
for repulsively interacting fermions the Mott insulator were realized [89, 90].

Ultracold atomic gases also allow to perform experiments on Bose-Fermi mixtures [4–19].
One of the key questions that has been explored is the effect of fermions on the mobility of the
bosons, in particular the effect of fermions on the superfluid-Mott transition for the bosons
[10–16]. The most impressive result was that the time of flight experiments show dramatic loss
of bosonic coherence. These results indicate that adding the fermions causes a stabilization of
the Mott insulator phase.

A more detailed overview of the physics of cold atomic gases is given in the following
review papers: [91–95].
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Figure 2.1: Typical temperatures in the universe (From Ref. [96]).

2.2 Cooling Atoms

The ultracold atomic physics takes place at the lowest temperatures in the universe, which can
only be reached by means of sophisticated cooling techniques in experiments. In Fig. 2.1 we
compare these temperatures to the other typical temperatures in the universe. In this section,
we shortly describe how such low temperatures can be reached.

One starts with a beam of atoms emerging from an oven at a temperature of about 600K,
which corresponds to a speed of about 800m/s for sodium atoms (see Fig. 2.2). Afterwards
it passes through so called Zeeman slower. In the Zeeman slower, a laser beam propagates in
the direction opposite to the atomic beam, and the radiation force produced by absorption of

Figure 2.2: A typical experiment to cool and trap alkali atoms (From Ref. [97]).
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Figure 2.3: A schematic structure illustrating evaporative cooling (From Ref. [97]).

photons retards the atoms. The velocity of atoms is reduced to about 30m/s corresponding
to a temperature of order 1K. After emerging from the Zeeman slower, the atoms are already
slowed down sufficiently to be captured by the magneto-optical trap (MOT), where they are
further cooled by interacting with the laser light to a temperature of 100µK. However, even
these low temperatures are not sufficient to reach Bose-Einstein condensation, so the system
has to be further cooled using evaporative cooling. This decreases the temperature to values
as low as 3nK [98].

The idea of evaporative cooling is relatively simple [97, 99, 100]: by slowly reducing the
height of the trap, particles with a higher energy than the edge of the trap will escape, which
lowers the average energy and correspondingly the temperature in the system (see Fig. 2.3).

A more detailed discussion can be found in [97, 100, 101].

2.3 Feshbach Resonances

Interaction effects in quantum degenerate, dilute cold atomic gases can be accurately mod-
eled by a small number of parameters characterizing the physics of two-body collisions. The
interaction potential between two neutral atoms is of the Lennard-Jones form [102]:

V (r) =
A

r12
− B

r6
. (2.1)

If one neglects the small relativistic spin-orbital interactions, the problem of describing the
collision process between two atoms reduces to the solution of the Schrödinger equation for
the relative motion: (

− ~2

2mr
∇2 + V (r)− ε

)
Ψ(r) = 0 , (2.2)
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where r = r1 − r2 is the relative coordinate of the two atoms and mr = m1m2/(m1 + m2)
is the reduced mass. For positive energies ε > 0, the solution of Eq. (2.2) in the asymptotic
region can be written as:

Ψ(r) = eik·r + f(k, θ)
eikr

r
, (2.3)

where k is the incoming relative momentum and θ is scattering angle. The scattering state at
large distance appears as a superposition of the plane wave (eik·r) and an outgoing spherical
wave ( e

ikr

r ). f(k, θ) is by definition the scattering amplitude of the process. For k → 0 the
s-wave scattering amplitude tends to a constant value independent of k and θ. The quantity

as = lim
k→0

f(k, θ) (2.4)

is called the s-wave scattering length and plays a crucial role in the effective description of the
scattering processes at low temperatures. In particular, the low-energy scattering potential
between two atoms can be expressed in terms of the scattering length only

V (r− r′) =
4π~2

m
asδ(r− r′) . (2.5)

In the rest of this thesis we will use this representation of the interatomic potential in terms
of the scattering length. Generally the use of the delta-potential leads to a divergence. In
chapter 6 we will explicitly encounter this divergence, which can be dealt with by standard
renormalization procedures.

The Feshbach resonances is an important tool to experimentally investigate cold atomic
gases. It allows to tune the scattering length as to values much larger than the mean inter-
atomic distance and even change its sign, by changing the external magnetic field [103]. This
resonance occurs when the energy associated with an elastic scattering process (open channel)
comes close to the energy of a bound state (closed channel) (see Fig. 2.4). This phenomenon
was first investigated in the context of reactions forming compound nuclei [104] and later on,
independently, for a description of configuration interactions in multielectron atoms [105]. In
the context of cold atomic physics Feshbach resonances were first used for bosonic systems
[106, 107]. Due to non-elastic processes the tuning of interaction strength is limited to the case
of repulsive interactions [108]. In the case of fermions, due to the Pauli principle three-body
losses are suppressed and this causes a greater stability of the gas [109].

Phenomenologically, a Feshbach resonance can be described by an effective pseudopotential
between atoms of the open channel with the scattering length:

as(B) = abg

(
1− ∆B

B −B0

)
, (2.6)

where abg is the off-resonance background scattering length, B0 is the magnetic field at reso-
nance and ∆B is the width of the resonance. As one can see from Eq. (2.6) for the magnetic
field B0 + ∆B, the scattering length as(B0 + ∆B) = 0. In the Fig. 2.5 we plot the scattering
length as a function of the magnetic field. Now we will derive Eq. (2.6) by following Ref. [97].

The space of states describing two scattering atoms can be divided into two subspaces: P ,
which contains the open channel and Q, which contains the closed ones. We write the state
vector |Ψ〉 as the sum of its projections onto the two subspaces:

|Ψ〉 = |ΨP 〉+ |ΨQ〉 , (2.7)
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Figure 2.4: Schematic picture of a Feshbach resonance. Atoms prepared in the open channel
undergo a collision at low incident energy. During the collision the open channel is coupled to
the closed channel. When a bound state of the closed channel has an energy close to zero, the
scattering resonance occurs. The position of the closed channel can be detuned with respect
to the open one, e.g., by varying the magnetic field B. (From Ref. [92])

Figure 2.5: Magnetic field dependence of the scattering length between two lowest magnetic
substates of 6Li with the Feshbach resonance at B0 = 834G and a zero crossing at B0 +∆B =
534G. The background scatterring length is abg = −1405a0, where a0 is the Bohr radius.
(from Ref. [92])
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where |ΨP 〉 = P̂|Ψ〉 and |ΨQ〉 = Q̂|Ψ〉. Here P̂ and Q̂ are projection operators, that fulfill the
following relations: P̂ + Q̂ = 1 and P̂Q̂ = Q̂P̂ = 0. From this it follows that

|Ψ〉 = (P̂ + Q̂)2|Ψ〉 =
(
P̂2 + Q̂2

)
|Ψ〉 = P̂|ΨP 〉+ Q̂|ΨQ〉 . (2.8)

Now let us multiply the Schrödinger equation Ĥ|Ψ〉 = E|Ψ〉 on the left by P̂ and Q̂, and
use Eq. (2.8). We thus obtain:

(E − ĤPP )|ΨP 〉 = ĤPQ|ΨQ〉 , (2.9)

(E − ĤQQ)|ΨQ〉 = ĤQP |ΨP 〉 . (2.10)

Here we define

ĤPP = P̂ĤP̂ , ĤQQ = Q̂ĤQ̂ , ĤPQ = P̂ĤQ̂ and ĤQP = Q̂ĤP̂ . (2.11)

Combining Eqs. (2.9) and (2.10) we obtain that(
E − ĤPP − Ĥ′PP

)
|ΨP 〉 = 0 , (2.12)

where

Ĥ′PP = ĤPQ
(
E − ĤQQ + iδ

)−1
ĤQP . (2.13)

Adding a positive infinitesimal imaginary part δ in the denominator ensures that the scattered
wave contains only outgoing terms.

It is convenient to divide ĤPP + ĤQQ into a term Ĥ0 independent of the separation of the
two atoms, and an interaction contribution. We write

ĤPP = Ĥ0 + Û1 , (2.14)

where Ĥ0 is the sum of the kinetic energy of the relative motion and the hyperfine and Zeeman
terms. Û1 is the interaction term for the P subspace. The total atom-atom interaction in the
subspace of the open channel is given by

Û = Û1 + Û2 , (2.15)

where

Û2 = Ĥ′PP . (2.16)

The quantity which characterizes the elastic scattering is the T -matrix T (k′,k, ~2k2/2mr).
Here k and k′ are incoming and outgoing relative momentum and mr = m/2 is the reduced
mass. There is the following relation, between the T -matrix and scattering length as:

T (0, 0, 0) =
4π~2

m
as . (2.17)

One can calculate the T -matrix, by solving the Lippmann-Schwinger operator equation:

T̂ = Û + ÛĜ0T̂ , (2.18)
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where

Ĝ0 = (E − Ĥ0 + iδ)−1 (2.19)

is the Green’s function for the Schrödinger equation. The formal solution of Eq. (2.18) is

T̂ =
(

1− ÛĜ0

)−1
Û = Û

(
1− Ĝ0Û

)−1
. (2.20)

One can show that

T̂ = T̂P +
(

1− Û1Ĝ0

)−1
Û2

(
1− Ĝ0Û

)−1
. (2.21)

Here

T̂P =
(

1− Û1Ĝ0

)−1
Û1 (2.22)

is the T -matrix in P subspace if transitions into the Q subspace are neglected.
We now apply the above results, and we begin by considering the contribution that are

first order in Û2. This is equivalent to replacing Û by Û1 in Eq. (2.21), which gives

T̂ = T̂P +
(

1− Û1Ĝ0

)−1
Û2

(
1− Ĝ0Û1

)−1
. (2.23)

The matrix elements between plane-wave states are given by

〈k′|T̂ |k〉 = 〈k′|T̂P |k〉+ 〈k′;U1,−|Û2|k;U1,+〉 , (2.24)

where |k;U1,+〉 =
(

1− Ĝ0Û1

)−1
|k〉 and 〈k′;U1,−| = 〈k′|

(
1− Û1Ĝ0

)−1
.

Now we neglect the coupling between the open channels. In this case we can neglect the
difference between the scattering states with incoming and outgoing spherical waves and define
this state as |ψ0〉. Let us define the states of the closed channel as |ψn〉 (n 6= 0). Then we
obtain from Eqs. (2.13), (2.16), (2.17) and (2.24) that the scattering length is given by the
following expression:

4π~2

m
as =

4π~2

m
aP +

∑
n6=0

|〈ψn|ĤQP |ψ0〉|2

Eth − En
, (2.25)

where Eth is the threshold energy and aP is the scattering length if the coupling between the
open and the closed channel is neglected and the sum n is over all states of the closed channel.

If Eth is close to one of the states of the closed channel Em, then the contribution of all
other terms in the sum in Eq. (2.25), except of the resonance term n = m, will vary slowly
with energy and one can neglect this dependence. So we will obtain:

4π~2

m
as =

4π~2

m
abg +

|〈ψn|ĤQP |ψ0〉|2

Eth − Eres
. (2.26)

This expression shows how the scattering length depends on the energy. We assume that for
B = B0, the denominator vanishes, i.e. Eth = Eres. This enables us to expand Eth − Eres
around this value of the magnetic field

Eth − Eres ' C(B −B0) . (2.27)
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Putting Eq. (2.27) in Eq. (2.26) we directly obtain Eq. (2.6).
In the end of this section it should be mentioned that there exist two different types of the

Feshbach resonances: broad and narrow. For the broad resonance, single channel calculations
is in excellent agreement with the outcomes of coupled-channel calculations over a wide range
of the magnetic field. For the narrow resonance, such a mapping can be realized only for a
very narrow region of the magnetic field, which experimentally is not accessible [110, 111].

In a Fermi gas the distinction between broad and narrow resonances involves the compar-
ison of the wave vector to the length scale associated with the inverse width (R?)−1 of the
resonance. If the condition

kF |R?| � 1 (2.28)

is satisfied, the effective range is irrelevant at the many body level and the properties of the
gas can be described by the dimensionless parameter kFas only. This corresponds to a broad
Feshbach resonance. On the contrary, for a narrow Feshbach resonance, kF |R?| & 1, the
effective range becomes a relevant scale of the problem [112–114].

A broad Feshbach resonance for 40K atoms take place at B ' 202.1G [115, 116] and for
6Li atoms at B = 834G [117–120]. In both of these cases kF |R?| . 0.01. A Narrow Feshbach
resonance occurs for 6Li atoms at B = 543.23G [121] and in this case kF |R?| & 1.

To conclude, the Feshbach resonance is a good tool to change the interaction strength
between ultracold atoms over a wide range. It even allows to change the sign of the interaction.
More details about Feshbach resonances can be found in the following references: [95, 97, 111,
122–125]

2.4 BCS-BEC Crossover

As we already mentioned in section 2.1, the BCS-BEC crossover is one of the challenging
problems in condensed matter physics. In this section we will briefly overview this huge topic.

If the scattering length is tuned to small positive values, fermions with different spin will
form a dimer and further increase of the interaction strength will lead to the formation of a
bosonic gas of molecules. Such molecules can be obtained by cooling a gas at a positive value
of the scattering length. Alternative way to obtain such a molecule is, first cool gas, obtain
BCS state and then tune interaction. During this process BCS-BEC crossover can be observed.
Bose-Einstein condensation of pairs of atoms at very low temperatures was observed by several
groups [119, 120, 126–128]. Later on the properties of these systems also were studied in the
BCS regime [117, 128, 129].

Up to now no exact analytical solution of the many body problem along the whole BCS-
BEC crossover exists, but there is a general agreement at a qualitative level. The BCS, weak
attractive limit, occurs for 1/kfas � −1, while the BEC occurs for 1/kfas � 1, and the
crossover occurs in the region for −1 < 1/kfas < 1.

In Fig. 2.6 we plot the qualitative phase diagram for the BEC-BCS crossover. If tempera-
ture is relatively high, the normal state with weak attraction is a Fermi liquid. If one increases
the interaction, fermion pair-formation will take place. These two regions are separated by
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Figure 2.6: The qualitative phase diagram for the BEC-BCS crossover. The pink (dark) line
corresponds to the pair formation temperature Tpair, the blue (light) line corresponds to the
critical temperature Tc. Bellow this temperature phase coherence between pairs is established.
The unitarity limit occurs when 1/kfas = 0, where kf is the Fermi momentum and as is the
scattering length. (From Ref. [130])
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Figure 2.7: Energy spectrum Ek from the Leggett theory for: (i) η = 1/kfas = 1, ∆/EF = 1.36
and µ/Ef = −0.8 (blue line); (ii) η = −1, ∆/EF = 0.2 and µ/Ef = 0.95 (red line), (iii)
η = 0.55, ∆/EF = 1.05 and µ/Ef = 0 (green dashed line). On the axes energy and momentum
are measured in units of the Fermi energy and the Fermi momentum, respectively. (From Ref.
[131])
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the pair formation temperature Tpair (the pink (dark) line in the Fig. 2.6). If one continues
increasing the interaction then the system will smoothly evolve to a molecular Bose liquid.

To observe the BEC-BCS crossover one has to cool the system to much lower temperatures
T < Tc. The difference between the critical temperature Tc and the pair-formation tempera-
ture Tpair is quite small on the BCS side, and is large on the BEC side. It means that in the
BCS limit, pair formation and developing phase coherence take place at the similar tempera-
ture, while on the BEC side, first formation of the fermion pairs (diatomic molecules) takes
place at a temperature Tpair and only when the system is cooled below the critical temperature
T < Tc phase coherence will emerge.

There are two more important points in this phase diagram, which are worth mentioning.
One of them is the unitary limit, at which the scattering length diverges, i.e. 1/kfas = 0. In
this case, as it was first noticed by T. L. Ho [132], there is no energy or length scale related
to the interaction. Thus this is a special point because the behavior of the system does not
depend on the interparticle potential. The only scale which is relevant is the Fermi energy
EF . Another important limit is the vanishing of the chemical potential (µ = 0), which takes
place beyond the unitarity limit at zero temperature. On the BCS side µ > 0 and the energy
gap in the elementary excitation spectrum is equal to the superconducting order parameter
and occurs for the finite momentum (see Fig. 2.7), while on the BEC side, µ < 0 and the
energy gap in elementary excitation spectrum does not only depend on the superconducting
order parameter, but also depends on the chemical potential and is equal to

√
∆2 + µ2, where

∆ and µ are the superconducting order parameter and the chemical potential, respectively.
The gap occurs at zero momentum in contrast to the BCS side (see Fig. 2.7). Therefor, the
point where chemical potential vanishes is the de facto separation between the BCS and the
BEC.

The previous discussion was for the case of a balanced mixture of fermions, with equal
masses and with s-wave scattering. But the BCS-BEC crossover physics is much richer. One
can consider a mixture of an unequal number of fermions [79–82] or a mixture of fermions
with unequal masses [87, 88]. Also, one can study the effect of disorder in the BCS-BEC
evolution or p-wave scattering. Ultracold atomic gases also enable us to study mixtures of
three hyperfine states and study BCS-BEC crossover in such a systems, in particular color
superconductivity and the formation of trions [133–136].

2.5 Optical Lattices

In this section we consider cold atomic gases in optical lattices, which are created by standing
light waves. Such a systems is a good analog to conventional condensed matter systems. One
can trap millions of atoms in a periodic optical lattice, whose lattice geometry and lattice
depth are under full control of the experimentalist. As we have already discussed in section
2.3, one can also control the interaction strength. That means that we can fully control
parameters of the effective tight binding model (in detail we consider this in section 2.6).

There exist two fundamental forces on the atoms due to the coherent light field [101, 137].
One of them is the Doppler force, which is dissipative in nature and relies on radiation pressure
and spontaneous emission. This can be used to efficiently laser cool a gas of atoms. The second
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Figure 2.8: (a) A Gaussian laser beam together with the corresponding trapping potential for
a red detuned laser. (b) A red detuned laser beam leads to an attractive dipole potential,
whereas a blue detuned laser beam leads to repulsive potential (c). (From Ref. [93])

one is the dipole force, which creates a purely conservative potential, in which the atoms can
move. If the atoms are sufficiently cold this force can be used to trap them [138, 139].

The interaction between the external electrical field with the atoms in the dipole approx-
imation is given by

H′ = −~d · ~E , (2.29)

where ~d is the dipole moment of the atom and ~E is the external electric field. The resulting
dipole potential is given by (see e.g. [97]):

Vdip = −1
2
〈~d · ~E〉t =

~δΩ2
R

δ2 + Γ2
e/4

, (2.30)

where 〈. . .〉t denotes time average, 1/Γe is the lifetime of the exited state, the Rabi frequency
is defined as

ΩR = |〈e|~d · ~E|g〉|/~ (2.31)

and the detuning given by the equation:

δ = ωL − (Ee − Eg)/~ . (2.32)

|g〉 and |e〉 are the ground state and the excited state and Eg and Ee are the corresponding
energies, respectively.

From the Eq. (2.30) it is clear that a red detuned (δ < 0) laser beam leads to an attractive
dipole potential, whereas a blue detuned (δ > 0) laser beam leads to a repulsive potential (see
Fig. 2.8). This means that a red detuning laser can be used for trapping cold atoms.

Around the intensity maximum a potential depth minimum occurs for a red detuned laser
beam. Close to this point, the dipole potential can be approximated by a harmonic potential
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Figure 2.9: Two-dimensional optical lattice potentials for orthogonal polarization (a) and
parallel polarization with time phase φ = 0 (From Ref. [93]).

Figure 2.10: Two-dimensional (a) and three-dimensional (b) optical lattice potentials. For
a two-dimensional optical lattice, the atoms are confined to an array of tightly confining
one-dimensional potential tubes, while in the three-dimensional case the optical lattice can
be approximated by a three-dimensional simple cubic array of tightly confining harmonic
oscillator potentials at each site (From Ref. [93]).
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of the form:

Vdip ' V0

[
1− 2

(
r

w0

)2

−
(
z

zR

)2
]
, (2.33)

where w0 is the beam waist, which typically is 100µm and zR = πr2
0/λ is called the Rayleigh

range. r is the radial distance from the center axis of the beam and z is the axial distance
from the beam’s narrowest point.

To form a periodic potential one can use two overlapping counterpropagating laser beams
with wavelength λ. The standing wave with period λ/2 will be formed due to the interference
between the two laser beams. Depending on the number of the lasers, one can obtain one,
two, or three dimensional periodic lattices [140]. If one interferes two laser beams less than
180◦, then one can realize a periodic potential with larger period [141, 142]). In the last part
of this section we will consider the simplest one-, two- and three-dimensional lattices.

One can obtain the simplest possible lattice by overlapping two counterpropagating focused
Gaussian beams. In this case the electrical field along the x axis is given by:

Ex(r, z, t) = E0(r, z) (sin(qz − ωt) + sin(qz + ωt)) = 2E0(r, z) sin(qz) sin(ωt) , (2.34)

where q = 2π/λ is wave vector of the laser light. From here one can directly obtain that:

V (r, z) ' 4V0

[
1− 2

(
r

w0

)2

−
(
z

zR

)2
]

sin2(qz) . (2.35)

As one can clearly see from this expression one obtains one-dimensional periodic lattice with
period λ/2.

A periodic potential in two-dimensions can be formed in the same way, but in this case
instead of two laser beams one have to use four laser beams. Here we will consider the case
when two standing waves are perpendicular to each other, i.e. a rectangular optical lattice.
Neglecting the Gaussian beam profile we obtain :

V (y, z) ' Vlat

[
cos2(qy) + cos2(qz) + 2~e1 · ~e2 cos(φ) cos(qy) cos(qz)

]
, (2.36)

where ~e1 and ~e2 denote the polarization vectors of the perpendicular laser field and φ is the
temporal phase between them. From Eq. (2.36), it is clear that if the polarization vectors
are not perpendicular to one another, then changing the temporal phase one can modify the
lattice structure (See Fig. 2.9).

In such a periodic potential, the atoms are confined to arrays of tightly confined one-
dimensional tubes (see Fig. 2.10a). Usually the harmonic trapping frequencies along the
tubes are very weak in the experiment (order of 10 − 200 Hz), while in the radial direction
they are much larger (order of 100 kHz) [93].

Using six laser beams, a three-dimensional lattice can be formed (see Fig. 2.10a). If the
polarizations of the different standing waves are perpendicular to each other, then all standing
waves are independent from each other and the optical potential can be described by:

V (x, y, z) ' −V 2
x e
−2(y2+z2)/w2

x sin2(qxx)−V 2
y e
−2(x2+z2)/w2

y sin2(qyy)−V 2
z e
−2(y2+z2)/w2

y sin2(qzz) .
(2.37)

Here Vα and qα are the potential depth and the wave vectors for the standing waves in α
direction, respectively. At the center of the trap, for distances much smaller than the beam
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waist, the trap potential can be approximated as the sum of the periodic lattice potential and
the external harmonic confinement due to the Gaussian laser beam profile:

V (x, y, z) ' −V 2
x sin2(qxx)− V 2

y sin2(qyy)− V 2
z sin2(qzz) +

m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.38)

where the effective trapping frequencies of the harmonic confinement are

ω2
x =

4
m

(
Vy
w2
y

+
Vz
w2
z

)
; ω2

y,z = cycl.perm. (2.39)

More details about optical lattices can be found in Ref. [93] and references therein.

2.6 The Hubbard Model

2.6.1 The Fermionic Hubbard Model

The Hamiltonian that describes fermions in the periodic optical lattice in second quantized
form is given by

Ĥ =
∑
σ

∫
d3rΨ̂†fσ(r)

(
−~2∇2

2mf
+ Vf (r)

)
Ψ̂fσ(r) +

∫
Ψ̂†f↓(r)Ψ̂†f↑(r)

4π~2af
mf

Ψ̂f↑(r)Ψ̂f↓(r) ,

(2.40)
where Ψ̂†fσ(r) is the creation operator for a fermion with spin σ at point r. mf is its mass, af
is the s-wave scattering length and Vf (r) denotes the periodic potential.

In the presence of the periodic potential Vf (r + R) = Vf (r), it is convenient to express the
fermionic creation operators Ψ̂†fσ(r) using Wannier functions:

Ψ̂†fσ =
∑
i,l

ĉ†iσlw
f
l,x(x− xi)wfl,y(y − yi)w

f
l,z(z − zi) , (2.41)

where ĉ†iσl is fermionic creation operators at site ri = (xi, yi, zi) and wfl (r − ri) = wfl,x(x −
xi)w

f
l,y(y − yi)w

f
l,z(z − zi) is the Wannier function for a localized particle in the lth energy

band.
For temperatures and interactions small compared to the band gap, only the lowest band

will be occupied. That means that the sum over the band indices l is reduced to l = 0 and we
can drop the band index.

Inserting Eq. (2.41) into equation (2.40) one obtains:

Ĥ = −tf
∑
〈ij〉,σ

ĉ†iσ ĉjσ + Uf
∑
i

n̂fi↑n̂
f
i↓ , (2.42)

where

tf =
∫
d3rwfx(x− xi + a)wfy (y − yi)wfz (z − zi)

~2∇2

2mf
wfx(x− xi)wfy (y − yi)wfz (z − zi) (2.43)
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is the hopping amplitude between nearest neighbor sites 〈ij〉 and

Uf =
4π~2af
mf

∫
dx|wfx(x− xi)|4

∫
dy|wfy (y − yi)|4

∫
dz|wfz (z − zi)|4 (2.44)

is the on-site Hubbard interaction.

For a deep optical lattice, one can approximate the Wannier functions by Gaussian ones,
i.e:

wfα(α− αi) =
e−(α−αi)2/2l2f

π
1/4
l
1/2
f

. (2.45)

Here α = x, y, z, and

lf =
a

π(V f
0 /E

f
r )1/4

, (2.46)

where Efr = h2/2λ2mf is a recoil energy, V f
0 is the laser potential strength and λ is the

wavelength of laser.

According to this approximation we obtain that (details of the derivation one can see in
Appendix A):

Uf '
√

8
π
kafE

f
r

(
V f

0

Efr

)3/4

, (2.47)

while due to the much weaker side wings of the Gaussian function, the hopping amplitude tf
may be underestimated by almost order of the magnitude in this way. The correct value for
the hopping amplitude tf can be obtained from the width W → 4tf of the lowest band in the
1D Mathieu equation [143]:

tf '
4√
π
Efr

(
V f

0

Efr

)3/4

exp

−2

√
V f

0

Efr

 . (2.48)

2.6.2 The Bose-Fermi Hubbard Model

Now we will consider a mixture of bosons and two-component fermions in a sufficiently deep
optical lattice. The Hamiltonian in second quantized form is given by:

Ĥ = T̂f + T̂b + V̂f + V̂b + Ŵff + Ŵbb + Ŵfb , (2.49)
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with the individual terms

T̂f = −
∑
σ

∫
d3rΨ̂†fσ(r)

~2∇2

2mf
Ψ̂fσ(r) , (2.50)

T̂b = −
∫
d3rΨ̂†b(r)

~2∇2

2mb
Ψ̂b(r) , (2.51)

Ŵff =
∫

Ψ̂†f↓(r)Ψ̂†f↑(r)
4π~2af
mf

Ψ̂f↑(r)Ψ̂f↓(r) , (2.52)

Ŵbb =
1
2

∫
Ψ̂†b(r)Ψ̂†b(r)

4π~2ab
mb

Ψ̂b(r)Ψ̂b(r) , (2.53)

Ŵfb =
∑
σ

∫
Ψ̂†fσ(r)Ψ̂†b(r)

2π~2afb
mr

Ψ̂b(r)Ψ̂fσ(r) , (2.54)

V̂f =
∑
σ

∫
d3rΨ̂†fσ(r)Vf (r)Ψ̂fσ(r) , (2.55)

V̂b =
∫
d3rΨ̂†b(r)Vb(r)Ψ̂b(r) . (2.56)

Here Ψ̂†b(r) is the creation operator of a boson at point r. ab and afb are the s-wave scattering
lengths for Bose-Bose and Bose-Fermi interactions, respectively. mb is the mass of the bosons
and mr = mfmb/(mf +mb). Vb(r) denotes the periodic potential for bosons.

As we discussed above, in the presence of a strong optical lattice, the field operators can
be expanded in terms of the single-particle Wannier functions localized at (xi, yi, zi):

Ψ̂†b =
∑
i,l

b̂†i,lw
b
l,x(x− xi)wbl,y(y − yi)wbl,z(z − zi) , (2.57)

where b̂i,l are bosonic creation operators at site (xi, yi, zi).
Inserting Eq. (2.41) and (2.57) into equations (2.50-2.56) one obtains:

Ĥ = −tf
∑
〈ij〉,σ

ĉ†iσ ĉjσ−tb
∑
〈ij〉

b̂†i b̂j+Uf
∑
i

n̂fi↑n̂
f
i↓+

Ub
2

∑
i

n̂bi(n̂
b
i−1)+Ufb

∑
i

n̂fi n̂
b
i−
∑
i

µfi n̂
f
i −
∑
i

µbi n̂
b
i .

(2.58)
One can easily show that (see detailed derivation in Appendix A):

tb '
4√
π
Ebr

(
V b

0

Ebr

)3/4

exp

−2

√
V b

0

Ebr

 , (2.59)

Ub '
√

8
π
kabE

b
r

(
V b

0

Ebr

)3/4

, (2.60)

Ufb '
4√
π
kafbE

b
r

1 +mb/mf

(1 +
√
mb/mf )3/2

(
V b

0

Ebr

)3/4

, (2.61)

where Ebr = h2/2λ2mb is a recoil energy, V b
0 is the laser potential strength and λ is the

wavelength of laser.
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At sufficiently low temperatures, the only relevant scattering processes occur within the s-
wave subspace. Consequently the interaction strength between two spinless fermions vanishes
and the Hamiltonian for a mixture of bosons and spinless fermions takes on the form

Ĥ = −tf
∑
〈ij〉

ĉ†i ĉj− tb
∑
〈ij〉

b̂†i b̂j +
Ub
2

∑
i

n̂bi(n̂
b
i −1)+Ufb

∑
i

n̂fi n̂
b
i −
∑
i

µfi n̂
f
i −
∑
i

µbi n̂
b
i . (2.62)

So far in this section a periodic potential was considered, but as we have already mentioned
in section 2.5, spatial inhomogeneity due to the harmonic confinement potential is always
present, leading to a spatially varying local density. However, if harmonic confinement is
shallow than we can neglect effect of the trap and during calculating model parameters consider
it periodic. It is important to realize that shallow trap means that laser potential strength
V
f(b)

0 is much smaller than the band gap, which is usually large. This condition is fulfilled for
all calculations considered in this thesis.

In case of a tight trap one cannot any more consider the system as a periodic one and
correspondingly Bloch’s theorem breaks down. Correspondingly, the way how we calculate
the model parameters in Eqs. (2.47), (2.48), (2.59 - 2.61) is not valid any more and in this
case one has to consider that the lattice sites in the harmonic trap are not equivalent to each
other.



Chapter 3

Method

3.1 Dynamical Mean-Field Theory (DMFT)

As we mentioned in the introduction, ultracold atomic gases of fermions can be well described
by the Hubbard model (2.42). In spite of the simplicity of this model it can be solved exactly
only in one spatial dimension, where the Bethe Ansatz can be applied. On the other hand
in higher dimensions, only approximate analytical solutions are available, e.g. mean-field or
perturbative calculations, whose reliability is typically limited to the weak (Uf/tf � 1) or
strong (Uf/tf > 0) coupling regime. Due to this numerical calculations are unavoidable to
overcome these limitations.

One of the ways to study such a system is using quantum Monte Carlo (QMC) simulations
[144–146]. The disadvantage of this method is that one can study only small size systems and
then extrapolate the obtained results to the thermodynamic limit. Also for fermions it has
minus sign problem. One of the methods which reliably describes thermodynamical systems
on a lattice from weak to strong coupling is the Dynamical Mean-Field Theory (DMFT) [147–
155]. The only small parameter in this method is 1/z, where z is the lattice coordination
number. In this section we will consider the DMFT in detail.

Figure 3.1: Schematic picture of Dynamical Mean-Field Theory (DMFT). Within the DMFT
approach the full many-body lattice problem is replaced by a single-site problem, which is
self-consistently coupled to a fermionic bath.

25
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The main idea of the DMFT approach is to map the quantum lattice problem with many
degrees of freedom onto a single site - the “impurity site” - coupled self-consistently to a non-
interacting bath. To derive the self-consistency equations for this model, we use the “cavity
method” [148]: one considers a single site of the lattice and integrates out the remaining
degrees of freedom on all other sites (schematically the DMFT is depicted in Fig. 3.1). To
derive the self-consistency relations, we use the path integral formalism.

In this section we will consider the DMFT for fermions. Ultracold fermions in an optical
lattice are well described by the Hubbard model:

Ĥ = −tf
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + Uf
∑
i

n̂fi↑n̂
f
i↓ −

∑
i,σ

µσf n̂
f
iσ , (3.1)

where ĉ†iσ is the fermionic creation operator at site i with spin σ, while n̂fiσ = ĉ†iσ ĉiσ denotes
the number operator for spin σ fermions at site i. µσf is the chemical potential for fermions
with spin σ and Uf is a local interaction between fermions with different spins. 〈i, j〉 denotes
summation over nearest neighbors and tf is the tunneling amplitude for fermions.

The important point in the DMFT derivation is that we consider the limit of high spatial
dimensionality (i.e. lattice coordination number z →∞). To keep the kinetic energy finite, we
need to rescale the hopping parameters of the Hamiltonian in Eq. (3.1) as tf → tf = t∗f/

√
z

(t∗f is finite). Doing so, the parameter 1/z appears as a small parameter in the theory, which
is used to control the expansion. We note here that 1/z is not a coupling parameter in the
original Hamiltonian. Therefore, as mentioned above, this method is suited for the full range
of couplings considered. This gives us also a way to estimate the accuracy of our calculations:
neglecting terms of order 1/z leads to reasonably small errors for the three-dimensional cubic
lattice where z = 6. DMFT calculations in three dimensions show indeed excellent agreement
with QMC calculations [145] and experiments [156].

The first step in this formalism is to derive an effective action of the impurity site (for
details see Appendix B) by integrating out the remaining degrees of freedom (i 6= 0) in the
partition function:

1
Zeff

e−Seff ≡ 1
Z

∫ ∏
i 6=0,σ

Dc̃?iσDc̃iσe
−S , (3.2)

where c̃iσ, c̃?iσ are Grassmann variables describing fermions. To leading order in 1/z one
obtains

Seff = −
∑
σ

∫ β

0
dτ1

∫ β

0
dτ2c̃

?
0σ(τ1)G−1

σ (τ1 − τ2)c̃0σ(τ2) + Uf

∫ β

0
dτñf0↑(τ)ñf0↓(τ) . (3.3)

Here we have introduced the Weiss Green’s function

G−1
σ (τ1 − τ2) = −δ(τ1 − τ2)(∂τ2 − µσf )− t2f

∑
i,j

′
Goij,σ(τ1 − τ2) , (3.4)

where Goij,σ(τ1−τ2) = −〈T ĉiσ(τ1)ĉ†jσ(τ2)〉o is the interacting Green’s function for the fermions,
and

∑
i
′ means summation only over the nearest neighbors of the “impurity site”. The ex-

pectation values are here calculated in the cavity system without the impurity site, which is
indicated by the notation 〈. . .〉o.
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The physical content of the Weiss Green’s function G−1
σ (τ1 − τ2) is an effective amplitude

for fermions to be created on the impurity site at time τ1, coming from the “external bath”
and being destroyed at time τ2, going back to the “external bath”.

In the Matsubara frequency representation the Weiss Green’s function has the following
form:

G−1
σ (iωn) = iωn + µσf − t2f

∑
i,j

′
Goij,σ(iωn) . (3.5)

where ωn = (2n+ 1)π/β are Matsubara frequencies.
The next step is to express the cavity Green’s function by means of the exact Green’s

function of the original lattice. In the limit of infinite dimensions this relation has the following
form:

Goij,σ = Gij,σ −
Gi0,σG0j,σ

G00,σ
. (3.6)

This expression was already derived by Hubbard [157] in his “Hubbard-III” paper in 1964.
One can notice that the additional paths, which are contributing in Gij,σ and not in Goij,σ
are those which connect site i and j through the impurity site 0. In infinite dimensions one
can show [148] that only those paths which go once through the impurity site 0 have to be
considered. The contribution of all these additional paths is proportional to Gi0,σG0j,σ, but
to count only once the contribution of paths, which are leaving and returning to the impurity
site 0, we have to divide this value by G00,σ.

From Eqs. (3.5) and (3.6) we obtain that, to calculate a new value of the Weiss Green’s
function, we have to calculate Gij,σ − Gi0,σG0j,σ/G00,σ. For this purpose we use Fourier
transforms of the Green’s functions and use the following relationship for the lattice Green’s
function:

G(k, iωn) =
1

iωn + µσf − Σ(iωn)− εk
. (3.7)

Here we would like to mention that we make the assumption, that the self-energy, Σ is a local
quantity. This is indeed exact in infinite dimensions [147, 151].

We obtain [148]:

t2fGij,σ −
t2fGi0,σG0j,σ

G00,σ
=

∫ ∞
−∞

dερ(ε)
ε2

ζ − ε
−
(∫ ∞
−∞

dερ(ε)
ε

ζ − ε

)2
/∫ ∞

−∞
dερ(ε)

1
ζ − ε

= ζ − 1
/∫ ∞
−∞

dερ(ε)
1

ζ − ε
, (3.8)

where ζ = iωn + µ− Σ(iωn). So we get:

G−1
σ (iωn) = Σ(iωn) + 1

/∫ ∞
−∞

dερ(ε)
1

ζ − ε
. (3.9)

And the result which we now obtain is nothing else but the Dyson equation:

G−1
σ (iωn) = Σσ(iωn) +G−1

σ (iωn) . (3.10)

The self-consistency equation for the fermions assumes the simplest form for the Bethe
lattice which is schematically depicted in Fig. 3.2 and has a semi-elliptic non-interacting
density of states

ρ(ε) =
1

2πt∗f
2

√
4t∗f

2 − ε2 . (3.11)
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Figure 3.2: Schematic structure of the Bethe lattice (here with coordination number z = 3).

The reason for this simplification is that for the Bethe lattice the summation in Eq. (3.5)
is reduced to i = j, because all neighbors of the “impurity site” are decoupled from each
other. The interacting Green’s function for the cavity system is identified with the corre-
sponding expectation value on the impurity site. This means that we identify Goii,σ(τ1− τ2) =
−〈T ĉiσ(τ1)ĉ†iσ(τ2)〉o = −〈T ĉ0σ(τ1)ĉ†0σ(τ2)〉0, where the notation 〈. . .〉0 denotes the expectation
value on the impurity site. In passing by, we note that this involves again an error of order
1/z (vanishing in the limit of high dimensionality), since a site at the edge of the cavity has
one neighbor less compared to the impurity site. However, in this way we have derived a
self-consistency relation, which only involves the impurity site. The self-consistency relation
for fermions on the Bethe lattice is therefore

G−1
σ (iωn) = iωn + µσf − t∗f

2Gσ(iωn) . (3.12)

As one can see from Fig. 3.2 the Bethe lattice is a bipartite lattice, like the hyper-cubic lattice.
From this follows that one can obtain the same type of orders which arise on the hyper-cubic
lattice. Therefor, by studying the system on the Bethe lattice, one obtains qualitative insight
of the 3D cubic lattice.

The self-consistent DMFT loop has the following structure: we start from an initial guess
of the Weiss Green’s function. The effective action of the model is then given by Eq. (3.3),
which allows us to calculate all local Green’s functions and expectation values, including the
interacting Green’s function. In the case of the Bethe lattice the loop is closed by Eq. (3.12),
from which we calculate the new Weiss Green’s function, while for a general lattice we use the
Dyson equation (3.10). This procedure is repeated until convergence is reached.

The most difficult step in the procedure outlined above is the calculation of the local
Green’s function from the effective action. Unfortunately one can not do this analytically. So
to calculate the Green’s function, we return back to the Hamiltonian representation. Thus one
has to find a Hamiltonian which has the same effective action as given by Eq. (3.3). It is easy
to see that the corresponding Hamiltonian can not contain only on-site degrees of freedom,
because then we would lose retardation effects. The best way to represent the effective action
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of the (3.3) is via the Single Impurity Anderson Model (SIAM). In the SIAM, the impurity site
is coupled to a non-interacting fermionic bath which - like the effective action (3.3) - needs to
be determined self-consistently in the Dynamical Mean-Field Theory. The SIAM is described
by the following Hamiltonian, which allows for a two-sublattice structure:

ĤSIAM =
∑
σ,α

{
−µσf n̂fα + Uf n̂

f
↑αn̂

f
↓α

}
+
∑
l,σ,α

{
εlσαâ

†
lσαâlσα + Vlσα

(
f̂ †σαâlσα + h.c.

)}
. (3.13)

Here Uf is the Hubbard on-site interaction between fermions and µσf is the chemical potential
for spin σ. α = ±1 is the sublattice index (ᾱ = −α), l labels the noninteracting orbitals of the
effective bath, εlσα is the energy of the noninteracting orbital l for spin σ on the sub-lattice α
and Vlσα is the corresponding fermionic hybridization matrix element.

The DMFT calculation is a single site calculation, so to capture phases where size of the
unit-cell is more than one lattice site (e. g. antiferromagnetic or charge (particle) density
order) we introduce a two sub-lattice structure. In our calculation this corresponds to even
and odd DMFT iterations. In general, the number of particles and the correlation functions
on different sub-lattices can be different from each other, as they correspond to even and odd
DMFT iterations when convergence is reached. The total number of particles in these cases
has to be calculated by averaging the number of particles over the last two iterations.

Everything mentioned above was for the non-superconducting case, but this procedure can
be easily extended to take into account superconducting long-range order [148, 155]. If one
wants to describe superconductivity, in addition to the normal Green’s function, one also has
to introduce the superconducting Green’s function F (k, τ) = −〈T ĉk↑(τ)ĉ−k↓(0)〉. For non-
zero F , it is better to work with Nambu spinors Ψ̂†(k, τ) = (ĉ†k,↑, ĉ−k,↓) and with the matrix
formulation of the one particle Green’s function:

Ĝ(k, τ) = −〈T Ψ̂k(τ)Ψ̂†k(0)〉 =
(
G↑(k, τ) F (k, τ)
F ?(k, τ) −G↓(−k,−τ)

)
. (3.14)

Following the cavity method, we will obtain the same type of equations as for the non-
superconducting case, but instead of usual functions one will have matrices. So the Dyson
equation will have the following form:

Ĝ−1(iωn) = Σ̂(iωn) + Ĝ−1(iωn) , (3.15)

where Ĝ(ω) is the matrix of interacting Green’s functions, Σ̂(ω) is the self-energy matrix and
Ĝ is the matrix of Weiss Green’s functions.

The self-consistency equation for the Bethe lattice in the matrix representation has the
following form:

Ĝ−1(iωn) = (iωn +
1
2

∆µ)Î + µ̄f σ̂z − t∗f
2σ̂zĜσ(iωn)σ̂z , (3.16)

where Î is the unit matrix, σ̂z is the z Pauli matrix, µ̄f = (µ↑ + µ↓)/2 and ∆µ = µ↑ − µ↓.
To describe superconductivity one has to add an additional term to the SIAM Hamiltonian:

ĤSIAM =
∑
α=±1

−µσf n̂fα + Uf n̂
f
↑αn̂

f
↓α +

∑
l,σ

{
εlσαâ

†
lσαâlσα + Vlσα

(
f̂ †σαâlσα + h.c.

)
+ Wlα

(
â†l↑αâ

†
l↓α + h.c.

)}
. (3.17)
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As there is no analytical solution of the SIAM, one has to solve it numerically. For this
purpose there exist different impurity solvers. In section 3.4 we will discuss some of them.

In the end of this section we would like to mention that it is clear that the final result
of the DMFT calculations should not depend on the initial conditions of the self-consistency
loop. However, for physical reasons it can happen that the self-consistent DMFT procedure
yields multiple stable solutions. To find the ground state of the system in those cases, we need
to compare the energies of the coexisting solutions. The ground state will correspond to the
solution with the lowest energy. For this purpose we need to calculate the total energy which
is given as follows:

E

N
=
Ekin
N

+
Eint
N

, (3.18)

where EintN depends on the type of interactions on the impurity site. For the Hubbard model
it is given by the following equation

Eint
N

=
Uf
2

(
〈n̂f↑,−1n̂

f
↓,−1, 〉+ 〈n̂f↑,1n̂

f
↓,1, 〉

)
, (3.19)

where ±1 are sublattice indices.
More difficult is to calculate the kinetic energy. For the para- and ferro-magnetic phases,

the kinetic energy is given by the following equation:

Ekin
N

= kBT
∑
n,σ

∫ ∞
−∞

dε ερ(ε)Gσ(ε, iωn) , (3.20)

where Gσ(ε, iωn) = Gσ(k, iωn) is given by Eq. (3.7), while for a system, which has antiferro-
magnetic or charge density order (fermionic density oscillation), the kinetic energy is given as
follows (for detail see Appendix E):

Ekin
N

= kBT
∑
n,σ

∫ ∞
−∞

dε ερ(ε)Bσ(ε, iωn) , (3.21)

where

Bσ(ε, iωn) =
1√

ζσ,1ζσ,−1 − ε
(3.22)

and ζσα = ω + µσf − Σσα(ω).

3.2 Generalized Dynamical Mean-Field Theory (GDMFT)

3.2.1 Method

The dynamical mean-field theory (DMFT) was invented to study the behavior of correlated
fermions. Nowadays ultracold atomic gases give us the possibility to investigate mixtures of
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Figure 3.3: Schematic picture of the Generalized Dynamical Mean-Field theory (GDMFT):
within the GDMFT approach the full many-body lattice problem is replaced by a single-site
problem, which is coupled to the fermionic bath as in the “usual” DMFT and to the bosonic
bath via the Gutzwiller approach.

fermions and bosons in optical lattices. These systems are well described by the Bose-Fermi
Hubbard model:

Ĥ = −tf
∑
〈i,j〉,σ

ĉ†iσ ĉjσ − tb
∑
〈i,j〉

b̂†i b̂j −
∑
i,σ

µσf n̂
f
i − µb

∑
i

n̂bi

+ Uf
∑
i

n̂fi↑n̂
f
i↓ +

Ub
2

∑
i

n̂bi(n̂
b
i − 1) + Ufb

∑
i

n̂fi n̂
b
i + g

∑
i

(
b̂†i ĉi↑ĉi↓ + h.c

)
,(3.23)

where ĉ†iσ(b̂
†
i ) is the fermionic (bosonic) creation operator at site i, while n̂fiσ = ĉ†iσ ĉiσ and n̂bi =

b̂†i b̂i are the number operators for fermions and bosons at site i respectively and n̂fi = n̂fi↑+n̂
f
i↓.

µb and µσf are the chemical potentials for boson and fermions with spin σ. Uf , Ub and Ufb
are local interactions between fermions, bosons and fermions and bosons respectively. 〈i, j〉
denotes summation over nearest neighbors and tf(b) is the tunneling amplitude for fermions
(bosons). g is the Feshbach term, which describes processes where two fermions on the same
site combine to form a bosonic molecule.

To describe such a system one has to generalize the DMFT method and include also bosonic
degrees of freedom [20, 21]. In addition to rescaling fermionic hopping parameters, we also
have to rescale the bosonic hopping parameters of the Hamiltonian Eq. (3.23) according to
tb → tb = t∗b/z to keep the kinetic energy finite (t∗b is finite).

The first step in this formalism, as well as in the “usual” DMFT, is to derive the effective
action of the impurity site (for details see Appendix B) by integrating out the remaining
degrees of freedom (i 6= 0) in the partition function:

1
Zeff

e−Seff ≡ 1
Z

∫ ∏
i 6=0,σ

Dc̃?iσDc̃iσDb̃
?
iDb̃ie

−S , (3.24)
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where c̃iσ, c̃?iσ are Grassmann variables describing fermions and b̃i, b̃?i are C-numbers describing
bosons. To leading order in 1/z one obtains

Seff = −
∑
σ

∫ β

0
dτ1

∫ β

0
dτ2c̃

?
0σ(τ1)G−1

σ (τ1 − τ2)c̃0σ(τ2) +
∫ β

0
dτ b̃?0(τ)(∂τ − µb)b̃0(τ)

− tb

∫ β

0
dτ
∑
i

′
(Φo

i (τ)b̃?0(τ) + c.c) + Uf

∫ β

0
dτñf0↑(τ)ñf0↓(τ) + Ufb

∫ β

0
dτñf0(τ)ñb0(τ)

+ Ub

∫ β

0
dτñb0(τ)(ñb0(τ)− 1) + g

∫ β

0
dτ(c̃?0↓(τ)c̃?0↑(τ)b̃0(τ) + c.c) . (3.25)

Here Φo
i (τ) = 〈b̂〉o is the bosonic superfluid parameter, which is static. G−1

σ (τ1 − τ2) is the
Weiss Green’s function, which we already introduced in the previous section Eq. (3.4).

The next step in the derivation is that the expectation values in the cavity system are
identified with the expectation values on the impurity site. This means that we identify
Φo
i (τ) = 〈b̂〉o = 〈b̂〉0 and Goii,σ(τ1 − τ2) = −〈T ĉiσ(τ1)ĉ†iσ(τ2)〉o = −〈T ĉ0σ(τ1)ĉ†0σ(τ2)〉0, where

the notation 〈. . .〉0 means expectation value for the impurity site. However, in this way, we
have derived a self-consistency relation, which only involves the impurity site.

By inspecting these self-consistency relations, it becomes clear that the bosonic part cor-
responds to the Gutzwiller approximation [158–160], whereas the fermionic part corresponds
to the DMFT [147–155]. The two are coupled by the on-site density-density interaction. We
remark here that this derivation shows that the Gutzwiller approximation for bosons is exact
in infinite dimensions, and, like the DMFT, valid for arbitrary couplings in the Hamiltonian.
Therefore, this approximation is able to describe the whole phase-diagram, in particular, the
transition from superfluid to Mott-insulator. This point is not always appreciated in the
literature, where the Gutzwiller approximation is sometimes regarded as a strong-coupling
approximation.

Summarizing, the GDMFT employed in the calculations in this thesis consists of the DMFT
algorithm for the fermions, combined with bosonic Gutzwiller mean-field theory. The bosons
are described by the superfluid order parameter Φo

i (τ) = 〈b̂(τ)〉, while the fermions are char-
acterized by the Weiss Green’s function G−1

σ (iωn), which is given by Eq. (3.5). Schematically
the GDMFT is depicted in Fig. 3.3.

The self-consistent GDMFT loop has a similar structure as in the case of DMFT: We start
from an initial guess of the Weiss Green’s function and the superfluid order parameter. The
effective action of the model is then given by Eq. (3.25), which allows us to calculate all local
Green’s functions and expectation values, including the interacting Green’s functions and the
superfluid order parameter. The loop is closed by Eq. (3.5), from which we calculate the new
Weiss Green’s function. This procedure is repeated until convergence is reached.

As we already mentioned in the previous section, the DMFT loop has the simplest form
for the Bethe lattice. In this case, the Weiss Green’s function is calculated by Eq. (3.16),
while for general lattice one has to use the Dyson equation (3.15). For this purpose, one has
to calculate the self-energy. As we show in the appendix D, one can express the self-energy
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via different Green’s functions:

Σσ(iωn) =

(
UfQffσ(iωn) + UfbQfbσ(iωn) + σgQ?gσ̄σ(iωn)

)
G?σ̄(iωn)

Gσ(iωn)G?σ̄(iωn) + F (σiωn)F ?(σ̄iωn)

+

(
σUfQff,σσ̄(iωn) + σUfbQfbσσ̄(iωn) + gQ?gσ̄(iωn)

)
F ?(σ̄iωn)

Gσ(iωn)G?σ̄(iωn) + F (σiωn)F ?(σ̄iωn)
, (3.26)

ΣSC(iωn) =

(
UfQff↑(iωn) + UfbQfb↑(iωn) + gQ?g↓↑(iωn)

)
F (iωn)

G↑(iωn)G?↓(iωn) + F (iωn)F ?(−iωn)

−

(
UfQff,↑↓(iωn) + UfbQfb↑↓(iωn) + gQ?g↓(iωn)

)
G↑(iωn)

G↑(iωn)G?↓(iωn) + F (iωn)F ?(−iωn)
, (3.27)

where

Qffσ(iωn) = 〈〈f̂σf̂
†
σ̄f̂σ̄, f̂

†
σ〉〉ω , Qffσσ̄(iωn) = 〈〈f̂σf̂

†
σ̄f̂σ̄, f̂σ̄〉〉ω ,

Qfbσ(iωn) = 〈〈f̂σ b̂†b̂, f̂ †σ〉〉ω , Qfbσσ̄(iωn) = 〈〈f̂σ b̂†b̂, f̂σ̄〉〉ω , (3.28)

Qgσ(iωn) = 〈〈f̂σ b̂†, f̂ †σ〉〉ω , Qgσσ̄(iωn) = 〈〈f̂σ b̂†, f̂σ̄〉〉ω

and 〈〈Â, B̂〉〉 =
∫ β

0 dτeiωnτ 〈Â(τ)B̂(0)〉.
As in the DMFT, to solve effective action we are returning back to the Hamiltonian

representation. The best way to represent effective action (3.25) is via a Generalized Single
Impurity Anderson Model (GSIAM). As in the conventional Single Impurity Anderson model
(SIAM), the impurity site is coupled to a non-interacting fermionic bath which needs to be
determined self-consistently in the Dynamical Mean-Field Theory. In addition, the GSIAM
now also contains a bosonic degree of freedom on the “impurity site”, which is self-consistently
coupled to the superfluid order parameter, according to the Gutzwiller mean-field theory. In
summary, the GSIAM is described by the following Hamiltonian, which allows for a two-
sublattice structure:

ĤGSIAM =
∑
α=±1

[
Ĥαb + Ĥαfb + Ĥαf

]
, (3.29)

Ĥαb = −ztb(ϕᾱb̂†α + ϕ?ᾱb̂α) +
Ub
2
n̂bα(n̂bα − 1)− µbn̂bα , (3.30)

Ĥαfb = Ufbn̂
f
αn̂

b
α + g

(
ĉ†↓αĉ

†
↑αb̂α + h.c.

)
, (3.31)

Ĥαf = −µσf n̂fα + Uf n̂
f
↑αn̂

f
↓α + (3.32)

+
∑
l,σ

{
εlσαâ

†
lσαâlσα + Vlσα

(
f̂ †σαâlσα + h.c.

)
+Wlα

(
â†↑αâ

†
l↓α + h.c.

)}
,

where Uf , Ub, and Ufb are on-site Hubbard interactions between fermions, bosons, and
fermions and bosons respectively. µσf and µb are the chemical potentials for fermions and
bosons. g is the Feshbach term. α = ±1 is the sublattice index (ᾱ = −α), z is the lattice
coordination number, ϕα = 〈b̂α〉 is the superfluid order parameter on sublattice α. l labels
the noninteracting orbitals of the effective bath, εlσα is the energy of the noninteracting or-
bital l for spin σ on the sub-lattice α and Vlσα is the corresponding fermionic hybridization
matrix element. Wlα is a local superconducting amplitude of the noninteracting orbital l on
the sub-lattice α.
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3.2.2 Energy Calculations

Now we would like again to consider the case when the self-consistent GDMFT procedure
yields multiple stable solutions. To find the ground state of the system in those cases, we need
to compare the energies of the coexisting solutions. The ground state will correspond to the
solution with the lowest energy. For this purpose we need to calculate the total energy which
is given as follows:

E

N
=
Ekin
N

+
Eint
N

, (3.33)

where

Eint
N

=
1
2

∑
α=±1

(
Ufb〈n̂fαn̂bα〉+ Uf 〈n̂f↑αn̂

f
↓α〉+

Ub
2
〈n̂bα(n̂bα − 1)〉+ g(〈ĉ†↓αĉ

†
↑αb̂〉+ c.c)

)
(3.34)

and α = ±1 are sublattice indices. The kinetic energy is given by the following equation:

Ekin
N

= −ztbϕ−1ϕ1 +
Efkin
N

, (3.35)

where Efkin is calculated according to Eq. (3.21).

3.2.3 Summary

We close this section with a short summary of the method. The GDMFT technique is a
combination of the DMFT and Gutzwiller approaches. We have shown that it is exact in
infinite dimensions, and it is assumed to be a good approximation for three spatial dimensions.
The only small parameter in this method is 1/z (where z is the lattice coordination number).
The GDMFT, therefore, incorporates local correlations between bosons and fermions in a fully
non-perturbative fashion. Non-local correlations, on the other hand, can be calculated only
on a mean-field level.

Since the fermions are treated with a dynamical mean-field, their quantum fluctuations
are also captured. Higher orders in 1/z could make quantitative changes, but no qualitative
changes are expected. The bosons on the other hand are treated within static mean field
theory and couple only to the bosonic order parameter. Although this is indeed exact in
infinite dimensions, for a finite number of spatial dimensions even normal (i.e. non-superfluid)
bosons will hop. This will e.g. effect the fluctuations in the boson number 〈n̂2

b〉−〈n̂b〉2. Within
the Gutzwiller approximation this quantity is zero in the Mott insulator and the alternating
Mott insulator phase (which will be defined later). Inclusion of normal hopping would lead to
finite fluctuations. This effect is however not essential for the physics considered in this thesis.
In future calculations, normal bosonic hopping could be included via the recently developed
Bosonic DMFT (BDMFT) [161, 162].

The above derivation is valid independently of temperature and impurity solver. Therefore,
GDMFT also gives a reliable description of Bose-Fermi mixtures in an optical lattice at any
finite temperature.
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3.3 Real-Space Dynamical Mean-Field Theory (R-DMFT)

The methods described in this chapter so far are for homogeneous systems. However, ex-
perimentally the spatial inhomogeneity due to the harmonic confinement potential is always
present, leading to a spatially varying local density. In this case the concept of long range
order is questionable and ordered phases are expected to develop on finite length scales. To
study such systems we develop a real-space extension of the dynamical mean-field theory [163].
Within this real space dynamical mean-field theory (R-DMFT) the self-energy is taken to be
local, which is exact in the infinite dimensional limit [147, 148, 151]. However, in an inho-
mogeneous system it depends on the lattice site, i.e. Σijσ = Σ(i)

σ δij , where δij is a Kronecker
delta. Formerly, a similar scheme has been developed for systems with inhomogeneity in one
direction [164]. Only recently, problems with full inhomogeneity have been investigated, in
particular the Falicov-Kimball model [165, 166], disordered systems [167] and paramagnetic
states of cold fermionic atoms [168, 169].

Repulsively interacting fermions in an optical lattice almost perfectly implement the Hub-
bard Hamiltonian

Ĥ = −tf
∑
〈ij〉,σ

ĉ†iσ ĉjσ + Uf
∑
i

n̂i↑n̂i↓ +
∑
iσ

(Vi − µσ)n̂iσ, (3.36)

where n̂iσ = ĉ†iσ ĉiσ, and ĉiσ (ĉ†iσ) are fermionic annihilation (creation) operators for an atom
with spin σ at site i, tf is the hopping amplitude between nearest neighbor sites 〈ij〉, Uf is
the on-site interaction, µσ is the (spin-dependent) chemical potential and Vi = V0r

2
i is the

harmonic confinement potential. The parameters of this model are, as we described in section
2.5, tunable in experiments by changing the lattice amplitude and via Feshbach resonances.

Within the R-DMFT method, the Hamiltonian is mapped onto a set of single site problems.
The physics of the lattice site i is described by the local effective action [148]

S
(i)
eff = −

∫
dτ

∫
dτ ′
∑
σ

c̃?iσ(τ)G(i)
0 (σ, τ − τ ′)−1c̃iσ(τ ′)

−Uf
∫
dτñi↑(τ)ñi↓(τ), (3.37)

which explicitly depends on the site index i. The Weiss Green’s function G(i)
0 (σ, τ − τ ′) as in

the “usual” dynamical mean-field theory (DMFT) simulates the effect of all other sites. The
difference is that in the R-DMFT, we define a Weiss Green’s function G(i)

0 (σ, τ − τ ′) for each
lattice site.

The self-consistency loop for the R-DMFT has the following structure: we start from
an initial guess of a set of a Weiss Green’s functions

{
G(i)

0 (σ, τ − τ ′)
}
. After solving the

action (3.37), we can calculate a set of the local self-energies
{

Σ(i)(σ, iωn)
}
. The next step

is to determine the interacting lattice Green’s function from the Dyson equation in real-space
representation

G(σ, iωn)−1 = G0(σ, iωn)−1 −Σ(σ, iωn) , (3.38)

where the boldface notation indicates that the quantities are matrices labeled by site indices
i and j and ωn are the Matsubara frequencies. The size of these matrices are N ×N , where
N is the number of the lattice sites. The non-interacting lattice Green’s function is given by

G0(σ, iωn)−1 = (µσ + iωn)1− t−V , (3.39)
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Figure 3.4: Schematic picture of the Real-space Dynamical Mean-Field theory (R-DMFT)
loop.

where 1 is the unit matrix. The matrix elements tij are hopping amplitudes for a given lattice
structure, i.e. tij 6= 0 if fermions jump from site i to site j or vice versa. Vij = δijVi represents
a spatially varying potential. The diagonal elements of the lattice Green’s function are nothing
else but the interacting local Green’s functions, i.e. G(i)(σ, iωn) = Gii(σ, iωn). Finally, the
Weiss mean-field is obtained from the local Dyson equation

G(i)
0 (σ, iωn)−1 = G(i)(σ, iωn)−1 + Σ(i)(σ, iωn) , (3.40)

which closes the set of self-consistency equations. In Figure 3.4 we schematically depicted the
R-DMFT loop.

The most difficult step in this procedure is calculating the local action (3.37). This step
is, however, similar to the solution of the local action in a homogeneous DMFT calculation.
The difference is that in the present case the Weiss field G(i)

0 (σ, τ) is obtained via the Real-
Space Dyson equation (3.38), which incorporates the effect of the spatial inhomogeneity. This
implies that for the numerical solution of the local action we can use standard techniques,
which have proved to be reliable and efficient.

In practice the self-consistent solution is obtained iteratively from the initial Weiss mean-
fields G(i)

0 (σ, iωn) which are chosen differently for different spin σ and lattice sites i. Then the
solutions with staggered magnetization or phase separation are obtained naturally in contrast
to the standard DMFT, where an additional sublattice structure has to be added [148].

The R-DMFT scheme can also be used to study Bose-Fermi mixtures in a harmonic trap.
As we mentioned in the previous section, for characterizing the Bose-Fermi mixture we need
in addition to the Weiss Green’s function, which describes fermions, also the superfluid order
parameter which describes bosons. One can calculate new values for Weiss Green’s functions
as described above, while for calculating the new values for the superfluid order parameter
one have to average the superfluid order parameters of the neighboring sites.
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We would like to mention that the R-DMFT calculations are much more demanding com-
pared to the “usual” DMFT calculations. But within the R-DMFT significantly larger systems
can be investigated than those studied by quantum Monte Carlo [144–146], for which only ho-
mogeneous data are available in two and three dimensions. The computational effort scales
polynomially with the number of lattice sites N within the R-DMFT. The application of the
real-space Dyson equation requires a sparse matrix inversion for each frequency, which scales
as N3/2. The number of impurity solver calculations per R-DMFT-run is linear in N , but can
be kept small due to symmetries. Moreover, the solution of the real-space Dyson equation can
be parallelized over the frequencies and the impurity solver calculations can be parallelized
over the lattice sites.

3.4 Impurity Solvers

As we have already shown, to solve a DMFT loop, one has to solve the Anderson impurity
model. Due to the fact that there is no analytical solution available, one has to solve it
numerically. There exist several numerical methods to solve this problem. Among them
the most powerful ones are the Numerical renormalization Group (NRG) [170–178], Exact
Diagonalization (ED) [148, 179–181] and Quantum Monte Carlo (QMC) [148, 182–185]. In
this thesis we are using only NRG and ED as impurity solvers. In the next subsections we
will consider these two method in detail.

3.4.1 Exact Diagonalization (ED)

Exact Diagonalization (ED)[148, 179–181] as an impurity solver, was introduced by Caffarel
and Krauth [179]. The first step in this algorithm is truncation of the infinite number of
orbitals in the single impurity Anderson model (SIAM) (Eq. 3.17 for pure fermions and Eq.
(3.29) for Bose-Fermi mixtures) and considering a finite (and relatively small) number ns of
orbitals. The resulting finite-size problem is different from the finite-size problem of a finite
number of lattice sites of the original Hubbard model and the truncation procedure can be
viewed as using a finite number of parameters (energy scales) to describe the local dynamics
encoded in the Weiss Green’s function (which we derive in the Appendix D):

G−1
σ,SIAM (iωn) = iωn + µσ +

ns∑
l=1

V 2
lσ

iωn + εlσ̄
(εlσ − iωn)(εlσ̄ + iωn) +W 2

l

, (3.41)

F−1
σ,SIAM (iωn) = −

ns∑
l=1

Vl↑Vl↓Wl

(εlσ − iωn)(εlσ̄ + iωn) +W 2
l

, (3.42)

where ωn are the Matsubara frequencies.
After truncation the Hilbert space of the SIAM only contains a finite number of states:

4ns+1 for two component fermions, (Nb + 1)2ns+1 for the mixture of spinless fermions and
bosons and (Nb+1)4ns+1 for the mixture of the two component fermions and bosons, where Nb

is the bosonic cut-off. As we deal with a finite size system we can diagonalize the Hamiltonian
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and find the eigenvalues Ei and eigenvectors |i〉 of the problem. Knowing the eigenvalues and
eigenvectors we can calculate different Green’s functions:

GAB(iωn) = 〈〈Â, B̂〉〉ω = − 1
Z

∑
n,m

〈n|Â|m〉〈m|B̂|n〉e
−βEn + e−βEm

Em − En − iωn
, (3.43)

where β is the inverse temperature and

Z =
∑
n

e−βEn (3.44)

is the partition function.
To speed up the diagonalization process one can use the block-diagonal structure of the

Hamiltonian. Depending on the problem, the Hamiltonian conserves the total number of
fermions Nf and/or the total magnetization Mz. When both of these quantum numbers are
conserved, the size of each block in the Hamiltonian matrix is much smaller, compared to the
case when only one of the quantum numbers (Nf , Mz) is conserved. So in this case one can
consider more orbitals.

For the Bethe lattice, knowing the interacting Green’s function Gσ(iωn) = 〈〈f̂σ, f̂ †σ〉〉ω, and
the superconducting Green’s function F (iωn) = 〈〈f̂↑, f̂↓〉〉ω we can calculate the Weiss Green’s
function using equation (3.16), while for more complicated lattices the Weiss Green’s function
can be calculated using the Dyson equation (3.15). For this purpose we have to calculate the
self-energy using Eqs. (3.26) and (3.27).

The next step is to determine new parameters for the SIAM Hamiltonian. We therefore
compare the Weiss functions calculated from (3.41) and (3.42) to the ones calculated from
exact diagonalization:

χαβ =
1

2(Nmax + 1)

Nmax∑
n=0

(∑
σ

|Gασ,SIAM (iωn)− Gασ,ex(iωn)|β + 2|FαSIAM (iωn)−Fαex(iωn)|β
)
,

(3.45)
where Nmax is the number of the different Matsubara frequency, α = ±1 and β = 1, 2. For
different set of α and β convergence speed could be different, so changing these parameters
one can choose those, which are optimal for the problem.

The minimization process works as follows: we start from an initial guess of the SIAM
parameters (εlσ, Vlσ and Wl), and then using the Green’s function calculated by Eq. (3.43)
we calculate the Weiss Green’s functions Gασ,ex(iωn) and Fασ,ex(iωn). The next step is to fit the
Weiss Green’s functions calculated by Eqs. (3.41) and (3.42) and find a new set of parameters
for the SIAM. After this step we start everything from the beginning with the new set of
parameters. This procedure is repeated until convergence is reached.

Here we would like to mention that exact diagonalization (ED) is a non-perturbative impu-
rity solver and describes the system for all parameter ranges from weak to strong coupling. Us-
ing ED one can also perform calculations for zero temperature as well as for finite-temperature.
The disadvantage of ED is that it does not describe low-frequency spectral function with high
accuracy. The reason is that since we restrict to a finite number of orbitals (ns order of one),
the number of peaks in the spectral function are limited.

In the end of this sub-section we also consider how one can use ED as an impurity solver
for the R-DMFT method. In this case we start from an initial guess of the SIAM parameters
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{ε(i)
lσ , V

(i)
lσ ,W

(i)
l } and Weiss Green’s functions {G(i)

σ ,F (i)}. Using ED we calculate the self-
energy of the system, which allows us to calculate new Weiss Green’s function as it is described
in section 3.3. Within ED we also calculate new parameters for the SIAM. A difference with
the standard DMFT loop is that instead of calculating the Weiss Green’s functions from
the ED, we take the value of Weiss Green’s functions calculated via a R-DMFT loop in the
previous R-DMFT iteration.

3.4.2 Numerical Renormalization Group (NRG)

Another impurity solver for the single impurity Anderson model (SIAM) which we are using in
this thesis is the numerical renormalization group (NRG). This method describes low-frequency
behavior much better than exact diagonalization. One of the things which one has to take
into account for solving the SIAM is that all energy scales contribute to the solution. To solve
the problem one has to find non-perturbative approach. The first step in this direction was
made by Anderson [186] with his Poor Man’s Scaling approach. In this work he integrated out
electron states close to the band edges of the conduction band, which have higher eigenenergies
compared to the other states. He described the system of the remaining part of the conduction
band with an effective Hamiltonian having the same mathematical form as initial one and
calculated new coupling constant J ′ in a perturbation series considering only leading term.
He showed that for the temperatures less than Kondo temperature TK , the system is in the
strong coupling regime, i.e. the impurity is strongly coupled to the conduction band electrons,
but using his method it is not possible to investigate the system further. Soon after Anderson’s
work, in 1975 Wilson invented the numerical renormalization group (NRG) technique [170].
In this work the NRG was applied to the Kondo model, which one can get directly from the
Anderson model using the Schrieffer-Wolff transformation [187], freezing charge (fermionic
number) fluctuations. Later the NRG technique was extended also to the SIAM [172, 173].

Consider the SIAM Hamiltonian:

ĤSIAM = Ĥimp +
∑
l,σ

{
εlσâ

†
lσâlσ + Vlσ

(
f̂ †σâlσ + h.c.

)}
. (3.46)

Here Ĥimp describes the impurity which depending on the model can have different forms. l
labels the noninteracting orbitals of the effective bath, εlσ is the energy of the noninteracting
orbital l for spin σ and Vlσ is the corresponding fermionic hybridization matrix element. Here
we assumed that energy of the orbital εlσ does not depend on direction of k momentum, i.e.
we consider only s-wave states.

We replace summation over l with an integral over energy:

ĤSIAM = Ĥimp +
∑
σ

∫ D

−D
dε
{
εα̂†εσα̂εσ +

√
∆σ(ε)
π

(
f̂ †σα̂εσ + h.c.

)}
, (3.47)

where D is the non-interacting fermionic half-band width. We now define a hybridization
function

∆σ(ε) = π
∑
l

δ(ε− εlσ)V 2
lσ . (3.48)

The next step is a logarithmical discretization of the conducting band [170]. We divide
the conducting band into exponentially decreasing intervals (Fig. 3.5) and perform a Fourier
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Figure 3.5: Logarithmical discretization of the conduction band.

expansion in each of this intervals. One can define a complete set of orthonormal functions:

Ψ±np =

{
1
vn
e±

2πipε
vn Λ−(n+1) < ±ε < Λ−n

0 otherwise
, (3.49)

where vn = Λ−n(1 − 1/Λ) and Λ is the logarithmical discretization parameter. Using these
orthonormal functions we can express α̂εσ as follows:

α̂εσ =
∑
np

[
ânpσΨ+

np + b̂npσΨ−np
]
, (3.50)

where

ânpσ =
∫ D

−D
dε[Ψ+

np(ε)]
?α̂εσ and b̂npσ =

∫ D

−D
dε[Ψ−np(ε)]

?α̂εσ . (3.51)

One can easily check that the new operators ânpσ and b̂npσ fullfill fermionic commutation
relations.

Using Eq. (3.50) one can rewrite the Hamiltonian (3.47) in new operators:

ĤSIAM = Ĥimp +

√
ζ0σ

π

∑
σ

(f̂ †σd̂0σ + h.c.) +
1 + Λ−1

2

∑
npσ

Λ−n(â†npσânpσ − b̂†npσ b̂npσ)

+
1− Λ−1

2πi

∑
nσ,p 6=p′

Λ−n

p− p′
(â†npσânp′σ − b̂

†
npσ b̂np′σ)e

2πi(p−p′)
1−Λ−1 , (3.52)

where

d̂0σ =
1
ζ0σ

∫ D

−D
dε
√

∆σ(ε)α̂εσ =
1
ζ0σ

∞∑
n=0

(γ+
nσân0σ + γ−nσ b̂n0σ) (3.53)

and

γ±nσ = ± 1
vn

∫ ±Λ−n

±Λ−(n+1)

√
∆σ(ε), ζ0σ =

∑
n

(γ+
nσ

2 + γ−nσ
2) . (3.54)

It is easy to verify that for Λ→ 1 the last term in the Hamiltonian (3.52) will disappear.
This means that states with different quantum number p will be decoupled from each other
and as the impurity is only coupled to the states with quantum number p = 0, we can neglect
all states with p 6= 0. Wilson showed in his paper [170], that we can neglect these states even
for a discretization parameter Λ = 2. So after neglecting the terms with p 6= 0 the Hamiltonian
is given by the following equation:

ĤSIAM = Ĥimp +

√
ζ0σ

π

∑
σ

(f̂ †σd0σ + h.c.) +
1 + Λ−1

2

∞∑
σ,n=0

Λ−n(â†nσânσ − b̂†nσ b̂nσ) . (3.55)
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Figure 3.6: Schematic structure of the NRG chain. t−1 =
√

ζ0σ
π describes hopping from the

“impurity” site to the 0-th site of the chain.

We observe that the energy scales are now separated and each state is described by two degrees
of freedom ânσ and b̂nσ. Wilson suggested to solve the problem by iterative perturbation
theory: because the terms in the conduction band are now exponentially decreasing, they can
be taken into account one after other [170]. In order to do this one has to perform an unitary
transformation from the set of parameters {ânσ, b̂nσ} to new operators {d̂nσ}. One can choose
the new basis in such a way that the operator d̂nσ is coupled to d̂n±1,σ. This can be achieved
using a Lanczos tridiagonalization procedure [188]. The resulting Hamiltonian has the form
of a semi-infinite linear chain (see Fig.3.6):

ĤSIAM = Ĥimp +

√
ζ0σ

π

∑
σ

(f̂ †σd̂0σ + h.c.) +
∞∑

σ,n=0

tnσ(d̂†nσd̂n+1,σ + h.c) +
∞∑

σ,n=0

δnσd̂
†
nσd̂nσ .

(3.56)

We would like to note that tnσ ∼ Λ−n/2 and δnσ ∼ Λ−n/2, which allows us to neglect terms far
away from the impurity site in the linear chain. So we can consider the finite size Hamiltonian
with N sites in the chain. Here we would like to note that this is the cut-off in the energy
and is different from the finite-size problem of a finite number of lattice sites of the original
model.

ĤN = Λ(N−1)/2

Ĥimp +

√
ζ0σ

π

∑
σ

(f̂ †σd̂0σ + h.c.) +
N−1∑
σ,n=0

tnσ(d̂†nσd̂n+1,σ + h.c) +
N∑

σ,n=0

δnσd̂
†
nσd̂nσ

 .
(3.57)

In Eq. (3.57) we rescale the Hamiltonian ĤN such that low-lying excitations are always of
order one. The Hamiltonian of the full system is recovered if one considers the following limit:

ĤSIAM = lim
N→∞

Λ−(N−1)/2ĤN . (3.58)

To solve the problem one can use the iterative diagonalization. It is based on the fact that:

ĤN+1 = Λ1/2ĤN + ΛN/2
∑
σ

tNσ(d̂†Nσd̂N+1,σ + h.c) + ΛN/2
∑
σ

δN+1,σd̂
†
N+1,σd̂N+1,σ .(3.59)

Once we know the eigenvalues and eigenvectors of the Hamiltonian ĤN , we can also calculate
matrix elements of 〈d̂Nσ〉ij and build the new Hamiltonian for site N + 1 (for details see



42 3. Method

(a) (b) (c) (d)

E

Figure 3.7: (a) The Nlevel lowest levels of the Hamiltonian ĤN after N iterations. The ground
state energy is set to zero. (b) The same levels after rescaling: El →

√
ΛEl. (c) The levels of

the Hamiltonian ĤN+1 after N + 1 iteration, each level split into 4 different levels. (d) The
same levels as in (c) but after truncation. We are keeping the Nlevel lowest levels. The ground
state energy is again set to zero.

Appendix F). Adding one more site the size of the Hamiltonian matrix is increasing by a
factor of 4 for spin-1/2 fermions and by a factor of 2 for spinless fermions (see Fig. 3.7).
To avoid exponential increase of the matrix size, we are keeping not all levels but only the
Nlevel lowest levels (see Fig. 3.7). To speed up the diagonalization process we are using
the symmetries of the model, which allows us to write the Hamiltonian in a block diagonal
structure. Depending on the problem, the total number of fermions Nf or/and the total
magnetizationMz is conserved. When both of these quantum numbers are conserved, the size
of each block in the Hamiltonian matrix is much smaller, compared to the case when only one
of the quantum numbers (Nf , Mz) is conserved.

An impurity solver for (G)DMFT calculation has to be able to calculate correlation func-
tions and Green’s functions for the “impurity site”. For this purpose we again use the iterative
diagonalization. We first calculate matrix elements of the desired operators on the “impurity
site”, then adding one more site we transform these quantities and obtain new values from
them. We continue this process until we consider all Nsite sites of the linear chain (for details
see Appendix F).

Let us now briefly explain how NRG works as an impurity solver for the DMFT algorithm.
We start from an initial guess of the hybridization function, then knowing the hybridization
function we can calculate hopping coefficients for the NRG chain. Afterwards we perform the
NRG calculation, which allows us to calculate spectral and correlation functions. Working on
a Bethe lattice we can then directly calculate the hybridization function:

∆σ(ω) = πt∗f
2Aσ(ω) , (3.60)

where t∗f is the rescaled hopping coefficient of the original lattice, and the spectral function is
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given by

Aσ(ω) = − 1
π
=mGσ(ω) =

1
Z

∑
nm

|〈m|f̂ †σ|n〉|2δ(ω − Em + En)
(
e−βEn + e−βEm

)
, (3.61)

where Z is the statistical sum, |n〉 is a many particle eigenstate of the ĤN Hamiltonian and
En is the corresponding energy eigenvalue.

For more complicated lattices, in addition to the spectral function Aσ, we also calculate
the interacting spectral functions

Bff,σ(ω) = − 1
π
=mQff,σ(ω) =

1
Z

∑
nm

〈n|f̂σf̂
†
σ̄f̂σ̄|m〉〈m|f̂ †σ|n〉δ(ω−Em+En)

(
e−βEn + e−βEm

)
(3.62)

and for Bose-Fermi mixtures in addition we have to calculate

Bfb,σ(ω) = − 1
π
=mQfb,σ(ω) =

1
Z

∑
nm

〈n|f̂σ b̂†b̂ |m〉〈m|f̂ †σ|n〉δ(ω−Em+En)
(
e−βEn + e−βEm

)
,

(3.63)
where σ̄ = −σ. After calculating the spectral functions Aσ , Bff,σ and Bfb,σ, using the
Kramers-Kronig relation one can calculate the Green’s functionsGσ(ω), Qff,σ(ω) andQfb,σ(ω).
Knowing these Green’s functions we can then calculate the self-energy:

Σσ = Uf
Qff,σ
Gσ

+ Ufb
Qfb,σ
Gσ

(3.64)

and the DMFT loop is closed by the Dyson equation (3.10). The imaginary part of the Weiss
Green’s function is the hybridization function.
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Chapter 4

Mixtures of Fermions and Bosons in
Optical Lattices

Ultracold atomic gases allow to realize novel quantum many-body systems. In particular, one
can perform experiments on Bose-Fermi mixtures [4–19]. One of the key questions that has
been explored is the effect of fermions on the mobility of the bosons. When fermions are
slow compared to the bosons, they act as dynamical impurities. Fast fermions, on the other
hand, mediate long-range interactions between the bosons. In both cases this has an effect
on the superfluid-Mott insulator transition. Different experimental groups intensively studied
this shift of the superfluid-Mott insulator transition induced by the fermions [10–16]. The
coherence properties of the bosonic cloud can be revealed by studying the bosonic interference
pattern after an instantaneously switching off the lattice in a time-of flight experiment. For
this purpose the visibility of the interference fringes has to be investigated [16, 189, 190].

Figure 4.1: Visibility of the bosonic interference pattern for different fermionic impurity con-
centrations for a mixture of 40K and 87Rb. (From Ref. [12]).

45
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Experiments show that adding fermionic atoms decreases the visibility (See Fig. 4.1), which
indicates that adding fermions leads to a stabilization of the Mott insulator phase. There are
several theoretical studies which try to explain this phenomenon [22, 32–34, 42]. However, so
far they predict that within a single band approximation, the Mott region shrinks, which is
at variance with experimental results. Multiband-effects however, can lead to an extension of
the Mott insulating regime [43–45].

In this chapter we will consider mixtures of fermions and bosons in optical lattices for
commensurate filling of both fermions and bosons at zero temperature. Our results will serve
as predictions for future experiments. In our calculations we are neglecting the effect of the
harmonic trap.

In particular, first we will consider a mixture of spinless fermions and bosons in two
different cases: (i) when the filling of fermions and bosons is 1/2 (section 4.1.1) and (ii) when
the spinless fermions are half-filled while the filling of the bosons is 3/2 (section 4.1.2). In
section 4.2 we will consider the case of a mixture of bosons and two-component fermions when
both fermions as well as bosons are half-filled.

We remark here that the results presented in the current chapter are obtained with a
density of states without Van Hove singularities. In fact, the results were obtained using the
density of states of the Bethe lattice, which is semi-elliptic and regular everywhere (see Eq.
3.11). As we will show below we were able to identify a supersolid phase - the phase with
coexisting broken U(1) symmetry and particle density wave order - proving the point that a
singularity in the non-interacting states is not a necessary condition for the occurrence of a
supersolid.

During our calculations we use the GDMFT. As an impurity solver we use the Numeri-
cal renormalization group (NRG). We use the following NRG parameters: logarithmical dis-
cretization Λ = 2, number of the NRG iterations Niter = 60, the number of the kept states
Nlevel = 1000 and the bosonic cut-off 4 for half-filled bosons (section 4.1.1) and the bosonic
cut-off 6 for 3/2-filled bosons (section 4.1.2). Obviously the bosonic cut-off for hard-core
bosons (section 4.2) will be 1, because in this limit each site can be occupied by at most one
boson.

4.1 Mixtures of Spinless Fermions and Bosons in Optical Lat-
tices

In this section we consider a mixture of spinless fermions and bosons in an optical lattice.
Earlier theoretical studies already suggested that Bose-Fermi mixtures can be unstable against
charge density wave (CDW) and supersolid order or phase separation (PS). However, so far all
theoretical approaches either dealt with one-dimensional systems [22–28], or relied on weak-
coupling approximations [29–31].



4.1 Mixtures of Spinless Fermions and Bosons in Optical Lattices 47

Figure 4.2: Phase diagram of the Fermi-Bose Hubbard model with spinless fermions and hard-
core bosons at half filling. We identify the supersolid phase (below the red solid line), the
alternating Mott insulator (AMI) phase with charge density wave (CDW) (above red line),
and the coexistence region (between the red and dashed blue line). Energies are expressed in
units of the non-interacting fermionic half-bandwidth D.

Figure 4.3: Schematic structure of different T = 0 phases of a spinless Bose-Fermi mixture in
an optical lattice. The red (dark) particles correspond to fermions, while cyan (light) particles
denote bosons. In both the supersolid and the AMI phase the bosons and fermions have an
alternating density pattern as depicted in (a). In the supersolid (b) the density oscillations are
small and the bosons are superfluid. In the AMI + CDW phase (c) the density oscillations are
large and the bosons are localized. The schematic structure of phase separation is depicted in
(d).
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4.1.1 Half-Filled Mixture of Spinless Fermions and Bosons

A mixture of spinless fermions and bosons in an optical lattice can be described by the single-
band Fermi-Bose Hubbard model:

Ĥ = −
∑
〈i,j〉

{
tf ĉ
†
i ĉj + tbb̂

†
i b̂j

}
−
∑
i

{
µf n̂

f
i + µbn̂

b
i

}
+
∑
i

{
Ub
2
n̂bi(n̂

b
i − 1) + Ufbn̂

b
i n̂
f
i

}
, (4.1)

where ĉ†i (b̂
†
i ) is the fermionic (bosonic) creation operator at site i, while n̂fi = ĉ†i ĉi (n̂

b
i = b̂†i b̂i)

denotes the number operator and µf(b) the chemical potential for fermions (bosons). Ub and
Ufb are the on-site boson-boson and fermion-boson interactions respectively. 〈i, j〉 denotes
summation over nearest neighbors, and tf(b) is the tunneling amplitude for fermions (bosons).

We now first study the limit Ub =∞, i.e. hard-core bosons. In this limit each site can be
occupied only by a single boson. In one dimension, if the hard-core bosons hop only to nearest
neighbor sites, one can make a unitary transformation, and express hard-core bosons in terms
of non-interacting fermions. So, the behavior of hard-core bosons is similar to the behavior of
fermions. However, in higher dimensions one cannot make such a unitary transformation to
map hard-core bosons to non-interacting fermions. Correspondingly, the behavior of hard-core
bosons and fermions is then not the same.

As we mentioned above, we consider the case when both bosons and spinless fermions
are half-filled (〈n̂b〉 = 〈n̂f 〉 = 1

2), which makes the system particle-hole symmetric. This is
ensured by the choice of the chemical potentials equal to µf = µb = Ufb/2. Without loss of
generality, calculations are performed for repulsive Fermi-Bose interactions: Ufb > 0. The case
of attractive interactions will be inferred later on with the help of a (staggered) particle-hole
transformation.

We take the non-interacting fermionic half-bandwidth D = 2t∗f as the unit of energy, the
bosonic hopping amplitude tb and the interaction Ufb are the remaining adjustable parameters.
Our results are shown in the Ufb− tb phase diagram in Fig. 4.2. In Fig. 4.3, we schematically
depict each of these phases.

For weak repulsion between fermions and bosons we obtain a supersolid phase (the blue
area below the blue dashed line in Fig. 4.2, schematically we depict this phase in Fig. 4.3(a,b)).
In the supersolid phase both the fermions and the bosons form a Charge Density Wave (CDW)
and the bosons are superfluid, i.e. this is the phase with coexisting broken U(1) symmetry
and particle density wave order. In the Fig. 4.4 we plot the amplitude of the CDW as
a function of Ufb. As one can see the amplitude of the CDW oscillation is small in the
supersolid phase. For strong interactions between fermions and bosons we obtain a bosonic
alternating Mott insulator phase (AMI) together with a charge density wave (CDW) of the
fermions (upper part of the phase diagram above the red solid line in Fig. 4.2, schematically
shown in Fig. 4.3(a,c)). In this phase the fermionic CDW amplitude |∆Nf | ≡ |Nf − 〈n̂f 〉| is
almost maximal, while the bosons are completely localized and have a CDW amplitude equal to
|∆Nb| ≡ |Nb−〈n̂b〉| = 0.5. Taking into account virtual bosonic particle-hole excitations beyond
the Gutzwiller approximation [161, 162] would, however, lead to a slightly smaller bosonic
CDW amplitude. This transition is very similar to the one for bosons in a superlattice: upon
increasing the potential difference between the sublattices there is a Mott-insulator transition
at half filling [191–193]. For intermediate coupling (in the area between the red solid line
and blue dashed line in Fig. 4.2) both solutions are stable within GDMFT. To determine
which of them corresponds to the ground state, we have compared their energies as given by
Eq. (3.33). We find that the supersolid phase always has the lower energy, i.e. in Fig. 4.2
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Figure 4.4: Amplitude of the CDW for fermions (blue circles, solid line) and hard-core bosons
(red crosses, dashed line) as a function of the fermion-boson interaction Ufb for the case when
ztb = 0.4D. In the inset we plot the bosonic superfluid order parameter as a function of the
fermion-boson interaction Ufb.

between the solid red line and the dashed blue line the ground state is the supersolid. The
coexistence of GDMFT solutions is a strong indication for a first order phase transition (at
T = 0). Another strong indication for a first order phase transition is a jump in the CDW
amplitude for fermions and bosons (see Fig. 4.4). As shown in Fig. 4.2, the critical value U cfb
for the phase transition from the supersolid into the AMI phase increases with the bosonic
tunneling amplitude.

We also study the fermionic spectrum and find that the fermionic spectrum is always
gapped. Spectral densities are shown in Fig. 4.5. The gap is small for the supersolid phase,
but at the transition point there is a jump in the gap and in the AMI phase it becomes of the
order of the non-interacting half-bandwidth D (see inset of Fig. 4.5). This implies that the
latter phase will be more stable against finite temperature effects.

So far we have considered repulsive interactions between bosons and fermions. To see what
happens for attractive interactions Ufb < 0 we apply a staggered particle-hole transformation
to the fermions, ĉi → (−1)iĉ†i , which leads to a minus sign in front of the Bose-Fermi interaction
term. This implies that for attractive interactions we obtain the same quantum phases, but
the CDW-oscillations are now in-phase, instead of out-of-phase as for repulsive interactions.

We now proceed by considering finite interactions between the bosons, i.e. relaxing the
hard-core condition, but still assume the fermions and the bosons to be half-filled. In this case
we have to adjust chemical potential for both fermions and bosons to get the correct filling.
We consider the case that the bosons are slightly slower than the fermions: ztb = 0.4D.
Our findings are summarized in the Ufb − Ub phase diagram in Fig. 4.6. For strong bosonic
repulsion Ub the results are similar to the ones found for hard-core bosons: we find a supersolid
for weak Ufb and the alternating Mott insulator phase for stronger Ufb, separated by a first
order transition. Also in this case we find a region where both GDMFT solutions are stable,
but the supersolid state is lower in energy than the AMI. The critical interspecies repulsion at
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Figure 4.5: Fermionic spectral function in a mixture with hard-core bosons and ztb = 0.4D
for different values of Ufb. In the inset we plot the size of the gap in units of D as a function of
Ufb. The gap is defined by the frequencies for which the spectral function has half its maximal
value.

Figure 4.6: Phase diagram of the Fermi-Bose Hubbard model with spinless fermions. Both
fermions and bosons are half-filled and ztb = 0.4D. Stable phases are the supersolid (left of
the red solid line and above the green dash-dotted line) and the alternating Mott insulator
(AMI) phase with charge density wave (CDW) (right of the red solid line and above the green
dash-dotted line). In the area between the red solid line and blue dashed line both solutions
are stable. Below the green dash-dotted line phase separation (PS) takes place.
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the transition between supersolid and the AMI phase increases when the value of the bosonic
repulsion Ub is reduced. This is because the supersolid state acquires a lower energy when Ub
is decreased, whereas the energy of the AMI phase remains the same. For weak interactions Ub
among the bosons, the half-filled state is unstable towards Phase Separation (PS) (green area
below green dash-dotted line in Fig. 4.2, schematically we depict this phase in Fig. 4.3(d)).
In this parameter regime we do not find a converged GDMFT solution where the bosons and
the fermions are half-filled. To establish the occurrence of phase separation we also performed
calculations away from half filling. We found a pronounced jump in the density as a function
of the chemical potential and coexisting solutions close to the position of the jump. Moreover,
we observed that for strong interspecies repulsion the phase separation is always complete.
This allowed us to compare the energies of the PS- and AMI states, which yields the green
dash-dotted line as depicted in Fig. 4.6. We have checked that comparison of energies yields
the same boundary for phase separation as deduced from the disappearance of a converged
homogeneous GDMFT solution.

Also in this case we can infer the effect of attractive Bose-Fermi interactions by performing
a staggered particle-hole transformation for the fermions. Phase separation turns then into
phase separation of bosons and fermionic holes, which is equivalent to clustering of the bosonic
and fermionic particles. So for weak repulsion Ub among the bosons a system with attractive
interspecies interaction Ufb will maximize its density in part of the system, leaving the rest
unoccupied.

4.1.2 3/2-Filled Bosons and Half-Filled Spinless Fermions

In the previous subsection, we established the existence of a supersolid phase at filling Nb =
Nf = 1/2. However, the particle density oscillation and the gap in the spectrum in the
supersolid phase were rather small. This is partly due to the fact that the Bethe lattice
density of state is regular everywhere, and has not singularities which could enhance the
effects. However, this makes the experimental verification of this phase very challenging.

Therefore, in this section we study a different case where the filling of spinless fermions
is 1/2, while the filling of the bosons is higher, namely 〈n̂bi〉 = 3/2. The reason for this
particular choice is that it allows for two different Alternating Mott Insulator (AMI) phases,
with amplitude of the bosonic density oscillation 1/2 and 3/2, respectively. These two AMI
phases are separated by a supersolid phase. The amplitude of the density oscillations in
this supersolid phase in between the two AMI phases is of the order one, which makes its
experimental detection much easier.

To overcome the tendency towards phase separation in the system, we consider the case
where the bosons are much slower than the fermions ztb = 0.05D, and where the repulsion
among the bosons is strong Ub = D.

GDMFT analysis

First we study this situation by means of GDMFT. In Fig. 4.7, we plot the amplitude of the
density oscillations as a function of the interspecies interaction Ufb. The amplitude of the
density oscillations is defined as ∆Nf(b).

The results show that the oscillation amplitude is a smooth function of Ufb for fermions
and bosons. We identify four different regimes in the system. Schematic pictures for these four
phases are given in Fig. 4.8. For weak interactions between fermions and bosons the system is
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Figure 4.7: Dependence of the amplitude of the bosonic/fermionic density wave on the Fermi-
Bose interaction, for the case when ztb = 0.05D and Ub = 1.0D, whereD denotes the half-band
width of the fermions. In the inset we depict the superfluid order parameter. The different
line types in the inset correspond to results on the two sublattices. The different phases are
schematically depicted in Fig. 4.8.

Figure 4.8: Schematic picture of the four different phases occurring in the Bose-Fermi mixture
for bosonic filling 3/2 and fermionic filling 1/2. We identify the Supersolid-1 phase in which
superfluidity coexists with a charge density wave with ∆Nb <

1
2 . The AMI-1 has localized

bosons with ∆Nb = 1
2 . The Supersolid-2 phase is defined by superfluidity coexisting with a

charge density wave with 1
2 < ∆Nb <

3
2 . The AMI-2 has localized bosons with ∆Nb = 3

2 .
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Figure 4.9: The fermionic spectral functions for the different phases. The parameters are
chosen the same as in Fig. 4.7. The dashed green line corresponds to the supersolid-1 phase
(Ufb = 0.4D), the dash-dotted red line corresponds to the AMI-1 phase with bosonic CDW
oscillation 0.5 (Ufb = D) and the blue line corresponds to the supersolid-2 phase (Ufb =
1.95D). In the inset we plot the same spectral functions, at smaller frequencies.

in the supersolid phase: the bosons are superfluid and there is a spontaneous particle density
oscillation in the system, which increases with increasing interaction Ufb. For some critical Ufb
the bosonic density amplitude reaches 1/2. At this point, the system undergoes a transition
into the AMI-1 phase. Here the bosonic density is alternating between 1 and 2 on neighboring
lattice sites. If we continue to increase the interaction, only the amplitude of the fermionic
density oscillations slowly increases. This continues up to the second phase transition from the
AMI phase into second supersolid phase. In this region, with increasing Ufb, both amplitudes
of the density oscillations of fermions and bosons continuously increase, until the amplitude of
the bosonic density oscillations reaches 3/2. At this point a phase transition occurs from the
supersolid into a second AMI phase. Within this AMI-2 phase the bosons order themselves by
alternating 0 and 3 bosons per site. Upon further increase of the interspecies interaction, the
bosonic density oscillation - within our approximation - does not change, while the amplitude
of the fermionic density oscillations converges to 1/2. In contrast to the case of half-filled
hard-core bosons, the superfluid order parameter is different on the two sublattices for this
case, because there is no particle-hole symmetry for the bosons. This is visible in the inset of
Fig. 4.7, where the superfluid order parameter on the two sublattices is plotted.

An important observation concerns the order of the phase transitions. In the case of half-
filled bosons, as we showed in the previous section the transition between the supersolid and
the AMI phase is a first order quantum phase transition. However, for the bosonic density of
3/2, we find the transition to be of second order, as can be inferred from the lack of coexisting
phases and the smooth behavior of all order parameters.

We also study the local spectral functions in the different phases. The results are displayed
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Figure 4.10: Superfluid order parameter on the two sublattices (α = ±1) as a function of the
Fermi-Bose interaction, obtained by means of the GDMFT and the strong coupling model.
Parameters are chosen the same as in Fig. 4.7. In the inset we plot the same data, but the
strong coupling results are shifted towards stronger Ufb to compensate for the screening caused
by virtual hopping processes of the fermions, which are not included in the strong coupling
model.

in Fig. 4.9. The gap in the first supersolid phase is very small, as also found for the supersolid
phase with half-filled bosons. In the AMI phases we find that the fermions have a rather large
gap. A more interesting structure emerges in the spectral function of the second supersolid
phase. In this phase, in addition to the Hubbard sub-bands, an additional peak arises in the
spectral function. The gap in this phase, as one can see from the inset of Fig. 4.9, is much
larger than the gap in the first supersolid phase, but is also much smaller than in AMI phase.
We have investigated the nature of the excitations responsible for this additional peak. These
excitations correspond to a breaking of the alternating boson-fermion order in the system and
therefore indicate the instability of the system to phase separation, which has only a slightly
higher energy. In the AMI phase this energy difference is higher than in the supersolid phase,
because the superfluid order parameter in the supersolid is oscillating (as seen from the inset
of Fig. 4.7) and therefore reduced. This leads to an increase of the energy and therefore
enhances the instability towards phase separation.

Strong coupling

To gain a better analytic understanding of the system, we also consider a strong coupling
approach. We propose a simple model, where in one of the sublattices on each site a fermion
is localized, whereas the sites of the other sublattice are occupied by localized pairs of bosons.
In addition, we consider half-filled bosons on top of this arrangement. Within this model
the AMI-1 phase is described by the localization of the additional bosons on the “fermionic”
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sublattice. The AMI-2 phase corresponds to localization in the sublattice with the boson-
pairs. The supersolid corresponds to the case where the additional bosons are superfluid
and delocalized over all lattice sites. To describe the phase transition within this strong
coupling model, we have to study localization of half-filled bosons in a superlattice. The
effective Hamiltonian in the Gutzwiller approach describing this situation has the form Ĥeff =
L
2

(
Ĥ−1 + Ĥ1

)
, where L is the number of lattices sites and

Ĥ1 = −ztbϕ−1

(
â†1 + â1

)
− (Ub −

Ufb
2

)
(
n̂1 − 1

2

)
, (4.2)

Ĥ−1 = −ztbϕ1

√
3(â†−1+ â−1) + (Ub −

Ufb
2

)(n̂−1 − 1
2) , (4.3)

where the index±1 corresponds to the two sublatticies. The sublattice marked by 1 is occupied
by localized fermions and on each site of sublattice −1 there are two localized bosons. We
have treated the additional boson as hard-core, which is justified because of the large bosonic
interaction Ub. The factor

√
3 comes from the fact that in the sublattice −1 we have three

bosons. We solve this system self-consistently and find the values when this system has a
non-trivial solution (ϕ±1 6= 0). Our result shows that the system is superfluid in the following
range:

2Ub − 2
√

3ztb < Ufb < 2Ub + 2
√

3ztb .

Also we compare the superfluid order parameter calculated by strong coupling and the GDMFT
(see Fig. 4.10). Our results show good agreement between these two results. Compared to the
GDMFT-results, the strong coupling data are shifted towards smaller Bose-Fermi interaction.
This shift is due to screening caused by the fact that in the superfluid phase the fermions are
completely localized at the one sublattice, as we assumed in this strong-coupling argument.
In reality, due to virtual hopping processes, there is also a finite density of fermions on the
other sublattice. This effectively reduces the interaction between fermions and bosons.

4.2 Mixtures of Hard-Core Bosons and Two-Component Fermions
in an Optical Lattice

In this section we will consider a mixture of bosons and two-component (i.e. spinful) fermions
when filling of the fermions as well as the bosons is 1/2. In our calculation we assume that
the number of different components of the fermions are the same and that the bosons are
hard-core.

Such a system can be described by the single-band Fermi-Bose Hubbard model:

Ĥ = −
∑
〈i,j〉,σ

{
tf ĉ
†
iσ ĉjσ + tbb̂

†
i b̂j

}
−
∑
i

{
µf n̂

f
i + µbn̂

b
i

}
+
∑
i

{
Uf n̂

f
i↑n̂

f
i↓ + Ufbn̂

b
i n̂
f
i

}
. (4.4)

As before 〈i, j〉 denotes summation over nearest neighbors, tf(b) is the tunneling amplitude for
fermions (bosons), ĉ†i (b̂

†
i ) is the fermionic (bosonic) creation operator at the site i, while n̂fiσ =

ĉ†iσ ĉiσ (n̂bi = b̂†i b̂i) denotes the number operator for fermions (bosons) and n̂fi = n̂fi↑+ n̂fi↓. µf(b)
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Figure 4.11: The staggered magnetization (blue circles, solid line), as well as amplitude of the
CDW for fermions (red squares, dotted line) and hard-core bosons (green triangles, dashed
line) as a function of the fermion-boson interaction. Here we would like to emphasize that
magnetization and CDW amplitudes are corresponding to two different solutions.

is the chemical potential for fermions (bosons). Uf and Ufb are the on-site fermion-fermion
and fermion-boson interaction, respectively. Since we are considering hard-core bosons, two
bosons can not occupy the same site and correspondingly do not interact.

First we would like to discuss the limiting case Ufb = 0. In this limit, fermions and bosons
are decoupled from each other and the solution for each subsystem is well known. As men-
tioned, both fermions and bosons are half-filled and in this case the ground state for fermions
and bosons corresponds to the antiferromagnetic and the superfluid phases, respectively.

For Uf = 0 the system is similar to the spinless fermion system which was described in
section 4.1 and one can expect to obtain the supersolid and alternating Mott insulator (AMI)
phases.

Here we would like to study the system for finite Fermi-Fermi and Bose-Fermi interactions.
We again will take the non-interacting fermionic half-bandwidth D = 2t∗ as the unit of energy.
In our calculations the bosons are slightly faster than the fermions: ztb = 0.6D.

Let us first consider the case when Uf = 0.5D. Our calculation shows that, when Ufb <
0.35D, we obtain the antiferromagnetic phase. We would like to point out that starting from
any initial set of parameters we always end up with the antiferromagnetic solution. With
increasing interaction (Ufb ≥ 0.35D), we find either the antiferromagnetic or the supersolid
phase depending on the initial conditions (see Fig. 4.11). With further increase of interaction
(U > 1.05D) the antiferromagnetic solution disappears and we only get the supersolid solution.
After further increase of interaction, a phase transition to the AMI phase takes place (Ufb '
1.2D).
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Figure 4.12: Phase diagram of the Fermi-Bose Hubbard model with two component fermions
and hard-core bosons at half filling. We identify the antiferromagnetic phase (AF) (green
area, in the bottom of the phase diagram), the alternating Mott insulator (AMI) phase with
charge density wave (CDW) (cyan area in the top of the phase diagram, the supersolid phase
(SS)(white area) and three coexistence regions between (i) the AF and SS phase (red area),
(ii) the AF and AMI phase (orange area) and (iii) the SS and AMI (small black area).

Our findings are summarized in the Ufb − Uf phase diagram in Fig. 4.12. In the case
when the interaction between fermions is stronger than the interaction between fermions and
bosons, we obtain the antiferromagnetic phase, while in the opposite case, when interaction
between fermions and bosons are stronger than interaction between fermions, we obtain the
AMI phase. For the intermediate regime we obtain the supersolid phase and three different
coexistence regions between (i) the AF and SS phase, (ii) the AF and AMI phase and (iii)
the SS and AMI (see Fig. 4.12). As we have already discussed in the chapter 3, to find out
which phase corresponds to the ground state one has to compare the energies of the coexisting
phases. Unfortunately, the accuracy of our calculation at this point does not allow us to
determine the state with the minimal energy.

Our key finding in this section is observation of the antiferromagnetic phase in the presence
of the bosons. As the bosons can be used for cooling the system, this could facilitate the
creation of an antiferromagnetic phase compared to a pure fermionic mixture.
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Chapter 5

Ultra-Cold Atoms in a Harmonic Trap

The results presented in the previous chapter were obtained for a homogeneous system in
the presence of the optical lattice. However, in experiments, the spatial inhomogeneity due
to the harmonic confinement potential is always present, leading to a spatially varying local
density. In this chapter we will take this effect into account. We again investigate the system
at zero temperature. First we will consider a mixture of two-component fermions, while later
on we will discuss a mixture of bosons and spinless fermions. In Fig. 5.1 we plot a schematic
arrangment of ultra-cold atoms in a harmonic trap.

5.1 Ultra-Cold Fermions in a Harmonic Trap

The first experiments on ultra-cold fermionic atoms in optical lattices focused on non-interacting
and attractively interacting particles [79–86]. Only recently, also repulsively interacting fermions
in a harmonic trap were studied [89, 90]. Both experiments were performed for two hyperfine
states of 40K (|F,mF 〉 = |9/2,−9/2〉 ≡ | ↓〉 and |9/2,−7/2〉 ≡ | ↑〉). To detect the Mott
insulator phase the compressibility and double occupancy were studied. These quantities are
zero in the Mott insulator phase and finite in a metallic phase. The experiments show that
for strongly interacting fermions, in spatial regions with total particle density close to one, a
Mott insulator is realized in the system. Depending on the parameters, the Mott insulator can

Figure 5.1: Schematic structure of ultra-cold atoms in a harmonic trap. The red (dark)
particles correspond to spin-up fermions and cyan (light) particles corresponds to spin-down
fermions.
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be realized either in the center of the trap, or forms a ring enclosing a metallic and band insu-
lator region. In Ref. [90] it is shown that there is good agreement between the experimental
findings and theoretical results obtained by DMFT + TFA calculations.

As it is well known, the repulsive Hubbard model favors antiferromagnetic order at low
temperatures. The same type of the behavior is expected in a harmonic trap. At low enough
temperatures antiferromagnetic order can be observed by Fourier-sampling of time-of-flight
images via Raman pulses, by measuring spin correlation functions via local probes, probing
noise correlations, polarization spectroscopy and Bragg scattering.

A repulsively interacting fermionic mixture displays antiferromagnetic spin order at par-
ticle density 1. In a harmonic potential, this is only realized in a small region, where the
local chemical potential is close to Uf/2. Hartree-Fock static mean-field theory predicts that
antiferromagnetism, with staggered magnetization on a finite length scale, coexists with para-
magnetic states in various spatial patterns, e.g. antiferromagnetism in the center of the trap
or antiferromagnetism in a ring surrounded by a particle- or a hole-doped atomic liquid [194].
On the other hand, both commensurate and incommensurate spin-density-waves have been
predicted for the hole-doped Hubbard model [195–197]. However, the existence and properties
of any ordered state on a finite length scale are strongly sensitive to quantum and thermal
fluctuations. Therefore a theoretical description that captures effects of strong correlations
and spatial inhomogeneity in a unified framework is needed. We apply the Real-Space Dynam-
ical Mean-Field Theory (R-DMFT) [163, 168], which is a comprehensive, thermodynamically
consistent and conserving mean-field theory for correlated lattice fermions in the presence of
an external inhomogeneous potential. In particular, we apply this method to spin-1

2 fermions
in a two-dimensional square lattice with harmonic confinement. Here we would like to mention
that in our calculations the elements of the Green’s function that are off-diagonal in spin-space
are assumed to be zero. Therefore, we cannot account for canted antiferromagnetism.

Repulsively interacting fermions in an optical lattice almost perfectly implement the Hub-
bard Hamiltonian

H = −tf
∑
〈ij〉,σ

ĉ†iσ ĉjσ + Uf
∑
i

n̂i↑n̂i↓ +
∑
iσ

(V f
i − µσ)n̂iσ , (5.1)

where n̂iσ = ĉ†iσ ĉiσ, and ĉiσ (ĉ†iσ) are fermionic annihilation (creation) operators for an atom
with spin σ at site i, tf is the hopping amplitude between nearest neighbor sites 〈ij〉, Uf > 0
is the on-site interaction, µσ is the (spin-dependent) chemical potential and V f

i = V f
0 r

2
i is the

harmonic confinement potential. Moreover we define µ̄f ≡ 1
2(µ↑ + µ↓) and ∆µ ≡ 1

2(µ↑ − µ↓).
The parameters of this model are tunable in experiments by changing the lattice amplitude
and via Feshbach resonances. In the following, tf = 1 sets the energy unit and we take the
lattice constant to be a = 1.

In the context of cold atoms, a two dimensional system can be realized by applying a highly
anisotropic optical lattice, which divides the system into two-dimensional slices. Although not
exact, the R-DMFT is expected to be a good approximation for the two-dimensional situation
at zero temperature, since the derivation of the DMFT equations is controlled by the small
parameter 1/z = 1/4 on the square lattice.

We show that for spin-1
2 lattice fermions with local repulsive interaction, antiferromag-

netic order exists at zero temperature when the harmonic potential is present. We find that
antiferromagnetic order is stable in spatial regions with total particle density close to one,
but persists also in parts of the system where the local density significantly deviates from
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Figure 5.2: Local density and magnetization for Uf = 10tf , µ̄f = 5tf and V f
0 = 0.1tf on a

square (30×30) lattice. In sub-figure (a) we plot the local magnetization and local density
along the y = 1/2 line (cut through center of the system). In the sub-figure (b) we plot the
same values as the function of a radius from the trap center, determined within the exact R-
DMFT and within the Thomas-Fermi approximation (TFA) to the R-DMFT. In the sub-figure
(c) we show a color-coded plot of the magnetization.
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half filling. We also show that for strong repulsion phase separation occurs in imbalanced
mixtures, when the difference in the particle number of the spin components is large. For
weaker repulsion a strong imbalance destroys antiferromagnetic order, but does not lead to
phase separation.
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Figure 5.3: The local density and magnetization along the y = 1/2 line for Uf = 10tf and
V f

0 = 0.2tf on a square (20×20) lattice. In the sub-figures (a) µ̄f = 3tf , (b) µ̄f = 7tf and (c)
µ̄f = 8tf . In the sub-figures (d), (e), (f) we show a color-coded plot of the magnetization for
the same parameter as in (a),(b) and (c) correspondingly.

5.1.1 Balanced Mixture

In this subsection we consider the case of an equal mixture of spin-up and down atoms:
N↑ = N↓. First we consider the case when the fermions are half-filled at the center of trap,
i.e. µ̄f = Uf/2. In this case our calculations show that Antiferromagnetic (AF) order appears
in the center of the system (Fig. 5.2).

To investigate the effect of the number of fermions on the behavior of the system we change
the chemical potential. We obtain that in a wide range of chemical potentials antiferromagnetic
order is stable in the center of the trap (Fig. 5.3), but for high chemical potentials, when the
local density of the fermions in the center of the system becomes much higher than half-filling,
antiferromagnetic order forms in a ring enclosing a paramagnetic region (Fig. 5.4).

So we observe that antiferromagnetic order is stable in the presence of the inhomogeneous
harmonic potential. These results are particularly important for ongoing attempts to real-
ize antiferromagnetic states in optical lattices. Namely, we predict that the observation of
antiferromagnetic order does not critically depend on the number of atoms in the system.
For sufficiently strong repulsion between the particles, the necessary condition to find anti-
ferromagnetic order is to prepare the system such that the local filling factor approximates
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Figure 5.4: Local density and magnetization for Uf = 10tf , µ̄f = 15tf and V f
0 = 0.2tf on

a square (30×30) lattice. In sub-figure (a) we plot the local magnetization and local density
along the y = 1/2 line. In the sub-figure (b) we plot the same values as a function of the radius
from the trap center, determined within the exact R-DMFT and within the Thomas-Fermi
approximation (TFA) to the R-DMFT. And in the sub-figure (c) we show color-coded plot for
the magnetization.
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Figure 5.5: Total density and staggered magnetization as a function of the effective chemical
potential obtained within the Thomas-Fermi approximation to the R-DMFT for two dimen-
sional square (main panel) and three dimensional cubic lattices (inset). Main panel: Uf = 10tf
(diamonds) and Uf = 20tf (circles); inset: Uf = 30tf .

or exceeds one in at least part of the system. We find no evidence for phase separation or a
paramagnetic insulating boundary layer for the N↑ = N↓ case.

The antiferromagnetic ground state of homogeneous fermions described by the Hubbard
Hamiltonian (5.1) without a trap is stable when the density of particles varies from n ≈ 0.8
to 1.2, depending on the interaction value Uf [198]. On the contrary, in the presence of the
external harmonic potential, antiferromagnetic order appears for much lower or higher local
total densities. Indeed, in Figs. 5.2(b) and 5.4(b) we present examples of the local density
ni and the local magnetization mi = 1

2(ni↑ − ni↓) as a function of distance from the center
which prove that antiferromagnetic order extends from the center of the trap and disappears
only when ni ≈ 0.5 in Fig. 5.2(b). Similarly, Fig. 5.4(b) shows that antiferromagnetic order is
stable on a ring when the local density extends between 0.5 . ni . 1.5.

We also determine the local density and the local magnetization within the Thomas-Fermi
approximation (TFA) to the R-DMFT, where the external potential is only included by a
spatially varying chemical potential [199]. The agreement between the full R-DMFT and
the TFA results is very good in regions well within or outside the antiferromagnetic domain
(see Figs. 5.2(b) and 5.4(b)). Encouraged by this, Fig. 5.5 shows additional TFA+R-DMFT
profiles that can be used to compare R-DMFT with experiments for realistic systems in two
and three dimensions. However, the staggered magnetization decays abruptly within the TFA
as compared to the full R-DMFT solution, i.e. the Thomas-Fermi approximation to the R-
DMFT essentially reproduces results from the standard homogeneous DMFT, cf. Fig. 5.5. The
wider stability regime of antiferromagnetic order found within the full R-DMFT is caused by
a proximity effect; antiferromagnetic order is induced into parts of the systems where the local
densities are too low to stabilize antiferromagnetism in the homogeneous case. On the other
hand, the proximity of the paramagnetic state reduces the staggered magnetization when the
local density is close to one.
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5.1.2 Imbalanced Mixture

We now proceed by investigating the imbalanced case, i.e. N↑ 6= N↓. Imbalance between the
two spin-components is induced by a nonzero chemical potential difference ∆µ = µ↑ − µ↓,
which corresponds to a magnetic field. In the experimental situation, the density imbalance
can be highly tuned and is stable due to the suppression of spin-flip scattering processes in
cold-atomic gases. Representative results are presented in Fig. 5.6, where we plot the up-
and down-component of the density along a cut through the system. Upon increasing the
imbalance parameter ∆µ, we find suppression of antiferromagnetic order and emergence of
phase separation between the minority and majority species. The phase separation region
starts to develop far away from the center of the trap at small ∆µ and gradually spreads
toward the center. We thus find that the border of the antiferromagnetic domain is most
sensitive to phase separation. This is indeed reasonable: the energy cost to polarize the
antiferromagnetic state is the energy difference between the antiferromagnetic state and the
ferromagnetic state. This is of the order t2f/Uf , which is small for the large interaction Uf
considered here. Antiferromagnetic order is thereby more unstable for larger distances to the
trap-center, because of the vicinity to the paramagnetic region. The energy cost to polarize
the paramagnetic regime is higher, because in this case kinetic energy has to be paid, whereas
in the antiferromagnetic domain the kinetic energy is already quenched because the particles
are almost localized. Due to the proximity effect we find that the paramagnetic regime close
to the insulating domain also gets phase-separated, which leads to a ring-like structure of the
minority species.

At strong interaction, Uf = 10tf , in the case shown in Fig. 5.6, atoms with different
spins ultimately tend to occupy different spatial regions to avoid the mutual interaction and
the minority species is completely expelled from the trap center. At weaker interaction,
Uf = 7.5f , however, we found that the imbalanced system still contains interpenetrating
atoms with different spins and phase separation does not occur. This is shown in Fig. 5.7,
where for ∆µ = 0.8tf antiferromagnetic order has completely disappeared, but the two spin
components are still interpenetrating. The small oscillations in the component densities can
be understood as Friedel oscillations due to the small size of the system. We note that in the
case of imbalanced spin-mixtures the agreement between the TFA and the exact solution to
R-DMFT is far less good than in the balanced case presented above.

To understand better the effect of the imbalance on antiferromagnetic order we also inves-
tigate other values of interaction strength. Our results show that for Uf < Umax the critical
imbalance ∆µc, which breaks antiferromagnetic order, is increasing with increasing of Uf ,
while for Uf > Umax the critical imbalance ∆µc is decreasing with increasing of Uf (see Fig.
5.8). The reason of a such behavior is the following: for weak interaction Uf antiferromagnetic
order is of Slater type (spin waves) and the gap is linear in Uf , while in the strong interaction
Uf antiferromagnetic order is of Heisenberg type (localized moments) and the gap is order of
t2f/Uf . So, with increasing interaction Uf the size of the gap is increasing, reaches its max-
imum and than decreasing and approaches to zero. This fully explains the behavior of the
critical imbalance as a function of Uf .
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Figure 5.6: Spin resolved particle densities for an imbalanced mixture obtained within the
R-DMFT for Uf = 10tf . Panels (a)-(c) show component densities along the y = 1

2 line for
gradually increasing imbalanced ∆µ = 0.3tf (a), 0.75tf (b), tf (c). The two lower panels show
the space resolved up- (d) and down- (e) density for ∆µ = tf . The lattice size is 20× 20 and
other parameters are: V f

0 = 0.2tf , µ̄ = 5tf .
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Figure 5.7: Spin resolved particle densities for an imbalanced mixture obtained within the
R-DMFT for Uf = 7.5tf . Panels (a)-(c) show component densities along the y = 1

2 line for
gradually increasing imbalanced ∆µ = 0.4tf (a), 0.6tf (b), 0.8tf (c). The lattice size is 20×20
and other parameters are: V f

0 = 0.2tf , µ̄ = 3.75tf .
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Figure 5.8: Spin resolved particle densities for an imbalanced mixture obtained within the
R-DMFT for different values of Uf and ∆µ. µ̄f = Uf/2 and V f

0 = 0.2tf .

5.2 Mixtures of Spinless Fermions and Bosons in a Harmonic
Trap

In chapter 4, we considered a mixture of the spinless fermions and bosons in a homogeneous
optical lattice. We showed that when the fermions are half-filled, depending on the model
parameters one can obtain the supersolid or alternative Mott insulator (AMI) phase. In this
section we will consider the effect of the trap on the Bose-Fermi mixture.

A Bose-Fermi mixture in an optical lattice is well described by the Bose-Fermi Hubbard
model:

H = −tf
∑
〈ij〉

ĉ†i ĉj−tb
∑
〈ij〉

b̂†i b̂j+Ub
∑
i

n̂bi(n̂
b
i−1)+Ufb

∑
i

n̂bi n̂
f
i +
∑
iσ

(V f
i −µf )n̂fi +

∑
iσ

(V b
i −µb)n̂bi ,

(5.2)
where ĉ(†)

i and b̂
(†)
i are annihilation (creation) operators for fermions and bosons at site i.

n̂fi = ĉ†i ĉi and n̂
b
i = b̂†i b̂i are the number operators for fermions and bosons at site i respectively.

tf(b) is the fermionic (bosonic) hopping amplitude between nearest neighbor sites 〈ij〉. Ub
and Ufb are the Bose-Bose and Bose-Fermi interactions, respectively. µf(b) is the fermionic
(bosonic) chemical potential and V

f(b)
i = V

f(b)
0 r2

i is the harmonic confinement potential for
fermions (bosons).

First we consider a mixture of spinless fermions and hard-core bosons in the harmonic trap.
We choose the chemical potentials in such a way that in the center of the trap both fermions
and bosons are half-filled. We take hopping amplitudes and harmonic confinement potential
for fermions and bosons equal to each other. Our calculations show that a ring-like structure
is realized in the system. In the center we obtain an AMI phase, surrounded by the supersolid
and superfluid phases (see Fig. 5.9). The supersolid phase obtained during this calculations
is not a “true” supersolid and it arises due to boundary effects. Without the AMI phase in
the center of the trap we can not obtain a “true” supersolid phase with CDW amplitude less
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(a) (b)

(c) (d)

Figure 5.9: Local density for hard-core bosons and fermions, as well as the superfluid order
parameter for tb = tf , Vf = Vb = 0.2tf , µf = 10tf , µb = 10tb and Ufb = 20tf on a square
(20×20) lattice. In sub-figure (a), (b) and (c) we represent a color-coded plots for local
densities for bosons and fermions, and superfluid order parameter, respectively. In the sub-
figure (d) we plot the same values as the function of the radius from the trap center.
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(a) (b)

(c) (d)

Figure 5.10: Local density for bosons and fermions, as well as the superfluid order parameter
for tb = 0.05tf , Vf = 0.16tf , Vb = 0.08tf , µf = 12tf , µb = 160tb, Ufb = 8tf , and Ub = 80tb
on a square (31×31) lattice. In sub-figure (a), (b) and (c) we represent color-coded plots for
local densities for bosons and fermions, and superfluid order parameter, respectively. In the
sub-figure (d) we plot the same quantities along the y = 0 line.
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than 1/2. This behavior can be explained by the fact that the gap in the supersolid phase, as
we discussed in chapter 4, is rather small, and is easily affected by the harmonic confinement,
while the gap in the AMI phase is larger and more stable.

As we discussed in section 4.1.2 the gap in the supersolid phase is increasing with increasing
filling of the bosons. Therefor, to obtain a supersolid phase we chose a bosonic chemical
potential, such that filling in the center of the trap is 3/2. Our results are summarized in Fig.
5.10. We again obtain a ring-like structure: in the center we obtain a supersolid surrounded
by AMI and superfluid phases.

In conclusion, we have shown that the supersolid and AMI phases found in Chapter 3 can
be stabilized in an harmonic trap. However, the supersolid is very sensitive and it’s existence
is easily destroyed by the trap, because of the small gap in the spectral function. The AMI
phase, on the other hand, can be stabilized in the harmonic potential for a wide range of
couplings.



Chapter 6

Resonance Superfluidity in an Optical
Lattice

In this chapter we study an ultracold atomic gas of fermionic atoms in a three-dimensional
optical lattice close to a Feshbach resonance. For magnetic field values below the resonance,
fermions with different spin will form bosonic molecules (See Fig. 6.1). Varying the magnetic
field one can detune the bosonic level compared to the fermionic one. Doing this one can
vary the ratio of the filling of fermions and molecular bosons and the effective interaction
between the fermions. In such a system interesting physics can be observed. In particular, the
Feshbach resonance induces a BEC-BCS crossover close to resonance position. Far away from
the resonance the behavior of the system is dominated by the background scattering length.

T. Esslinger and colleagues at ETH Zürich reported the production of 40K molecules in
3D cubic optical lattices using s-wave Feshbach resonances in early 2006 [84], but no evidence
of a superfluid state was found until later that year, when Ketterle and coworkers loaded 6Li
atoms in optical lattices and their pairs formed a condensate [85]. Those two experiments
opened the door to studies of superfluid-to-insulator transitions in optical lattices.

Figure 6.1: The BEC-BCS crossover. By tuning the interaction strength between the two
fermionic spin states, one can smoothly cross over from a regime of tightly bound molecules
to a regime of long-range Cooper pairs, whose characteristic size is much larger than the
interparticle spacing. In between these two extremes, one encounters an intermediate regime
where the pair size is comparable to the interparticle spacing (From Ref. [95]).

71
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6.1 Microscopic Model

Studying ultracold fermions close to a Feshbach resonance is a challenging problem. Due to
the fact that exactly on resonance the scattering length passes through ±∞ the Hamiltonian
in Eq. (2.42) cannot be defined. To deal with this problem, it is necessary to formulate a
Hamiltonian by separating out the resonance state and treating it explicitly [200]. The nonres-
onant contributions give rise to a background scattering length and characterize interactions
between fermions. As the Feshbach resonance occurs due to a coupling with the bosonic
molecular state, one has to explicitly introduce bosonic degrees of freedom in the theory to
describe resonant processes [200].

An ultracold atomic gas of fermionic atoms and bosonic molecules close to a Feshbach
resonance in the presence of an optical lattice is well described by a Bose-Fermi Hubbard
model [201, 202]. In our calculation we assume the bosons to be in the lowest band. For the
fermions, on the other hand, we have to take into account also the higher bands, since the
Feshbach problem in an optical lattice is inherently a multi-band problem [202, 203]. Since
the bandwidth is much smaller than the band gap, we approximate the higher bands to be flat
and only take into account the full band-structure for the lowest band. Moreover, we neglect
the interaction between fermions in higher bands with each other and with the bosons. This
is justified because the filling in the higher bands is very small, such that interaction effects
are also small. The Hamiltonian thus has the following form:

Ĥ = Ĥ0
f + Ĥb + Ĥ0

fb +
∞∑
l=1

(Ĥlf + Ĥlfb) , (6.1)

Ĥ0
f = −tf

∑
〈i〉

ĉ†iσ,0ĉjσ,0 + Uf
∑
i

n̂fi,↑,0n̂
f
i,↓,0 − (µ− 3~ω

2
)
∑
i

n̂fi,0 , (6.2)

Ĥb = −tb
∑
〈i〉

b̂†i b̂j +
Ub
2

∑
i

n̂bi(n̂
b
i − 1)− (2µ− δ − 3~ω

2
)n̂bi , (6.3)

Ĥ0
fb = Ufb

∑
i

n̂bi n̂
f
i,0 + g0

∑
i

(
b̂†i ĉi↑,0ĉi↓,0 + h.c

)
, (6.4)

Ĥlf =
∑
i

((
2l +

3
2

)
~ω − µ

)
n̂fi,l , (6.5)

Ĥlfb = gl
∑
i

(
b̂†i ĉi↑,lĉi↓,l + h.c

)
, (6.6)

where ĉ†iσ,l is the creation operator of a fermion with spin σ for the l-th band on lattice site
i. b̂†i is the creation operator of a boson at site i. n̂fiσ,l = ĉ†iσ,lĉiσ,l, n̂

f
i,l = n̂fi↑,l + n̂fi↓,l are the

fermionic number operators, and n̂bi = b̂†i b̂i is the bosonic number operator. Uf , Ub and Ufb,
are the on-site Hubbard interactions between the fermions, bosons and fermions and bosons
in the lowest band, respectively. µ is the chemical potential. δ is the detuning of the bosonic
level, ω is the frequency of the harmonic oscillator associated with an optical lattice minimum.

gl = g0

√
L

(1/2)
l (0) is the Feshbach coupling, where g0 is the Feshbach coupling for the lowest

Hubbard band and L(1/2)
l (0) is the generalized Laguerre polynomial [203].
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tb(f) '
4√
π
Eb(f)
r

(
V0

E
b(f)
r

)3/4

exp

[
−2

√
V0

E
b(f)
r

]
, (6.7)

Ub(f) '
√

8
π
kab(f)E

b(f)
r

(
V0

E
b(f)
r

)3/4

, (6.8)

Ufb '
4√
π
kafbE

b
r

1 +mb/mf

(1 +
√
mb/mf )3/2

(
V0

Ebr

)3/4

, (6.9)

g0 = ~

√
4πaf∆B∆µmag

mf

(mfω

2π~

)3/4
, (6.10)

δ = ∆µmag(B −B0) . (6.11)

Here af , ab, and afb are fermion-fermion, boson-boson, and fermion-boson background scat-
tering lengths. Here we approximate the background boson-boson scattering length and Bose-
Fermi scattering by ab = 0.6af [109] and abf = 1.2af [204]. Furthermore, B is the magnetic
field, and B0 and ∆B are the position of the Feshbach resonance and its width, respectively.
∆µmag is the difference in the magnetic moment between the closed and open channel of the
Feshbach resonance. Finally, mf and mb are the respective masses of the fermions and bosons.

One can simplify the Hamiltonian (6.1) by the following rescaling:

µ̄ = µ− 3~ω
2

, (6.12)

δ̄ = δ − 3~ω
2

. (6.13)

After this rescaling the factor 3~ω
2 disappears.

6.2 Method

The multi-band Hamiltonian derived so far is very complicated, since it both involves strong
correlations and many bands. Simply neglecting the higher bands, leads to a wrong description
close to the Feshbach resonance, since the Feshbach parameter g is very large there, even
exceeding the band gap [202]. However, the filling of fermions in the higher bands is strongly
suppressed by the band gap. This allows us to make a mean-field decoupling in the higher
bands [202]. The lowest band is left untouched in this procedure, since the fermionic filling
can be very large there.

We thus make the following decoupling for l > 0:

Ĥlifb = gl

(
〈b̂†i 〉ĉi↑,lĉi↓,l + b̂†i 〈ĉi↑,lĉi↓,l〉+ h.c

)
. (6.14)

This step implies that the lowest band and the higher bands are only coupled in a mean-
field way. They can thus be diagonalized separately, but the coupling arises because of the
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mean-field self-consistency relations. The full Hamiltonian is now given by

Ĥ = Ĥ0
f + Ĥb + Ĥ0

fb +
∑
i

Ĥ′b(i) , (6.15)

where the following terms are added to the bosonic part of the lowest band Hamiltonian:

Ĥ′b(i) =
∑
l=1

gl

(
b̂†i 〈ĉi↑,lĉi↓,l〉+ h.c

)
= −

(
∆b̂†i + h.c.

)
. (6.16)

For each of the higher bands l > 0 we obtain the Hamiltonian (here we suppress the site index
i):

Ĥlf =

(
ĉ†l↑
ĉl↓

)(
2l~ω − µ̄ gl〈b̂〉
gl〈b̂†〉 −(2l~ω − µ̄)

)(
ĉl↑
ĉ†l↓

)
. (6.17)

One has to solve this problem self-consistently.
The solution of Eq. (6.17) is well known and has the following form:

ωl =
√

(2l~ω − µ̄)2 + g2
l |〈b̂〉|2 , (6.18)

u2
l =

1
2

+
2l~ω − µ̄

2ωl
, (6.19)

v2
l =

1
2
− 2l~ω − µ̄

2ωl
, (6.20)

ulvl =
gl〈b̂〉
2ωl

. (6.21)

So we obtain that:

nfl = 2v2
l + 2(u2 − v2)f(ωl) = 1− 2l~ω − µ̄

ωl
tanh

( ωl
2kT

)
, (6.22)

|〈ĉl↑ĉl↓〉| = |ulvl| tanh
( ωl

2kT

)
=

∣∣∣∣∣gl〈b̂〉2ωl

∣∣∣∣∣ tanh
( ωl

2kT

)
, (6.23)

where f(ωl) is the Fermi function and T is the temperature. We used absolute values in the
equation for 〈ĉl↑ĉl↓〉, because of the ambiguity of the sign, coming from the fact that still a
divergence has to be subtracted (see below).

The total number of fermions is now equal to:

nftot = nf0 +
∞∑
l=1

(
1− 2l~ω − µ̄

ωl
tanh

( ωl
2kT

))
. (6.24)

This is a converging sum, which can be evaluated numerically.
From Eq. (6.16) follows that we have to evaluate the sum:∑

l=1

gl〈ĉl↑ĉl↓〉 = ±〈b̂〉
∑
l=1

g2
l

2ωl
tanh

( ωl
2kT

)
. (6.25)

This sum is diverging. This is the physical divergence that always arises when approximating
the T-matrix by a delta-potential [202, 203]. This problem can be solved by using a pseudo-
potential [203]. Here we follow the way of Ref. [202] and isolate the diverging contribution
from the problem.
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First, we notice that for large l, ωl can be approximated by ωl = 2l~ω − µ̄ and one can
also approximate tanh

(
ωl

2kT

)
by one. So

∑
l=1

g2
l

2ωl
tanh

( ωl
2kT

)
'

(
N∑
l=1

g2
l

2ωl
tanh

( ωl
2kT

)
+

∞∑
l=N+1

g2
l

2(2l~ω − µ̄)

)

=

(
N∑
l=1

g2
l

2ωl
tanh

( ωl
2kT

)
−

N∑
l=0

g2
l

2(2l~ω − µ̄)
+
∞∑
l=0

g2
l

2(2l~ω − µ̄)

)
. (6.26)

Here N is a large integer number (in our calculation we took N = 500).
The first two terms of Eq. (6.26) are finite sums, but the last term is diverges. This sum

is known from the literature [203, 205]. To separate the diverging part, we have to take the
following limit:

∞∑
l=0

g2
l

2(2l~ω − µ̄)
=

∞∑
l=0

g2
0L

(1/2)
l (0)

2(2l~ω − µ̄)
= lim

r→0

∞∑
l=0

g2
0L

(1/2)
l (r)

2(2l~ω − µ̄)
(6.27)

= − lim
r→0

(
g2

0

√
πΓ(−µ̄/2~ω)/Γ(−µ̄/2~ω − 1/2)

2~ω
−
√
π

r
+O(r)

)
.

Since the diverging part does not depend on the model parameters, we can cure the divergence
by neglecting this term [202, 203]. Doing so, we obtain

∆ = −
∞∑
l=1

gl〈ĉl↑ĉl↓〉 = ±〈b̂〉
(
g2

0

√
πΓ(−µ̄/~ω)/Γ(−µ̄/~ω − 1/2)

~ω

+
N∑
l=0

g2
l

2(2l~ω − µ̄)
−

N∑
l=1

g2
l

2ωl
tanh

( ωl
2kT

))
. (6.28)

We now fix the sign by requiring ∆ > 0. The reason is that this solution minimizes the (free)
energy.

Summarizing, we have reduced the multi-band problem to a single band problem:

Ĥ = Ĥ0
f + Ĥb + Ĥ′b + Ĥ0

fb , (6.29)

where Ĥ0
f , Ĥb, Ĥ0

fb and Ĥ′b are described by the Eqs. (6.2), (6.3), (6.4) and (6.16), respectively.
The chemical potential µ has to be adjusted, such that the total filling is equal to the

desired value ntot:

n0
b + n0

f +
∞∑
l=1

(
1− 2l~ω − µ̄

ωl
tanh

( ωl
2kT

))
= ntot . (6.30)

This leads to the following self-consistency loop: we start from an initial guess of the
superfluid order parameter 〈b̂〉 and using Eq. (6.28) we calculate ∆. This means that we know
all parameters in the Hamiltonian (6.29), and can find its eigenvalues and eigenvectors, and
correspondingly calculate new correlation functions, including the superfluid order parameter
〈b̂〉. With this step the self-consistency loop is closed.
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To deal with the Hamiltonian (6.29) we use generalize dynamical mean field theory (GDMFT)
[20, 21]. The GDMFT method is explained in detail in section 3.2. In this case the system is
described by the following Hamiltonian:

Ĥ = Ĥb + Ĥfb + Ĥf , (6.31)

Ĥb = −
[
(ztbϕ + ∆)b̂† + h.c.

]
+
Ub
2
n̂b(n̂b − 1)− µbn̂b ,

Ĥfb = Ufbn̂
f n̂b + g0

(
b̂†i ĉi↑,0ĉi↓,0 + h.c

)
,

Ĥf = −µσf n̂f + Uf n̂
f
↑ n̂

f
↓ +Wl

(
â†l↑â

†
l↓ + h.c.

)}
+
∑
l,σ

{
εlσâ

†
lσâlσ + Vlσ

(
ĉ†σâlσ + h.c.

)
,

Here z is the lattice coordination number, ϕ = 〈b̂〉 is the superfluid order parameter. l
labels the noninteracting orbitals of the effective bath, Vlσ are the corresponding fermionic
hybridization matrix elements and Wl describes superconducting proparties of the bath.

The combination of the mean-field approximation in the higher bands and the GDMFT,
however, leads to a problem. Both approximations couple to the superfluid order parameter
〈b̂i〉. The mean-field approximation for the higher bands, means that the local correlator
〈b̂†i ĉi↑,lĉi↓,l〉 is approximated by 〈b̂†i 〉〈ĉi↑,lĉi↓,l〉. The GDMFT scheme, on the other hand, in-
volves the approximation to replace the non-local correlator 〈b̂†i b̂j〉 by 〈b̂

†
i 〉〈b̂j〉. This means

that 〈b̂〉 both measures the local phase coherence between the bosons and fermions and the
non-local bosonic long range order. However, these are two very different quantities and gen-
erally they cannot be described by a single mean-field order parameter. At zero temperature,
this problem is not so severe, because one expects then both long-range order and on-site
Bose-Fermi coherence, such that 〈b̂〉 is large for both reasons. At finite temperature, however,
this becomes a real problem, because the bosonic long range order is expected to get lost at
temperatures on the order of the bosonic hopping tb. The local Bose-Fermi coherence, on
the other hand, remains intact for much higher temperatures, since the coupling g is orders
of magnitudes higher. Indeed, we find that in the present approximation the full GDMFT
calculations are in good agreement with a single site approximation. In this approach the
impurity site does not any more couple neither to fermionic nor to the bosonic baths and long
range order cannot be inferred. The critical temperature coming from this calculation, can be
identified with the pair breaking temperature Tpair. This pair breaking temperature is very
high and happens on a much higher energy scale than relevant for the experiment.

However, we want to address the question of long range order within this framework and
calculate the critical temperature. In order to do so, we remark that the term ∆b̂† in the
Hamiltonian merely renormalizes the self-energy of the bosons: in the BEC regime the bosons
are in a coherent state and this term is equivalent to a shift in the bosonic chemical potential.
This is also clear from the treatment in [202], where the terms from the higher bands enter
the bosonic self-energy. To make this more explicit, we write

∆ = −
∞∑
l=1

gl〈ĉl↑ĉl↓〉 = ±〈b̂〉
(
g2

0

√
πΓ(−µ̄/~ω)/Γ(−µ̄/~ω − 1/2)

~ω

+
N∑
l=0

g2
l

2(2l~ω − µ̄)
−

N∑
l=1

g2
l

2ωl
tanh

( ωl
2kT

))
≡ 〈b̂〉∆′ . (6.32)
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The above argument tells us that we can replace the term

−
(

∆b̂† + h.c.
)

= −
(

∆′〈b̂〉b̂† + h.c.
)

(6.33)

in the Hamiltonian, by
−∆′b̂†b̂ , (6.34)

such that the term from the higher bands only renormalizes the chemical potential. We remark
here, that this might look like an additional approximation. However, in view of the already
made mean-field decoupling in the higher bands, this step in fact undoes part of the mean-field
approximation. Alternatively this new form can be derived using second order perturbation
theory in the higher bands couplings.

This alternative way to treat the higher bands gives for T = 0 almost identical results as
before (see Fig. 6.2). The superfluid order parameter is a bit smaller, as expected. However,
for nonzero temperatures this new scheme allows for a calculation of the critical temperature
for long range order, which was not possible in the old scheme.

6.3 Results

We study a mixture of potassium atoms (40K) and Feshbach molecules in a three-dimensional
optical lattice. The on-site harmonic oscillator frequency is ω = 2π × 58275Hz, which corre-
sponds to a lattice with wavelength λ = 806nm and Rabi frequency of ΩR = 2π × 1.43GHz.
The Feshbach resonance for Potassium is at B = 202.1G and the width of the resonance is
7.8 G. The difference of the magnetic moment between the closed and open channels of the
Feshbach resonance is ∆µ = 16/9µB, where µB is Bohr magneton. The total filling in our
calculation is ntot = 1.

First we consider zero temperature. Our calculations for the ground state are summarized
in Fig. 6.2. Deep in the BEC regime only bosonic molecules are present. When the magnetic
field is increased, close to resonance the number of fermions is increasing and the number of
bosons decreasing. On the right from the Feshbach resonance we have mainly fermions and the
number of bosons is small. The fermions are in the superconducting phase while the bosons
are superfluid. In passing we remark that we describe the physics in terms of bare bosons and
fermions here: in terms of dressed bosons, these are still bosons and the BEC/BCS crossover
takes place when the bosonic self-energy crosses twice the Fermi energy [202]. However, in
the case of half-filled fermions, this crossover is intercepted by a first order phase transition
to a fermionic Mott insulator state. This happens at a critical value of the magnetic field
of B = 249G. Calculations with only the lowest band of the Bose-Fermi-Hubbard model
(as well as with one and two exited bands), showed this transition into the Mott insulator
phase already close to the Feshbach resonance at B ' 205G. This implies that to capture the
superconducting region 205T . B < 249T the higher bands which renormalize the bosonic
self-energy are crucial.

Having clarified the ground state phase diagram, we now consider finite temperature.
In particular we investigate the critical temperature for the transition to the normal state.
Deep in the BEC regime, the critical temperature is constant (Tc ≈ 0.21tf ) and completely
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(a) (b)

(c) (d)

Figure 6.2: Here we plot the filling of fermions and bosons as well as superfluid and supercon-
ducting order parameters as a function of the magnetic field B for T = 0. In the sub-figure
(a) and (b) we present results obtained by mean-field decoupling for both local and non-local
correlations, while in the sub-figures (c) and (d) only non-local correlations are decoupled
(for details see the text). In the sub-figures (a) and (c) we show the filling of fermions and
bosons and in sub-figures (b) and (d) the superfluid and superconducting order parameters.
Dotted line corresponds to the Feshbach resonance, while dashed line corresponds to the phase
transition, from the superfluid/superconducting phase into the Mott insulator phase.
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(a) (b)

Figure 6.3: Finite temperature results: in subfigure (a) we plot the fermionic superfluid order
parameter as a function of temperature T for different magnetic fields above the resonance,
while in subfigure (b) we show the phase diagram. The blue solid line separates the superfluid
phase from the normal phase. Here temperature is measured in units of the fermionic hopping
tf .

determined by the properties of the bosons: the bosonic hopping parameter tb, the interbosonic
background scattering length ab and the bosonic density. Only very close to resonance the
critical temperature suddenly drops (see Fig. 6.3). This coincides with the magnetic field
value for which fermions enter the system. On the BCS side of the resonance, the critical
temperature depends on the magnetic field and increases with B (see Fig. 6.3). This implies
that at resonance the critical temperature is minimal. This is in sharp contrast to the situation
where no lattice is present, in which case the critical temperature ismaximal close to resonance.

To summarize, the physics close to the Feshbach resonance is very rich. By changing the
magnetic field, the ratio of fermionic and bosonic densities is changing. For lower magnetic
field in the system are mainly bosons, close to the resonance the number of bosons is decreas-
ing and the number of fermions increasing and the system contains mainly fermions. After
further increase of the interaction transition to the Mott insulator phase takes place. At finite
temperature we also observe a transition from the superfluid/superconducting phase to the
normal phase. The physics seen here is even richer than in the case of the BEC-BCS crossover
without the optical lattice, where the Mott Insulator phase is absent from the phase diagram.



80 6. Resonance Superfluidity in an Optical Lattice



Chapter 7

Summary

In this thesis we have studied the physics of different ultracold Bose-Fermi mixtures in optical
lattices, as well as spin 1/2 fermions in a harmonic trap. To study these systems we gener-
alized dynamical mean-field theory for a mixture of fermions and bosons, as well as for an
inhomogeneous environment.

Generalized dynamical mean-field theory (GDMFT) is a method that describes a mixture
of fermions and bosons. This method consists of Gutzwiller mean-field for the bosons, and
dynamical mean-field theory for the fermions, which are coupled on-site by the Bose-Fermi
density-density interaction and possibly a Feshbach term which converts a pair of up and down
fermions into a molecule, i.e. a boson. We derived the self-consistency equations and showed
that this method is well-controlled in the limit of high lattice coordination number z.

We develop real-space dynamical mean-field theory for studying systems in an inhomo-
geneous environment, e.g. in a harmonic trap. The crucial difference compared to standard
DMFT is that we are taking into account that different sites are not equivalent to each other
and thus take into account the inhomogeneity of the system. Different sites are coupled by
the real-space Dyson equation.

We used these methods to study the following ultracold atomic systems:

Mixtures of fermions and bosons in optical lattices

First we considered a mixture of spinless fermions and bosons at zero temperature, when the
filling of both of them is 1/2. We established the presence of a supersolid at weak Bose-Fermi
repulsion. For strong interspecies interaction a first order phase transition occurs towards a
state where the bosons are localized and form an alternating Mott insulator. An instability
towards phase separation was observed for weak interaction among the bosons. As the gap
in the spectral function for the supersolid phase is very small, we also studied the system for
the case when fermions were half-filled, while the filling of the bosons was 3/2. We observed
several phase transitions. A supersolid phase at small Ufb is succeeded by an alternating Mott
insulator with alternating bosonic fillings 1 and 2 for larger Ufb. For even larger Ufb a second
supersolid phase is stable, until for very large Ufb the ground state is formed by an AMI phase
with alternating bosonic fillings 0 and 3. The quantum phase transitions found here are of
second order, in contrast to the case of half-filled bosons, where a first-order quantum phase
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transition was observed. The phase diagram obtained in this case is particularly interesting
because of the large amplitude of the supersolid density oscillations between the two AMI
phases, which will make experimental observation easier.

We also investigated a mixture of two component fermions and hard-core bosons. For the
case when interactions between fermions is stronger than interspecies interaction we obtain
the antiferromagnetic phase, while in the other limit we obtained supersolid and AMI phases.
The main finding in our calculations is the observation of the antiferromagnetic phase in the
presence of the bosons. As the bosons can be used for cooling the system, this could facilitate
the creation of an antiferromagnetic phase compared to a pure fermionic mixture.

Ultra-cold atoms in a harmonic trap

We used the R-DMFT to establish the stability of antiferromagnetism for balanced fermionic
spin-1

2 systems in a trap and the appearance of phase separation for imbalanced mixtures.
We also study a mixture of spinless fermions and bosons in a harmonic trap. We have

shown that the supersolid and AMI phases can be stabilized in an harmonic trap. However,
the supersolid is very sensitive and its existence is easily destroyed by the trap, because of the
small gap in the spectral function. The AMI phase, on the other hand, can be stabilized in
the harmonic potential for a wide range of couplings.

Resonance superfluidity in an optical lattice

Finally we studied a system of fermions close to a s-wave Feshbach resonance. The physics close
to the Feshbach resonance is very rich. By changing the magnetic field, the ratio of fermionic
and bosonic numbers is varied. For lower magnetic field the system is mainly occupied by
bosons, close to the resonance the number of bosons is decreasing and number of fermions
increasing and the system contains mainly fermions. After further increase of the interaction
a transition to the Mott insulator phase takes place if the fermions are at half-filling. At finite
temperature we also observe a transition from the superfluid/superconducting phase to the
normal phase. The physics seen here is even richer than in the case of the BEC-BCS crossover
without the optical lattice, where the Mott Insulator phase is absent from the phase diagram.



Chapter 8

Zusammenfassung

Durch eindrucksvollen experimentellen Fortschritt innerhalb der letzten Dekade rückte das Ge-
biet der ultrakalten Atome in den Blickpunkt der Erforschung stark korrelierter Vielteilchen-
systeme. Die Fähigkeit Atome in optische Gitter, die durch stehende Wellen aus Laserlicht
erzeugt werden, zu laden und darin zu manipulieren, macht es möglich, verschiedene Modell-
Hamiltonoperatoren der Festkörperphysik zu realisieren. Dadurch können neue Einblicke in
bekanntermaßen schwierigen Probleme [1–3] gewonnen werden. Darüberhinaus können Sys-
teme realisiert werden, die keine Analoga in der Festkörperphysik besitzen. Im Besonderen
können innerhalb des Gebietes der ultrakalten Atome Mischungen aus Bosonen und Fermio-
nen erzeugt werden [4–19]. Diese Mischungen stellen physikalisch reichhaltige Systeme dar,
die bisher noch wenig verstanden sind.

Bose-Fermi-Mischungen haben einige Ähnlichkeit zu den wohlbekannten zweikomponenti-
gen Fermi-Fermi-Mischungen, jedoch besitzen sie eine reichhaltigere Physik. Indem man
eine Spinkomponente durch ein Boson ersetzt, bewahrt man die Instabilität der Ladungs-
dichtewelle halbgefüllter fermionischer Systeme. Aus historischen Gründen wird diese Ter-
minologie beibehalten, obwohl die betrachteten fermionischen Atome keine Ladung tragen.
Zusätzlich können sich die Bosonen in der superfluiden Phase befinden, woraus sich die
Möglichkeit supersoliden (SS) Verhaltens ergibt, welches gekennzeichnet ist durch koexistierende
diagonale Ladungsdichtewellen und nichtdiagonale, langreichweitige Superfluidität. Zahlreiche
theoretische Arbeiten haben Bose-Fermi-Mischungen in optischen Gittern als Forschungsge-
genstand [20–45].

Zur Untersuchung stark korrelierter Bose-Fermi-Mischungen in optischen Gittern wurden
verschiedene numerische und analytische Methoden benutzt. In einer Dimension beinhal-
tet dies den Bethe-Ansatz [25], Bosonisierung [26, 28], Dichtematrix-Renormierungsgruppe
[32, 35] und Quanten-Monte-Carlo [23, 36–40]. Jedoch sind nicht-perturbative Methoden in
höheren Dimensionen rar. In zwei Dimensionen wurde die Renormierungsgruppenmethode
verwendet [24, 31]. Obwohl diese Methode nicht-perturbative Effekte beschreiben kann, ist sie
auf schwache Kopplungen beschränkt . Eine weitere Methode, das Ausintegrieren der Fermio-
nen, wurde in zwei [29] und kürzlich in drei Dimensionen [33, 34] angewendet. Darin wird eine
langreichweitige, retardierte Wechselwirkung zwischen den Bosonen erzeugt. Dies wiederum
bedeutet, dass das resultierende bosonische Problem schwer zu lösen ist. Mit dieser Methode
wurde ein wichtiger Fortschritt im Auffinden der Phasengrenzen zwischen Mott-Isolator und
Superfluid erzielt. Weiterhin wurde ein Ansatz zusammengesetzter Fermionen verwendet, um
qualitativ die möglichen Quantenphasen von Bose-Fermi-Mischungen zu beschreiben [30].
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In dieser Arbeit wird die Physik ultrakalter Bose-Fermi-Mischungen in optischen Git-
tern und Spin-1

2 -Fermionen in einer harmonischen Falle untersucht. Zu diesem Zweck wird
die Dynamische-Molekularfeldtheorie für Bose-Fermi-Mischungen verallgemeinert, sowie hin-
sichtlich räumlich-inhomogener Umgebungen erweitert.

Die verallgemeinerte Dynamische-Molekularfeldtheorie (GDMFT) ist eine Methode zur
Beschreibung von Bose-Fermi-Mischungen. Sie besteht aus dem Gutzwiller-Molekularfeld-
Ansatz für die Bosonen und der Dynamische-Molekularfeldtheorie für die Fermionen. Bosonen
und Fermionen sind über eine Dichte-Dichte-Wechselwirkung am selben Gitterplatz gekoppelt.
Betrachtet wird zudem auch eine Feshbach-Wechselwirkung, die ein Paar aus einem Spin-
up und einem Spin-down Fermion in ein Molekül und damit in ein Boson umwandelt. Die
Selbstkonsistenzgleichungen werden hergeleitet und es wird gezeigt, dass diese Methode eine
über die Koordinationszahl des Gitters z gut kontrollierbare Näherung in hoher räumlicher
Dimension darstellt. Da 1/z den einzig kleinen Parameter der Theorie darstellt, kann sie
den ganzen Bereich von kleiner zu hoher Wechselwirkungsstärke beschreiben. Der Vorteil von
GDMFT gegenüber QMC-Rechnungen ist der deutlich gerinigere Rechenaufwand in d = 3
Dimensionen. Die Methode erlaubt nicht nur die Phasengrenzen des Systems zu bestimmen,
sondern darüberhinaus liefert sie auch verläßliche Ergebnisse abseits der Phasengrenzen (im
Gegensatz zu den in [29, 33, 34] vorgestellten Methoden).

Die in dieser Arbeit entwickelte Ortsraum-Dynamische-Molekularfeldtheorie erlaubt es,
Systeme in räumlich-inhomogener Umgebung, wie z.B. einer harmonischen Falle, zu unter-
suchen. Der wesentliche Unterschied zu Standard-DMFT ist die Berücksichtigung, dass die
verschiedenen Gitterplätze nicht äquivalent sind. Die Gitterplätze sind über die Ortsraum-
Dyson-Gleichung gekoppelt.

Im Folgenden werden die ultrakalten atomaren Systeme vorgestellt, die mit den genannten
Methoden untersucht werden.

Bose-Fermi-Mischungen in optischen Gittern

Zunächst werden Mischungen aus spinpolarisierten Fermionen und hard-core Bosonen am
Temperaturnullpunkt untersucht. Das System ist jeweils halbgefüllt. Für kleine Interspezies-
Wechselwirkung findet man eine supersolide Phase. Mit zunehmender Wechselwirkung geht
das System via einen Phasenübergang erster Ordnung in eine Phase über, in der die Bosonen
in einem alternierenden Mott-Isolator (AMI) lokalisiert sind. Darüberhinaus findet man eine
Region in der beide Phasen koexistieren. Im die Energien der Zusände verglichen werden,
kann festgestellt werden, dass die superfluide Phase den Grundzustand darstellt.

Danach wird die Annahme von vorliegenden hard-core Bosonen abgeschwächt und die
repulsive Wechselwirkung zwischen den Bosonen als stark angenommen. Wiederum findet man
eine supersolide Phase für schwache Interspezies-Wechselwirkung. Erhöht man diese, findet
man eine Phasenübergang erster Ordnung in den alternierenden Mott-Isolator. Zudem wurde
eine Instabilität gefunden, die zu Phasenseparation für schwache Wechselwirkung zwischen
den Bosonen führt.

Die Anregungslücke in der fermionischen Spektralfunktion der supersoliden Phase ist sehr
klein, wenn das bosonische System halbgefüllt ist. Somit ist diese Phase im Experiment
schwierig zu detektieren. Um diese Schwierigkeit zu überwinden, wurde das System mit halber
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fermionischer Füllung und einer bosonischer Füllung von nb = 3/2 studiert und verschiedene
Phasenübergänge gefunden. Mit wachsender Interspezies-Wechselwirkung kommt man von
einer supersoliden Phase zu einem Mott-Isolator mit alternierender bosonischer Füllung 1,
bzw. 2, und dann zu einer zweiten supersoliden Phase gefolgt von einem alternierenden Mott-
Isolator mit Füllung 0, bzw. 3. Es zeigt sich, dass es sich um Phasenübergänge zweiter
Ordnung handelt im Gegensatz zu den Phasenübergängen erster Ordnung für das halbgefüllte
bosonische System. Das errechnete Phasendiagramm ist besonders interessant, da die zweite
supersolide Phase grosse Dichteoszillationen aufweist, die eine experimentelle Beobachtung
dieser Phase erleichtert.

Desweiteren wird eine Mischung aus zweikomponentigen Fermionen und hard-core Bosonen
untersucht. Wenn die Interspezies-Wechselwirkung viel schwächer ist als die Wechselwirkung
zwischen den Fermionen erhält man Antiferromagnetismus (AF). Im umgekehrten Falle erhält
man einen alternierenden Mott-Isolator. Im intermediären Regime findet man eine supersolide
Phase und drei verschiedene Koexistenzbereiche: Koexistenz von (i) AF und SS, (ii) AF und
AMI, sowie (iii) SS und AMI. Das Hauptergebnis der Untersuchung ist das Auffinden von
Antiferromagnetismus in Gegenwart von Bosonen. Im Experiment können Bosonen genutzt
werden, um das System zu kühlen. Dies könnte es, verglichen mit dem rein fermionischen
system, erleichtern, Antiferromagnetismus in optischen Gittern experimentell zu beobachten.

Ultrakalte Atome in einer harmonischen Falle

Die experimentelle Beobachtung eines fermionischen Mott-Isolators in einer harmonischen
Falle [89, 90] motiviert das Studium der Grundzustandseigenschaften eines solchen Systems.
Es ist bekannt, dass das repulsive Hubbard-Model antiferromagnetische Ordnung bei kleinen
Temperaturen aufweist. Experimentell kann eine solche Ordnung mittels Raman-Spektroskopie,
durch Messen von Spinkorrelationsfunktionen, durch Messen von Korrelationen im Rauschen,
Polarisationsspektroskopie oder Braggstreuung nachgewiesen werden. Mit Hilfe der R-DMFT
werden in Zukunft Effekte in diesen Experimenten untersucht, die durch die räumliche In-
homogenität hervorgerufen werden. Darüberhinaus ermöglicht R-DMFT auch das Studium
anderer starkkorrelierter System in räumlich-inhomogene Umgebungen.

R-DMFT wird verwendet, um die Stabilität des Antiferromagnetismus fermionischer Spin-
1
2 -Systeme in einer Falle nachzuweisen. Es wird gezeigt, dass eine antiferromagnetische Ord-
nung am Temperaturnullpunkt in einer Falle existiert. Die Ordnung ist stabil in Regionen,
in denen die Gesamtfüllung nahezu eins ist. Sie besteht in Bereichen, in denen die Füllung
signifikant von halber Füllung abweicht, fort. Je nach Parameterwahl kann die antiferromag-
netische Ordnung im Zentrum der Falle oder als Ring, der eine paramagnetische Phase im
Zentrum umgibt, realisiert werden.

Es werden die lokale Dichte und die lokale Magnetisierung innerhalb der Thomas-Fermi-
Näherung (TFA) bestimmt, wobei ein externes Potential mit Hilfe eines variierenden chemis-
chen Potentials [199] einbezogen wird. Eine gute Übereinstimmung zwischen den R-DMFT-
und TFA-Ergebnissen wird in Bereichen klar innerhalb oder ausserhalb der antiferromagnetis-
chen Domäne erzielt.

Es wird weiterhin gezeigt, dass für starke Repulsion Phasenseparation in unausgewogenen
Mischungen auftritt, sofern der Unterschied in den Teilchenzahlen der beiden Spinkomponen-
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ten genügend groß ist. Für schwächere Repulsion verhindert eine starke Unausgewogenheit in
den Teilchenzahlen eine antiferromagnetische Ordnung, jedoch führt sie nicht zu Phasensep-
aration. Diese Ergebnisse sind besonders faszinierend hinsichtlich neuerer Experimente mit
attraktiv wechselwirkenden Fermionen, ein Thema zu dem noch einige unbeantwortete Fragen
bezüglich der Natur der beobachteten Phasenseparation existieren.

Zudem wird eine Mischung aus spinpolarisierten Fermionen und Bosonen in einer har-
monischen Falle untersucht. Es zeigt sich, dass die supersolide Phase und der alterniernde
Mott-Isolator in einer harmonischen Falle stabilisiert werden können. Jedoch ist die super-
solide Ordnung sehr schwach ausgeprägt, d.h. es liegt eine sehr kleine Anregungslücke vor, und
kann leicht vom Einfluss der Falle zerstört werden, während der alternierende Mott-Isolator
in einem großen Kopplungsbereich stabil ist.

Resonanz-Superfluidität in optischen Gittern

Abschliessend werden fermionische Systeme nahe der s-Wellen-Feshbach-Resonanz untersucht.
Diese stellen ein anspruchsvolles Problem dar, da die Streulänge im Resonanzfall divergiert und
somit der Hamilton-Operator in Gleichung (2.42) nicht definiert ist. Dieses Problem löst man,
indem man einen Hamilton-Opertor definiert, in dem der Resonanzfall separiert und explizit
behandelt wird [200]. Die nicht-resonanten Anteile führen zu einer Hintergrundstreulänge und
somit zu Wechselwirkungen zwischen den Fermionen. Da die Feshbach-Resonanz aufgrund
einer Kopplung mit einem bosonischen Molekülzustand auftritt, muss man explizit bosonische
Freiheitsgrade in der Theorie einbinden [200], um resonante Prozesse zu beschreiben .

Ein ultrakaltes atomares Gas aus fermionischen Atomen und bosonischen Molekülen in
einem optischen Gitter nahe der Feshbach-Resonanz kann über das Bose-Fermi-Hubbard-
Modell [201, 202] beschrieben werden. In der vorliegenden Arbeit wird angenommen, dass
alle Bosonen ausschließlich Zustände im untersten Bond besetzen. Hinsichtlich der Fermionen
andererseits müssen auch höhere Bänder beachtet werden, da die Feshbach-Physik in einem
optischen Gitter von Natur aus ein Multiband-Problem [202, 203] darstellt. Da die Bandbreite
viel kleiner als die Bandlücke ist, können die höheren Bänder als flach angenommen werden und
die volle Bandstruktur muss nur für das unterste Band beachtet werden. Darüberhinaus wer-
den Wechselwirkungen zwischen Fermionen in höheren Bändern, sowie deren Wechselwirkung
mit Bosonen vernachlässigt. Diese Annahme ist gerechtfertigt, da die Füllung in höheren
Bändern sehr gering ist, so dass Wechsewirkungseffekte klein sind. Der Hamilton-Operator
des Systems ist somit durch die in Gleichung (6.1) aufgeführte Form gegeben.

Zur Untersuchung des Systems wird GDMFT verwendet. Indem man das magnetische Feld
variiert, ändert man das Verhältnis aus Fermionenanzahl zu der Bosonenanzahl. Für kleines
magnetisches Feld besteht das System hauptsächlich aus Bosonen. Nahe der Resonanz nimmt
die Bosonenanzahl ab, während die Fermionenanzahl zunimmt, bis das System schließlich
hauptsächlich aus Fermionen besteht. Weiteres Erhöhen der Wechselwirkungsstärke führt zu
einem Übergang zu einem Mott-Isolator, falls das fermionische System halbgefüllt ist. Für
endliche Temperaturen erhält man einen Übergang zwischen superfluider und normaler Phase.
Das untersuchte System weist eine vielfältigere Physik auf, als der BEC-BCS-Übergang ohne
optisches Gitter, da dort kein Mott-Isolator auftritt.



Appendix A

Relation between Experimental and
Hubbard Parameters

In this Appendix we derive the relations between the experimental and Hubbard parameters.
The Hamiltonian for a Bose-Fermi mixture in second quantized form is given as

Ĥ = T̂f + T̂b + V̂f + V̂b + Ŵff + Ŵbb + Ŵfb , (A.1)

where

T̂f = −
∑
σ

∫
d3rΨ̂†fσ(r)

~2∇2

2mf
Ψ̂fσ(r) , (A.2)

T̂b = −
∫
d3rΨ̂†b(r)

~2∇2

2mb
Ψ̂b(r) , (A.3)

Ŵff =
∫

Ψ̂†f↓(r)Ψ̂†f↑(r)
4π~2af
mf

Ψ̂f↑(r)Ψ̂f↓(r) , (A.4)

Ŵbb =
1
2

∫
Ψ̂†b(r)Ψ̂†b(r)

4π~2ab
mb

Ψ̂b(r)Ψ̂b(r) , (A.5)

Ŵfb =
∑
σ

∫
Ψ̂†fσ(r)Ψ̂†b(r)

2π~2afb
mr

Ψ̂b(r)Ψ̂fσ(r) , (A.6)

V̂f =
∑
σ

∫
d3rΨ̂†fσ(r)Vf (r)Ψ̂fσ(r) , (A.7)

V̂b =
∫
d3rΨ̂†b(r)Vb(r)Ψ̂b(r) . (A.8)

Here Ψ̂†fσ(r) is the creation operator of a fermion with spin σ at point r, while Ψ̂†b(r) describes
the creation operator of a boson at point r. af , ab and afb are the s-wave scattering lengths
for Fermi-Fermi, Bose-Bose and Bose-Fermi interactions, respectively. mf (mb) is the mass of
fermions (bosons) and mr = mfmb/(mf +mb). Vf and Vb denotes the external potential for
fermions and bosons, respectively.

In the presence of the periodic potential Vf(b)(r+R) = Vf(b)(r), it is convenient to express

87



88 A. Relation between Experimental and Hubbard Parameters

the fermionic (bosonic) creation operators Ψ̂†fσ(r) (Ψ̂†b(r)) using Wannier functions:

Ψ̂†fσ =
∑
i,l

ĉ†iσlw
f
l,x(x− xi)wfl,y(y − yi)w

f
l,z(z − zi) , (A.9)

Ψ̂b =
†∑
i,l

b̂†i,lw
b
l,x(x− xi)wbl,y(y − yi)wbl,z(z − zi) , (A.10)

where ĉ†iσ (b̂†i,l) are fermionic (bosonic) creation operator at site ri = (xi, yi, zi) and wf(b)
l (r−

ri) = w
f(b)
l,x (x − xi)wf(b)

l,y (y − yi)wf(b)
l,z (z − zi) is the Wannier function for a localized fermion

(boson) in the lth energy band.
For temperatures and interactions much smaller than the band gap, only the lowest band

will be occupied. This means that the sum over the band indices l is reduced to l = 0 and we
can drop the band index.

If one puts Eq. (A.9) and (A.10) into equations (A.2-A.8) one will obtain that:

Ĥ = −tf
∑
〈ij〉,σ

ĉ†iσ ĉjσ − tb
∑
〈ij〉

b̂†i b̂j + Uf
∑
i

n̂fi↑n̂
f
i↓ +

Ub
2

∑
i

n̂bi(n̂
b
i − 1) + Ufb

∑
i

n̂fi n̂
b
i , (A.11)

where

tf =
∫
d3rwfx(x− xi + a)wfy (y − yi)wfz (z − zi)

~2∇2

2mf
wfx(x− xi)wfy (y − yi)wfz (z − zi) ,(A.12)

tb =
∫
d3rwbx(x− xi)wby(y − yi)wbz(z − zi)

~2∇2

2mb
wbx(x− xi + a)wby(y − yi)wbz(z − zi) , (A.13)

Uf =
4π~2af
mf

∫
dx|wfx(x− xi)|4

∫
dy|wfy (y − yi)|4

∫
dz|wfz (z − zi)|4 , (A.14)

Ub =
4π~2ab
mb

∫
dx|wbx(x− xi)|4

∫
dy|wby(y − yi)|4

∫
dz|wbz(z − zi)|4 , (A.15)

Ufb =
2π~2abf
mr

∫
dx
[
wfx(x− xi)wbx(x− xi)

]2
∫
dy
[
wfy (y − yi)wby(y − yi)

]2

×
∫
dz
[
wfz (z − zi)wbz(z − zi)

]2
. (A.16)

For a deep optical lattices one can approximate the Wannier functions by Gaussian, i.e:

wf(b)
α (α) =

e
−α2/2l2

f(b)

π
1/4
l
1/2
f(b)

, (A.17)

where α = x, y, z, and
lf(b) =

a

π(V f(b)
0 /E

f(b)
r )1/4

, (A.18)

where Ef(b)
r = h2/2λ2mf(b) is a recoil energy, V f(b)

0 is the laser potential strength and λ is the
wavelength of laser.

We will not calculate here the hopping coefficients, because for this purpose we have to
go beyond a Gaussian Anstatz, since for the hopping coefficient the overlap with the neigh-
boring wave-function is important and the Gaussian function only approximates the Wannier
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function well close to the potential minimum. The correct expression can be obtained from
the asymptotically exact solution of the 1D Mathieu equation for a deep lattice [143]:

tf(b) =
4√
π
Ef(b)
r

(
V
f(b)

0

E
f(b)
r

)3/4

exp

[
−2

(
V
f(b)

0

E
f(b)
r

)]
. (A.19)

Now we calculate Uf and Ub. Using Eqs. (A.14), (A.15) and (A.17), (A.18) we obtain

Uf(b) =
4π~2af(b)

mf(b)

[∫
dx
∣∣∣wf(b)

x (x)
]4
]3

=
4π~2af(b)

mf(b)

(
1

πl2f(b)

)3 [∫
dxe

− 2

l2
f(b)

x2
]3

=
4π~2af(b)

mf(b)

(
1

πl2f(b)

)3(
πl2f(b)

2

)3/2

=
4π~2ab
mf(b)

1
π
√

8πl3f(b)

=
4~2af(b)

mb

√
8π

π3(V f(b)
0 /E

f(b)
r )3/4

a3

=

√
8
π
kaf(b)E

f(b)
r

(
V
f(b)

0

E
f(b)
r

)3/4

. (A.20)

Finally we calculate Ufb. Using Eqs. (A.16), (A.17) and (A.18) leads to

Ufb =
2π~2abf
mr

[∫
dx
[
wfx(x)wbx(x)

]2
]3

=
2π~2abf
mr

(
1

πlf lb

)3
∫ dxe

−
l2f+l2b

l2
f
l2
b

x2

3

=
2π~2abf
mr

(
1

πlf lb

)3
[
π

l2f l
2
b

l2f + l2b

]3/2

=
2~2abf
mr
√
π

1(
l2f + l2b

)3/2

=
2~2abf
mr
√
π

π3

a3

1(
(Efr /V

f
0 )

1/2
+ (Ebr/V b

0 )1/2
)3/2

=
4kafbEbr√

π

(
1 +

mb

mf

)
1(

1 + (Efr V
b
0 )

1/2

(EbrV
f
0 )

1/2

)3/2

(
V b

0

Ebr

)3/4

=
4kafbEbr√

π

1 +mb/mf(
1 +

√
mbV

b
0 /mfV

f
0

)3/2

(
V b

0

Ebr

)3/4

. (A.21)
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Appendix B

Derivation of the DMFT Effective
Action

To derive the DMFT self-consistency relations for the Hamiltonian (3.23), we use the path
integral formalism. The partition function is given by :

Z =
∫ ∏

i,σ

Dc̃?iσDc̃iσDb̃
?
iDb̃i e

−S . (B.1)

The action is written as S = S0 + So + ∆S, with

S0 =
∫ β

0
dτ
{∑

σ

c̃?0σ (∂τ − µσf ) c̃0σ + b̃?0 (∂τ − µb) b̃0

+Uf ñ
f
0↑ñ

f
0↓ +

Ub
2
ñb0(ñb0 − 1) + Ufbñ

f
0 ñ

b
0 + g(c̃?0↑c̃

?
0↓b̃0 + c.c)

}
,

∆S = −
∫ β

0
dτ
{
tf
∑
iσ

′
(c̃?0σ c̃iσ + c̃?iσ c̃0σ) (B.2)

+tb
∑
i

′ (
b̃?0b̃i + b̃?i b̃0

)}
,

So =
∫ β

0
dτ
{
−tf

∑
〈ij〉oσ

c̃?iσ c̃jσ − tb
∑
〈ij〉o

b̃?i b̃j

+
∑
i 6=0

(
Uf ñ

f
i↑ñ

f
i↓ +

Ub
2
ñbi(ñ

b
i − 1) + Ufbñ

f
i ñ

b
i + g(c̃?i↓c̃

?
i↑b̃i + c.c)

)}
,

where β is the inverse temperature, τ is imaginary time, c̃iσ, c̃?iσ are Grassmann variables
describing the fermions, b̃i, b̃?i , ñ

b
i , ñ

f
i are C-numbers describing the bosons and the number

of fermions/bosons. Here the action is divided into three parts. S0 describes the “impurity
site”, So describes the system without the impurity and ∆S is the coupling between them.∑′ means that the summations run only over the nearest neighbors of the “impurity site” and
〈ij〉o indicates a summation over all pairs of nearest neighbor sites excluding the impurity site
(i.e. i, j 6= 0).
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We now derive an effective action for the impurity, defined by

1
Zeff

e−Seff ≡ 1
Z

∫ ∏
i 6=0,σ

Dc̃?iσDc̃iσDb̃
?
iDb̃i e

−S . (B.3)

Using Eqs. (B.1), (B.2) and (B.3) and with the definition ∆S =
∫
dτ∆S(τ) we obtain

e−Seff

Zeff
=
e−S0

Z

∫ ∏
i 6=0,σ

Dc̃?iσDc̃iσDb̃
?
iDb̃i e

−S0
e−∆S =

e−S0

Z

∫ ∏
i 6=0,σ

Dc̃?iσDc̃iσDb̃
?
iDb̃i e

−S0
∞∑
n=0

(−∆S)n

n!

= e−S0
Zo

Z

(
1−

∫ β

0
dτ〈∆S(τ)〉o +

1
2!

∫ β

0
dτ1

∫ β

0
dτ2〈∆S(τ1)∆S(τ2)〉o + . . .

)

= e−S0
Zo

Z

1 + tb

∫ β

0
dτ
∑
i

′
(Φo

i (τ)b̃?0(τ) + c.c)− t2f
∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j,σ

′
c̃?0σ(τ1)Goij,σ(τ1 − τ2)c̃0σ(τ2)

−1
2
t2b

∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j

′
b̃?0(τ1)Go

b,ij(τ1 − τ2)b̃0(τ2) + . . .

 , (B.4)

where Zo is the statistical sum without the “impurity” site and 〈. . . 〉o are expectation val-
ues in the system not including the “impurity site”. We have introduced the Nambu-space

vector b̃0(τ) =
(
b̃0(τ)
b̃?0(τ)

)
, Φo

i (τ) = 〈b̂i(τ)〉o as the bosonic superfluid parameter, Goij,σ(τ1 −

τ2) = −〈T ĉiσ(τ1)ĉ†jσ(τ2)〉o as the Green’s function for the fermions and Go
b,ij(τ1 − τ2) =

−
〈
T

(
b̂i(τ1)
b̂†i (τ1)

)(
b̂†j(τ2), b̂j(τ2)

)〉o
as the Green’s function for the bosons in Nambu space.

By the linked-cluster theorem we obtain

Seff = S0 − tb
∫ β

0
dτ
∑
i

′
(Φo

i (τ)b̃?0(τ) + c.c) + t2f
∑
σ

∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j

′
c̃?0σ(τ1)Goij,σ(τ1 − τ2)c̃0σ(τ2)

+
1
2
t2b

∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j

′
b̃?0(τ1)Go

b,ij(τ1 − τ2)b̃0(τ2) + . . . . (B.5)

In this sum also higher order correlation functions appear (indicated by the dots).
In order to retain a finite kinetic energy, the hopping parameters should be rescaled. The

bosonic hopping parameter should be rescaled as tb → tb = t∗b/z, and only the leading bosonic
term describing the coupling to the bosonic superfluid order parameter survives in infinite
dimensions. The fermionic hopping parameter will be rescaled as tf → tf = t∗f/

√
z according

to fermionic DMFT. [147, 148]. After rescaling the hopping parameters and considering the
limit z → ∞ only the leading term for fermions and bosons survives. We obtain that Eq.
(B.5) reduces to the following relation:

Seff = S0 − tb
∫ β

0
dτ
∑
i

′
(Φo

i (τ)b̃?0(τ) + c.c) (B.6)

+t2f
∑
σ

∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j

′
c̃?0σ(τ1)Goij,σ(τ1 − τ2)c̃0σ(τ2) .



Appendix C

The Equation of Motion and Green’s
Functions

Here we derive the equation of motion for the Green’s functions [206]. We consider two
arbitrary operators Â and B̂. These operators are either fermionic or bosonic. We work in the
Matsubara frequency representation. In this representation the Greens’ function is defined as
follows:

GÂB̂(τ) ≡ 〈〈Â, B̂〉〉τ = −〈Tτ Â(τ)B̂(0)〉 = −θ(τ)〈Â(τ)B̂(0)〉+ ηθ(−τ)〈B̂(0)Â(τ)〉 , (C.1)

where η = +1 for fermions and η = −1 for bosons.
From Eq. (C.1) we directly obtain that

d

dτ
ĜÂB̂(τ) = −δ(τ)〈[Â, B̂]η〉 − 〈Tτ

dÂ(τ)
dτ

B̂(0)〉 = −δ(τ)〈[Â, B̂]η〉+G[Ĥ,Â],B̂(τ) . (C.2)

Here we used the relation for the derivative of an operator which does not explicitly depend
on the time :

dÂ(τ)
dτ

= [Ĥ, Â]− . (C.3)

Eq. (C.2) is the equation of motion in the imaginary time representation. Now we perform
the Fourier Transformation :

GÂ,B̂(τ) =
1
β

∞∑
n=−∞

e−iωnτGÂ,B̂(iωn) , (C.4)

with the Matsubara frequencies ωn = (2n+1)π
β for the fermions and ωn = 2nπ

β for the bosons,
and rewrite the equation of motion in the Matsubara frequency representation:

iωnGÂ,B̂(iωn) +G[Ĥ,Â]−,B̂
(iωn) = 〈

[
Â, B̂

]
η
〉 , (C.5)

As one can see, the equation of motion Eq. (C.5) maps the initial Green’s function to new
Green’s function(s). For these new Green’s function(s) we have to again use the equation of
motion, which produces again new Green’s function(s), but as we see in the next appendix,
this circle is closed and we are able to determine all of these Green’s functions.
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In the end of this appendix we present several relations for Green’s functions which we use
later. From Eq. (C.1) one can easily derive that:

GÂ,B̂(τ) = −ηGB̂,Â(−τ) , (C.6)
GÂ,B̂(τ ± β) = −ηGÂ,B̂(τ) = GB̂,Â(−τ) , (C.7)(
GÂ,B̂(τ)

)?
= −ηGÂ†,B̂†(−τ) = GB̂†,Â†(τ) . (C.8)

Applying the inverse Fourier transformation

GÂ,B̂(iωn) =
∫ β

0
dτeiωnτGÂ,B̂(τ) (C.9)

in Eqs. (C.6), (C.7), and (C.8) leads to

GÂ,B̂(iωn) = −ηGB̂,Â(−iωn) , (C.10)(
GÂ,B̂(iωn)

)?
= −ηGÂ†,B̂†(iωn) = GB̂†,Â†(−iωn) . (C.11)



Appendix D

Derivation of the Self-Energy for a
Bose-Fermi Mixture

In this appendix we evaluate the self-energy via correlation functions. For this purpose we are
using the equation of motion, which has the following form:

iωn〈〈Â, B̂〉〉ω + 〈〈
[
Ĥ, Â

]
−
, B̂〉〉ω = 〈

[
Â, B̂

]
η
〉 , (D.1)

where ωn are the Matsubara frequencies and 〈〈Â, B̂〉〉ω is the general Green’s function.
For the Fermi-Bose mixture a generalized single impurity Anderson Hamiltonian has the

following form:

Ĥ = −
∑
σ

µfσn̂
f
σ + Uf n̂

f
↑ n̂

f
↓ + Ufbn̂

f n̂b + g
(
f̂ †↓ f̂

†
↑ b̂+ h.c.

)
+ ĤB

+
∑
kσ

Vkσ

(
f̂ †σ ĉkσ + h.c

)
+
∑
kσ

εkσ ĉ
†
kσ ĉkσ +

∑
k

Wk

(
ĉ†k↑ĉ

†
k↓ + h.c

)
, (D.2)

where f̂ †σ and ĉ†kσ are the fermionic creation operators on the “impurity cite” and “conduction
band” respectively. b̂† is the bosonic creation operator on the impurity cite. n̂f = n̂f↑ + n̂f↓ =∑

σ f̂
†
σf̂σ, n̂b = b̂†b̂ and ĤB is bosonic part of the Hamiltonian.

To solve the problem we should first calculate the following commutation relations[
Ĥ, f̂σ

]
−

= µfσf̂σ − Uf f̂σf̂ †σ̄f̂σ̄ − Ufbf̂σ b̂†b̂+ σgf̂ †σ̄ b̂−
∑
k

Vkσ ĉkσ , (D.3)[
Ĥ, f̂ †σ

]
−

= −µfσf̂ †σ + Uf f̂
†
σf̂
†
σ̄f̂σ̄ + Ufbf̂

†
σ b̂
†b̂− σgf̂σ̄ b̂† +

∑
k

Vkσ ĉ
†
kσ , (D.4)[

Ĥ, ĉkσ
]
−

= −εkσ ĉkσ − Vkσf̂σ − σWk ĉ
†
kσ̄ , (D.5)[

Ĥ, ĉ†kσ
]
−

= εkσ ĉ
†
kσ + Vkσf̂

†
σ + σWk ĉkσ̄ , (D.6)

where σ̄ = −σ.
First we use the equation of motion for the case when Â = f̂σ and B̂ = f̂ †σ. Putting
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commutation relation Eq. (D.3) in the equation of motion Eq. (D.1) we get:

(iωn + µfσ) 〈〈f̂σ, f̂ †σ〉〉ω − Uf 〈〈f̂σf̂
†
σ̄f̂σ̄, f̂

†
σ〉〉ω − Ufb〈〈f̂σ b̂†b̂, f̂ †σ〉〉ω

+σg〈〈f̂ †σ̄ b̂, f̂ †σ〉〉ω −
∑
k

Vkσ〈〈ĉkσ, f̂
†
σ〉〉ω = 1 . (D.7)

To calculate 〈〈ĉkσ, f̂ †σ〉〉ω we again use the equation of motion Eq. (D.1), but in this case
Â = ĉkσ and B̂ = f̂ †σ. Putting Eq. (D.5) into the equation of motion Eq. (D.1) gives the
following relation:

(iωn − εkσ) 〈〈ĉkσ, f̂
†
σ〉〉ω − Vkσ〈〈f̂σ, f̂ †σ〉〉ω − σWk〈〈ĉ†kσ̄, f̂

†
σ〉〉ω = 0 . (D.8)

To calculate 〈〈ĉ†kσ̄, f̂
†
σ〉〉ω we once more use the equation of motion Eq. (D.1), but in this case

Â = ĉ†kσ̄ and B̂ = f̂ †σ. Putting Eq. (D.6) into the equation of motion Eq. (D.1) provides
obtain the following relation:

(iωn + εkσ̄) 〈〈ĉ†kσ̄, f̂
†
σ〉〉ω + Vkσ̄〈〈f̂ †σ̄, f̂ †σ〉〉ω − σWk〈〈ĉkσ, f̂

†
σ〉〉ω = 0 . (D.9)

From Eqs. (D.8) and (D.9) we derive

〈〈ĉkσ, f̂
†
σ〉〉ω =

Vkσ(iωn + εkσ̄)
(iωn − εkσ)(iωn + εkσ̄)−W 2

k

〈〈f̂σ, f̂ †σ〉〉ω

− σVkσ̄Wk

(iωn − εkσ)(iωn + εkσ̄)−W 2
k

〈〈f̂ †σ̄, f̂ †σ〉〉ω . (D.10)

Now we put Eq. (D.10) in Eq. (D.7) and we obtain:(
iωn + µfσ +

∑
k

V 2
kσ

iωn + εkσ̄
(εkσ − iωn)(εkσ̄ + iωn) +W 2

k

)
〈〈f̂σ, f̂ †σ〉〉ω

−

(∑
k

σVk↑Vk↓Wk

(εkσ − iωn)(εkσ̄ + iωn) +W 2
k

)
〈〈f̂ †σ̄, f̂ †σ〉〉ω

−Uf 〈〈f̂σf̂ †σ̄f̂σ̄, f̂ †σ〉〉ω − Ufb〈〈f̂σ b̂†b̂, f̂ †σ〉〉ω + σg〈〈f̂ †σ̄ b̂, f̂ †σ〉〉ω = 1 . (D.11)

Here we would like to mention that 〈〈f̂σ, f̂ †σ〉〉ω ≡ Gσ(iωn) is the normal Green’s function and
〈〈f̂↑ , f̂↓〉〉ω ≡ F (ω) is the superconducting Green’s function. We also define:

∆σ(iωn) = ∆?
σ(−iωn) = −

∑
k

V 2
kσ

iωn + εkσ̄
(εkσ − iωn)(εkσ̄ + iωn) +W 2

k

, (D.12)

∆SC(iωn) = ∆?
SC(−iωn) =

∑
k

Vk↑Vk↓Wk

(εk↑ − iωn)(εk↓ + iωn) +W 2
k

, (D.13)

the normal and the superconducting hybridization functions respectively and following corre-
lation functions:

Qffσ(iωn) = 〈〈f̂σf̂
†
σ̄f̂σ̄, f̂

†
σ〉〉ω , Qffσσ̄(iωn) = 〈〈f̂σf̂

†
σ̄f̂σ̄, f̂σ̄〉〉ω ,

Qfbσ(iωn) = 〈〈f̂σ b̂†b̂, f̂ †σ〉〉ω , Qfbσσ̄(iωn) = 〈〈f̂σ b̂†b̂, f̂σ̄〉〉ω , (D.14)

Qgσ(iωn) = 〈〈f̂σ b̂†, f̂ †σ〉〉ω , Qgσσ̄(iωn) = 〈〈f̂σ b̂†, f̂σ̄〉〉ω .
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In this new definitions and using condition Eq. (C.11), Eq. (D.11) can be rewritten:

(iωn + µfσ −∆σ(iωn))Gσ(iωn)−∆SC(σiωn)F ?(−σiωn)
−UfQffσ(iωn)− UfbQfbσ(iωn)− σgQ?gσ̄σ(iωn) = 1 . (D.15)

To solve the problem we need to derive one more equation. For this purpose, we again use
the equation of motion Eq. (D.1) and we consider that Â = f̂ †σ and B̂ = f̂ †σ̄. Based on Eq.
(D.4) we get:

(iωn − µfσ) 〈〈f̂ †σ, f̂
†
σ̄〉〉ω + Uf 〈〈f̂ †σf̂

†
σ̄f̂σ̄, f̂

†
σ̄〉〉ω + Ufb〈〈f̂ †σ b̂†b̂, f̂

†
σ̄〉〉ω

−σg〈〈f̂σ̄ b̂†, f̂
†
σ̄〉〉ω +

∑
k

Vkσ〈〈ĉ†kσ, f̂
†
σ̄〉〉ω = 0 . (D.16)

We now have to calculate 〈〈ĉ†kσ, f̂
†
σ̄〉〉ω. For this purpose we use Eqs. (D.8) and (D.9). So we

obtain:

〈〈ĉ†kσ, f̂
†
σ̄〉〉ω = − σVkσ̄Wk

(iωn − εkσ̄)(iωn + εkσ)−W 2
k

〈〈f̂σ̄, f̂
†
σ̄〉〉ω

− Vkσ(iωn − εkσ̄)
(iωn − εkσ̄)(iωn + εkσ)−W 2

k

〈〈f̂ †σ, f̂
†
σ̄〉〉ω . (D.17)

Putting Eq. (D.17) in the Eq. (D.16) we obtain:(
iωn − µfσ +

∑
k

V 2
kσ

iωn − εkσ̄
(εkσ̄ − iωn)(εkσ + iωn) +W 2

k

)
〈〈f̂ †σ, f̂

†
σ̄〉〉ω

+

(∑
k

σVk↑Vk↓Wk

(εkσ̄ − iωn)(εkσ + iωn) +W 2
k

)
〈〈f̂σ̄, f̂

†
σ̄〉〉ω

+Uf 〈〈f̂ †σf̂
†
σ̄f̂σ̄, f̂

†
σ̄〉〉ω + Ufb〈〈f̂ †σ b̂†b̂, f̂

†
σ̄〉〉ω − σg〈〈f̂σ̄ b̂†, f̂

†
σ̄〉〉ω = 0 . (D.18)

Using definitions Eqs. (D.12), (D.13) and (D.14), one can rewrite Eq. (D.18) as follows:

−σ (iωn − µfσ + ∆?
σ(iωn))F ?(σiωn) + σ∆SC(−σiωn)Gσ̄(iωn)

−UfQ?ff,σσ̄(iωn)− UfbQ?fbσσ̄(iωn)− σgQgσ̄(iωn) = 0 . (D.19)

Now we write our results in the matrix form. For this purpose for σ = 1 we take Eq.
(D.15) and complex conjugate of Eq. (D.19), while for σ = −1 we take Eq. (D.19) and
complex conjugate of Eq. (D.15):

(iωn + µf↑ −∆↑(iωn))G↑(iωn)−∆SC(iωn)F ?(−iωn)
−UfQff↑(iωn)− UfbQfb↑(iωn)− gQ?g↓↑(iωn) = 1 , (D.20)

− (iωn − µf↓ + ∆↓(−iωn))G?↓(iωn)−∆SC(iωn)F (iωn)
−UfQ?ff↓(iωn)− UfbQ?fb↓(iωn) + gQg↑↓(iωn) = 1 , (D.21)

(iωn + µf↑ −∆↑(iωn))F (iωn) + ∆SC(iωn)G?↓(iωn)
−UfQff,↑↓(iωn)− UfbQfb↑↓(iωn)− gQ?g↓(iωn) = 0 , (D.22)

(iωn − µf↓ + ∆↓(iωn))F ?(iωn)−∆SC(iωn)G↑(iωn)
−UfQ?ff,↓↑(iωn)− UfbQ?fb↓↑(iωn) + gQg↑(iωn) = 0 . (D.23)
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The last four equations can be rewritten in the matrix form in a following way:

(
1 0
0 1

)
=
(
iωn + µf↑ −∆↑(iωn) −∆SC(iωn)
−∆SC(iωn) iωn − µf↓ + ∆↓(−iωn)

)(
G↑(iωn) F (iωn)
F ?(−iωn) −G?↓(iωn)

)
(D.24)

−
(

UfQff↑(iωn) + UfbQfb↑(iωn) + gQ?g↓↑(iωn) UfQff,↑↓(iωn) + UfbQfb↑↓(iωn) + gQ?g↓(iωn)
UfQ

?
ff,↓↑(iωn) + UfbQ

?
fb↓↑(iωn)− gQg↑(iωn) UfQ

?
ff↓(iωn) + UfbQ

?
fb↓(iωn)− gQg↑↓(iωn)

)
.

Now we compare Eq. (D.24) with the Dyson equation, which now have the matrix form:

Ĝ−1(iωn)− Σ̂(iωn) = Ĝ−1(iωn) , (D.25)

where

Ĝ(iω) =
(

G↑(iωn) F (iωn)
F ?(−iωn) −G?↓(iωn)

)
(D.26)

is the matrix interacting Green’s function,

Ĝ(iω) =
(
iωn + µf↑ −∆↑(iωn) −∆SC(iωn)
−∆SC(iωn) iωn − µf↓ + ∆↓(−iωn)

)−1

(D.27)

is the matrix Weiss Green’s function and Σ̂(ω) is the matrix self-energy. From this comparison
directly follows that

(
Σ↑(iωn) ΣSC(iωn)

Σ?
SC(−iωn) −Σ?

↓(iωn)

)
=
(

UfQff↑(iωn) + UfbQfb↑(iωn) + gQ?g↓↑(iωn) UfQff,↑↓(iωn) + UfbQfb↑↓(iωn) + gQ?g↓(iωn)
UfQ

?
ff,↓↑(iωn) + UfbQ

?
fb↓↑(iωn)− gQg↑(iωn) UfQ

?
ff↓(iωn) + UfbQ

?
fb↓(iωn)− gQg↑↓(iωn)

)
×
(

G↑(iωn) F (iωn)
F ?(−iωn) −G?↓(iωn)

)−1

. (D.28)

From here we directly obtain that:

Σσ(iωn) =

(
UfQffσ(iωn) + UfbQfbσ(iωn) + σgQ?gσ̄σ(iωn)

)
G?σ̄(iωn)

Gσ(iωn)G?σ̄(iωn) + F (σiωn)F ?(σ̄iωn)

+

(
σUfQff,σσ̄(iωn) + σUfbQfbσσ̄(iωn) + gQ?gσ̄(iωn)

)
F ?(σ̄iωn)

Gσ(iωn)G?σ̄(iωn) + F (σiωn)F ?(σ̄iωn)
, (D.29)

ΣSC(iωn) =

(
UfQff↑(iωn) + UfbQfb↑(iωn) + gQ?g↓↑(iωn)

)
F (iωn)

G↑(iωn)G?↓(iωn) + F (iωn)F ?(−iωn)

−

(
UfQff,↑↓(iωn) + UfbQfb↑↓(iωn) + gQ?g↓(iωn)

)
G↑(iωn)

G↑(iωn)G?↓(iωn) + F (iωn)F ?(−iωn)
, (D.30)

Σ?
SC(−iωn) =

(
UfQ

?
ff↓(iωn) + UfbQ

?
fb↓(iωn)− gQg↑↓(iωn)

)
F ?(−iωn)

G↑(iωn)G?↓(iωn) + F (iωn)F ?(−iωn)
(D.31)

+

(
UfQ

?
ff,↓↑(iωn) + UfbQ

?
fb↓↑(iωn)− gQg↑(iωn)

)
G?↓(iωn)

G↑(iωn)G?↓(iωn) + F (iωn)F ?(−iωn)
.



Appendix E

Derivation of the Kinetic Energy

In this appendix we derive the equation for the fermionic kinetic energy for system with a
two sub-lattice structure. It is well known that the fermionic kinetic energy is given by (to
simplify the notations, we drop the summation over the spin index σ):

Êkin = −t
∑
〈ij〉

ĉ†i ĉj , (E.1)

where 〈ij〉 means summation over nearest neighbors. We now introduce the fermionic creation
operators in the energy eigenbasis:

ĉn =
1√
N

∑
i

Xniĉi , (E.2)

where N is the number of lattice sites. The inverse transformation has the following form:

ĉi =
1√
N

∑
n

X?
inĉn . (E.3)

The following condition ensures that after the transformation the Hamiltonian becomes diag-
onal:

− t

N

∑
〈ij〉

XniX
?
jn′ = − t

N

∑
+〈ij〉−

(
XniX

?
jn′ +XnjX

?
in′
)

= −2t
N

∑
+〈ij〉−

XniX
?
jn′ = δnn′εn , (E.4)

where α〈ij〉ᾱ denotes summation over the nearest neighbors such that i belongs to the sublat-
tice α and j belongs to the sublattice ᾱ = −α. At this point we have assumed that the lattice
is bipartite. The second equality is based on the fact that both sublattices are identical and
therefore

∑
+〈ij〉− =

∑
−〈ij〉+ .

For a bipartite lattice one can reverse the sign of the fermion creation/annihilation oper-
ators on one of the sublattices. This again yields an eigenstate of the Hamiltonian (E.1), but
with opposite sign. From this it directly follows that for each single-particle state with energy
εn, there exists a state with energy −εn, i.e we can label the eigenstates such that

εn+N/2 = −εn. (E.5)

From the Eqs. (E.4) and (E.5) it then follows that:

Xi∈S1,n+N/2 = Xin and Xj∈S−1,n+N/2 = −Xjn, (E.6)
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where Sα (α = ±1) denotes the set of lattice points in sublattice α.
Now we introduce two new operators

ĉn,1 =
1√
2

(
ĉn + ĉn+N/2

)
=

1√
N/2

∑
i∈S1

Xniĉi , (E.7)

ĉn,−1 =
1√
2

(
ĉn − ĉn+N/2

)
=

1√
N/2

∑
j∈S−1

Xnj ĉj . (E.8)

Here and later we work modulo N , i.e. n + N = n. From Eqs. (E.7) and (E.8) one easily
obtains the following identity:

ĉn+N/2,±1 = ±ĉn,±1 . (E.9)

The inverse transformation has the following form:

ĉi∈S1 =
1√
N/2

N/2∑
n=1

X?
inĉn,1 , (E.10)

ĉj∈S−1 =
1√
N/2

N/2∑
n=1

X?
jnĉn,−1 . (E.11)

Using Eqs. (E.1), (E.4), (E.5), (E.9), (E.10) and (E.11) we obtain

Êkin = −t
∑

+〈ij〉−

(
ĉ†i ĉj + ĉ†j ĉi

)
= −t

∑
+〈ij〉−

N/2∑
n,n′

(
1

N/2
XniX

?
jn′ ĉ
†
n,1ĉn′,−1 + h.c

)

=
N/2∑
n,n′

−2t
N

∑
+〈ij〉−

XniX
?
jn′

 ĉ†n,1ĉn′,−1 + h.c

 =
N/2∑
n=1

εn

(
ĉ†n,1ĉn,−1 + h.c

)

=
1
2

N∑
n=1

εn

(
ĉ†n,1ĉn,−1 + h.c

)
. (E.12)

In the last step we have used (E.5) and (E.9) as follows:

N/2∑
n=1

εnĉ
†
n,1ĉn,−1 =

N/2∑
n=1

(−εn+N/2)ĉ†n+N/2,1(−ĉn+N/2,−1) =
N∑

n=N/2+1

εnĉ
†
n,1ĉn,−1 . (E.13)

The next step is to go from summation to integral, and to take the expectation value of
the kinetic energy operator. We obtain:

Ekin =
1
2

〈∫ ∞
−∞

dε ρ(ε)ε
(
ĉ†ε,1ĉε,−1 + h.c

)〉
= lim

τ→0

1
2

∫ ∞
−∞

dε ρ(ε)ε
(
〈ĉ†ε,1(0)ĉε,−1(τ)〉 + 〈ĉ†ε,−1(0)ĉε,1(τ)〉

)
= lim

τ→0

∫ ∞
−∞

dε ρ(ε)εB(ε, τ) = lim
τ→0

kBT

∫ ∞
−∞

dε ρ(ε)ε
∑
n

e−iωnτB(ε, ωn)

= kBT
∑
n

∫ ∞
−∞

dε ρ(ε)εB(ε, ωn) =
∫ ∞
−∞

dε ρ(ε)ε
∫ ∞
−∞

dωf(ω)B(ε, ω+) , (E.14)
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where B(ε, τ) = 1
2

(
〈ĉ†ε,1(0)ĉε,−1(τ)〉+ 〈ĉ†ε,−1(0)ĉε,1(τ)〉

)
and B = − 1

π ImB
These two terms are just the off-diagonal terms of the following Green’s function matrix,

which according to the Dyson equation has the form:

Ĝ−1(ε, ωn) =
(
iωn + µf −ε
−ε iωn + µf

)
−
(

Σ1(ω) 0
0 Σ−1(ω)

)
=
(
iωn + µf − Σ1 −ε

−ε iωn + µf − Σ−1

)
. (E.15)

We obtain

Ĝ(ε, ωn) =

(
ζ−1

ζ1ζ−1−ε2
ε

ζ1ζ−1−ε2
ε

ζ1ζ−1−ε2
ζ−1

ζ1ζ−1−ε2

)
, (E.16)

where

ζα(ωn) = iωn + µ− Σα . (E.17)

Therefore

B(ε, ωn) =
ε

ζ1ζ−1 − ε2
=

1
2

(
1√

ζ1ζ−1 − ε
− 1√

ζ1ζ−1 + ε

)
. (E.18)

As one can easily see, the integral in Eq. (E.14) remains invariant if we replace B(ε, ωn)
by the following expression:

B(ε, ωn) =
1√

ζ1ζ−1 − ε
. (E.19)

The advantage of this representation is that in the limit of one-sublattice it reduces to the
“usual” equation of the spectral function.



102 E. Derivation of the Kinetic Energy



Appendix F

Iterative Diagonalization within NRG

In this appendix we review in detail iterative diagonalization within NRG. As we have men-
tioned in subsection 3.4.2 the iterative diagonalization method based on the fact that:

ĤN+1 = Λ1/2ĤN + ΛN/2
∑
σ

tNσ(d̂†Nσd̂N+1,σ + h.c) + ΛN/2
∑
σ

δN+1,σd̂
†
N+1,σd̂N+1,σ . (F.1)

Let’s imagine that we know all eigenvectors and eigenvalues and all matrix elements of the
Hamiltonian ĤN . Then we can construct new basis states for the Hamiltonian ĤN+1:

|1, r,Q, Sz〉N+1 = |r,Q+ 1, Sz〉N ,
|2, r,Q, Sz〉N+1 = d̂†N+1,↑|r,Q, Sz − 1/2〉N ,

|3, r,Q, Sz〉N+1 = d̂†N+1,↓|r,Q, Sz + 1/2〉N , (F.2)

|4, r,Q, Sz〉N+1 = d̂†N+1,↑d̂
†
N+1,↓|r,Q− 1, Sz〉N ,

where

Q =
N∑

σ,n=0

(d̂†n,σd̂n,σ − 1) +
∑
σ

(f̂ †σf̂σ − 1) and Sz =
1
2

N∑
σ,n=0

(d̂†n,↑d̂n,↑ − d̂
†
n,↓d̂n,↓) +

1
2

(f̂ †↑ f̂↑ − f̂
†
↓ f̂↓)

are conserving quantum numbers describing number and the spin of the fermions respectively.
r labels different energy levels with quantum numbers Q and Sz.

Now as we know the new basis states for the Hamiltonian ĤN+1, we can build up the
matrix elements of the Hamiltonian ĤN+1. The diagonal elements of the new Hamiltonian
are:

〈1, r,Q, Sz|ĤN+1|1, r,Q, Sz〉N+1 =
√

Λ〈r,Q+ 1, Sz|ĤN |r,Q+ 1, Sz〉N =
√

ΛEr(Q+ 1, Sz) ,
〈2, r,Q, Sz|ĤN+1|2, r,Q, Sz〉N+1 =

√
Λ〈r,Q, Sz − 1/2|ĤN |r,Q, Sz − 1/2〉N + ΛN/2δN+1,↑

=
√

ΛEr(Q,Sz − 1/2) + ΛN/2δN+1,↑ , (F.3)

〈3, r,Q, Sz|ĤN+1|3, r,Q, Sz〉N+1 =
√

Λ〈r,Q, Sz + 1/2|ĤN |r,Q, Sz + 1/2〉N + ΛN/2δN+1,↓

=
√

ΛEr(Q,Sz + 1/2) + ΛN/2δN+1,↓ ,

〈4, r,Q, Sz|ĤN+1|4, r,Q, Sz〉N+1 =
√

Λ〈r,Q− 1, Sz|ĤN |r,Q− 1, Sz〉N + δN+1,↑ + δN+1,↓

=
√

ΛEr(Q− 1, Sz) + ΛN/2δN+1,↑ + ΛN/2δN+1,↓ .
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We calculate the off-diagonal terms of the Hamiltonian matrix:

〈2, r′, Q, Sz|ĤN+1|1, r,Q, Sz〉N+1 = ΛN tN↑〈r,Q+ 1, Sz|d̂†N↑|r
′, Q, Sz − 1/2〉N ,

〈4, r′, Q, Sz|ĤN+1|3, r,Q, Sz〉N+1 = −ΛN tN↑〈r,Q, Sz + 1/2|d̂†N↑|r
′, Q− 1, Sz〉N ,(F.4)

〈3, r′, Q, Sz|ĤN+1|1, r,Q, Sz〉N+1 = ΛN tN↓〈r,Q+ 1, Sz|d̂†N↓|r
′, Q, Sz + 1/2〉N ,

〈4, r′, Q, Sz|ĤN+1|2, r,Q, Sz〉N+1 = ΛN tN↓〈r,Q, Sz − 1/2|d̂†N↓|r
′, Q− 1, Sz〉N .

Using Eqs. (F.3) and (F.4) we can fill the Hamiltonian matrix. Afterwards we can diagonalize
it and find new eigenvalues and eigenvectors. As already discussed in the subsection (3.4.2),
the Hamiltonian matrix is block diagonal, so we can independently diagonalize each block
of the Hamiltonian matrix, which can be characterized by quantum numbers Q and Sz. We
define the transformations matrices by Ul;i,r(Q,S, z), then we can express the new states by
basis states which we defined in (F.2) as follows:

|l, Q, Sz〉N+1 =
∑
i,r

Ul;i,r(Q,S, z)|i, r,Q, Sz〉N . (F.5)

Now we can construct the ĤN+2 Hamiltonian, for this purpose we have to calculate the
following matrix elements:

〈r′, Q, Sz|d̂†N+1,↑|r,Q, Sz〉N+1 =
∑

l∈(Q+1,Sz)

Ur′;2,l(Q+ 1, S, z + 1/2)Ur;1,l(Q,S, z)

+
∑

l∈(Q,Sz+1/2)

Ur′;4,l(Q+ 1, S, z + 1/2)Ur;3,l(Q,S, z) , (F.6)

〈r′, Q, Sz|d̂†N+1,↓|r,Q, Sz〉N+1 =
∑

l∈(Q+1,Sz)

Ur′;3,l(Q+ 1, S, z − 1/2)Ur;1,l(Q,S, z)

−
∑

l∈(Q,Sz−1/2)

Ur′;4,l(Q+ 1, S, z − 1/2)Ur;2,l(Q,S, z) . (F.7)

So this allows us to calculate new matrix elements for the Hamiltonian ĤN+1, and now we can
build the Hamiltonian ĤN+2 and continue this processes until the desired number of lattice
sites in the linear chain is reached.

In the end of this Appendix, we show how different correlation functions are transformed
during the iterative diagonalization processes. In particular, we consider two different types
of operators: (i) Ô±1, which increases/decreases the number of fermions in the impurity site,
and (ii) Ô0, which does not change the number of fermions in the impurity site.

〈r′, Q+ 1, Sz +
1
2
σ|Ôσ|r,Q, Sz〉N+1 (F.8)

=
∑
l,l′,i

Ur′;i,l′(Q+ 1, S, z +
1
2
σ)Ur;i,l(Q,S, z)〈i, l′, Q+ 1, Sz +

1
2
σ|Ôσ|i, l, Q, Sz〉N+1 ,

〈r′, Q, Sz|Ô0|r,Q, Sz〉N+1 (F.9)

=
∑
l,l′,i

Ur′;i,l′(Q,S, z)Ur;i,l(Q,S, z)〈i, l′, Q, Sz|Ô0|i, l, Q, Sz〉N+1 .
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The last step is to express everything by correlation functions after N iteration:

〈1, l′, Q+ 1, Sz +
1
2
σ|Ôσ|1, l, Q, Sz〉N+1 = 〈l′, Q+ 2, Sz +

1
2
σ|Ôσ|l, Q+ 1, Sz〉N ,

〈2, l′, Q+ 1, Sz +
1
2
σ|Ôσ|2, l, Q, Sz〉N+1 = −〈l′, Q+ 1, Sz +

1
2

(σ − 1)|Ôσ|l, Q+ 1, Sz −
1
2
〉N ,

〈3, l′, Q+ 1, Sz +
1
2
σ|Ôσ|3, l, Q, Sz〉N+1 = −〈l′, Q+ 1, Sz +

1
2

(σ + 1)|Ôσ|l, Q+ 1, Sz +
1
2
〉N ,

〈4, l′, Q+ 1, Sz +
1
2
σ|Ôσ|4, l, Q, Sz〉N+1 = 〈l′, Q, Sz +

1
2
σ|Ôσ|l, Q− 1, Sz〉N ,

〈1, l′, Q, Sz|Ô0|1, l, Q, Sz〉N+1 = 〈l′, Q+ 1, Sz|Ô0|i, l, Q+ 1, Sz〉N ,

〈2, l′, Q, Sz|Ô0|2, l, Q, Sz〉N+1 = 〈l′, Q, Sz −
1
2
|Ô0|i, l, Q, Sz −

1
2
〉N ,

〈3, l′, Q, Sz|Ô0|3, l, Q, Sz〉N+1 = 〈l′, Q, Sz +
1
2
|Ô0|i, l, Q, Sz +

1
2
〉N ,

〈4, l′, Q, Sz|Ô0|4, l, Q, Sz〉N+1 = 〈l′, Q− 1, Sz|Ô0|i, l, Q− 1, Sz〉N ,
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