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Abstract

Cyber Physical Systems (CPS) are growing more and more complex due to the
availability of cheap hardware, sensors, actuators and communication links. A network
of cooperating CPSs (CPN) additionally increases the complexity. This poses challenges
as well as it offers chances: the increasing complexity makes it harder to design, operate,
optimize and maintain such CPNs. However, on the other side an appropriate use of
the increasing resources in computational nodes, sensors, actuators can significantly
improve the system performance, reliability and flexibility. Therefore, self-X features
like self-organization, self-adaptation and self-healing are key principles for such systems.
Additionally, CPNs are often deployed in dynamic, unpredictable environments and
safety-critical domains, such as transportation, energy, and healthcare. In such domains,
usually applications of different criticality level exist. In an automotive environment for
example, the brake has a higher criticality level regarding safety as the infotainment. As
a result of mixed-criticality, applications requiring hard real-time guarantees compete
with those requiring soft real-time guarantees and best-effort application for the given
resources within the overall system. This leads to the need to accommodate multiple
levels of criticality while ensuring safety and reliability, which increases the already
high complexity even more.
This thesis deals with the question on how to conveniently, effectively and efficiently
handle the management and complexity of mixed-critical CPNs (MC-CPNs). Since
this cannot be done by the system developer without the assistance of the system itself
any longer, it is essential to develop new approaches and techniques to ensure that such
systems can operate under a range of conditions while meeting stringent requirements.
Based on five research hypothesis, this thesis introduces a comprehensive adaptive
mixed-criticality supporting middleware for Cyber-Physical Networks (Chameleon),
which efficiently and autonomously takes care of the management and complexity
of CPNs with regard to the mixed-criticality aspect. Chameleon contributes to the
state-of-art by introducing and combining the following concepts:

• A comprehensive self-adaption mechanism on all levels of the system model is
provided.

• This mechanism allows a flexible combination of parametric and structural
adaptation actions (relocation, scheduling, tuning, ...) to modify the behavior of
the system.

• Real-time constraints of mixed-critical applications (hard real-time, soft real-time,
best-effort) are considered in all possible adaptation conditions and actions by
the use of the importance parameter.
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Abstract

• CPNs are supported by the introduction of different scopes (local, system, global)
for the adaptation conditions and actions. This also enables the combination of
different scopes for conditions and actions.

• The realization of the adaptation with a MAPE-K loop instantiated by a dis-
tributed LCS allows for real-time capable reasoning of adaptation actions which
also works on resource-spare systems.

• The developed rule language Rango offers an intuitive way to specify an initial rule
set for LCS in the context of CPS/CPNs and supports the system administrators
in the process of rule set generation.

To evaluate Chameleon, an extensive evaluation has been conducted which demon-
strates the validity of the posed five research hypotheses for the design and development
of Chameleon.

Keywords— Middleware, Cyber-Physical Networking, Cyber-Physical Systems,
Mixed-Criticality, Self-X Properties, (autonomous) Adaptation
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Zusammenfassung

Motivation Das rasante Wachstum von Cyber-Physical Systems (CPS) aufgrund der
Verfügbarkeit von preiswerter Rechenhardware, Sensoren, Aktoren und Kommunika-
tionsverbindungen hat zu einer starken Erhöhung der Systemkomplexität geführt. Im
Automobilbereich z.B. ist die Anzahl und Leistungsfähigkeit dieser Komponenten in
einem Fahrzeug in den letzten Jahren stetig gestiegen. Die Komplexität entsteht durch
die Interdependenz von physikalischen Prozessen, Sensorik und Aktorik, Kommunika-
tionsnetzen und Rechenressourcen. Die Kombination dieser Faktoren führt zu einer
Vielzahl von Problemen, die gelöst werden müssen, z. B. Aufgabenzuweisung, Zeitpla-
nung, Fehlertoleranz und Kommunikation. Mit der zunehmenden Anzahl heterogener
Komponenten in einem solchen System steigt auch die Komplexität der Wechsel-
wirkungen zwischen ihnen. Ein Netzwerk von kooperierenden CPS - ein sogenanntes
Cyber-Physical Network (CPN) - macht die Situation noch komplexer, da Informa-
tionen zwischen den CPS im Netzwerk ausgetauscht und Aktionen koordiniert und
eingesetzt werden müssen. Ein Beispiel für ein solches CPN sind kooperierende oder
platoonierende Fahrzeuge, bei denen mehrere autonome Fahrzeuge in einem Konvoi
mit geringen Abständen fahren und diese die Kommunikation zwischen den Fahrzeugen
über IEEE 802.11p koordinieren.

CPNs werden häufig in dynamischen und unvorhersehbaren Umgebungen eingesetzt,
insbesondere in sicherheitskritischen Bereichen wie Verkehr und Gesundheitswesen.
In solchen Bereichen gibt es oft Anwendungen mit unterschiedlichem Kritikalitäts-
grad. Beispielsweise ist die Bremse in einem Fahrzeug sicherheitskritischer als das
Infotainment-System. Aufgrund dieser gemischten Kritikalität konkurrieren harte
Echtzeit-Anwendungen mit solchen, die weiche Echtzeitgarantien oder Best-Effort-
Behandlung erfordern. Dies führt dazu, dass mehrere Kritikalitätsebenen berücksichtigt
werden müssen um Sicherheit und Zuverlässigkeit zu gewährleisten, was die ohnehin
schon hohe Komplexität noch weiter steigert. Dieses hohe Maß an Komplexität er-
schwert die Verwaltung und Optimierung der Leistung, Zuverlässigkeit und Sicherheit
solcher gemischt kritischen (mixed-critical) CPN (MC-CPN). Daher ist es unerlässlich,
neue Ansätze und Techniken zu entwickeln, um den Betrieb von MC-CPN unter vari-
ierenden Bedingungen gemäß den gegebenen Anforderungen effizient, skalierbar und
zuverlässig zu gewährleisten.

Die Autonomie, also die Fähigkeit eines Systems, sich selbstorganisierend zu betreiben
und zu kontrollieren, spielt hierbei eine wichtige Rolle. Autonome Mechanismen
und Techniken, die als Selbst-X-Eigenschaften (Selbstanpassung, Selbstorganisation,
Selbstheilung, ...) bezeichnet werden, sind eine wichtige und wesentliche Methode,
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Zusammenfassung

um den Betrieb komplexer Systeme effektiv und effizient zu beherrschen. Daher ist
die Entwicklung neuer autonomer Mechanismen und Techniken zur Verwaltung von
MC-CPNs ein vielversprechender Ansatz, um deren Leistung, Effizienz, Zuverlässigkeit
und Flexibilität zu verbessern.

Ansatz Als Grundlage der Arbeit werden zunächst eine Reihe von Forschungshypothe-
sen aufgestellt:

Hypothese 1:
Die Integration von autonomem Verhalten durch Selbst-X Eigenschaften (z.B.
Selbstanpassung, Selbstorganisation, ...) stellt einen geeigneten Ansatz dar, um
das Management und die Komplexität von MC-CPNs zu bewältigen.

Hypothese 2:
Die Implementierung autonomer Mechanismen kann in einem Middleware-Frame-
work gekapselt werden.

Hypothese 3:
Eine regelbasierte MAPE-K-Rückkopplungsschleife ist ein praktikabler Adaptions-
mechanismus zur Verwirklichung des autonomen Verhaltens.

Hypothese 4:
Eine kontextfreie Grammatik kann als Beschreibungssprache für Regeln verwendet
werden, um flexible und generische Regeln auf intuitive und komfortable Weise
auszudrücken und zu formalisieren.

Hypothese 5:
Die Handhabung gemischt kritischer Anwendungen kann durch die Einführung
eines Wichtigkeits-Parameters (importance) ermöglicht werden.

Hypothese 1 basiert auf der Annahme, dass ein komplexes System ohne die Hilfe des
Systems selbst nicht effizient verwaltet werden kann. Daher erscheint die Integration
von autonomem Verhalten durch Selbst-X Eigenschaften als vielversprechender Ansatz
zur Bewältigung von MC-CPNs.

Hypothese 2 schlägt ein Middleware-Framework als optimalen Ort vor, um au-
tonomes Verhalten zu implementieren, da die Middleware Zugang zu allen und Wissen
über alle Systemkomponenten hat und die notwendigen Abstraktionsebenen für die
Anwendungen definiert.

In Hypothese 3 wird eine MAPE-K-Rückkopplungsschleife mit einer regelbasierten
Wissensbasis als Adaptionsmechanismus zur Verwirklichung des autonomen Verhaltens
favorisiert, da sie sich bereits im Bereich des autonomen und organischen Computings
als wirksam erwiesen hat.

Bei Hypothese 4 wird von einer kontextfreien Grammatik als effizientem Ansatz zur
Formulierung von Regeln ausgegangen, da sie sich durch ihre klare Struktur, Flexibilität
und Ausdruckskraft bei der Definition von Bedingungen und Aktionen auszeichnet.
Zudem ermöglicht sie eine gute Lesbarkeit und Verständlichkeit der Regeln, was deren
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intuitive Formulierung wie auch das Verstehen autonom erlernter Regel-Modifikationen
erleichtert.

Abschließend betont Hypothese 5 die Notwendigkeit der Kenntnis des Kritikalitäts-
grads einer Komponente für die Funktionalität des gesamten gemischt-kritischen Sys-
tems. Daher wird die Einführung eines Wichtigkeits-Parameters vorgeschlagen. Dieser
Parameter ermöglicht eine präzise Beschreibung der Kritikalität und unterstützt somit
das effektive Management des Systems.

Die Überprüfung der Validität dieser fünf Hypothesen ist das Hauptziel der vorgelegten
Arbeit. Daher präsentiert diese Arbeit eine umfassende adaptive Middleware für MC-
CPN (Chameleon- comprehensive adaptive mixed-criticality supporting middleware
for Cyber-Physical Networks). Der umfassende Ansatz betrachtet alle Ebenen des
Systems bestehend aus Anwendungen, Rechenknoten, Kommunikationskanälen, Sen-
soren, Aktoren und der Middleware selbst. Hierbei werden wesentliche Parameter von
Komponenten jeder Ebene wie auch die Struktur und Verteilung selbst angepasst und
verwaltet. Daher geht dieser Ansatz klar über individuelle Forschungsarbeiten in den
Bereichen Echtzeit-Scheduling, Task-Allokation und Fehlertoleranz hinaus.

ChameleonMiddleware Architekur Die entwickelte Middleware Chameleon übernimmt
das Management und die Verwaltung aller Interaktionen zwischen Anwendungen, Sen-
soren und Aktoren innerhalb eines einzelnen CPS sowie des gesamten CPNs. Sie ist
auch zuständig für die Verwaltung der Ressourcen wie Rechenknoten und Kommu-
nikationskanäle, um einen verteilten Betrieb zu ermöglichen. Aufgrund ihrer zentralen
Rolle ist die Middleware der ideale Ort, um eine Selbstanpassung zu ermöglichen, die
das gesamte CPN betrifft.

Die entwickelte Chameleon Middleware zeichnet sich durch einen modularen Aufbau
in Form eines Frameworks aus, das eine einfache Portierung und Modifizierung ihrer
Komponenten ermöglicht. Sie kann in zwei Hauptteile unterteilt werden: Zum einen den
grundlegenden Middleware-Teil, der für die Bereitstellung verteilter Systeminteraktion
und Transparenz verantwortlich ist, und zum anderen die Adaptionslogik, die den
Selbstanpassungsprozess steuert.

Der grundlegende Middleware-Teil stellt die notwendigen Funktionen und Mech-
anismen bereit, um eine effiziente Kommunikation, Koordination und Interaktion
zwischen den verschiedenen Komponenten des CPN zu gewährleisten. Er sorgt für die
Verbindung und den Austausch von Daten zwischen den Anwendungen, Sensoren und
Aktoren, um die gewünschten Aufgaben zu erfüllen.

Die Adaptionslogik ist für den Selbstanpassungsprozess der Middleware verant-
wortlich. Sie ermöglicht es, dass die Middleware autonom auf Änderungen in der Umge-
bung, den Anwendungsanforderungen oder den Ressourcen reagiert und entsprechende
Anpassungen vornimmt. Dies umfasst die Überwachung des Systemzustands, die
Analyse von Daten und Informationen, die Planung von Anpassungsmaßnahmen und
die Durchführung der entsprechenden Aktionen. Die Adaptionslogik gewährleistet
somit die Flexibilität und Robustheit des CPN, indem sie sicherstellt, dass das System
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Zusammenfassung

effizient und zuverlässig agiert, selbst unter sich ändernden Bedingungen.
Insgesamt ermöglicht die entwickelte Chameleon Middleware eine effektive Verwaltung

und Anpassung von CPNs, indem sie sowohl die grundlegenden Middleware-Funktionen
als auch den Selbstanpassungsprozess bereitstellt. Durch ihre modulare Struktur und
ihre Fähigkeit, auf Änderungen zu reagieren, bietet sie eine flexible und skalierbare
Lösung für das komplexe Management von CPS und CPNs.

Adaptionsmechanismus und Rango Regelsprache Dank des gewählten Framework
Designs der Middleware können verschiedene Anpassungsmechanismen in die Middle-
ware integriert werden. In dieser Arbeit wurde gemäß Hypothese 3 eine MAPE-K
Rückkopplungsschleife verwendet. Diese Rückkopplungsschleife basiert auf einer ar-
chitektonischen Blaupause, die von IBM im Rahmen des autonomen Computing
eingeführt wurde. Sie besteht aus den Komponenten Monitor, Analyze, Plan und
Execute, die gemeinsam eine Wissensbasis (Knowledge) teilen.

Eine mögliche Realisierung der Analyze- und Plan-Komponenten sowie der Wissens-
basis ist ein Learning Classifier System (LCS). LCS-basierte Ansätze sind im Bereich
des Organic Computing beliebt und wurden bereits in einigen CPS-Anwendungen
eingesetzt. Im Vergleich zu anderen Online-Lernverfahren zeichnen sich LCS durch
einen geringen Rechenaufwand und deterministisches Zeitverhalten aus.

Allerdings bleibt eine wichtige Herausforderung bestehen: die Formulierung des
Regelsatzes. Aus diesem Grund wurde in dieser Arbeit die Regelsprache Rango
entwickelt, die eine generische und flexible Regelformulierung ermöglicht. Üblicherweise
werden in LCS Bit-Strings zur Kodierung von Regeln verwendet. Zum Beispiel könnte
die Regel "11 -> 1" bedeuten: "Wenn das Auto ein Hindernis vor sich hat und das
Auto in Bewegung ist, dann bremse". Äquivalent dazu könnte die Regel "01 -> 0"
bedeuten: "Wenn das Auto kein Hindernis vor sich hat und das Auto in Bewegung ist,
dann bremse nicht".

Die Verwendung von Bit-Strings zur Repräsentation von Regeln für den hier vorge-
sehenen Adaptionsmechanismus ist zwar möglich, aber nicht besonders vorteilhaft. Bei
komplexeren MC-CPN-Anwendungsfällen würden die Bit-Strings sehr lang werden, was
einen erheblichen Aufwand für die Kodierung und eine umständliche Lesbarkeit und
Schreibweise der Regeln bedeuten würde. Aus diesem Grund wurde die flexible Sprache
Rango entwickelt. Sie ermöglicht eine größere Anpassungsfähigkeit, eine intuitive
Formulierung der Regeln und berücksichtigt deren dynamische Natur.

Dabei bietet Rango eine hohe Flexibilität, um zum einen abstrakte und generische
Regeln unabhängig von einem bestimmten Anwendungsfall zu definieren, sowie zum
anderen auch anwendungsspezifische Regeln zu erzeugen, wenn dies gewünscht ist.

Generell bietet Rango drei wesentliche Vorteile für die Spezifikation des Anpas-
sungsverhaltens in MC-CPNs: Erstens enthält es einen großen Satz vordefinierter
Schlüsselwörter für CPN/CPS-Anwendungsfälle, die wiederverwendet werden können.
Zweitens ist Rango direkt in die Lernkomponente integriert. Die mit Rango spezi-
fizierten Regeln werden automatisch in eine binäre Repräsentation übertragen, die
von einem LCS als Grundlage für den Lernprozess verwendet werden kann. Drittens
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ermöglicht dieser Ansatz erklärbar künstliche Intelligenz (XAI), da er die Nachvol-
lziehbarkeit und Erklärbarkeit des Lernens verbessert. Es besteht die Möglichkeit,
einen durch das Lernen modifizierten Regelsatz in einer menschenlesbaren Form von
zu exportieren.

Implementation Die Chameleon Middleware wurde in C++ implementiert und zur
praktischen Evaluierung in eine simulierte Umgebung eingebettet, die auf OMNet++
basiert. OMNet++ ist ein bekannter und weit verbreiteter ereignisbasierter Simulator
für die Netzwerkverarbeitung. Er bietet eine Vielzahl von Funktionen und vordefinierten
Modulen zur präzisen Simulation von Kommunikationsnetzwerken sowie Sensor- und
Aktorsystemen.

Für die spezifische Evaluierung wurden in OMNet++ zusätzliche Module zur Sim-
ulation realistischer Anwendungen und Laufzeitdynamik integriert. Darüber hinaus
wurden vorhandene OMNet++-Module angepasst, um Rechenknoten zu simulieren.
Auf diese Weise bietet die simulierte Umgebung eine grundlegende Plattform für die
Middleware-Forschung im Bereich gemischt-kritischer CPS und CPNs. Sie ermöglicht
die effiziente Ermittlung, Implementierung, Kalibrierung und Evaluierung von Anwen-
dungsanforderungen in solchen Systemen.

Der gewählte Ansatz für die Simulation ist hierbei monolithisch, was Vorteile in Bezug
auf Effizienz und Zeitverhalten im Vergleich zu Co-Simulatoren bietet. Insbesondere
für die Simulation von Echtzeitumgebungen, die für MC-CPNs von großer Bedeutung
sind, ist der monolithische Ansatz vorteilhaft. Bei Co-Simulatoren ist die Koordination
zwischen den einzelnen Simulatoren sehr komplex und führt häufig zu Latenzproblemen
im System.

Im Vergleich zu einer realen Welt bietet die simulierte Umgebung den Vorteil, einen
tiefen Einblick in die Anpassungsprozesse zu ermöglichen, und physikalische Schäden bei
Defiziten zu vermeiden. Außerdem ermöglicht sie eine größere Flexibilität hinsichtlich
verschiedener Anwendungsszenarien und der Größe der simulierten Umgebung. Es ist
jedoch wichtig zu betonen, dass die Chameleon Middleware vollständig unabhängig
von der simulierten Umgebung ist und mit minimalen Anpassungen der Schnittstellen
in einer realen Umgebung eingesetzt und getestet werden kann.

Evaluation Die Evaluation von Chameleon umfasst zahlreiche Aspekte, um die Gültig-
keit der aufgestellten Forschungshypothesen zu überprüfen. Im folgenden sind die
wesentlichen Evaluationsaspekte zusammengefasst, die zur Beurteilung von Chameleon
herangezogen wurden:

1. Nützlichkeit, Benutzerfreundlichkeit und Leistungsfähigkeit der Regelsprache
Rango: Die Regelsprache Rango wurde zum einen hinsichtlich ihrer Nützlichkeit
und Benutzerfreundlichkeit bewertet. Es wurde untersucht, wie gut sie sich
zur Spezifikation von Anpassungsverhalten eignet, inwieweit gelerntes Verhalten
nachvollzogen werden kann und wie einfach sie von den Entwicklern verwendet
werden kann. Darüber hinaus wurde die Leistungsfähigkeit der Regelsprache in
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Zusammenfassung

Bezug auf den Speicherbedarf für Regeln und die Komplexität des Parsings und
der Regelauswertung zur Laufzeit evaluiert.

2. Echtzeitverhalten von Chameleon: Das Echtzeitverhalten von Chameleon hin-
sichtlich zweier Aspekte untersucht. Zum einen wurde das Echtzeitverhalten
des Adaptionsmechanismus theoretisch analysiert und garantierte Oberschranken
für die Dauer eines Adaptionsprozesses abgeleitet. Zum anderen wurde das
Echtzeitverhalten der Anwendungsabläufe betrachtet, welches basierend auf
gegebenen Echtzeitanforderungen sowie des importance Wertes bei MC-CPNs
vom Adaptionsmechanismus überwacht und gesteuert wird.

3. Effizienz und Effektivität des regelbasierten MAPE-K Adaptionssmechanismus:
In einem automobilen Anwendungsszenario wurde die Funktionsfähigkeit und
Wirksamkeit des regelbasierten MAPE-K Adaptionssmechanismus zur Verwaltung
von MC-CPNs und deren Komplexität unter Berücksichtigung der gemischten
Kritikalität untersucht. Hierfür wurde die OMNet++ basierte Simulationsumge-
bung verwendet. Es wurden verschiedene Evaluationsszenarien benutzt, um
den Umgang mit dynamischen Laständerungen, Überlastsituationen, Ausfällen,
Designfehlern, Lerneffekten und der Nutzung verfügbarer Ressourcen zu bewerten.
Zusätzlich bestätigten die Evaluationscenarien die hergeleiteten Echtzeitgrenzen
des Adaptionsmechanismus.

Fazit Die umfassende Evaluierung zeigt zum einen, dass die entwickelte Chameleon
Middleware das autonome, effiziente, effektive, zuverlässige und flexible Management
von MC-CPNs und ihrer Komplexität unter Berücksichtigung der gemischten Kri-
tikalität ermöglicht. Zum anderen belegt sie die Gültigkeit der fünf aufgestellten
Forschungshypothesen.

Die Realisierung von autonomem Verhalten durch Selbst-X Eigenschaften hat sich als
erfolgreicher Ansatz erwiesen, um das Management und die Komplexität von MC-CPNs
zu bewältigen (Hypothese 1 ). Durch die Kapselung dieses autonomen Verhaltens in einer
Middleware-Schicht kann das MC-CPN sich selbst organisieren und an veränderliche
Bedingungen und Systemziele anpassen, ohne zentrale Steuerung oder menschliche
Interaktion zu erfordern (Hypothese 2 ). Dabei berücksichtigt der umfassende Ansatz das
gesamte System, bestehend aus Anwendungen, Rechenknoten, Kommunikationskanälen,
Sensoren, Aktoren und der Middleware selbst. Die Fähigkeiten von Chameleon gehen
somit über die spezifische verwandte Forschung hinaus, da sie eine Vielzahl von Aspekten
adressiert und den Systementwicklern die Last der Verwaltung komplexer MC-CPNs
abnimmt.

Weiterhin wurde festgestellt, dass eine regelbasierte MAPE-K-Rückkopplungsschleife
ein praktikabler Anpassungsmechanismus ist, um Self-X Eigenschaften in der Middle-
ware umzusetzen (Hypothese 3 ). Die Verwendung eines verteilten LCS zur Instanzi-
ierung der MAPE-K Rückkopplungsschleife ermöglicht echtzeitfähige Adaptionsmaß-
nahmen und ist durch seinen geringen Rechenaufwand auch in ressourcenbeschränkten
Systemen einsetzbar. Zudem hat sich gezeigt, dass Rango einen intuitiven Weg bi-
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etet, um einen anfänglichen Regelsatz für das LCS im Kontext von MC-CPNs zu
spezifizieren und die Systemadministratoren und Entwickler bei der Generierung des
Regelsatzes zu unterstützen (Hypothese 4 ). Aufgrund der verteilten Natur von MC-
CPNs verwendet Chameleon eine verteilte Regelauswertung ohne zentrale Steuerung.
Hierbei finden zusätzliche Strategien zur Behandlung von Konflikten Anwendung. Die
Regelsprache ermöglicht eine flexible Kombination verschiedener Anpassungsaktionen
und -bedingungen in Bezug auf gemischte Echtzeitanforderungen von Anwendungen.
Sie ermöglicht auch die Kombination verschiedener Geltungsbereiche für Bedingungen
und Aktionen, um das Systemverhalten zu ändern. Hierbei hat sich schließlich die
Einführung des Wichtigkeits-Parameters (importance) als wirkungsvolle Methode zur
Behandlung gemischter Kritikalität erwiesen. (Hypothese 5 ).

Zusammenfassend trägt Chameleon durch die Einführung und Kombination der
folgenden Konzepte zum aktuellen Forschungsstand bei:

• Ein umfassender Selbstanpassungsmechanismus auf allen Ebenen des System-
modells wird bereitgestellt.

• Dieser Mechanismus erlaubt eine flexible Kombination von parametrischen und
strukturellen Anpassungsmaßnahmen (Relokalisierung, Scheduling, Tuning, ...),
um das Verhalten des Systems zu verändern.

• Echtzeitbeschränkungen von gemischt-kritischen Anwendungen (harte Echtzeit,
weiche Echtzeit, Best-Effort) werden in allen möglichen Anpassungsbedingungen
und -aktionen durch die Verwendung des Parameters importance berücksichtigt.

• CPNs werden durch die Einführung verschiedener Geltungsbereiche (lokal, Sys-
tem, global) für die Anpassungsbedingungen und -aktionen unterstützt. Dies
ermöglicht auch die Kombination von unterschiedlichen Geltungsbereichen für
Bedingungen und Aktionen.

• Die Instanziierung der MAPE-K Rückkopplungsschleife durch ein verteiltes LCS
ermöglicht eine echtzeitfähige Schlussfolgerung von Anpassungsaktionen, welche
auch auf ressourcenarmen Systemen funktioniert.

• Rango bietet eine intuitive Möglichkeit, einen initialen Regelsatz für LCS im Kon-
text von CPS/CPNs zu spezifizieren und unterstützt die Systemadministratoren
bei der Regelsatzgenerierung.

Schlüsselworte— Middleware, Cyber-Physical Networks, Cyber-Physical Systems,
Gemischte Kritikalität, Selbst-X Eigenschaften, (autonome) Adaption
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1. Introduction

1.1. Motivation

The rapid growth of Cyber-Physical Systems (CPS) due to the availability of cheap
hardware, sensors, actuators and communication links, has led to an increased system
complexity. In the automotive area e.g. the number and capabilities of these components
in a car is constantly rising during the last years. This complexity arises due to the
interdependence of physical processes, sensing and actuation, communication networks,
and computing resources. The combination of these factors creates a multitude of
issues that must be addressed, such as task allocation, scheduling, fault tolerance and
communication. As the number of heterogeneous components in such a system rises, the
complexity of the interactions between them also increases. A network of cooperating
CPSs - a so-called Cyber Physical Network (CPN) - makes the situation even more
complex, since information between the CPSs in the network has to be exchanged and
actions have to coordinated and deployed. Cooperating or platooning vehicles [Les+21],
in which several autonomous vehicles drive in a convoy with small inter-vehicle distances
and coordinate their inter-vehicle gaps via IEEE 802.11p communication, can be an
example for such a CPN.

Additionally, CPNs are often deployed in dynamic, unpredictable environments and
safety-critical domains, such as transportation, energy, and healthcare. In such domains,
usually applications of different criticality level exist. In an automotive environment for
example, the brake has a higher criticality level regarding safety as the infotainment. As
a result of mixed-criticality, applications requiring hard real-time guarantees compete
with those requiring soft real-time guarantees and best-effort application for the given
resources within the overall system. This leads to the need to accommodate multiple
levels of criticality while ensuring safety and reliability, which increases the already high
complexity even more. This high level of complexity has made it difficult to manage
and optimize the performance, reliability, and safety of such mixed-critical CPNs (MC-
CPN). Thus, it is essential to develop new approaches and techniques to ensure that
MC-CPNs can operate under a range of conditions while meeting stringent requirements.

In summary, the motivation for research in the area of MC-CPNs is driven by the
need to develop efficient, reliable, and scalable solutions for managing the complexity
and heterogeneity of these systems while ensuring safety.

Autonomous behavior refers to a set of properties that are capable to operate and
control a system in a self-organizing way (cf. Section 2.3.1). These properties, which
are usually subsumed as so-called self-X properties, are a leverage for MC-CPNs since
the increasing complexity cannot be handled effectively and efficiently by the system
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1. Introduction

developer without the assistance of the system itself any longer [HM08]. Therefore, the
development of new autonomous mechanisms and techniques for managing MC-CPNs
looks like a promising approach to improve their performance, efficiency, reliability and
flexibility.

1.2. Approach

This thesis deals with the question on how to conveniently, effectively and efficiently
handle the management and complexity of MC-CPN’s. To answer this question, several
research hypotheses are formulated (cf. Figure 1.1):

1 2 3 4 5

The realization 
of autonomous 

behavior 
through self-X 
properties is a 

suitable 
approach to 
handle the 

management 
and complexity 

of MC-CPN's.

The realization 
of autonomous 

behavior can 
be 

encapsulated 
into a 

middleware 
framework.

A context-free 
grammar can 

be used to 
describe a rule 

language to 
intuitively and 

comfortably 
express 

flexible and 
generic rules.

A rule-based 
MAPE-K 

feedback loop 
is a feasible 
adaptation 

mechanism to 
realize the 

autonomous 
behavior.

Handling of 
mixed-

criticality can 
be enabled by 

the 
introduction of 
an importance

parameter.

Chameleon

Figure 1.1: Research hypotheses for the design and development of Chameleon.

Hypothesis 1:
The realization of autonomous behavior through self-X properties (e.g. self-
adaptation, self-organization, ...) is a suitable approach to handle the management
and complexity of MC-CPN’s.

Hypothesis 2:
The realization of autonomous behavior can be encapsulated into a middleware
framework.

Hypothesis 3:
A rule-based MAPE-K feedback loopis a feasible adaptation mechanism to realize
the autonomous behavior.

Hypothesis 4:
A context-free grammar can be used to describe a rule language to intuitively and
comfortably express flexible and generic rules.
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1.3. Structure

Hypothesis 5:
Handling of mixed-criticality can be enabled by the introduction of an importance
parameter.

Hypothesis 1 is based on the assumption that a complex system cannot be efficiently
managed without the assistance of the system itself. Therefore, gaining autonomy by
realizing self-X properties looks like a promising way to manage MC-CPNs.

Hypothesis 2 proposes a middleware framework as best suitable place to realize
the autonomous behavior, because the middleware has access to and knowledge about
all system components and allows to define the necessary layers of abstraction for the
application.

In Hypothesis 3, a Monitor-Analyze-Plan-Execute (MAPE) loop with rule-based
Knowledge (K) is favored as adaptation mechanism to realize the autonomous behavior,
because it has already shown its effectiveness for that purpose in Autonomic and
Organic Computing (cf. Section 2.3).

Thereby, Hypothesis 4 assumes a context-free grammar as an efficient method to
express the rules, because such a grammar is well-structured, flexible and powerful in
expressing conditions and actions for rules. Additionally, it offers a good writeability
and readability which is advantageous for writing rules as well as understanding
modifications achieved by autonomous learning. Finally, the criticality level of a
component for the functionality of the entire mixed-critical system has to be known by
the system.

Therefore, Hypothesis 5 proposes the introduction of an importance value to
express this level. To examine the validity of these five hypotheses is the major goal
of the presented thesis. Therefore, this thesis introduces a comprehensive adaptive
mixed-criticality supporting middleware for Cyber-Physical Networks (Chameleon),
which efficiently and autonomously handles the management and complexity of CPN
with regard to the mixed-criticality aspect. The entire system consisting of applications,
computing nodes, communication channels, sensors, actuators and the middleware
itself is considered. In such a comprehensive approach, the key parameters of each of
these components (e.g. scheduling parameters, scheduling schemes, task parameters,
communication parameters and protocols, data compression, monitoring rates, ...) as
well as the structure itself (task allocation) are subject of adaptation and management.
Thus, the work presented here addresses a multitude of issues simultaneously and
clearly exceeds individual research in the areas of classical real-time scheduling, task
allocation and fault tolerance.

1.3. Structure

The thesis is organized as follows: First, the most important fundamentals relevant for
this thesis are introduced in Section 2. Following in Section 3, the system model which
describes the world in which Chameleon middleware operates is shown. The architecture
of Chameleon is presented in Section 4 and the rule based MAPKE-K adaptation
mechanism is explained in Section 5. Afterwards, the implementation of Chameleon is
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introduced in Section 6. An extensive evaluation is presented and discussed in Section 7,
followed by related work in Section 8. Finally, Section 9 concludes this thesis with
a discussion of the results regarding the five research hyptheses, a summary and an
outlook.
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2. Fundamentals

In the following, important concepts relevant for this thesis are introduced.

2.1. Embedded System, Cyber-Physical System and
Cyber-Physical Network

Embedded Systems (ES), Cyber-Physical Systems (CPS), and Cyber-Physical Networks
(CPNs) are interrelated concepts that are used to describe different levels of integration
between physical systems and computing systems. Together, these concepts enable the
seamless integration of physical and computing systems, improving the development of
advanced and intelligent systems. The individual concepts are described in more detail
in the following.

2.1.1. Embedded System

An embedded system (ES) [Noe12] as shown in Figure 2.1 is a system that interacts
with and controls the environment via sensors and actuators. Thus, it consists of a
combination of hardware and software. It is often designed to perform tasks with real-
time constraints and is usually integrated into a larger system. Embedded systems are
an important part of the modern world, and are used in a wide variety of applications.
Examples for ESs can be found e.g. in the automotive area, where a vehicle has a
variety of ESs responsible for controlling various functions such as engine control,
brakes, infotainment system, etc.

2.1.2. Cyber-Physical System

A CPS is a system which consists of several subsystems (system-of-systems) which
interact and cooperate via a communication system (cf. Figure 2.1). Thereby, at least
one of the subsystems is an ES which interacts with the environment [Mar21]. Thus,
ESs are the building blocks of a CPS. Thereby, the CPS relies on ESs to monitor the
physical environment via sensors and make decisions based on the data collected. The
CPS provides the computational intelligence needed to control the environment via
actuators in real-time. This integration enables a wide range of applications. A vehicle
itself is a good example for a CPS, since — as mentioned above — it holds several
ESs which cooperate to enable the overall vehicle functionality.
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sensors/actuators sensors/actuators

ES

CPS

CPN

CPS

ES

Figure 2.1: A Cyber-Physical Network (CPN) consisting of multiple Cyber-Phyiscal
Systems (CPS). Thereby, in each CPS at least one of the subsystems is
an Embedded System (ES) which monitors and controls the environment
via sensors and actuators.

2.1.3. Cyber-Phyiscal Network

A CPN connects multiple CPSs together to form a network of interconnected systems
(system-of-systems in a larger scale). These networks enable communication and
coordination between multiple CPS, allowing for more complex and sophisticated
control and optimization of physical systems. The relationship between ES, CPS and
CPN is illustrated in Figure 2.1. Platooning vehicles are a good example for a CPNs,
where each vehicle represents a CPS and consists of several ESs.

2.1.4. Application Fields

CPNs are used in a wide variety of applications to increase efficiency, reduce energy
consumption and costs and enhance safety. Some examples are provided in the following:

• Transportation and Logistics: As already mentioned above, CPNs can be used
to organize sets of vehicles, e.g. for platooning, as well as a vehicle itself. Thus,
CPN’s can be used to monitor and control traffic flow, optimize routes, and
reduce congestion.

• Smart Homes and Building: CPN’s can be used to automate and optimize various
functions in homes and buildings, such as lighting, heating, ventilation, and
security.

• Healthcare: CPN’s can be used to monitor and manage patient health, optimize
treatment plans, improve diagnostics, deliver drugs and other treatments and
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automate medical procedures.

• Manufacturing and Industrial Automation: CPNs can be used to automate and
optimize manufacturing processes by integrating sensors, actuators and control
systems.

• Smart Grid and Energy Management: CPNs can be used to monitor and con-
trol energy distribution networks, optimize energy usage by enabling real-time
optimization, and integrate renewable energy sources.

• ...

Chameleon can be used in any of the presented applications fields by choosing appro-
priate parameters and rules according to the individial requirements and goals.

2.2. Mixed-Critical Systems

Mixed-critical systems refer to systems that handle multiple tasks of different criticality
levels, such as safety-critical and non-safety critical tasks, on the same hardware
platform (or within the same system). The distinction into different criticality levels
can be much more fine-grained than only safety-critical and non-safety critical tasks
depending on the use case. In the automotive area for example, ASIL (Automotive
Safety Integrity Level) [al18] distinguishes safety integrity levels between A and D.
Thus, mixed-critical systems require to support multiple applications with different
criticality levels, where each application may have different requirements in terms of
performance, fault-tolerance and safety. As a result, these systems require a careful
design to ensure that the criticality of the tasks is taken into consideration during
the system runtime. For example, safety-critical tasks should not by compromised by
the non-safety critical ones, so that the system as a whole meets the required safety
standards.

2.3. Autonomic and Organic Computing

Autonomic and Organic Computing are two related research fields in computer science
that aim to create more flexible, adaptable and self-organizing computer systems.

In 2002, the Architecture of Computer Science (ARCS) specialist group of the
Gesellschaft für Informatik (GI) held a workshop aimed at predicting future trends in
computer science [TSM17; MT17; Sch05]. From this workshop emerged the concept
of Organic Computing, which was later published in a joint position paper by the
GI and the Informationstechnischen Gesellschaft im VDE (ITG) in 2003 [VDE03].
Organic Computing involves creating computer systems that can adapt and evolve like
living organisms, with the ability to sense and respond to their environment, learn
from experience, and adapt to changing circumstances. Such systems are designed
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to be robust and resilient, capable of recovering from failures and maintaining their
functionality in the face of changing conditions.

In 2003, Autonomic Computing emerged as a concept around the same time as
Organic Computing. Initially proposed by IBM, the primary goal was to develop
automated solutions for data centers [KC03]. Autonomic Computing emphasizes self-
management and draws inspiration from nervous systems. Its focus is on creating
computer systems that can monitor their own performance, diagnose and repair faults,
and adjust their behavior in response to changing conditions, without the need for
human intervention. By doing so, Autonomic Computing aims to create more efficient
and reliable systems that can deliver high levels of performance and availability with
minimal manual tuning and configuration.

Both Organic and Autonomic Computing are motivated by the increasing complexity
and scale of modern computer systems, which can be difficult and time-consuming
to manage manually. By creating systems that are more flexible, adaptable, and
self-organizing, it is possible to create computer systems that can better meet the
needs of users and organizations in a wide range of domains, from scientific research to
business and industry.

2.3.1. Self-X Properties

In the context of Autonomic and Organic Computing, self-X properties refer to a set of
properties that are exhibited by complex systems that are capable of self-organization,
self-adaptation, and other forms of autonomous behavior. The term "X" is used as a
placeholder to represent the specific property being discussed, such as self-organization,
self-adaptation, and so on.

Major self-X properties include:

• Self-organization: The ability of a system to spontaneously organize and
structure itself in response its environment and internal state. It is a kind of
umbrella term for the other self-X properties.

• Self-adaptation: The ability of a system to adapt its behavior or structure in
response to changes in its environment or internal state, based on some predefined
criteria or goal.

• Self-monitoring: The ability of a system to monitor its own behavior and
internal state, and adjust its behavior accordingly.

• Self-optimization: The ability of a system to optimize its performance based
on feedback from its environment and performance metrics.

• Self-configuration: The ability of a system to autonomously find an initial
working configuration.

• Self-healing: The ability of a system to react to and heal failures occurring
during system operation.
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When applied to a specific use case like platooning, the self-X properties can greatly
enhance both the efficiency and safety of the platoon while minimizing disruption
to traffic. One example is self-organization, which can be achieved through the use
of sensors and communication systems to determine the optimal formation, speed,
and spacing between the vehicles. This can help reduce wind resistance, enhance
fuel efficiency, and minimize the risk of accidents. Furthermore, platooning vehicles
can self-adapt to changing road and traffic conditions. For instance, if there is an
obstacle on the road, the platoon can self-adjust its position and speed accordingly
to avoid accidents and maintain smooth traffic flow. In addition, platooning vehicles
can self-heal by detecting and responding to faults and failures in the system. If one
vehicle experiences a mechanical issue, the other vehicles can adjust their speed and
position to maintain the platoon formation, ensuring smooth traffic flow. In case of
computational issues (e.g. failures or overloads in computing nodes or networks) the
resources of other vehicles in the platoon can be used for self-healing.

Overall, self-X properties are important characteristics of complex systems that
exhibit autonomous behavior, and are often desired in many application domains,
including CPSs, distributed systems, and artificial intelligence. These properties allow
the system to autonomously adapt and respond to changing conditions, and optimize
their behavior to achieve their objectives, while providing a high degree of reliability
and efficiency with only minimal or no need at all for external intervention or control.

In the context of CPS/CPN, self-X properties refer to the ability to exhibit self-
organization mainly in terms of self-adaptation and self-healing to keep the system
operational within the given mixed-critical constraints, which is important for achieving
efficient and reliable system operation in dynamic and unpredictable environments.

In the field of Organic Computing, often the Observer-Controller control mechanism is
used to realize self-X properties while in Autonomic Computing the MAPE-K feedback
loop is common. Both concepts are shortly introduced in the following.

2.3.2. Observer-Controller Architecture

The Observer-Controller architecture [Hel+04] (see Figure 2.2) is a control mechanism
used to regulate the behavior of a system by observing and responding to changes in
the system and its environment.

System under Observation and 
Control

Observer Controller

Goals

Input Output

Figure 2.2: Observer-Controller archiecture.
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In this architecture, the system under observation and control is extended by two
main components: the observer and the controller. The observer continuously monitors
the system’s behavior and the environment in which it operates, collecting data and
generating models of the system’s state and dynamics. The controller receives this
information from the observer and generates control signals that modify the system’s
behavior in response to changes in the environment or to achieve specific goals.

Overall, the Observer-Controller architecture is a flexible and scalable mechanism
that can be used to regulate the behavior of complex and dynamic systems in an
autonomous and adaptive manner.

2.3.3. MAPE-K Feedback Loop

The MAPE-K feedback loop [IBM05] (see Figure 2.3) is a control paradigm to regulate
the behavior of a system in an autonomous and adaptive manner. The loop consists of
four main components:

• Monitor (M): The monitor component continuously observes the system’s
behavior and environment, collecting data of the system’s state and dynamics.

• Analyze (A): The analyze component receives the data and analyzes it to
identify potential problems or opportunities for improvement.

• Plan (P): The plan component generates a set of actions or policies based on
the analysis performed by the analyze component.

• Execute (E): The execute component carries out the actions or policies generated
by the plan component, modifying the system’s behavior in response to changes
in the environment or to achieve specific goals.

Often those components share a Knowledge (K) base.

Autonomic Manager

Managed Resource

KM

A P

E

Sensors Actuators

Figure 2.3: MAPE-K feedback loop archiecture.

The closed-loop nature of the MAPE-K loop enables the system to continuously adapt
and improve its behavior based on the changing environment and system requirements
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Overall, the MAPE-K feedback loop provides a flexible and scalable mechanism
for regulating the behavior of complex and dynamic systems in an autonomous and
adaptive manner.

In general, MAPE-K and Observer/Controller have many similarities and often use
the same mechanisms, e.g. rule-based learning mechanisms. While MAPE-K is more a
generic design pattern, Observer/Controller refers more to a concrete architecture.

2.3.4. Learning Classifier Systems

A Learning Classifier System (LCS) is a powerful and flexible approach to machine
learning that is inspired by the human immune system and evolutionary theory. LCSs
were first proposed by John Holland in the 1970s as a way of modeling the adaptive
behavior of natural systems [Hol+00; SW09; UM09; UB17] and can be used in the
Observer-Controller architecture as well as in the MAPE-K feedback loop. One of
the key features of LCS is its ability to learn and adapt over time. This makes LCS
well-suited for applications where the ability to learn from experience and adapt to
changing conditions is crucial.

A LCS consists of a set of rules, or classifiers, that are used to make predictions or
decisions based on input data. Such classifiers are usually represented as binary strings
and consists of an condition part, an action part, and a reward for executing the action.
The workflow of a LCS is outlined in Figure 2.4. The LCS uses sensors to monitor the

Genetic 

Alg. 

Rule Set Match Set Action Set 

Sensors Actuators 

System 

6. Modify 2. Select matching rules 3. Select best actions 

4. Action 1. Condition 5. Reward 

Figure 2.4: Workflow of a LCS.

system and to retrieve the current system condition. The conditions of the classifiers
are compared to the current condition and classifiers whose conditions fit are included
to the match set. Afterwards, the best rewarded actions of the classifiers in the match
set are written to the action set and are executed using the actuators. Subsequently,
the system condition is evaluated again and the reward of applied classifiers is updated
according to the evaluation before the LCS loop is repeated.
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Often, these classifiers are generated and modified using a process called genetic
algorithm, which is a type of optimization algorithm inspired by natural selection. The
genetic algorithm works by randomly generating an initial population of classifiers,
evaluating their performance on a given task, and then selecting the best-performing
classifiers for reproduction. The selected classifiers are then combined through crossover
and mutation to create a new generation of classifiers, which are evaluated and selected
again. However, the random generation of classifiers might not lead to an appropriate
rule set in the end. Instead, expert-knowledge can be used to build an initial rule set.

2.4. Middleware

The term middleware describes a software layer used in distributed systems to simplify
the management and development of such systems by providing transparencies which
hide the systems complexity [Cou+11; TS01]. In general, such a middleware can be
used in various context providing a variety of different transparencies. It spans a
common system-wide platform within the distributed system as shown in Figure 2.5
and thereby eases the interaction of the system components.

Local Operating 
System

Middleware

Distributed Applications

Local Operating 
System

Local Operating 
System

Processor A Processor B Processor C

Network

Figure 2.5: Middleware software layer in a distributed system.

In this thesis, the middleware software layer additionally is used to enable autonomous
behavior. Thus, the layer provides features that allow the CPS/CPN to self-organize
and adapt to changing conditions and system goals without requiring a central control or
human interacting. Therefore, the middleware software layer can be used to encapsulate
the realization of self-X properties as introduced in Section 2.3.1.

Such a middleware which enables autonomous behavior normally needs to provide
the following features:

• Autonomy: Each node in the system has a high degree of autonomy and can
make decisions based on local and global information without requiring a central
authority.

• Communication: The middleware provides a communication infrastructure
that enables system components to exchange information and coordinate their
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actions.

• Adaptation: The middleware provides mechanisms to adapt to changes in the
environment and system objectives.

• Emergence: Emergence is a phenomenon in which a complex system exhibits
properties or behaviors that arise from the interactions between its individual
components, rather than being directly caused by those components themselves.
Thus, complex and often unpredictable behavior can emerge from simple interac-
tions between individual components of a system. An example for emergence is
the behavior of a colony of ants. Individual ants deposit pheromones to mark
their paths and following the pheromone trails left by other ants. When these
individual behaviors are combined, the colony as a whole exhibits emergent
properties and behaviors, such as the ability to find the shortest path to food
sources.

The middleware supports and controls the emergence of complex behavior from
the interactions of the components in the system.

Overall, a middleware is an essential part to handle the complexity of CPS/CPNs. A
middleware for autonomous behavior enables a CPS/CPN to operate in a distributed
and decentralized manner, adapt to changing conditions, and handle constraints to
achieve its objectives.
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The system model shown in Figure 3.1 describes the world in which the Chameleon
middleware (MW) operates. Due to the comprehensive approach and the required

Figure 3.1: System model.

end-to-end view, all the resources of a MC-CPN and their interactions with each other
are of concern to the middleware. The application layer represents the application
components of the cyber-physical system network. The network node layer contains
the computing nodes (processors including the operations system) and the Chameleon
middleware instances. The network layer is responsible for the interconnection of the
nodes and the sensors and actuators in the system. Sensors and actuators reside in the
sensor/actuator layer. In the following, further information on the model, its layers and
properties is provided. An overview of the major properties of the layers is provided in
Table 3.1.

Layer Property Remark

Sensor
Actuator

importance The importance of the component
priority The priority of the component
period The period of a periodic sensor
deadline The deadline for sensor data delivery
reaction time The reaction time to sensor data available
data size The size of data a sensor produces
jitter The period jitter of a periodic sensor
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delay The delay of a reactive sensor
compression The current data compression factor
max compression The maximum data compression factor

max miss rates
The maximum allowed miss rates for period, dead-
line and reaction time

max distance
The maximum allowed distances to period, dead-
line and reaction time

Network

capacity
The data transmission capacity (data rate) of the
channel

delay The data transmission delay

mode
The data transmission mode (simplex, half duplex,
duplex)

scheduling
policy

The available and current scheduling policies

error rate The data transmission error rate
repetition The repetition scheme in case of error

channels
The number of parallel transmission channels
(lanes) of the communication channel

failed channels
The number of failed transmission channels (lanes)
in a communication channel

Network
Node

capacity
The processing capacity (instruction rate) of the
node

delay The processing delay of the node
scheduling
policy

The available and current scheduling policies

channels
The number of parallel processing channels
(threads) of the node (single or multi-threaded
nodes)

failed channels
The number of failed processing channels (threads)
in a multi-threaded node.

Application

importance The importance of the application
priority The priority of the application
period The period of a periodic application
deadline The deadline of an application
reaction time The reaction time of an application
instruction count The instruction count of an application
jitter The period jitter of a periodic application

tuning factors
The current tuning factors for priority, period
deadline and reaction time

max tuning the maximum tuning factor
compression The current data compression factor
max compression The maximum data compression factor

max miss rates
The maximum allowed miss rates for period, dead-
line and reaction time
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max distance
The maximum allowed distances to period, dead-
line and reaction time

Table 3.1: Major properties of the system model layers.

3.1. Modeling Mixed-Criticality – Importance

One of the most important features of the system model is the notion of mixed-
criticality. It means that the different components or tasks in the system might have a
different criticality regarding the system functionality and well-being. In an automotive
environment for example, the brake component is more critical than the navigation
component. Therefore, a parameter called importance is defined:

Definition (Importance ∈ N0). Level of criticality of a task in the system. The higher
the level of importance the more critical is the task regarding the system functionality
and well-beeing.

Importance must not be confused with priority.

Definition (Priority ∈ N0). Priority refers to the order in which tasks are scheduled
based on their period or deadline.

Regarding real-time scheduling (e.g. rate monotonic scheduling), application com-
ponents with short periods result in high priorities (e.g. infotainment high definition
audio rendering). However, these application components might be less important
for the system than application components with longer periods and resulting lower
priority (e.g. brake light control). In case of overload or lack of resources the lower
priority application component then has to be preferred.

An example is illustrated in Figure 3.2. In the example, two tasks with different
periods/corresponding deadline (assuming the deadline equals the period; illustrated as
thunderbolt) compete for the given resources. Thereby, TaskA has a short execution
time with short period/deadline (cf. Figure 3.2a) and TaskB has a longer execution
time with longer period/deadline (cf. Figure 3.2b). Thus, the priority of TaskA must be
higher than that of TaskB to get a working scheduling using rate monotonic scheduling
with preemption (cf. Figure 3.2c). However, it may be the case, that TaskB is the more
important of the two, although it has the longer period and therefore the lower priority.
If the system now gets into an overload situation (e.g. by loss of computational power
or a new task entering the system) the more important task would be neglected due to
its lower priority in a pure priority based scheduling. This is where the importance
comes into play as an additional scheduling decision parameter1.

1Simply combining both parameters in a two-level scheduling with classification into importance
classes and priority scheduling based on the classes does not work. If T askB is classified in importance
class 1 and T askA in importance class 2, T askB always has priority over T askA. This means that
T askA could never meet its deadline in the above example.
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(a) TaskA: Short execution time with short period/deadline.
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(c) Rate monotonic scheduling with preemption.

Figure 3.2: Example: Priority scheduling.

By introducing a cardinal valued importance parameter, the criticality of a component
or task can be expressed on a fine-grained level independent of its priority.

3.2. Sensor/Actuator Layer

In the system model, a sensor can either be a periodic sensor that sends data periodically,
a reactive sensor that only sends data if requested beforehand, or a sporadic sensor
that sends data sporadically. For each sensor, several real-time properties (periods
for periodic sensors, priorities, deadlines,...) can be defined. Also, the importance
parameter, which defines the importance of the sensor data for the system, and thus
expresses its criticality, can be defined. An actuator is modeled as a data endpoint
having additional real-time tolerance parameters like the maximum allowed miss rate
of its timing constraints and the maximum allowed distance to its timing constraints.

3.3. Network Layer

The communication channels1 of the network layer are responsible for the communica-
tion between the different parts of the MC-CPN by offering the opportunity to transmit

1A communication channel is the physical medium including the protocol used for transmission:
E.g. TCP/IP and UDP/IP are two different communication channels even when they are built upon
the same physical medium like Ethernet.
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messages through it. A channel might be a peer-to-peer connection, a databus or an
n-to-m connection network (wired or wireless). Thereby, a channel can support simplex,
half-duplex or full duplex transmission mode and can have multiple parallel transmis-
sion lanes. Its data transmission capacity (data rate) as well as its transportation delay
can be defined. Furthermore, a channel can support various scheduling policies (e.g.
FIFO or priority scheduling, preemption or no preemption). Error-rates, repetition
schemes and parallel transmission channel (lane) failures in multi-lane communication
channels can also be taken into account.

3.4. Network Node Layer

Besides the delay due to communication, the delay due to processing (application &
middleware) has also to be considered. Often the delays caused by the communication
channels are bigger than those caused by the processing on computational nodes,
nevertheless the nodes should not be neglected in the model to achieve a most accurate
and realistic system model. A node might have one or more parallel processing channels
(single or multi-threaded) with a given processing capacity (instruction rate [Million
Instructions per Second(MIPS)]). The number of failed parallel processing channels
(threads) can also be defined. Furthermore, a node (including the operating system) can
support various scheduling policies (e.g. FIFO or priority scheduling, preemption or no
preemption). This is also the layer where the proposed middleware (MW) Chameleon
resides. Further information in regard to the middleware instances are provided in
Sections 4 and 5.

3.5. Application Layer

The applications are composed of concurrent tasks (threads, processes). Thereby, a
task can be either time-triggered (periodic, active) or event-triggered (passive, reactive).
For each application, several real-time requirements (periods for time-triggered tasks,
priorities, deadlines, ...) as well as additional real-time tolerance parameters (maximum
allowed missrate of its timing containts, the maximum allowed distance to its timing
constraints, ...) can be specified. The mixed-criticality is expressed by the importance-
Parameter, which defines the importance of a task for the overall application.

The mapping of applications to tasks can be either fine or coarse grain. In a coarse
grain mapping, an application is realized by a single task. In an automotive scenario
for example, the application Anti-Lock-Brake is realized by a task and the application
Navigation is realized by another task. In a fine-grained mapping, an application is
realized by multiple tasks. In an automotive scenario, the application Anti-Lock-Brake
might be realized e.g. by four tasks (wheel-speed-acquisition, brake-request-acquisition,
brake-force-control, brake-light-indicator) while the Navigation might be realized by
three tasks (GPS-position-detection, route-calculation, traffic-monitoring). Each of
these tasks might have different real-time requirements and importance values (even
within an application, e.g. the brake-light-indicator might be less important/critical
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than the brake-force-control). While a coarse grain mapping usually produces less
overhead, a fine grain mapping offers more flexibility for adaptation (individual tasks
might e.g. be allocated to different nodes).
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A middleware in a CPN is responsible for transparent operation of the distributed
network (cf. Section 2.4). It handles all the interactions of applications, sensors and
actuators within a single CPS and the entire CPN. It also manages the resources
like computation nodes and communication channels to enable distributed operation.
Therefore, the middleware is the ideal place to provide self-adaption which affects
the entire CPN. Figure 4.1 shows the architecture of Chameleon1 — a middleware
for complex mixed-critical CPNs that aims to efficiently handle safety-related non-
functional requirements with regard to the mixed-criticality aspect. A comprehensive

– 

Figure 4.1: Middleware architecture.

approach is used in which all components and interactions within the mixed-critical
CPN are subject for adaptation (cf. system model Section 3). Thereby, each Network

1First principles of the Chameleon architecture have been published in [BBK19], while more details
can be found in [FB22].
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Node in the system has it’s own Chameleon middleware instance (cf. Figure 3.1). As a
result, there there are multiple instances of Chameleon within a CPN.

The middleware is structured in a modular way to allow an easy change and mod-
ification of its components. It is designed as a framework for the self-adaptation
process. The middleware architecture can be divided into two major parts. The basic
middleware part shown on the left side of the Figure 4.1 is responsible for the basic
middleware operations to provide distributed system interaction and transparency. It
consists of several sub-parts: The orange ones represent the interfaces to the other
resources of the mixed-critical CPN. They provide access to the defined parameters of
applications (given by the system designers, e.g., the definition of timing requirements
like deadlines along with the importance), nodes (e.g. the node processing capac-
ity, scheduling strategy), communication channels (e.g. the communication capacity,
scheduling strategy), sensors and actuators (e.g. the definition of timing requirements
along with the importance) as defined in the system model (cf. Section 3). The Load
Handler (purple) handles the load management of applications on the middleware. The
Request Handler (turquoise) is responsible for the management of messages between
the applications and communication side. The Local Map (green) takes care of the
overlay network routing and distributed monitoring. In the remainder of this Section
these components are explained in detail.
The core ingredient of the Chameleon middleware architecture is the adaptation logic
part shown on the right side of the Figure 4.1 marked in gray. It is responsible for the
self-adaptation process. Due to the framework design, different adaptation mechanisms
could be integrated. In the frame of this thesis, a MAPE-K loop has been used. It
monitors the behavior and adapts the parameter and structure of the system via the
other middleware components. Further details on the adaptation are presented in
Section 5.

4.1. Computing Node and Application Interface

This module provides access to computing node/operating system data and realizes the
interface to the applications. It offers the access methods for application interaction
with other applications, sensors and actuators. It deals with the definition of timing
constraints for applications and interactions as well as the importance for applica-
tions. Also, tolerance parameters can be given and statistic information of the local
applications and the local computing node is collected.

General information on applications on the local computing node are given to the
middleware by notification events. The major events are:

• StartApplicationEvent(id, importance, period, constraints, toleranceParame-
ters, sensorIds):
This event notifies the middleware Chameleon about the start of an application
on the local computing node. The application is identified by its id and its
parameters (properties) are delivered (cf. system model, Table 3.1). The major
parameters are the importance of the application, required timing constraints
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(priority, deadline, reaction time) and tolerance parameters (max miss rates, max
distances, tuning, max tuning, compression, max compression). For periodic
applications, the initial period is given. Furthermore, the ids of the periodic and
sporadic sensors an application expects data from are delivered. The middleware
needs to know to which applications sensor data have to be routed. For reactive
sensors, this information can be retrieved from the application sensor data request.
For periodic and sporadic sensors however, no such request exists. Therefore this
information is delivered here.

• UpdateApplicationEvent(id, importance, period, constraints, toleranceParam-
eters, sensorIds):
This event notifies the middleware Chameleon about a parameter change of an
application on the local computing node. The parameters are the same as for
StartApplicationEvent.

• StopApplicationEvent(id):
This event notifies the middleware Chameleon that an application has been
stopped on the local computing node.

The access methods for applications provide transparency according to the middleware
paradigm by hiding communication paths and remote application locations. The
following functions are available (cf. Section 6.2.1):

• The following function pairs realize a remote procedure call (RPC):
DoProcedureCall targetId callParameters [constraints] /
WaitForProcedureCall [sourceId]callParameters [timeout];
DoProcedureReturn returnParameters [constraints] /
WaitForProcedureReturn [sourceId] returnParameters [timeout]
DoProcedureCall calls a procedure in an application running somewhere in the
system identified by its target id with the given call parameters. By default, the
constraints (priority, deadline, reaction time) of the calling application are used,
but can be modified by optional individual constraints of the call.
WaitForProcedureCall awaits any or a specific procedure call given by the optional
parameter soure id and delivers the call parameters. An optional timeout can be
defined while waiting. Priority inheritance can be used to assign the constraints
from the caller to the called.
DoProcedureReturn returns a procedure call with the given return parameters.
By default, the constraints of the returning application are used, but can be
modified by optional individual constraints.
WaitForProcedureReturn awaits any or a specific procedure return given by the
optional parameter source id and delivers the return parameters. An optional
timeout can be defined while waiting.

• The following function pairs realize a remote method invocation (RMI). It works
analog to the RPC, but for methods of objects instead of procedures:
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DoMethodInvocation targetId callParameters [constraints] /
WaitForMethodInvocation [sourceId] callParameters [timeout];
DoMethodReturn returnParameters [constraints] /
WaitForMethodReturn [sourceId] returnParameters [timeout]

• The following function pairs realize a message passing. Instead of calling a
procedure or invoking a method, a message is passed to the target and it is
possible to submit an answer by DoMessageReturn. Otherwise, it works analog
to the RPC and the RMI:
DoMessagePassing targetId message [constraints] /
WaitForMessage [sourceId] message [timeout];
DoMessageReturn message [constraints] /
WaitForMessageReturn [sourceId] message [timeout]

• The following function pair requests data from a reactive sensor somewhere in
the system identified by its sensor id and waits for the data arrival:
DoRequestSensorData sensorId [constraints] /
WaitForSensorData sensorId data [timeout]
In case of periodic or sporadic sensors the WaitForSensorData function is used
without DoRequestSensorData. Constraints and timeout are the same as for the
functions above.

• The following function sends data to an actuator somewhere in the system given
by its actuator id. Constraints are the same as for the functions above:
DoDataToActuator actuatorId data [constraints]

• This following function pair sends a data stream in portions with the given stream
period. Constraints and timeout are the same as for the functions above:
DoDataStream targetId streamPeriod streamPortions [constraints] /
WaitForDataStreamPortion [sourceId] streamPortions [timeout]

The interface also collects statistic information of the local node and its applications
like the nominal computational capacity of the node, current node load and scheduling
scheme, the current computational and data demand of the applications as well as the
current miss rates and distances of the application timing constraints. This information
is an important basis for the adaptation process, see Section 5. Furthermore, node
and application parameters (node scheduling scheme, application constraints, periods,
tuning factors and data compression) can be modified by the interface.

4.2. Communication and Sensor/Actuator Interface

This interface provides access to the communication channels and sensors/actuators
attached to the local computing node. For the communication channels, it offers
the basic access methods to send and receive data via a specific channel given by its
channel id. Herewith, unicast and broadcast transmissions are supported. It also
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collects statistical information about the communication channels like the nominal
communication capacity of the channels, the current channel load and failure rates.
For the local sensors and actuators, the basic access methods to read and write
sensor/actuator data are provided. Furthermore, importance, constraints (priority,
deadline, reaction time) and tolerance parameters (max miss rates, max distances) can
be specified. For periodic sensors the period can be given.

4.3. Local Map

The Local Map takes care of the overlay network routing and distributed monitoring.
The low-level routing of the communication channels (how to send a message from one
member of the channel to another one) is done by the channels itself. However, the
middleware instances also have to cope with routing. On the one hand, a middleware
instance needs to know where its target applications are currently located (on which
network node the applications reside) and how to reach them (by which local commu-
nication channel data can be transmitted to the network node). This is also true for
the sensors and actuators. On the other hand, a middleware instance might also have
to act as a gateway. In an example configuration as shown in Figure 4.2, Chameleon
middleware instance A (MWA) can only reach Chameleon middleware instance C
(MWC) when Chameleon middleware instance B (MWB) operates as gateway (think
of communication channel Comm1 being e.g. the internet and communication channel
Comm2 being a local CAN bus). Therefore, the middleware instances establish an

Figure 4.2: Example network configuration with three middleware instances.

overlay network. The Local Map in each middleware instance takes care of the routing
information necessary on middleware level.
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A local decentralized approach has been chosen for the realization of the overlay
network routing. This is the case since a global centralized approach could represent a
single-point-of-failure and therefore harm the adaptation process in the presence of
failures, thus causing a severe threat. The Local Map learns the locations and paths
to applications, other network nodes, sensors and actuators by evaluating incoming
messages and storing the retrieved information in a map for later use. This is done by
looking at the messages and requests received from remote locations (cf. Section 4.5).
Analyzing the communication path of an incoming message delivers the route to the
source (application, middleware). Additionally, "hello" messages for local components
(applications, sensors, actuators) are sent at the start (e.g. the StartApplicationEvent,
see Section 4.1) and on request of other middleware instances (if e.g. a path to a target
is currently not known by a middleware instance). By that the local map is filled
with information on how to reach a target. Furthermore, communication statistics
(e.g. average relative communication times, useful to find best routes to a target) and
distributed monitoring data (e.g. status and parameter data of remote applications,
nodes and communication channels (cf. monitoring section 5.1) are stored as well in
the Local Map. Finally, the mapping of periodic and sporadic sensors (which are not
triggered by an application, but send data on their own) to applications is stored there.
Figure 4.3 sketches the structure and information flow of the Local Map. Internally,
it can be divided into the Target Map, where the target information is stored and
the Sensor Map, where the sensor/application mapping is stored. Tables 4.1 and 4.2
provide an overview of their contents. The update component for target/sensor learning
and the query component for information retrieval completes the Local Map.

update 

(learning) 

 

 

Target Map Sensor Map 

query 

messages 

information on 

targets and 

sensor 

 

Figure 4.3: Structure and information flow of the Local Map.
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targetId id of target, map index

type type of the target (application, middleware, sensor, actuator)
mwId id of the middleware where the target resides
path communication path to the target
commStats communication statistics (e.g. communication time) to the target

monData
remote monitoring data (current status and parameters,
e.g. period, load, ...)

timestamp last update time (e.g. used for life signs)

Table 4.1: Structure of a Target Map entry.

appId id of the application, map index

sensorId id of the sensor the application expects data from

Table 4.2: Structure of a Sensor Map entry.

4.4. Load Handler

The Load Handler handles the load management of applications and sensors on the
middleware. It uses the Computing Node and Application Interface as well as the
Communication and Sensor/Actuator Interface to access and modify the computational
and communication load caused by applications and sensors on the local node and
on the communication channels of the middleware. Thereby, it offers the following
adaptation actions:

1. Start: Starts an application on the local node.

2. Stop: Stops an application on the local node.

3. Relocate: Relocates an application from somewhere in the system to the local
node.

4. Remove: Removes a local application from the system.

5. Tune: Tunes an application/sensor of the local node by modifying its constraints
and parameters (e.g. priorities, periods, deadlines).

6. Set data compression: Compress the messages/sensor data of an application/sen-
sor on the local node.

7. Modification of scheduling strategy: Changes the scheduling parameters and
or schemes of the local node or local communication channel(s).

Using these actions, the adaptation logic of the middleware instance can trigger the
local part of a global adaption goal (c.f. Sections 5.3 and 5.4).
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4.5. Request Handler

The Request Handler is responsible for the management of messages between the
application and communication side. Principally, requests are the access functions
offered by the Computing Node and Application Interface, see Section 4.1. These can
be RPC, RMI, message passing or sensor/actuator data transfer. The Request Handler
determines the origin and the destination of such a request with the help of the Local
Map. In general, four scenarios are possible which are illustrated in Figure 4.4 (derived
from the previous Figure 4.2):

Figure 4.4: Request handler communication scenarios.

1. Source and destination are both local:
In that case, no data has to be send over the network. The request can directly
be forwarded from the source to the destination.

2. Source is local and destination is remote:
Here, the local request has to be send over the network to its remote destination.
To be able to do so, the request (e.g. a RPC) has to be transformed into a
send-able message. This process is called Marshalling. Optional data compression
(cf. Section 4.4) is also applied here.

3. Source is remote and destination is local:
In that case, a message received from the network has be transformed back to
the initial request. This process, which is the opposite of Marshalling, is called
Unmarshalling. Optional data uncompression also applies here. Then, the request
is delivered to its local destination.
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4. Source and origin are both remote:
Here, the local middleware instance simply acts as a gateway (cf. Section 4.3).
The received message/request has only to be forwarded towards the destination.

The messages received in cases 3 and 4 are also used by the Local Map to learn the
route to the source of the message (cf. Section 4.3).
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Autonomous adaptation is a key feature for MC-CPN to cope with the inherent
complexity of such systems due to the mixed-criticality itself and the ever increasing
number of cooperating and interacting systems within uncertain operating conditions.
As already mentioned in the previous Section 4, the common MAPE-K feedback loop
architecture (cf. Section 2.3.3) is used to realize the desired self-adaptation capabilities
in the MC-CPN. The MAPE-K loop, which was first introduced by IBM in the frame
of Autonomic Computing, can be seen as an architectural blueprint for self-adaptation
mechanisms (cf. Section 2.3.3). Therefore, it can be realized in many different ways .
In general, it consists of four components for (i) Monitoring system and environment,
(ii) Analyzing monitoring data for required adaptations, (iii) Planning adaptations,
and (iv) Executing them. In addition, the four components share a Knowledge base.
A possible representation of the analyzing, planning component and the knowledge
base is a LCS (cf. Section 2.3.4). LCS-based approaches are popular in Organic
Computing (cf. [STH16; Ste+20]) and have been applied for some approaches in the
CPS domain [Ste+17a; STH16; TH11; HPH20].

In comparison to other online learning approaches, LCS offer a practical and feasible
computational complexity. Therefore, training can be performed on devices with
low computational resources and decisions can be made in real-time, which are both
essential requirements for the CPN adaptation process. Thus, the LCS mechanism
has been selected for the MAPE-K loop in this approach. LCS uses a set of rules
that represent potential adaptations schemes. A rule thereby mainly consists of a
condition clause, an action clause and an expected reward. Based on the measured
reward, i.e., the effectiveness of an action, that was observed after applying a certain
rule, LCS learn and select suitable rules for future adaptations. Figure 5.1 shows a
typical LCS-based MAPE-K feedback loop. The monitor receives context information
about the state of the mixed-critical CPN, pre-processes it, and forwards relevant
information to the analyzer. The analyzer contains the rule engine, which is responsible
for rule evaluation and reward calculation. It compares the current system condition
to the condition clauses of the rule set stored in the knowledge component. All rules
that are currently applicable, i.e., all rules where the condition clauses evaluate to
true, are included in the match set. The planner collects all action clauses from the
match set into the action set. Then, it selects the action that is expected to lead to the
highest reward1. In the next step, the execution component controls the deployment
of the rules. Finally, the analyzer determines the measured reward and updates the
rule set accordingly. An LCS-based feedback loop may additionally contain a rule

1This can be done value based like in classical LCS or precision based (where the measured reward
best matches the expected reward) in extended learning classifier systems (XCS [ST21; Wil95; WS21])

31



5. Adaptation

Adaptation Logic – LCS based MAPE-K Feedback Loop

Managed Resources

Monitor Execute

Rule Generation 
Engine

Rule Engine Match Engine
Rule Set

best rewarded 
action

state & reward

rule(s)

match set

state

Knowledge PlanAnalyze

Figure 5.1: Typical architecture of an LCS-based MAPE-K feedback loop. The
analyzer’s rule engine adds rules that are applicable in the current context
to the match set. The planner’s match engine selects the action of the
most promising rule for execution. A rule generation engine may evolve
rules at runtime.

generation engine, which evolves the rule set automatically at runtime, e.g., with genetic
algorithms [SW09; UM09]. Due to the distributed nature of a CPN, the LCS approach
has to be extended to a distributed LCS (DLCS) to operate in the environment (cf.
system model described in Section 3.1: Each network node has its own middleware
instance and thus LCS). This results in different scopes for conditions and actions
(cf. Sections 5.2.2 and 5.3). Furthermore, interferences between actions executed
on different nodes in the distributed environment have to be taken into account (cf.
Section 5.2.3).

In the following, the stages used in the distributed MAPE-K feedback loop are
explained in detail.

5.1. Monitor

The Monitor samples data from the local node, each local communication channel
(separately for direction in or out) and each local application and derives further
information from the data as can be seen in Figure 5.2. Thereby, the monitored
data includes the values of the components properties (cf. Section 3). Table 5.1
gives an overview of the most important items sampled by local monitoring from
the system components. For instance, the capacity and remaining capacity of the
network nodes and communication channels are observed, along with the processing
and communication demands of applications.

Source Item Remark

Node

capacity
The nominal processing capacity of the node in
instructions/s

load The load of the node in %
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remaining
capacity

The remaining processing capacity of the node in
instructions/s (derived from load an capacity)

scheduling
policy

The current and available scheduling policies of the
node

Comm.
Channel

direction Input or output channel

duplex
The transmission mode (simplex, half-duplex, du-
plex)

capacity
The nominal data transmission capacity of the chan-
nel in bits/s

load The load of the channel in %
remaining
capacity

The remaing communication capacity of the channel
in bits/s (derived from load and data rate)

scheduling
policy

the current and available scheduling policies of the
channel

Application

Parameters:
importance The importance of the application
priority The priority of the application
period The period of the application in s
deadline The deadline of the appication in s
reaction time The reaction time of the application in s
tuning
factors

The current tuning factors for priority, deadline,
reaction time and period

max tuning The maximum tuning factor
compression The current data compression factor
max
compression

The maximum compression factor

max
miss rates

The maximum allowed miss rates for deadline, re-
action time and period

max
distance

The maximum allowed distances to deadline, reac-
tion time and period

Current demands:
node
demand

The processing demand of the application in
instructions/s

comm.
channel
demand

The communication demand of the application in
bits/s (separately for in and out direction)

Current real-time performance:

miss rates
The current miss rates for deadline, reaction time
and period

distances
The current distance to the deadline, reaction and
period in s

Table 5.1: Major items for a component sampled and derived by local monitoring.
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Monitor

distributed monitoring

local monitoring

monitored: timestamp, load, processing rate, …

derived: capacity, remaining capacity, …

monitored: timestamp, id, load, datarate, direction, …

derived: capacity, remaining capacity, …

monitored: timestamp, id, state, instruction count, …

derived: demands, requirements, …

local node data (1 record)

local communication channel data (1 record per channel and direction)

local application  data (1 record per app)

from node

from comm

from app

Monitor
Interface

Analyzer

…

…

via LocalMap

•

•

•

disseminate local monitoring data

access to distributed monitoring data

Figure 5.2: Monitor architecture.

Thereby, the monitoring period(the period in which parameters of the components
are monitored) can be individually defined based on the properties of the component
(e.g. period of the application, performance of nodes and communication channels, ...)
and can be modified by the Analyzer via the Monitor Interface. Furthermore, this
interface informs the Analyzer of new monitored data.

In addition, due to the end-to-end nature of the requirements, a global view of the
system is required to decide if adaptation is necessary. This is realized by distributed
monitoring (cf. Figure 5.2). It is performed by disseminating important local parameters
and status data periodically (with a multiple of the monitoring period) or on event
(e.g. the change of an application parameter) via the network. The more frequently
the data is distributed in the system, the more up-to-date the remote monitoring data
is but the higher the communication overhead for the dissemination will become. The
monitoring data from remote locations are accessed via the Local Map (cf. Section 4.3)
from the local Monitor.

Thereby, various remote parameters and status data like timing requirements includ-
ing the importance of remote applications, processing and communication capacity of
remote nodes, processing and communication demand of remote applications, health
values (cf. Section 5.2.1) of applications, nodes and communication channels etc. can be
retrieved via the Local Map component in addition to the local monitoring data. Since
the communication and computational capacities of remote nodes are of particular
interest for the adaptation, the communication parameters and status are considered
in the context of the nodes status data. Therefore, the parameter and status data of
all communication channels of a node are subsumed and condensed. This reduces the
communication overhead for the exchange of remote monitoring data. Table 5.2 shows
the most important items available from remote monitoring. Thereby, communication

34



5.1. Monitor

channel information like the remaining capacities are included in the remote monitoring
data of the corresponding network node. The update period specifies the frequency at
which remote monitoring data from the components is distributed within the system.

Source Item Remark

Node

update period* The update period of the remote node data

node capacity
The nominal processing capacity of the node in
instructions/s

best comm.
channel capacity

The best nominal data rate for the communication
channels of the node in bits/s (separately for in
and out direction)

worst comm.
channel capacity

The worst nominal data rate for the communica-
tion channels of the node in bits/s (separately for
in and out direction)

remaining
processing
capacity

The remaining processing capacity of the node in
instructions/s (derived from load an capacity)

best remaining
communication
capacity

The best remaining communication capacity for
the communication channels of the node in bits/s
(separately for in and out direction)

worst remaining
communication
capacity

The worst remaining communication capacity for
the communication channels of the node in bits/s
(separately for in and out direction)

Application

update period* The update period of the remote application data
Parameters:
importance The importance of the application
priority The priority of the application
period The period of the application in s
deadline The deadline of the appication in s
reaction time The reaction time of the application in s

tuning factors
The current tuning factors for priority, deadline,
reaction time and period

max tuning The maximum tuning factor
compression The current data compression factor
max compression The maximum data compression factor

max miss rates
The maximum allowed miss rates for deadline,
reaction time and period

max distance
The maximum allowed distances to deadline, re-
action time and period

Current demands:

node demand
The processing demand of the application in
instructions/s

comm. channel
demand

The communication demand of the application in
bits/s (separately for in and out direction)
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Current real-time performance:

miss rates
The current miss rates for deadline, reaction time
and period

distances
The current distance to the deadline, reaction and
period in s

Table 5.2: Major items for a component available from remote monitoring
(* the update period can be used to determine the limit for life sign age)

This periodic dissemination of remote monitoring data is also be used as a life sign
for nodes and applications. Thus, it allows to detect crashes. The regular update
period (cf. Table 5.2) can be taken to calculate the life sign age limit beyond which a
node or application is considered to be crashed.

5.2. Analyze, Plan and Knowledge

The Analyzer can access monitored data via the Monitoring Interface as depicted
in Figure 5.2. The retrieved highly specific monitoring data is transformed into
abstract health values by preprocessing (cf. Section 5.2.1). These deducted health
values are disseminated via the Monitoring Interface and the network as additional
distributed monitoring data. Afterwards, the system condition can be analyzed to
trigger adaptation if necessary. In this approach, the Analyze and Plan component
as well as the Knowledge base are realized with a LCS. Thus, an important challenge
is the formulation of a rule set. Therefore, the rule language Rango – a generic and
flexible rule language (cf. Section 5.2.2) – has been developed. Furthermore, the
distributed nature of an CPN with its multiple middleware instances (cf. system
model in Section 3.1) leads to interferences between actions executed on different
computing nodes in the distributed environment. Those interferences needs to be taken
into account e.g. by the rule evaluation (cf. Section 5.2.2), reward calculation (cf.
Section 5.2.3) and execution (cf. Section 5.3).

5.2.1. Health Values

In order to be able to specify generalized and uniform conditions for the LCS rules of
the adaptation mechanism, an additional layer of abstraction is introduced. Abstract
and normalized health values (−∞, 1] provide a unified concept for the definition
of the components and system condition. This abstraction additionally allows the
developed middleware framework and adaptation mechanism to be easily configurable
to the specific requirements of diverse application scenarios, since the the health values
can be derived from any combination of data retrieved from system monitoring by
an analyze preprocessing stage. Statistics (e.g miss rates and average distances to
constraints) of applications and sensors can be used as well as the status data of the
applications (e.g. processing and communication demand), nodes (e.g. remaining
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processing capacity) and communication channels (e.g. remaining capacity for sending
and receiving messages)1.

Thus, the system condition is expressed by multiple of such health values. Based on
the observation of these health values, adequate adaptation measures can be deducted
and expressed by rules. This is possible since the health values are derived and
normalized in such a way that they can be used as margins to define the so-called target
and acceptance space [Sch+10]. The conditions for the rules can then be formulated
such that adaptation is triggered when the system’s state exits the acceptance or
target space. The target space specifies the behavior range in which the designer wants
the system to operate. The acceptance space gives the still tolerable behavior range.
Thereby, a health value from [0, 1] marks the acceptance space (acc) with 1 as the
best possible and 0 as the least acceptable health value. The target space (tar) is a
subset of the acceptance space and is defined by health values greater than zero ([α, 1]
with α > 0). This is illustrated in Figure 5.3. Values below zero mark unacceptable
behavior.

Target 
space

Acceptance 
space⍺

Acceptance space

• Accepted system behavior

• [1..0]:  1 as the best possible and 0 as the 
least acceptable health value

• Unbounded negative values allows the 
expression of how unhealthy the system 
has become (e.g. how often or how long a 
deadline was missed)

• Reactive adaptation

Target space

• Target system behavior

• [1..끫뷸]: 1 as the best possible and 끫뷸 > 0 as 
the least target health value

• Proactive adaptation 

Figure 5.3: Health values can be used as margins to define the target and acceptance
space.

healthrange = −∞ <︸ ︷︷ ︸
unhealty

acc︷ ︸︸ ︷

0...

tar︷ ︸︸ ︷
α...1︸ ︷︷ ︸

healthy

(5.1)

Having unbounded negative values allows the expression of how unhealthy the
system has become (e.g. how often or how long a deadline was missed). As already

1Other constraints like energy were not in the focus of this thesis, but could also be mapped to
health values, see future work 9.2.
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mentioned above, adaptation can be triggered if necessary to stay in the bounds of
the acceptance or target space. This makes the system robust. Furthermore, utilizing
these two spaces to define desired behavior enables the realization of both reactive
and proactive adaptation, depending on which bound violation triggers the adaptation.
Proactive adaptation involves making adjustments to the system before problems arise,
specifically when the bounds of the target space are violated. In contrast, reactive
adaptation responds to issues that have already occurred (e.g a missed deadline), and
are therefore triggered by violations of the acceptance space bounds.

Moreover, the system adaptation goals can be altered by adapting the limits or the
derivation of the health values. This makes the system flexible by shifting the target
and acceptance space.

In the following, the derivation of health values in the normalized range for applica-
tions, nodes, communication channels and the middleware based on load and timing
(real-time) constraints are presented. Furthermore, Section 5.4, which serves as a
summary of this chapter, presents an example (cf. Table 5.6) illustrating how health
values can be utilized to infer the conditions of components and the overall system,
and subsequently deduce potential adaptation measures.

Node and Communication Channel Health The health of nodes and communication
channels can be derived using the load of the node or communication channel. Thus,
the node and communication channel health can be calculated as a load health.

Let’s assume we have the load of the node loadnode and the load of the communication
channel loadcomm provided from system monitoring. Thereby, the load ranges from 0
(unloaded) over 1 (fully loaded) to > 1 (overloaded). The corresponding health values
for the node and communication channel can then be defined as (cf. Figure 5.4a):

healthnode = 1 − loadnode (5.2)

healthcomm = 1 − loadcomm (5.3)

1 

1 

health 

load 
0 

(a) Load health

1 

ℎ끫뢤끫뢤끫뢤끫뢤ℎ끫뢴끫뢴끫뢴끫뢴끫뢴끫뢴끫뢴끫뢴 
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0 끫뢴끫뢴끫뢴끫뢴

(b) Missrate health

1 
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0 -1 

(c) Distance health

Figure 5.4: Derivation of health values for applications (missrate & distance health),
nodes and communication channel (load health).
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Application Health The health value of applications can be derived using timing
constraints. System monitoring provides percentage timing missrates m ([0,1]) and
average distances d to timing constraints. Also, each application defines allowed
maximum missrates mmax (e.g. hard real-time, soft real-time) and allowed maximum
distance drelmax (relative maximum distance to the constraint, ≥ 0) to the constraints as
real-time tolerance parameters (cf. Table 3.1) thus defining margins for the acceptance
space.

In a concrete scenario of a vehicle, the brake controller might have a deadline of
30 ms and is not allowed to miss this deadline more often than in 5% of its execution
cycles (mmax = 0.05) and not by more than 3 ms (drelmax = 0.1).

Such missrates and average distance can easily be transformed into two separate
health values. The missrate based health value is 1 as long as the missrate is below or
equal to the allowed missrate. As soon as the missrate gets above the allowed missrate,
the health value gets negative (cf. Figure 5.4b):

healthmissrate =

{
1 if m ≤ mmax

mmax − m else
(5.4)

The distance to constraint calculates by actual value − constraint. Thus, distance to
constraint ranges from −constraint (best case, e.g. if no time was needed at all for a
timing constraint) via 0 (exactly hit the constraint) to > 0 (missed the constraint by
that value). To normalize this, the relative distance to constraint is used:

drel =
d

constraint
(5.5)

The distance based health value then calculates to (cf. Figure 5.4c)):

healthdistance =
drelmax − drel

drelmax + 1
(5.6)

The overall timing constraint health for an application is then given by

healthapp = min(healthmissrate, healthdistance) (5.7)

In the above mentioned vehicle scenario, healthmissrate calculates to 1, as long as
the actual missrate is not above 5%. Otherwise it becomes negative. Whilst the
deadline itself is not exceeded by more than 3 ms, healthdistance stays between 1 and 0.
Otherwise it also gets negative.

Furthermore, an application can have up to three timing constraints (period, deadline,
reaction time (cf. Table 3.1)). If more than one of them is defined, the worst value is
used.

39



5. Adaptation

Middleware Health The middleware health healthmw can be calculated as a derivate
of the health of the middleware’s local applications healthappslocal

1.

healthmw = min(healthappslocal
) (5.8)

5.2.2. Rule Language – Rango

While the fundamental architecture of LCS is well-established, an important challenge
remains: The rule set must be formulated. Therefore, the rule language Rango – a
generic and flexible rule language – has been developed in the frame of this thesis2.
Usually, LCS use bit strings to codify rules [SW09; UM09]. For instance, “11→1” could
be a representation of “IF carFacesObstacle AND carInMotion THEN brake”. Analogously,
another rule would be “01→0”, which would be equal to “IF !carFacesObstacle AND
carInMotion THEN !brake”.

While bit strings might be feasible to use as representation of rules for this approach,
it is not particularly beneficial, since the complexity of typical MC-CPN use cases would
lead to lengthy bit strings that require a significant coding effort and are cumbersome
to read and write. Instead, a flexible language called Rango is being developed to fulfill
various goals and accommodate the dynamic nature of the rules, allowing for greater
adaptability and ease of rule set formulation in an intuitive way. It offers maximum
flexibility to define abstract and generic rules independent of a specific use case as well
as application-specific rules, if these are desired.
As depicted in Figure 5.5, rules written in Rango are stored in a .rul file. This file
is automatically parsed into an internal binary representation that can be used as a
rule set of the feedback loop without any modifications. Thereby, Rango has three
major advantages for specifying adaptation behavior in MC-CPNs. First, it includes a
large set of pre-defined CPN/CPS keywords (cf. Table 5.3). These specific keywords
are re-usable for many CPN/CPS use cases. Second, Rango is well-integrated with the
learning component. The rules specified in Rango are automatically transferred into a
binary representation that is usable by a LCS without any modifications as base of
the learning process. Third, this approach paves the way towards explainable artificial
intelligence (XAI) [Hag18; MZR21] by improving traceability and explainability of
learning as it offers the option to export a rule set modified by learning to a .rulx file
in Rango’s human-readable form.

In the following, Rango’s features are described by applying it to a simplified mixed-
critical CPN automotive scenario. After presenting the scenario, Rango’s syntax, its
CPS-specific features, its rule files, and the evaluation of theses rules are explained.

1Of course also the health of the local node and communication channels could be included in the
middleware health. However, during evaluation runs this simple approach has shown to be suffient in
the frame of the thesis.

2The basic ideas of Rango have been first published in [Fei+22].
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Figure 5.5: Rango is a language that allows to formulate the rule set for a LCS
in a human-readable format. These rules are parsed and automatically
integrated into the learning component. Rango also offers a rule writer,
which exports rules from the learning component into a human-readable
format.

Automotive Scenario The mixed-critical CPN scenario from the automotive domain
is shown in Figure 5.6. It is a simplified configuration of the system model presented
in Figure 3.1 of Section 3. For easier understanding, the sensors and actuators of
the system are neglected. In the scenario, a vehicle has several electronic control
units (ECUs), i.e., network nodes with a certain computational power. Each ECU
can be responsible for various car functions such as brake control, cruise control, or
steering. Apart from those safety-related functions, the ECUs also control comfort and
assistance functions including navigation or infotainment. We refer to these functions
as applications in the following. Each application has predefined timing constraints
which should be complied to at all time. The communication among ECUs is realized
via a typical vehicular communication channel (e.g., CAN, time-triggered ethernet, or
FlexRay).

During the journey, the number of active and required applications in the car varies.
For instance, the driver may start the navigation system due to a road closure. This
potentially leads to an ECU overload if the ECU on which the navigation application is
started does not have sufficient computational power to cope with the increased demand.
As a consequence, the applications on this ECU may fail to meet their requirements.
Thus, the local ECU and the corresponding applications become unhealthy. The overall
goal of the adaptation in this scenario is to maintain a good health value within the
target or acceptance space for each component. If the communication channel within
the system is e.g. still healthy, a relocation of the unhealthy application to a healthy
ECU might be a suitable adaptation action to achieve an overall healthy system. In
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Figure 5.6: Mixed-critical CPN example from the automotive domain. A car con-
tains several ECUs that execute applications with various level of safety-
criticallity. After the driver activates the navigation system, the corre-
sponding ECU has to migrate an application to another ECU due to a
lack of processing power. It is shown how Rango can be used to formulate
this desired adaptation behavior.

the following, it is shown how this adaptation behavior can be easily specified with
Rango.

Syntax In this section, the features of Rango are described based on the relocation
of an unhealthy application adaptation action in case of an overload in the system
as explained in the scenario of the previous section. The complete Rango context-
free grammar describing the syntax of the language in Extended Backus-Naur Form
(EBNF) is available in the Appendix A. The adaptation behavior that is desirable in
the example scenario — a relocation of an unhealthy application — can be specified
with the following rule in Rango:

If RelocationMightBeUseful

Then RelocateLocalUnhealthyApp

In general, a rule consists of a condition and an action. Conditions and actions can
either be specified directly or defined and referenced by name as shown in the Rango
code snippet above. Here, the name of the condition is RelocationMightBeUseful

and the action’s name is RelocateLocalUnhealthyApp. The reference by name allows
to use an action or condition multiple times in a rule set without having to rewrite it.
In addition, this increases the efficiency of rule evaluation within the feedback loop,
since a condition/action that is used multiple times only needs to be evaluated once.

A condition or action needs to be defined before referencing it by name. In this
example, the RelocationMightBeUseful condition is defined first. This condition
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checks whether unhealthy applications are running on the local ECU while (i) the
communication is still healthy and (ii) there are other suitable ECUs in the car to which
the unhealthy applications can be migrated. In Rango, this condition is formulated as
follows:

DefineCondition RelocationMightBeUseful :

Cardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LocalUnhealthyNode ) > 0 And

Cardinal ( NonLocalSuitableNode ) > 0 And

Cardinal ( LocalUnhealthyComm ) = 0

This example shows that a condition consists of conjunctive links (And) of sub-
conditions. Sub-conditions always operate on sets. A set can contain applications,
nodes, or communication channels. The Cardinal keyword delivers the cardinal-
ity of a set. In addition to their cardinality, the maximum, minimum, or average
value of one of the set’s attributes can be used for comparison. In the code snip-
pet above, the cardinality of four sets (LocalUnhealthyApps, LocalUnhealthyNode,
NonLocalSuitableNode, LocalUnhealthyComm) is used to specify sub-conditions. The
overall condition RelocationMightBeUseful therefore evaluates to true if the first
three sets are non-empty while the last one is empty.

Rango offers two options for the definition of sets. First, sets can be defined by
directly referencing applications, nodes, or communication channels by name. Second,
sets can be defined via queries, e.g., by selecting all applications with a health value
smaller than 0. Defining sets via queries makes it possible to keep the rules independent
of specific applications. Instead, Rango constructs these sets dynamically based on the
respective query. In a query, the attributes of a node, application, or communication
channel can be compared to arbitrary values or their maximum/minimum value can
be requested. Two exemplary set definitions with queries are:

DefineSet LocalUnhealthyApps :

App Local Where Health < 0

DefineSet NonLocalSuitableNode :

Node NonLocal Where

Capacity >= Demand ( LocalUnhealthyApps ),

Health Max

Here, the first set (LocalUnhealthyApps) includes all local unhealthy applications,
i.e., those with health values below 0. The second set (NonLocalSuitableNode) contains
the most healthy non-local nodes with sufficient remaining computing power1. Similar
to conditions and actions, a set can be used several times by referencing to its name.
A set that is used multiple times is only constructed once per rule evaluation period.

1If there is more than one element in the LocalUnhealthyApps set, the demand of the first
application of this set is used for comparison. It is also possible to use the demand of all applications
in the set with the All keyword.
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So far, all of Rango’s features that are required to specify the condition are introduced.
Now, let’s have a look at the definition of the action (RelocateLocalUnhealtyApp):

DefineAction RelocateLocalUnhealthyApp :

Relocate LocalUnhealthyApps

To NonLocalSuitableNode

It can be seen that this action definition re-uses the sets already defined above.
An action can be applied either to all elements of the set or to one element. This is
realized by either using or omitting the All keyword. Without the All keyword, only
the first element of the LocalUnhealthyApps set is moved to the first element of the
NonLocalSuitableNode set. If the All keyword is used before LocalUnhealthyApps

(Relocate All LocalUnhealthyApps...), all elements of the application set will be
moved to the first element of the NonLocalSuitableNode set. If the All keyword
is used before both sets (... To All NonLocalSuitableNode), all elements of the
application set will be moved to the elements of the node set according to the following
scheme: the i-th element of the application set is migrated to the (i mod |nodeset|)-th
element of the node set.

CPN/CPS-Specific Elements While it is possible to apply Rango in arbitrary scenarios,
the language includes four features that are particularly useful in CPN/CPS develop-
ment: CPN/CPS-specific components (violet), attributes (purple), adaptation actions
(blue), and scopes (orange) (cf. Table 5.31). Each of these features is demonstrated by
the following code snippet:

DefineSet LeastImportantApps :

App System Where Importance Min

If SystemOverloaded

Then Stop LeastImportantApps

This code snippet specifies a rule that stops the least critical application in the CPS
in case of an overload2.

In the previous section queries to group several components dynamically into sets
have already been introduced. To achieve the desired behavior, a set has to be defined
that contains the least critical application(s). Therefore, Rango includes keywords
that automatically address typical components of a CPS (applications, nodes, and
communication channels). In the code snippet, the keyword App is used to consider all
applications. Furthermore, attributes of the components such as their health are used
for comparison or maximum/minimum determination. Rango offers 43 pre-defined
CPN/CPS-specific attributes that are ready to use (cf. Table 5.3).

1Please refer to the Appendix A for the entire list of available CPN/CPS specifics.
2For readability reasons, the definition of the SystemOverloaded condition in the code snippet is

omitted.
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CPS-
specific
element

Keyword Remark

Components
App Applications such as brake control
Node Processing nodes such as ECUs
Comm Communication channels such as CAN

Attributes

Importance Describes in N0 the criticality of an application

Health
Describes in (-∞,1] whether a component meets
its requirements

Period Period in which an application is executed

Scheduling
Scheduling policy of a node or communication
channel

Capacity
Remaining computational power of a node or com-
munication bandwidth of a communication channel

... 38 further CPS-specific attributes

Actions

Stop Terminates an application
Relocate Migrates an application to another node
TunePeriod Changes the period of an application
SetPriority Sets the priority of an application

SetScheduling
Changes the scheduling policy of a node or com-
munication channel

... 14 further CPS-specific actions

Scopes

Local All components local to a certain node
System All components in a certain CPS
Global All components in the entire CPN
NonLocal All components not local to a certain node
NonSystem All components not belonging to a certain CPS
... 4 further scopes

Table 5.3: CPN/CPS specific components, attributes, adaptation actions and scopes
included in Rango.
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In the above code snippet, Rango’s CPN/CPS-specific attribute Importance is used
which allows to consider the mixed-criticality (cf. Section 3.1) by making it possible
to specify rules that realize a dynamic prioritization of critical tasks, e.g., in overload
situations as in the above code snippet. In the provided example the prioritization is
achieved by terminating (Stop) the least important and thus least critical application
in the entire system. There might be other, even better, adaptation actions to resolve
the overload as can be seen in Table 5.6 of Section 5.4. To provide a maximum of
flexibility and opportunities for adaptation to be able to learn the best actions in
different situations, Rango includes 19 keywords that represent adaptation actions
in CPN/CPS such as migrating applications (Relocate). An overview of possible
adaptation actions in relation to different conditions can be found in Table 5.6 of
Section 5.4

Finally, different scopes are introduced in Rango due to the distributed nature of
mixed-critical CPNs. In an example platooning [Les+21] scenario, several autonomous
vehicles drive in a convoy with small inter-vehicle distances. Those vehicles need to
coordinate their inter-vehicle gaps via IEEE 802.11p communication. The overarching
CPN would therefore consist of multiple CPS (the cars) (cf. Section 2.1). Thus, each
CPS within the CPN includes several processing nodes (i.e., ECUs), which each have
their own feedback loop for decision making. In such systems-of-systems, scopes such
as “in the current CPS”, “on the current processing node”, or “somewhere in the whole
CPN” play an important role in how to intuitively describe the desired adaptation
behavior. For instance, a rule may migrate all applications that are running on an ECU
to another ECU in the same car and not to an arbitrary ECU in the whole CPN. Rango
offers multiple scopes with corresponding keywords for the specification of such rules:
(i) Global refers to all components in the entire CPN (e.g., all applications within the
whole platooning scenario), (ii) System refers to all components of the corresponding
CPS (e.g., all applications running in a single car) (iii) Local refers to all components
on the same node as the feedback loop (e.g., all applications running on the same
ECU). Based on these basic scopes, several composite scopes for the rules can be
derived, e.g., NonLocal refers to all components that are not located on the local node,
and NonSystem refers to all components not belonging to the CPS of the local nodes.
For example, a component like an application is Local to an ECU if the functionality
is executed on this ECU. All applications not running on this node can be referred
to as NonLocal and all applications not belonging to the CPS can be referenced by
NonSystem.

Structure of Rule Files Rango rules are stored in .rul files. This way, the initial
rule set or updates of rules without knowledge on LCS or implementation of mixed-
critical CPN can be written. As depicted in Figure 5.7, such files consist of two
parts: the configuration part and the rule set. In the configuration part, various
configuration directives can be defined. Thereby, settings for the rule evaluation
times (e.g. EvaluationPeriod), action execution, learning parameters, and reward
calculation parameters can be specified. An overview of the configuration directives is
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provided in Table 5.4. The second part of the file — the rule set — consists of all sets,
conditions, actions, and rules. Any sequence of sets, conditions, actions, and rules is
valid as long as there are no forward references (single pass rule parser).

l
1

2

/* ConfigurationDirectives */

/* Rule Set */
/* Named Sets */

/* Named Conditions */

/* Named Actions */

/* Rules */

Figure 5.7: Rule file structure .rul of Rango.

Furthermore, Rango improves traceability and explainability of learning as it allows
to export rule sets into a human-readable format after the LCS performed online
learning. Such modified rule sets are stored in .rulx files. Files in this format start
with a comment that states which middleware/LCS instance modified the rule set. The
remainder is structured in the same way as a .rul file (cf. Figure 5.7). However, each
rule is now followed by the corresponding Reward and the Experience. The reward
is a real number that expresses the benefit of the rule execution for the system goal
(cf. Section 5.2.3) and the experience value indicates how often a rule was executed.
Such a modified rule file in the .rulx format can also be re-parsed in the internal
representation and, hence, be re-used as an initial rule set for adaptation. This makes it
possible to benefit from previous learning, e.g., performed by another LCS in a similar
environment.

Rule Processing Rules can basically be processed either time or event-driven. In the
event-driven processing, the rule processing takes place exactly when an attribute
value of a component (i.e. health, demand, ...) changes. In the case of time-driven
evaluation, the rule set is processed periodically at fixed time intervals. A detailed
analysis of the rule processing complexity for time and event driven evaluation can be
found in the Section 7.1.3. In the conducted evaluation, the time-driven processing
has been used. First, it supports a well-defined timing behavior. Second, it can be
observed that the processing frequency necessary for time driven approach is usually
lower than the change frequency of attribute values. Thus, the time-driven approach
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Keyword Value Default Remark
Rule
Evaluation
Times

EvaluationPeriod Real 0.1s Period for evaluation of the rule set

RewardDelay Real 2.0s
Delay to update the reward after an action exe-
cution & next action can take place

Action
Execution

SkipImpossibleAction On/Off On
Skips actions which cannot be executed (e.g. due
to empty sets actions are skipped even if they
have the best reward)

Lag Integer 1
Number of times the condition has to be consec-
utively true before the action is executed (e.g. to
avoid race conditions)

Learning
Parameters

LearningRate Real 0.5 The learning rate

InterferenceWeight Real 0.5
The influence of interferences for the learning
rate

MinLearningRateScale Real 0
The minimum learning rate scale (e.g. in case of
interferences)

Reward/
Fitness
Calculation

FitnessWeightAppHP Real 0.7
The influence of application health/performance
ratio for the application fitness

FitnessWeightAppImportance Real 0.5
The influence of application importance for the
application fitness

FitnessWeightApp Real 0.9
The influence of the application fitness for the
overall fitness

FitnessWeightNode Real 0.05
The influence of the node fitness for the overall
fitness

FitnessWeightComm Real 0.05
The influence of the communication channel fit-
ness for the overall fitness

FitnessLifeSignScale Real 1
The scale factor for life sign age limit to consider
an application or node crashed in fitness calcula-
tion

FitnessCrashHealth Real -1 The health value for a crashed application or node

FitnessSkicknessBoost Real Real 0.1 3
The boost for health values below a sickness
threshold

FitnessScope

Global/
System/
Local

Global The scope for the fitness calculation

FitnessMode Integer 0

Fitness calculation mode (0 = health perfor-
mance product version a, 1 = health performance
product version b, 2 = health performance prod-
uct version c, 3 = health performance sum)

Table 5.4: Configuration Directives of Rango

produces less load. Therefore, all rules are processed periodically with the definable
EvaluationPeriod (cf. Table 5.4). Additionally, the time driven approach can be
used to reduce the number of interferences in distributed LCS. Delaying an action of a
LCS instance by a well defined amount of time if a competing action of another LCS
instance has been detected can avoid interference of both actions, see Section 5.2.3.

A detailed analysis of Rango’s parsing complexity, rule processing complexity and
rule set memory footprint can be found in Section 7.1.3. Additionally, a usefulness and
usability study of Rango can be found in Sections 7.1.1 and 7.1.2.

5.2.3. Reward Calculation

In LCS, learning at run-time (online learning) is based on a so-called reward value.
This numerical fractional value (reward ∈ R) indicates how well or bad the execution
of a rule action has changed the state of the system. Thereby, the rule processing can
learn what are good and bad rules for the current condition. Positive values indicate
an improvement of the system state while negative values indicate a degradation. As
larger a positive value as more the state has improved. As lower a negative value,
as more the state has degraded. To derive such a numerical reward value, the state
of the system has to be quantified by a so-called fitness value. This value rates the
overall state of the system by a fractional number (fitness ∈ R). Having such a fitness
value, the reward of an action can be measured by calculating the difference between
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the fitness after and before the action. Assume fitnessnew being the fitness after and
fitnessold being the fitness before an action, then the measured reward is given by:

rewardmeasured = fitnessnew − fitnessold (5.9)

The fitness can be calculated based on values retrieved from the monitoring compo-
nent. How this is done in detail will be explained in the next subsections. However,
the monitoring component needs time to observe the effect of an action. Therefore,
there has to be a certain delay between initiating an action and retrieving the value
for fitnessnew after the action. This delay is called reward delay. It ensures that the
monitoring component is able to properly measure the outcome of an action on the
system fitness. This delay can be specified in Rango globally and also individually for
each action using the keyword RewardDelay (cf. Table 5.4).

To avoid trashing of reward values and do get a smooth learning curve, the measured
reward is softened by a learning function. Let rewardold by the current reward of an
action and LearningRate be a fractional number in the range of [0,1]. Then the new
reward of an action is calculated from the measured reward by the following learning
function often used for LCS:

rewardnew = rewardold + learningRate · (rewardmeasured − rewardold) (5.10)

The learning rate determines, how fast the new reward is updated by the measured
reward. Let’s look at the two border cases: If the learning rate is 0, the new reward is
identical to the old reward. So no learning takes place. If the learning rate is 1, the
new reward is identical to the measured reward. So the old reward has no influence at
all. Thus, the learning rate weights the influence of the history (old reward) on the
new reward.

Reward Calculation in a Distributed LCS In a central LCS, only one action is executed
at a time and then the result (reward) of this action is evaluated after the reward
delay. In a distributed LCS, different local instances of the LCS can trigger actions
independently of each other. If such an action is within the delay of another action,
these actions interfere and the result (measured reward) can no longer be clearly
attributed to one of these actions. This has to be taken into account when calculating
the new reward in a distributed LCS.

In the following, the detection and handling of such interferences for the reward
calculation is discussed in more detail. Afterwards, the detailed fitness calculation is
presented. Several of the parameters introduced in the next sections can be directly
defined in the configuration section of a Rango rule file (cf. Table 5.4). These parameters
are set in Courier font (e.g. RewardDelay).
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Interference Detection and Handling To be able to detect interferences, actions are
transmitted in the system via broadcast messages1 (cf. Section 5.3). If such a
broadcasted action message of a remote LCS instance is received during the reward
delay of a local action execution, these two actions obviously overlap within the reward
delay. Thus, an interference is detected. Broadcasting action messages also has the
general advantage that each local instance of the LCS can pick and execute the local
part of a global action (if e.g. the global action “increase the priority of all applications
with an importance higher a given threshold” is broadcasted, each local LCS instance
can apply this action to its affected applications). Furthermore, the broadcasted action
messages can be used to reduce the interferences within the reward delay period. If an
action message is received from another LCS instance, the next rule evaluation of the
local LCS instance can be delayed so that it does not take place in the reward delay
period of the received action. Due to communication delay and race conditions this
approach cannot avoid all interferences, but it can significantly reduce their number2.

If still an interference is detected, the learning rate for the reward calculation can
be reduced to account for the fact that the result can no longer be unambiguously
assigned. Thus, the learning rate can be scaled as follows:

learningRate = learningRateScaling · LearningRate (5.11)

Thereby, the unscaled basic LearningRate can be defined in the configuration directives
of the rule file.

Now let’s have a look on how learningRateScaling can be derived. When reducing
(scaling) the learning rate, first the strength of the interference needs to be evaluated,
thus how much time of the reward delay was affected by the interference. This is
illustrated in Figure 5.8. The LCS instance of middleware MWA has executed an
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Figure 5.8: Example for an interference between the reward delays of two actions
(TunerPeriod, Relocate) executed by distributed LCS instances of the
middlewares MWA and MWB.

1The resulting overhead of the action notification broadcast is affordable, since adaptation actions
are much rarer than the regular data exchange in the system (cf. Section 7.3.5).

2Complete avoidance of interferences is future work and will be discussed in Section 9.2.
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action to tune the period of an application and now waits for the reward delay to pass.
During waiting, an interference happens caused by the LCS instance of middleware
MWB executing an action to relocate an application. The marked interference period
gives the time in which the reward of the middleware MWA action is spoiled by the
MWB action. As smaller this interference period is, as smaller is the effect of the
interference on the reward. Thus, an interference strength can be defined based on the
interference period and the reward delay:

interferenceStrength = interferenceP eriod
RewardDelay

(5.12)

Since the maximum possible length of the interference period is the reward delay,
the interference strength is in the range of [0, 1].

Furthermore, the number of interferences in the reward delay needs to be considered
(the more interference’s, the more results are mixed). For each interference j within
the reward delay, a corresponding interference strength can be calculated accord to
formula 5.12. In addition, it is useful to define an InterferenceWeight to specify the
influence of interferences on the learning in general. Assuming we have n interferences
in the reward delay of an action, the learning rate scaling for the LearningRate can
be defined as follows:

learningRateScaling = 1−InterferenceWeight·
n∑

j=1

interferenceStrengthj (5.13)

Furthermore, a lower limit MinLearningScale for learningRateScaling can be defined
to maintain a minimum rate of learning even in the presence of interferences:

if learningRateScaling < MinLearningScale ⇒

learningRateScaling = MinLearningScale
(5.14)

Fitness In general, the fitness for reward calculation can be based on health values.
In the following, a parameterized model for such a fitness calculation is introduced.

In this model, the fitness function is composed of a weighted combination of (i) appli-
cations fitness fitness∑

∀apps
, (ii) nodes fitness fitness∑

∀nodes
, and (iii) communication

channels fitness fitness∑
∀comms

. Thereby, the fitness can be calculated using different

scopes (FitnessScope). These scopes can be global1, system2 or local3. The weighting
[0, 1] of the subareas is specified by (i) FitnessWeightApp, (ii) FitnessWeightNode,
and (iii) FitnessWeightComm (cf. Table 5.4).

1
∑

∀apps
= all applications of the entire CPN,

∑
∀nodes

= all nodes of the entire CPN,
∑

∀comms
=

all communication channels of the entire CPN
2
∑

∀apps
= all applications of the local CPS,

∑
∀nodes

= all nodes of the local CPS,
∑

∀comms
=

all communication channels of the local CPS
3
∑

∀apps
= all applications of the local node,

∑
∀nodes

= the local node itself,
∑

∀comms
= all

communication channels of the local node
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fitness =

(FitnessWeightApp · fitness∑
∀apps

+

FitnessWeightNode · fitness∑
∀nodes

+

FitnessWeightComm · fitness∑
∀comms

)

(FitnessWeightApp + FitnessWeightNode+
FitnessWeightComm)

(5.15)

Application Fitness The application fitness function is mainly based on the health
of an application. However, there is another important parameter which influences
this function: the performance of an application, which can be lowered by tuning (up
to pausing). Lowering the performance of applications can improve the health of the
system, but thereby the performance of the entire system is reduced. The same is true
vice versa. Thus, health and performance may be competing optimization goals.

To handle this, a performance value [0, 1] is introduced, which indicates whether
an application is working at its nominal performance (1) or how far this performance
has been reduced by tuning (< 1). A value below 0 states that the application has
been paused completely. In general, four aspect of an application can be tuned:
(i) priority, (ii) deadline, (iii) reaction time, and (iv) period. In case of priority tuning,
the performance (performancepriority) is lowered if the priority of the application is
lowered. Otherwise, is regarded to stay at 1. Let tunepriority be the tuning factor of the
application’s priority with prioritytuned = tunepriority ·priority. Then, the performance
regarding priority tuning can be expressed by:

performancepriority =

{
1 if tunepriority ≥ 1

tunepriority if tunepriority < 1
(5.16)

The performance of the system is also lowered if the deadline of an application is
extended. Otherwise, the performance is regarded to stay at 1. Let tunedeadline be the
tuning factor of the application’s deadline with deadlinetuned = tunedeadline · deadline.
Then, the performance regarding deadline tuning can be expressed by:

performancedeadline =

{
1 if tunedeadline ≤ 1

1
tunedeadline

if tunedeadline > 1
(5.17)

The same holds true for the reaction time. Let tunereactiontime be the tuning factor of
the application’s reaction time with reactiontimetuned = tunereactiontime ·reactiontime.
Then, the performance regarding reaction time tuning can be expressed by:

performancereactiontime =

{
1 if tunereactiontime ≤ 1

1
tunereactiontime

if tunereactiontime > 1
(5.18)

The tuning of the period has similar effects on the performance than the tuning of
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the deadline or reaction time. The performance is lowered if the period is increased
and is regarded to stay at 1 if the period is shortened or stays the same. Let tuneperiod

be the tuning factor of the application’s period with periodtuned = tuneperiod · period.
As a special case here, a tuning factor below zero (tuneperiod < 0) indicates that an
application is paused (periodtuned = ∞) and thus the performance is zero. Then, the
performance regarding period tuning can be expressed by:

performanceperiod =





0 if tuneperiod < 0

1 if 0 ≤ tuneperiod ≤ 1
1

tuneperiod
if tuneperiod > 1

(5.19)

Since the overall performance of an application is already lowered if one of these
partial performances is lowered, the overall performance is given by the minimum of
the partial performances:

performance = min(performancepriority, performancedeadline,

performancereactiontime, performanceperiod)
(5.20)

The range of performance according to the above equation is [0,1], because all
partial performances are in that range and therefore the minimum is as well.

A major question is now how to combine health and performance to calculate the
fitness of an application? Increasing health or performance has to have an increasing
impact while decreasing health or performance has to have a decreasing impact on
the fitness. In the following two different approaches are proposed: gradient based
combination and offset based combination:

Gradient based combination: Here, the performance value represents the gradient of
the fitnessapp(healthapp) function as shown in Figure 5.9. If performance = 1,
the fitness is directly given by the health. A performance < 1 flattens the slope.
This leads to the desirable behavior, that the reduction of the performance of an
application with tuning (to resolve an overload situation) as well as the restoring
of the performance by diminishing the tuning (if there is no overload situation
anymore) can lead to an increase of the system fitness and thus a positive reward.
Figure 5.9 demonstrates this and explains it in the caption.

To get more detailed, there are different options for this gradient based approach,
which differ in the way negative health values are treated (cf. Figure 5.10).

(a) positive and negative health values are treated the same way, as shown by the
red line marked a: in Figure 5.10 and given by the following equation:

fitnessapp = healthapp · performance (5.21)

Thus, the reduction of the performance of unhealthy applications increases the
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Figure 5.9: Gradient based combination of health and performance:
The example sequence given by the blue arrows shows that tuning in
an overload situation generates a fitness gain if it restores the system
to health. Undoing the tuning when the overload situation no longer
exists also generates a fitness gain. Let us assume the application is
initially healthy (healthapp = h1) and untuned (performance = 1).
This results in fitness f1. Now an overload situation makes the system
unhealthy (healthapp = h2). This results in the reduced fitness f2. The
adaptation mechanism now counteracts the unhealthy state by tuning
(performance < 1), which leads to the improved health h3 and fitness f3.
Therefore, this tuning action gets the positive reward f3 − f2 > 0. After
another while, the reason of the overload does no longer exist and the
adaptation mechanism reacts by undoing the tuning (performance = 1).
This leads to fitness f4. Therefore, this undoing action also gets a positive
reward f4 − f3 > 0.

54



5.2. Analyze, Plan and Knowledge

fitness (as more resources are left for other (healthy) applications)

(b) the fitness is not influenced by the performance if the application is unhealthy,
as shown by the green line below 0 marked b: in Figure 5.10 and given by the
following equation:

fitnessapp =

{
healthapp · performance if healthapp ≥ 0

healthapp if healthapp < 0
(5.22)

(c) the reduction of the performance of unhealty applications decreases the fitness
by the same amount as it does for healthy applications, as shown by the blue
line below 0 marked c: in Figure 5.10 and given by the following equation:

fitnessapp =

{
healthapp · performance if healthapp ≥ 0

healthapp · (2 − performance) if healthapp < 0
(5.23)

To specify the extent to which the performance has an influence on the fitness

1 

1 

a: 

b: 

c: 

끫뢦끫뢦끫뢤끫뢦끫뢤끫뢦끫뢦끫뢜끫뢜끫뢜

ℎ끫뢤끫뢤끫뢤끫뢤ℎ끫뢜끫뢜끫뢜

끫뢺끫뢤끫뢺끫뢦끫뢺끫뢺끫뢺끫뢤끫뢦끫뢺끫뢤 = 1

끫뢺끫뢤끫뢺끫뢦끫뢺끫뢺끫뢺끫뢤끫뢦끫뢺끫뢤 < 1

Figure 5.10: Gradiant based combination: options for negative health values.

of the application, an auxiliary weighting factor FitnessWeightAppHP [0, 1] can
be defined (cf. Table 5.4). The performance in the application fitness calculation
(Equations 5.21-5.23) is then replaced by the weightedPerformance which can
be defined as follows:

weightedPerformance = FitnessWeightAppHP · performance +

(1 − FitnessWeightAppHP)
(5.24)

O�set based combination: Alternatively, a linear mapping of the two quantities health
and performance to the fitness can be achieve using the sum of both. So
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performance and health simply define an offset to each other when calculating
the fitness. Again, the weighting factor FitnessWeightAppHP [0, 1] can be used
to shift the influence of the two sub-aspect on the fitness. This is expressed by
the following equation:

fitnessapp = FitnessWeightAppHP · healthapp+

(1 − FitnessWeightAppHP) · performance
(5.25)

If FitnessWeightAppHP = 1, only the health determines the fitness. In the
other extreme, if FitnessWeightAppHP = 0 only the performance determines the
fitness. For any other value in between, health and performance are added as a
weighted offset.

The two combination modes including the sub-variants of the gradiant based mode
can be controlled by the configuration directive FitnessMode in the configuration
section of the rule file, cf. Table 5.4).

Finally, the importance of the applications can also be considered when calculating
the overall applications fitness fitness∑

∀apps
. A factor FitnessWeightImportance

can be used to specify the extent to which the applications importance has an influence
on the overall application fitness (cf. Table 5.4).

fitness∑
∀apps

= FitnessWeightImportance ·

∑
∀apps

fitnessapp·importanceapp∑
∀apps

importanceapp
+

(1 − FitnessWeightImportance) ·

∑
∀apps

fitnessapps

|apps|

(5.26)

The above formula can be easily explained when first looking at the two ex-
tremes for FitnessWeightImportance. If FitnessWeightImportance = 0, the im-
portance has no influence in the equation. The overall application fitness simply
calculates to the average of the fitness for all applications (second line of the equa-
tion). If FitnessWeightImportance = 1, the fitness of an application is weighted
by its importance when calculating the average (first line of the equation). For any
FitnessWeightImportance value in between, a mix of both extremes can be configured.

Node and Communication Channel Fitness Since tuning and importance applies to
applications, the fitness calculation for nodes and communication channels is much
simpler. Here, the node and communication channel fitness can be derived directly by
building the average of their health values.
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fitness∑
∀nodes

=

∑
∀nodes

healthnode

|nodes| (5.27)

fitness∑
∀comms

=

∑
∀comms

healthcomms

|comms| (5.28)

Reward Boosts There are two further options to influence the fitness calculation via
health value modification. This allows to increase the reward for desired adaptation
actions.

First, the influence of poor health values to the fitness can be reinforced by defining
a sickness boost for health values below a sickness threshold. All health values lower
than the threshold are then further decreased by the boost factor1.

healthboosted =

{
health if health ≥ threshold

boost · (health − threshold) + threshold if health < threshold

(5.29)

The principle of this idea is illustrated in Figure 5.11.

health
boosted

 

health threshold 

1 

1 

boost 

Figure 5.11: Reinforce the influence of poor health values to the fitness by defining a
sickness boost for health values below a sickness threshold.

As larger the boost value is chosen, as more reward is gained for bringing a component
back to a healthy state. This is due to the fact, that the reward of an action is calculated
by the fitness gain (cf. Equation 5.9). Now since the health is a vital part of the fitness,

1The values for the boost and for the threshold can be specified in the configuration directives of
the rule file using the FitnessSicknessBoost threshold boost statement.
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as lower the health value for a sick component is, as bigger is the gain for making the
component healthy again.

Second, system components may fail silently (e.g. by an application or node crash).
Hence, the component’s health value stays on the last value retrieved before the failure.
However, the silent failures can be detected by the middleware and the rule engine/set
based on missing life signs. Thus, it is reasonable to assign a negative health value
to such components if the maximum life sign age is exceeded to enable a positive
reward when the failed components are restored. This can be done by the parameter
FitnessCrashHealth, which defines the health value of a component with expired life
sign (cf. Section 5.1). As a default, the expiration age has been selected as twice the
life sign period (cf. Table 5.2, update period) of a component . By the parameter
FitnessLifesignScale, this period can be scaled and thus shortened or extended.

5.3. Execute

The Execute stage as the final stage of the MAPE-K loop is responsible to perform a
planned adaptation action. A selected action is broadcasted (cf. Section 5.2.3) in the
CPN and each local instance of the middleware performs its local part. Thereby, the
actions are SIMD (Single Instruction Multiple Data) actions. An action is performed
simultaneously for multiple components (applications, nodes, communication channels)
with different data. An simple example is tuning application periods relative to a
current value as shown in the Rango snippet below (current value is multiplied by 0.2).
Thereby, each application in the overall CPN which meets the application query clause
(Health < 0.5) can receive a different resulting tuning value. Like the conditions,
actions can have different scopes. In the example below, a global scope is used for the
action.

TunePeriod All App Global Where

Health < 0.5 to Current * 0.2

Therefore, different scope combinations for conditions and actions can be used to
build a rule set. In general, the condition and action can have either the same or
different scopes. A purely local rule set (local conditions and actions) leads to the least
interferences but has the disadvantage of no global view, thus no global optimization
goal can be found (e.g. the least important app within the overall system can’t be
found). A purely global rule set (global conditions and actions) on the other hand
guarantees best global view but leads to the most interferences. As an alternative,
a combination of different scopes for actions and conditions is possible. On the one
hand, e.g. local conditions and global actions can be used. This results in only few
to medium interferences and benefits from the usually higher resolution of the local
monitoring data. On the other hand, the conditions can be global and the actions local.
This still leads to only a few interferences but has to deal with the lower resolution of
the remote monitoring. Table 5.5 compares the interferences, views and impacts of
different scope combinations for conditions and action, ranging from local middleware
scope (local), system wide CPS scope (system) to global CPN scope (global).
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condition
scope

action scope
local system global

local*
fewest interferences,
local view,
local impact

few interferences,
local view,
system impact

few-medium
interferences,
local view,
global impact

system
few interferences,
system view,
local impact

medium interferences,
system view,
system impact

medium-many
interferences,
system view,
global impact

global

few-medium
interferences,
global view,
local impact

many interferences,
global view,
system impact

most interferences,
global view,
global impact

Table 5.5: Impact of different scope combinations for conditions and action on inter-
ferences.
(*Local conditions also benefit from the usually higher local monitoring
resolution compared to remote monitoring.)

The combination of different scopes enables to freely select between purely local,
purely global and hybrid self-adaptation schemes. Therefore, this local versus global
paradigm can combine the advantages of both worlds (e.g. local = no single point of
failure; global = global optimization goals, ...). To the best of the author’s knowledge,
this is not yet accomplished in any other approach.

5.4. Summary

In this Section 5, the designed adaptation mechanism of the middleware Chameleon
has been presented which enables an efficient and flexible management of mixed-critical
requirements. Thereby, each stage of the used MAPE-K loop architecture has been
explained in detail. The sampling of various monitoring data and derivation of health
values are used to determine the components and overall system condition. The
further transformation of the highly specific monitoring data into abstract health values
provides a unified concept for the definition of the acceptance and target space. It is
used by the LCS which realizes the analyzing and planning component as well as the
knowledge base. In Rango, the health values can be used in the conditions to trigger
adaptation. Thereby, Chameleon offers many adaptation actions to keep the system in
the acceptance or target space (proactive or reactive adaptation). Besides the health
values, the detailed monitoring data can then be used in Rango to deduct the best
potential adaptation action for the current condition. The action which is expected to
lead to the highest reward is then executed.

Table 5.6 exemplarily shows how the health values can be used to derive the compo-
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health
<

limit

potential reason
useful

additional
health &

monitoring
data

potential adaptation

(re-)
start
app

stop
app

re-
locate

app

remove
app

tune
app

com-
press
data

change
sche-

duling
node

change
sche-

duling
comm.
channel

appli-
cation
(app)
health

node:
overload,

performance loss,
failure

node x x x x x

comm. channel:
overload,

performance loss,
failure

comm. x x x x x x

design flaw
node

& comm.
x x

app: failure - x

node
health

overload,
performance loss,

failure
application x x x x x

comm.
channel
health

overload,
performance loss,

failure
node x x x x x x

Table 5.6: Example deduction of potential adaptation measures (marked with "x")
based on health value violation including additional health and monitoring
information to distinguish the reasons for the violation.

nents and system condition and which potential adaptation measures can be deducted.
The first column describes which health value violation (target or acceptance space)
triggers the adaptation. The second column lists several reasons for the violation.
Column three outlines different additional health or monitoring information to distin-
guish these reasons. The last column shows potential adaptation measures (actions) to
improve the components and system state under these conditions. For example, if the
local application health in combination with the local node health are lower than the
defined limit but the communication is still fine, a node overload might be the source of
the problem. Hence, a relocation of the application might be a good adaptation action.
To find the best suitable processing node for relocation, the node capacity sampled
from monitoring can additionally be used as input value. In an automotive example,
the navigation might e.g. be moved to another computing node to maintain the timing
constraints of more important functions like braking while keeping also the navigation
operational (as used e.g. in the Rango example in Figure 5.6).
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The Chameleon middleware has been implemented in C++. For practical evaluation,
Chameleon is embedded in a simulated environment as illustrated in the extract of
the system model (cf. Figure 3.1) in Figure 6.1. The simulated parts are colored in
gray. In comparison to a real-world implementation, the simulated environment offers
the opportunity to deeply look inside the adaptation processes and deficiencies will
not cause physical harm. It also offers more flexibility in terms of multiple application
scenarios and the size of the simulated environment. Thereby, Chameleon is completely
independent of the simulated environment.

Figure 6.1: System Model with simulated environment (gray).

In the following, more details on the middleware architecture implementation (Sec-
tion 6.1) and the simulated environment (Section 6.2) are briefly provided.

6.1. Chameleon Middleware Implementation

For the realization of Chameleon, the modules of the middleware architecture shown in
Figure 4.1 have been prototypically implemented in C++ 11. The LCS-based MAPE-K
Adaptation Logic has been implemented as introduced in Section 5 and consists of
the modules shown in Figure 5.5. Like mentioned in Section 4, the middleware is
implemented as a framework on which various adaptation mechanism can be built and
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thus evaluated in the simulated environment. With few interface modifications, it can
be used and tested also in a real-world environment.

Table 6.1 summarizes the Lines of Codes and Code Size of all Chameleon modules.
The modules were compiled using clang version 5.0.1, target x86-w64-windows-gnu.
The basic middleware itself is rather small with an overall code size far less than
100kBytes. Also the adaptation logic doesn’t occupy much code space. The biggest
module is the Rule Parser and Rule Writer with 93kBytes. However, this module may
not necessarily be included in each Chameleon instance. On Network Computing Nodes
with low memory resources, the rule set can be compiled offline and loaded directly
into the local Knowledge Base in binary format. Also, for the Rule Writer, the rule
set modified by learning can be exported in binary form and written back in human
readable form offline.

Lines of Code Code Size [kBytes]
Basic Middleware:

Interfaces 716 22
Local Map 832 25
Load Handler 616 17
Request Handler 176 2

Total: 2340 66

Adaptation Logic:

Monitor 1170 24
Analyze and Plan 1940 56
Execute 720 19
Rule Parser and Rule Writer 3835 93

Total: 7665 192

Table 6.1: Lines of Codes and Code Size of Chameleon modules.

6.2. Simulated Environment

To simulate the environment, OMNet++ (Objective Modular Network Testbed in
C++) [OMN23] has been used. OMNet++ is a commonly known and well reputed
event-based simulator for network processing. It offers many features and pre-defined
modules to precisely simulate communication networks and sensor/actuator systems.
For this thesis, it has been extended by modules to simulate realistic applications
(cf. Section 6.2.1) and dynamics at runtime (cf. Section 6.2.2). Additionally, existing
OMNeT++ modules have been adapted to simulate the Network Computing Nodes.
Thus, the developed simulated environment offers a basic platform for middleware
research in the field of mixed-critical CPSs and mixed-critical CPNs. It is designed to
efficiently determine, implement, calibrate and evaluate the compliance to application
requirements in such systems.
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The middleware implementation mentioned in the section above has been integrated
into this simulation environment. Hence, a monolithic approach is used for the
simulation. This has the benefit of better efficiency and timing behavior compared
to co-simulators. Especially for simulating real-time environments, which is a key
feature for MC-CPN, the monolithic approach is advantageous. In co-simulators, the
coordination between the single simulators is highly complex and mostly comes at the
cost of latencies in the system.

In the following, the major extensions to the OMNeT++ simulator are described in
more detail.

6.2.1. Simulation of the Application

To simulate a realistic behavior of the application program execution, the processing of
instructions on the computing nodes including all middleware interface functions as
introduced in Section 4.1 is modeled. Additionally, all application parameters as noted
in Table 3.1 and introduced in Section 3 are supported.

The application program is given by an XML file. Thereby, the program processing
is inspired by petri nets [Inf23]:

Petri nets are a mathematical modeling tool to represent and analyze the behavior
of systems with many interacting and concurrent components. They consist of places,
transitions, and directed arcs that connect them. Thereby, places represent the system’s
states or conditions, transitions represent the actions or events that can occur in the
system, and the arcs represent the flow of tokens (the system’s resources such as
messages) between places and transitions. Thus, an application program consists of
two kinds of instructions:

Active instructions (transitions) which trigger an action and passive instructions
(places) which wait for an event (cf. Table 6.2). An application program is defined
by a sequence of such active and passive instructions. This sequence (also called a
cycle) is executed 1 to n times with the given period parameter (cf. Table 3.1), where
n can be in between 1 to infinite. The period can also be set to 0 for immediate
repetition. Within a sequence, just as in petri nets, active instructions are not triggered
until all previous reactive instructions have been completed. If a sequence of several
instructions of the same kind occurs, the behavior depends on the instruction kind: In
case of active instructions all events are triggered sequentially. If the sequence consists
of passive instructions the application simultaneously waits for all events within the
sequence to complete or timeout. Thereby, each passive instruction has its own timeout
as they are activated and run simultaneously (and not sequentially). As a result, the
largest timeout determines the maximum delay of the sequence. With this concept,
polling and callback mechanism can be modeled. In order to implement asynchronous
communication in addition to synchronous communication, a buffer of variable size is
introduced. This buffer is used to store events that arrive at an application, but the
application is not (yet) waiting for the event (e.g. if the event does not refer to the
current sequence of passive instructions).

An application program XML file is structured as follows:
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<Instructions >

<InstructionTag attribute1 =" " attribute2 =" " .../ >

...

</ Instructions

The program is contained in the root element Instructions. Inside this element,
different self-closing instruction tags with various attributes can be defined. In Ta-
ble 6.2 the possible instructions and their tags are described for active and passive
instructions. They cover all middlware interface functions described in Section 4.1 plus
an instruction pair for local processing (DoLocalProcessing/WaitForLocalProcessing).
Table 6.3 displays the major instruction attributes.

InstructionTag Remark
Active:
DoLocalProcessing Performs instructions on the local computing node.
DoProcedureCall Calls a procedure of a local or remote application.
DoProcedureReturn Returns the result of a local or remote procedure call.
DoMethodInvocation Calls a method of a local or remote application.
DoMethodReturn Returns the result of a local or remote method invocation.
DoMessagePassing Passes a message to a local or remote application.
DoMessageReturn Returns the result of a passed message.
DoDataStream Initiates a datastream.
DoRequestSensorData Request data of a sensor.
DoDataToActuator Sends data to an actuator.
Passive:
WaitForLocalProcessing Wait for the completion of local processing.
WaitForProcedureCall Wait for a procedure call.
WaitForProcedureReturn Wait for the result of a procedure call.
WaitForMethodInvocation Wait for a method invocation.
WaitForMethodReturn Wait for the result of a method invocation.
WaitForMessagePassed Wait for a message.
WaitForMessageReturn Wait for the result of a passed message.
WaitForDataStreamPortion Wait for datastream portions.
WaitForSensorData Wait for sensor data.

Table 6.2: Active and passive InstructionTags.
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Attribute Remark
Target Target (active) or source (passive) of the event.
InstructionCount Number of instructions to be executed for this application event.
Datasize Data size associated with the event.
Timeout Timeout for a passive event.
PreCondition Specifies a condition under which an instruction is executed.
SkipCycles Executes the instruction only each nth cycle.

...

Table 6.3: Major InstructionTag attributes.

As an example, the XML Code for a very simple application illustrated in Figure 6.2
is given:

<Instructions >

<DoRequestSensorData Target =" SensorX "

InstructionCount =" 10000 "/>

<WaitForSensorData Target =" SensorX "/>

<DoLocalProcessing InstructionCount =" 120000 "/>

<WaitForLocalProcessing />

<DoProcedureCall Target =" ApplicationY " InstructionCount ="50"

Datasize ="256"/>

<WaitForProcedureReturn Timeout ="100"/>

<DoDataToActuator Target =" ActuatorZ " InstructionCount =" 10000 "

Datasize ="128"/>

</ Instructions >

Figure 6.2: Example application program illustrated as petri net.
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First, sensor data is requested. Its duration takes the execution of 10000 local
computing node instructions to perform this request. After the data is received, local
processing of 120000 computing node instructions is initiated. Then, a procedure of
another application in the system is called and the result is expected. The data size of
this call is 256 bits and it takes 50 local computing node instructions to perform the
call. Thereby, a maximum wait time for the result of 100ms is defined. Finally, data is
sent to an actuator of the system with a size of 128 bits which causes the execution of
10000 local computing node instructions.

An integer command parameter can be used to start (command.i = 1), stop
(command.i = 2) or abort1 (command.i = 3) the execution of an application. Also,
an auto start option can be set, which starts the execution as soon as an application
is instantiated. Using these options, flexible periodic (first instruction is an active
instruction, period > 0) or reactive (first instruction is a passive instruction, period
= 0) applications can be simulated. By using the PreCondition and SkipCycles

attributes, conditional instruction execution and varying sequence durations can be
introduced.

6.2.2. Runtime Control

The Runtime Control is a substantial extension to the runtime dynamics capabilities
of OMNeT++. In particular, the change of the network topology as well as the
insertion, removement and reconnection of modules at runtime has only limited support
in OMNeT++. It can be only handled by explicit C++ programming. Therefore,
a high-level Runtime Control module is introduced which allows a very comfortable
high-level mechanism to define runtime events in the simulation environment. Thereby,
the entire control is defined in an XML-file. A Runtime Control XML-file is structured
as follows:

<Commands >

<CommandTag attribute1 =" " attribute2 =" " .../ >

...

</Commands >

All the Runtime Control events are contained in the root tag Commands. The events
to be executed are defined in the subtags. The required information and parameters
are passed via the attributes in the subtag. Table 6.4 gives an overview of the major
available event CommandTags. Some of the available attributes for those tags are further
shown in Table 6.5.

1Stop ends the execution after finishing the current cycle while abort ends the execution immediately.
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CommandTag Remark

DeleteModule Deletes a module.
CreateModule Creates a module.
ConnectModule Connects two modules.
DisconnectModule Disconnects two modules.
SetParameter Sets module parameters.

...

Table 6.4: Major CommandTags.

Attribute Remark

Name Name of the module.
Class Class of the module.
ToModule Module to which a connection should be created.
FromModule Module from which a disconnect should be realized.

Time [s]
Specifies the time (absolute or relative) at which an
event is to be executed.

Jitter [s]
Delay of an event given by a random number
between 0 and jitter.

Various module parameters Module parameters which should be set.
...

Table 6.5: Major CommandTag attributes.
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As an example, the XML-Code of some simple runtime control events are given:

<Commands >

<!-- crash NodeB at time 5 -->

<DeleteModule Name=" NodeB " Time="5"/>

<!-- slow down NodeA due to thermal issues from 10 Mips

to 7.5 Mips at time 10 -->

<SetParameter Name=" NodeA . paramCtrl "

processingrate .i=" 7500000 " Time="10"/>

<!-- start ApplicationX at time 25 -->

<SetParameter Name=" ApplicationX " command .i="1" Time="25"/>

</ Commands >

After 5 seconds a crash of the computing NodeB is simulated by the deleting the
corresponding module. At 10 seconds, a slow down of NodeA to 7.5 Mips is triggered
by accessing the parameter control (paramCtrl) module of the node and sending the
new processing rate given by an integer value (.i). Finally, at 25 seconds ApplicationX
is started by sending the start command (comand.i = "1", cf. Section 6.2.1) to the
application.

Using the runtime control module offers a flexible way to inject events during
evaluation experiments.
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To evaluate Chameleon, an extensive evaluation is conducted and presented in the
following. First the usefulness, usability and performance of the rule language Rango is
evaluated in Section 7.1. Afterwards, the real-time behavior of Chameleon is examined
in Section 7.2. Finally, the usability of the rule-based MAPE-K adaptation mechanism
for managing MC-CPN’s and their complexity while considering the mixed-criticality is
investigated in Section 7.3 by an automotive application scenario. Therefore, Chameleon
has been embedded in a simulated environment (cf. Section 6) and nine evaluation
scenarios are conducted which focus on various aspects.

7.1. Rango – Rule Language Evaluation

The rule language Rango (cf. 5.2.2) is evaluated threefold. First, five LCS experts
are consulted to evaluate the usefulness of Rango, i.e., whether Rango has a practical
worth (Section 7.1.1). Second, Rango’s usability, i.e., whether it is easy to understand
and to write rules using Rango without extensive training, is evaluated in a study with
37 participants, mostly without experience in LCS (Section 7.1.2). Third, memory and
computational overhead of Rango is assessed (Section 7.1.3).

7.1.1. Usefulness Study

Using Rango should provide a practical worth to potential users. Thus, its usefulness
is assessed. Thereby, Rango supports potential users in two ways: (i) they can express
an initial rule set for an LCS with the language and (ii) they receive human-readable
output after learning that helps to trace and explain the learning process. Thus, the
usefulness of Rango to writing an LCS rule set and for understanding and interpreting
LCS output data is evaluated in the following.

Procedure & Methodology To evaluate Rango’s usefulness, an online questionnaire1

for LCS experts, which consists of three parts, was designed. In the first part, the
experts had to describe the status quo, e.g., which typical problems they face while
using LCS or how they usually formulate rule sets. In addition, they had to rate
how difficult it is to define an initial LCS rule set for (i) experts like themselves and
(ii) system designers or administrators working in the industry on a 5-point Likert scale
from 1 (“very hard”) to 5 (“very easy”). Similarly, they had to rate how difficult it is
to understand and interpret typical LCS output for both groups on the same scale. In

1The whole questionnaire is available at https://forms.gle/fgQK9cfcoqgM3XYYA.
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the second part, Rango is introduced to the experts with a textual description similar
to Section 5.2.2. In the third part, the experts again had to rate how difficult it is
to define a rule set for themselves and system administrators but this time assuming
that they could use Rango. The same applies to understanding and interpreting LCS
output. The experts were additionally asked to provide feedback on Rango including
its syntax, missing features, and — most importantly — its overall usefulness (“Would
you use the language if it would be available?”).

Participants Snowball sampling was applied to acquire participants. Therefore several
LCS experts are contacted and asked to recommend further participants. Five LCS
experts completed the questionnaire. On a scale from 1 (“not familiar”) to 5 (“very
familiar”), the self-rated average experience with LCS among the participants is 4.6.
Four out of five participants have additionally used LCS to make a system adaptive.

Results In the first part of the questionnaire — before introducing Rango — three
out of the five LCS experts have mentioned “rule encoding” or “finding good initial
rules” as typical problems while working with LCS, which matches the motivation
for developing the rule language Rango. While the quality of the rules is in theory
independent from its formal representation, Rango can help to find better initial rules
as these rules can be expressed easier in a more intuitive format.

Two experts mentioned that they usually formulate the initial rule set in bit strings.
Improving this cumbersome way to specify rules is the core idea behind Rango. Another
two experts start the learning process with an empty rule set and rely on automated,
random generation. Consequently, such an approach might lead to rules that neither
can be interpreted by humans nor it is traceable how the system found the rules.
Especially in mixed-critical CPS/CPN use cases, which are typically complex, defining
an initial rule set with low effort — as possible with Rango — is helpful to accelerate
the learning process.

In the questionnaire, the LCS experts rated the easiness of writing a rule set and
understanding the LCS output, both with and without Rango. They also estimated
the easiness if system administrators had to write rules or understand the output. The
results are summarized in Table 7.1 and provide three insights. First, Rango facilitates

Task Group Status quo With Rango

Writing rules
LCS Experts 3.2 4.4
System administrators 2.8 3.4

Understanding output
LCS Experts 3.4 4.0
System administrators 2.2 3.6

Table 7.1: Average easiness of (i) writing rules and (ii) understanding LCS output
on a scale from 1 (“very hard”) to 5 (“very easy”), once with and once
without Rango

the process of writing an initial rule set and understanding the LCS output for both
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LCS experts and system administrators. Second, as far as writing rules is concerned,
especially LCS experts benefit from Rango. The experts rate the easiness of writing
rules with Rango 4.4 out of 5 (instead of 3.2 without Rango). For system administrators,
the improvement is smaller (2.8 without Rango, 3.4 with Rango). One explanation for
this observation is that system administrators lack experience with rule-based systems
and, hence, find it more difficult to write such rules. Still, it can be observed that
Rango improves the score by around 30%. Third, as far as understanding output is
concerned, Rango is expected to be especially helpful for system administrators. The
easiness of understanding LCS output increases from 2.2 out of 5 to 3.6. In comparison,
the improvement for LCS experts is smaller (3.4 without Rango, 4.0 with Rango). The
improvement might be smaller since the output was already understandable for LCS
experts anyway. This would also match the experts’ assessment in another question
that the existing output (i.e., without Rango) already makes the learning process
understandable. They rated the traceability/explainability of the learning process 4.0
out of 5 on a scale from 1 (“not at all”) to 5 (“very detailed”).

In addition, the LCS experts rated Rango’s syntax 4.2 out of 5 on a 5-point Likert
scale. In the final question whether the experts would use Rango if available, Rango
scored 4.2 out of 5 (scale: 1 (“no, never”) to 5 (“yes, regularly”)). The experts were
additionally asked to suggest further features. The majority of these suggestions are
already included in Rango’s current version but were not explicitly presented to the
LCS experts in the textual description. One expert suggested that Rango should allow
to set bounds for rule mutations. The restriction, influence, or guidance of the learning
process in an LCS is an valuable addition and subject of future versions of Rango.

Conclusion LCS experts perceive Rango as useful. The above insights from Table 7.1
show that Rango facilitates both writing rules and understanding LCS output.

7.1.2. Usability Study

After showing that Rango is useful, its usability, i.e., how easily users understand and
create rules in Rango is evaluated in the following.

Procedure To evaluate Rango’s usability, again an online questionnaire1, which con-
sists of three parts, was designed. First, participants were confronted with a textual
description of a mixed-critical CPS/CPN scenario from the health care domain and
the corresponding code in Rango that would achieve the desired adaptive behavior in
the scenario. The task of the participants was to understand the code step-by-step and
to answer two types of questions: (i) multiple choice questions and (ii) open questions.
As far as multiple choice questions are concerned, the participants had, for instance,
to choose the correct interpretation of a code snippet in natural language among four
alternatives. In the open questions, participants were asked to describe the purpose of
a code snippet in their own words. The participants did not receive a briefing about

1The whole questionnaire is available at https://forms.gle/649bMCth1F78DuPi6.
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Rango’s syntax or the idea behind the language during this part of the study. Analyzing
the participant’s performance in the first part of the study allows to answer how easy
it is for potential users to write rules in Rango.

Second, participants were confronted with the automotive scenario that is also used
as a running example to introduce Rango in Section 5.2.2 The task of the participants
was to write the rule and its required condition, action, and sets from Section 5.2.2
step-by-step by themselves. The textual guidance led the participants through the
coding process (e.g., by stating that they have to define an according set now). It
additionally contained explanations of Rango’s syntax in a format similar to typical
tutorials for programming languages available on the internet. As an example, the
syntax hint for the definition of a condition in Figure 7.1 was shown. The performance
of the participants in this second part of the study was analyzed to answer how easy it
is for potential users to write rules in Rango.

Figure 7.1: Syntax hint for the condition definition in the writing part of the usability
study questionnaire.

Third, participants completed a self-evaluation related to their skills in three areas:
(i) programming, (ii) computer science research related to this thesis, and (iii) enterprise
information systems. The participants had to rate their expertise with regards to several
programming languages, technologies, or concepts such as “Python”, “Cyber-physical
systems”, or “ERP” on a scale from 0 (“never heard of it”) to 5 (“expert”).

Methodology The participants’ answers to the multiple choice questions were labeled
with either “correct” or “incorrect”. The answers to the open questions with regards
to understanding rules were categorized into “correct”, “inaccurate”, and “incorrect”.
As far as the second part of the study (rule writing) is concerned, the code that
was provided for each question is labeled as either “correct”, “with minor syntactic
mistake(s)”, “with semantic mistake(s)”, or “incorrect”. To analyze the third part of
the study (self-evaluation), the scores that participants entered for the items in one
area were averaged to obtain three values between 0 and 5 that describe the proficiency
of a participant in each of the three areas (programming, research, and enterprise
systems).

Participants The participants were acquired using snowball sampling. In total 37
participants (28 male, 8 female, 1 diverse) took part in the study. Their age ranges
between 20 and 63 (average = 29) years. The participants had to give their highest
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academic degree: 48.6% have a Master’s degree, 29.7% a Bachelor’s degree, 13.5% a
PhD, and 8.1% no university degree. Most of the participants (62.2%) are studying or
working in the field of computer science. The participants’ programming experience
ranges between 0 and 35 (average = 7) years. In the self-evaluation, the participants
achieved an average score of 2.5 out of 5 in programming, 2.4 in computer science
related to this thesis, and 1.9 in the enterprise information systems area.
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Figure 7.2: Results of the rule reading and writing part of the usability study.

Results Figure 7.2 visualizes the results of the usability evaluation. Understanding the
code step-by-step and answering multiple choice questions and open question achieved
a high percentage of correctness. This leads to the conclusion, that rules written in
Rango are easy to understand and that no explicit syntax briefing is required.

In the writing part, the participants were asked to write a rule and its required
condition, action and sets. In each part of the task a small number of minor syntax
mistake(s) like wrong capitalization and forgotten brackets were made. In practice,
the parser would note these errors and the user would get a notification to correct the
syntactic mistakes. In the following, these answers are counted as correct. Furthermore,
only in the definition of sets semantic mistakes were made. One common mistake
was the usage of the wrong scope for the set specification. Also, in the definition
of the difficult nonLocalSuitableNodes set, the specification of the application set
was forgotten after the Demand attribute. Furthermore, the figure shows that the
definition of the condition and sets is more demanding for the users. Still, more than
half of the participants (55.3%) correctly defined the difficult set. The easier sets were
correctly defined by 64.4% and the condition was formulated correctly by 73.7% of
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the participants. The definition of the action was correct by 92.1% and nearly all
participant defined the rule correctly (97.3%). The analysis of the data shows that
even non-experts are easily able to create rules in Rango. Further it is useful for the
application of Rango to explicitly explain the predefined scopes and the application of
the predefined attributes in more detail to ease the definition of the conditions and
sets. This was not the case in the study.

Conclusion The evaluation results above show that Rango is usable. Rules written
in Rango are easy to understand even without an explicit syntax briefing. Also, even
non-experts are easily able to create rule in Rango.

7.1.3. Performance Evaluation

So far, it has been shown that (i) experts perceive the language as a useful addition
and that (ii) Rango is usable for potential users, even for non-experts. Now Rango’s
performance is evaluated. Using Rango instead of bit strings to formulate rules
introduces an overhead in terms of memory usage and computational complexity. Thus,
memory usage, computational complexity of the parsing and the rule processing at
runtime is examined both theoretically and in real-world measurements.

Memory Usage The rule set is parsed into an internal data structure that stores four
tables: (i) rule table, (ii) condition table, (iii) action table, and (iv) set table. Those
tables are linked to each other. The rule table links to the condition and action table.
Those in turn link to the set table. If an action, condition, or set is referenced by
name, the respective element is stored only once in the table and can be referenced
from elements in the other tables. Thus, the memory requirement M is linear to the
number of rules nrules, conditions nconditions, actions nactions, and sets nsets of the rule
set. The memory required for a condition is linear to the number of its sub-conditions
(O(nconditionmaxSub

)). Similarly, the memory required for a set is linear to the number
of query clauses (O(nsetmaxClauses

)) describing the set. The overall memory usage M
can therefore be described as:

M = O(nrules + nconditions · nconditionmaxSub
+ nactions + nsets · nsetmaxClauses

) (7.1)

In practice, an exemplary rule set with 10 rules and respective 6 conditions with a
maximum of 2 sub-conditions and 5 actions using 7 sets with a maximum of 2 query
elements needs 1083 bytes in a 32 bit system and 601 bytes in a 16 bit system. This
shows moderate memory needs even suitable for microcontrollers.

Parsing complexity The Rango parser transfers the rule set written by the system
administrator into the aforementioned internal data structure. This leads to a certain
delay on system startup. After that, the system works on the binary data structure
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only. As the syntactic definition of Rango bases on a context-free LL(1)-grammar1, the
parsing complexity is O(n) where n denotes the number of parsed symbols [Aho+06].

Additionally, the parsing complexity is measured in practice on an Intel 11th Gen
Core i7-11700 with 2.5 GHz and 64 GB RAM for rule files of different sizes. Rule sets
consisting of 10, 20, 50 and 100 rules were parsed several times. The retrieved averaged
parsing times for the different rule set sizes are shown in Figure 7.3.
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Figure 7.3: Average parsing times for rule sets of different sizes.

As expected, the parsing complexity increases approximately linear with the rule
set input size and even the largest files that contain around 100 rules lead to average
parsing times of less than 3 ms. On low-performance systems, an external parser on
a more powerful machine could transfer the rule set into the binary representation if
parsing becomes too time-consuming. This representation can then be loaded to the
target system before system start.

Processing complexity At runtime, rules have to be processed, i.e., it has to be
checked whether they apply to the current context. As already mentioned in Section
5.2.2, rules can be evaluated either time or event-driven. In the event-driven evaluation,
the rule evaluation takes place exactly when an attribute value of a component (i.e.
health, demand, ...) changes. In the case of time-driven evaluation, the rule set is
evaluated periodically at fixed time intervals. Anyway, the evaluation of each rule
follows the following steps: (i) determining the condition and action that belong to the
rule, (ii) checking whether the condition is fulfilled, (iii) calculating each required set,

1In fact, it is even a LF(1) grammar. However, since the distinction between LF(1) and LL(1) is
often neglected because both classes are identical, we refer to the grammar as LL(1).
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or instead of calculating sets, (iv) check whether a component is element of required
set(s).

In the following, the worst-case complexity (C(i), C(ii), C(iii)) of those steps is
determined . Afterwards, these are used to determine the complexity of the rule
evaluation with the different strategies(Ctime−driven, Cevent−driven).

Since the condition and action can be referenced directly from a rule in the rule table,
the complexity of C(i) is within O(1). To check whether a condition is fulfilled, the given
set property (cardinality, average, minimum, or maximum element) must be checked
for each set of the condition. With the maximum number of sets nconditionmaxSets

in a
condition and the maximum number of members nsetmaxMember

in a set, the worst-case
complexity of C(ii) is:

C(ii) = O(nconditionmaxSets
· nsetmaxMember

) (7.2)

To calculate a given set, it has to be determined for each component (applications,
nodes, communication channels) if is is a member of the set. Rango offers two options
for the definition of sets. First, sets can be defined by directly referencing members by
name. Second, sets can be defined via queries consisting of several clauses describing
the properties of set members. If direct referencing by name is used, no calculation is
needed and the complexity for the set calculation C(iii) is O(1). Else, with ncomponents as
the maximum number of components in the system and nsetsmaxClauses

as the maximum
number of query clauses of a set, the worst-case complexity for calculating a set (C(iii)) is
defined by the product of both values. Combining both cases (where nsetsmaxClauses

= 0
inicates direct referencing) leads to:

C(iii) =

{
O(ncomponents · nsetsmaxClauses

) if nsetsmaxClauses
> 0

O(1) if nsetsmaxClauses
= 0

(7.3)

Instead of calculating a given set, it also can be checked if a given component is
element of each set. If direct referencing by name is used in all sets, it can be directly
determined if the component is part in set(s). Else, it is necessary to determine for
each set if the component satisfies all queries clauses of the regarding set. Thus, with
nsets as the maximum number of sets in the rule set and nsetmaxClauses

as the maximum
number of query clauses of a set the worst-case complexity to check if a component is
part of set(s) (C(iv)) is:

C(iv) =

{
O(nsets · nsetsmaxClauses

) if nsetsmaxClauses
> 0

O(nsets) if nsetsmaxClauses
= 0

(7.4)

Based on these steps the overall complexity of event and time driven evaluation can
be determined. In the time driven approach two ways on how to evaluate the rules
could be distinguished. The evaluation could either calculate required sets using step
(iii) nsets times or instead check whether components are element of required set using
step (iv) ncomponents times. Both leads to the same overall complexity:
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Ctime−driven = O(nrules · C(i) + nconditions · C(ii)+ (7.5)

nsets · ncomponents · nsetmaxClauses︸ ︷︷ ︸
nsets·C(iii) resp. ncomponents·C(iv)

)

An event driven evaluation takes place when an attribute of a component changes.
Therefore step (iv) is used for the evaluation. The resulting complexity calculates to:

Cevent−driven =O(nrules · C(i) + nconditions · C(ii) + C(iv)) (7.6)

For the time-driven rule processing, the computational complexity occurs with a
given period tevaluationP eriod. In the event-driven processing, the frequency of attribute
value changes of each component determines the computational complexity. Since
Rango supports a large number of different attributes (cf. Section 5.2.2), together with
a large number of components a high event rate can be expected. The time-driven
approach instead has a well defined and controllable time behavior given by period
tevaluationP eriod and therefore also produces less interferences (cf. Section 5.2.3). Thus,
the time driven approach has been selected in this thesis1.

If we assume a fixed size rule set (nrules, nconditions, nsets is constant), the evalu-
ation complexity scales linearly with the number of components in the CPS/CPN

(Ctime−driven
7.5
= O(ncomponents + nsetsmaxMember

)) in case of the time-driven strategies.
If we instead assume a fixed environment (ncomponents is constant) and a variable size
rule set where the maximum number of clauses in a set and maximum number of sets in
a condition is limited, the evaluation complexity scales linear with the number of rules,

conditions and sets (Ctime−driven
7.5
= O(nrules + nconditions + nsets)). This fact is also

demonstrated by measuring the rule processing time on the aforementioned evaluation
PC. The practical time required for the processing of different rule sets2 in a fixed
environment was retrieved. The resulting average times are shown in Figure 7.4. As
expected, the processing time increases linear with the number of rules. Furthermore,
the average processing time for rule sets of around 100 rules was well below 0.1 ms.
Thus, the evaluation of Rango rules leads to a low overhead also tolerable on slower
systems.

The above analysis furthermore shows that Rango on one side can handle powerful

1The implemented time-driven rule evaluation operates as follows: In each evaluation period all
rules are processed. For each rule, the condition is checked. Once the condition is checked, the result
is stored so if the same condition occurs in another rule, the condition does not have to be checked
again. For each condition, the referenced sets are determined. Once a set is determined, the result is
stored so if the same set occurs in another condition it does not have to be determined again. This
guarantees that only the minimum necessary number of sets and conditions are processed during rule
evaluation. However, in worst case, all sets and conditions must be processed once leading to the
presented processing complexity.

2Rule sets that were consisted of 10, 20, 50 and 100 rules were evaluated multiple times resulting
in about approximately 400 measurements for each rule set for the rule evaluation complexity.
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Figure 7.4: Average rule evaluation complexity times for rule sets of different sizes.

and flexible set-based rules with appropriate processing complexity, while on the other
side also is able to efficiently process simple rules using direct references. According
to equation 7.5, Rango is able to process a rule set consisting of such simple rules
(nrules = nconditions = nsets; nconditionmaxSets

= nsetmaxMember
= 1; nsetsmaxClauses

= 0)1

in O(nrules). This is the same complexity a limited language providing such simple
rules only would have. Thus, Rango offers the advantage of flexibility without resigning
efficiency.

7.2. Real-Time Behavior of Chameleon

The real-time behavior of Chameleon divides into two parts: (i) the real-time behavior of
the adaptation mechanism and (ii) the real-time behavior of the application execution.

7.2.1. Real-Time Behavior of the Adaptation Mechanism

The rule engine defines the real-time behavior of the adaptation mechanism. It
processes all rules periodically2 on each instance of the Chameleon middleware with
the evaluation period tEvaluationPeriod (cf. Section 5.2.2). Once a rule is executed, the
reward is calculated after the reward delay. During that time, further rule processing

1Each rule in the system is associated with a single condition that contains a unique set, and
within that set, there is precisely one directly referenced component.

2Compares all rule conditions to the current system/component condition to determine if adaptation
is necessary.
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is delayed. The reward delay has a global default value tRewardDelay (cf. Section 5.2.2),
but can also be individually defined for each rule r to tRewardDelayr

. Furthermore, the
monitoring period of components (applications, nodes, communication channels) have
to be taken into account to detect changed system states. For remote components, also
the communication time influences the real-time behavior.

In the following, the reaction time the rule engine needs from an event triggering sys-
tem adaptation to the execution of the first adaptation rule is determined. Afterwards,
the occurrence of critical races, how to solve this issue and the influence of the solution
on the reaction time is introduced. Finally, the resulting adaptation time is analyzed.

Reaction Time First, the reaction time the rule engine needs from an event triggering
system adaptation to the execution of the first adaptation rule is determined. Let us
initially assume there is no reward delay pending. This is true if the system has no
adaptation action yet or at least for max∀r(tRewardDelay, tRewardDelayr

). It is necessary to
distinguish between (i) local and (ii) remote components. For local components, the
local monitoring periods and the evaluation period influence the reaction time. An
event changing the state of a component can occur asynchronously at any time within
the local monitoring period. Therefore, if it takes the full duration of the monitoring
period to detect the change, in worst case the change is detected at the end of the next
monitoring period. This change then is registered by the rule engine at the beginning of
the next evaluation period. Therefore, if a state change of a local component j triggers
an adaptation (e.g. a local application j gets unhealthy), the worst case reaction time
tReactionT imelocalj

calculates to:

tReactionT imelocalj
≤ tEvaluationPeriod + 2 · tMonitoringP eriodlocalj

(7.7)

For some events, the full duration of nmonitorP eriods (instead of one as above) monitoring
periods is necessary to detect a state change1. So the above equation can be generalized:

tReactionT imelocalj
≤tEvaluationPeriod+

(nmonitorP eriods + 1) · tMonitoringP eriodlocalj
(7.8)

In case of a remote component, it takes additional time to transport the monitored
data to the destination. This time consists of two parts, the remote monitoring
period tMonitoringP eriodremote (since local monitoring might have detected a state change
immediately after the last remote monitoring period which is a multiple of the local
monitoring period) and the communication time tCommunication. Thus, if the state
change of a remote component k triggers an adaptation, (e.g. a remote node k gets

1This is e.g. true for events raising health values. To avoid trashing, the worst of the last
nmonitorP eriods = 5 monitored health values is used in the current implementation of the Analyze stage
of the MAPE-K loop. This enables an immediate detection of a dropping health value while raising
health values need to be confirmed during 5 monitoring cycles.
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unhealthy), the reaction time tReactionT imeremotek
calculates to:

tReactionT imeremotek
≤tMonitoringP eriodremotek

+ tCommunicationk
+

tReactionT imelocalk
(7.9)

After n local monitoring cycles, the monitored data is sent to remote parts of the system.
Therefore, the remote monitoring period of a component is n times its local monitoring
period1. Using this, the reaction time for remote components can be expressed by:

tReactionT imeremotek
≤n · tMonitoringP eriodlocalk

+ tCommunicationk
+

tReactionT imelocalk

7.8
=

(n + nmonitorP eriods + 1) · tMonitoringP eriodlocalk
+

tCommunicationk
+ tEvaluationPeriod (7.10)

Now, if the state change of multiple local and remote components (e.g. a local
application j gets unhealthy and a remote node k gets unhealthy) triggers the condition
of a rule, the overall reaction time is defined by the maximum of the reaction times for
the triggering components:

tReactionT ime ≤ max
∀j,k∈triggering components

(tReactionT imelocalj
, tReactionT imeremotek

) (7.11)

A special case are crashed components. Here, the crash is detected by missing life signs,
ie. remote monitoring data. A component is assumed to be crashed if life signs are
missed for more than lLifeSignLimit remote monitoring periods. Therefore, the reaction
time to crashes of a component k calculates to:

tReactionT imeCrashk
≤lLifeSignLimit · tMonitoringP eriodremotek

+

tCommunicationk
+ tEvaluationPeriod (7.12)

To derive a suitable evaluation period for the following practical experiments (cf.
Section 7.3), on the one hand the local monitoring periods in the system can be a
guideline. For performance reason, it is advisable to chose the evaluation period smaller
or at least equal to the smallest local monitoring period in the system:

tEvaluationPeriod ≤ min
∀i∈system components

(tMonitoringP eriodlocali
) (7.13)

On the other hand, the evaluation period has to be much greater than the rule processing
time. The time complexity of rule processing is given in Section 7.1.3. On the target
system used, this time is well below 0.1ms for 100 rules. The local monitoring periods
can be configured and currently are chosen dependent on the application period and

1The size of n is the tradeoff between communication overhead and the timeliness of remote
monitoring data.
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node and communication channel performance.

For all scenarios used in the following further evaluation of Chameleon, the evaluation
period tEvaluationPeriod has been set to 100ms in the rule file configuration directives.
This value is far above the rule processing time and below the minimum local monitoring
period of 125ms in all conducted experiments. If faster reaction times are required,
these periods and times can be reduced at the cost of higher computational load and
communication overhead.

As an example for local and remote reaction times, let us assume that we have an
application component, where the local monitoring period is configured to 5-times of
its execution period. With an execution period of 25ms this leads to a monitoring
period of 125ms like mentioned above. Furthermore let nmonitorP eriods be 1 (as it is
for most of the events). If the application is local, tReactionT imelocal

calculates to:

tReactionT imelocal
≤ 100ms + 2 · 125ms = 350ms (7.14)

Else if the application is remote, where the remote monitoring period is n = 2 times
of the local monitoring period and the communication time is tCommunication = 50ms,
tReactionT imeremote calculates to:

tReactionT imeremote ≤ 100ms + 50ms + 4 · 125ms = 650ms (7.15)

Critical Races and Lag If an event causes state changes of multiple components, races
can occur. Due to communication times and different monitoring periods, these changes
will not propagate at once resulting in short-term intermediate state values. A race
becomes critical, if rules exist which trigger on such intermediate state values. These
rules then would trigger unintended. As an example, let us assume an event causes an
application and a communication channel to both become unhealthy. If the unhealthy
state of the application is propagated a bit quicker than the one of the communication
channel, there will be the intermediate situation where the application is marked as
unhealthy while the communication channel is still indicated as healthy. A rule with a
condition for an unhealthy application in combination with healthy communication
channel will then trigger unintended.

This issue cannot be handled by simply extending the evaluation period, since
independent of its duration in worst-case the next rule evaluation can take place during
a critical race, see Figure 7.5a. However, repeated condition checking can solve this
issue, as shown in Figure 7.5b. Thus, Rango introduces the option to define a Lag for
rules (cf. Appendix A). The Lag is the number of evaluation periods a rule condition
has to be repeatedly true before the condition triggers. Then a critical race with a
duration of tRace does not unintendedly trigger a rule if the following holds true:

tRace ≤ (Lag − 1) · tEvaluationPeriod (7.16)

The reaction time for a rule i with Lag then increases from the reaction time without
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Figure 7.5: Critical races and Lag.

Lag (Lag = 1) to:

tReactionT imei = tReactionT imewithoutLag
+ (Lagi − 1) · tEvaluationPeriod (7.17)

Since such races are caused by different communication times and monitoring periods,
an upper bound for tRace can be given for a rule affected by a critical race. Assuming c
is one of the components which trigger a rule based on a critical race, the propagation
time for the state of this component calculates to:

tP ropagationc =

{
tMonitoringP eriodlocalc

if c is local

tMonitoringP eriodremotec
+ tCommunicationc if c is remote

(7.18)

The maximum possible race duration is then given by the biggest propagation time
difference tP ropagationdiff

of the components triggering the rule:

tRace ≤ tP ropagationdiff
= max

∀c∈triggering components
(tP ropagationc)−

min
∀c∈triggering components

(tP ropagationc) (7.19)

Using the two Equations 7.16 and 7.19 for tRace, a lower limit for Lag in rules with
critical races can be given:

Lag ≥

⌈
tP ropagationdiff

tEvaluationPeriod

⌉
+1 (7.20)

Let us retrieve the above example of a rule, which checks for an unhealthy application in
combination with a healthy communication channel (cf. Appendix B.5). Assuming the
application and the communication channel are local and the local monitoring period
of the application is 100ms while the monitoring period of the communication channel
is 200ms, the maximum possible duration of the race calculates to 200ms − 100ms =
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100ms. With an evaluation period of 100ms, the necessary Lag for this rule according
to Equation 7.20 is 2.

Adaptation Time Based on the reaction time and the reward delay, the adaptation
time can be determined. Let us assume the triggering state leads to an adaptation
sequence of x rule executions. Let us further assume no other event triggering an
adaptation occurs during that sequence. Then, the first rule is executed after the
reaction time while the remaining x − 1 rules are executed after the reward delay and
an optional lag for each rule. The adaptation time therefore calculates to:

tAdaptation ≤ tReactionT ime1 +
x−1∑

i=1

(
tRewardDelayi

+ (Lagi+1 − 1) · tEvaluationPeriod

)

(7.21)

If the rules executed have no individual reward delay and no lag (Lag = 1), this formula
can be simplified to:

tAdaptation ≤ tReactionT ime1 + (x − 1) · tRewardDelay (7.22)

Now, the initial assumption is relaxed that no reward delay is pending when an
adaptation is triggered. Furthermore, another triggering event is allowed to occur
during the execution of an adaptation sequence. Both relaxations lead to a possible
combination of adaptation sequences. If such a combination arises, it can be analyzed
as a single sequence consisting of the combined adaptation actions. Therefore, if
s sequences are combined, then the worst-case time can be calculated by setting
x =

∑s
i=1 xi in the above formulas.

The reward delay depends on the time necessary to observe the outcome of an action.
This is influenced by the kind of the action, how many local monitoring periods it takes
to observe its outcome, the remote monitoring period to publish this system wide as
well as the communication time in case of a global action. Let us assume the action of
rule r modifies the behavior of component g. Let nmonitorP eriods be again the number
of local monitoring periods it takes to observe its outcome and the remote monitoring
period again be n times the local monitoring period. Then the reward delay for an
action a can be calculated in similar way as the reaction time to:

tRewardDelaya
=(n + nmonitorP eriods + 1) · tMonitoringP eriodlocalg

+

tCommunicationg + tEvaluationPeriod (7.23)

The global reward delay then can be set to:

tRewardDelay ≥ max
∀a∈rules

(tRewardDelayi
) (7.24)

Taking for example a local monitoring period of 125ms, a communication time

83



7. Evaluation

of 50ms, n being again 2 and setting nmonitorP eriods to the large value of 51, this
would result in a reward delay of 1150ms. A local monitoring period of 200ms with
the same other parameters would result in 1750ms reward delay. Aligned to these
value, the global reward delay RewardDelay has been set to 2000ms in the rule files
configuration directives for the following experiments. For specific actions like e.g.
pausing unimportant applications and restarting dead applications, a shorter individual
reward delay (300ms, see also Appendix B.5) can be chosen, because nmonitorP eriods is
much smaller (mostly 1). This e.g. allows in case of an overload situation to pause
an unimportant application (to make room) and to restart an important crashed
application much quicker as with the global reward delay.

7.2.2. Real-Time Behavior of the Application Execution

The real-time properties of application execution can be monitored by the rule engine
and influenced by actions. Based on observable timing parameters like the rate of
missed timing constraints, the distances to timing constraints, the allowed missrates
and allowed distances (cf. Section 5.1), the related health values (cf Section 5.2.1), and
with respect of the application importance the system load can be modified. Possible
actions are the change of priorities, periods, deadlines, scheduling strategies as well
as the relocation and pausing of applications (cf. Sections 4.4 and 5.4). A major goal
of the adaptation mechanism is to keep the timing constraints of all applications. If
this is not possible due to an overload situation, it aims to keep the constraints of
the applications ordered by their importance. Besides the observable parameters and
applicable actions, the applications are black boxes to the middleware. The overall
behavior of the adaptation mechanism is evaluated in the next section.

7.3. Evaluation of the Chameleon Rule Based MAPE-K Adaptation
Mechanism

The usability of the rule-based MAPE-K adaptation mechanism for managing MC-
CPN’s and their complexity while considering the mixed-criticality is investigated in
an automotive application scenario which is introduced in Section 7.3.1. Afterwards, a
basic rule set is presented which is used for almost all evaluation scenarios. Finally,
nine evaluations are conducted. Each evaluation has been repeated multiple times with
completely reproducible results.

7.3.1. Application Scenario and Configuration

An application scenario suitable to evaluate the adaptation mechanism of Chameleon
and Rango has to be a CPN with mixed critical timing constraints and dynamic behavior.
The field of automotive applications is an example which fulfills these requirements.
A car can be seen as a CPS containing embedded components with a wide range of

1As applied for raising health values, see before.
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criticality and timing constraints (from low-critical comfort functions like infotainment
via mid-critical functions like driving assistants to highly safety critical components
like Brakes or Steering). Dynamic behavior results from activating or deactivating such
components at run time (turning on or off e.g. Infotainmant, Navigation or a driving
assistant like Cruise Control) or changes in the hardware environment caused e.g. by
processor problems or failures. Cooperating cars (e.g. in platooning) can bee then seen
as a CPN. This introduces more dynamics by cars entering or leaving a platoon and
at the same time offers more opportunities for adaptation since functionalities can be
shared or transferred between cars. Therefore, such an automotive scenario has been
chosen for the evaluations.

In classic car configurations, each functionality has its on processor (ECU). However,
this produces the most hardware costs, especially when it comes to redundancy. To
prevent a functionality from failing, the corresponding ECU has to be doubled by a
backup ECU. Therefore, more recent car configurations use another approach. Here,
different functionalities share more powerful processors. Each of these processors
host more than one functionality. This reduces the costs and eases redundancy, since
functionalities now can be moved between processors. It also offers more opportunities
for adaptation.

Still, in today’s configurations highly safety critical functions are usually kept separate
from low and medium critical functions. For the evaluations presented here, even
this restriction is relaxed. All functions can share the entire processor set. This has
the following reasons: First, it allows for the assessment of the extent to which the
adaptation mechanism of Chameleon and Rango can effectively handle mixed critical
applications with a wide range of criticality levels. Second, it gives the maximum
adaptation space and therefore offers the biggest potential to keep the system healthy.
In a simulation environment, this can be easily explored since deficiencies will not
cause any physical harm. In a real environment, this approach could also be used if the
highly safety critical functions are backed by an emergency mode (e.g. a simple low
level direct brake mechanism is available as long as the high level anti locking brake
function is unavailable).

As basis, a vehicle with the common functions available in a today’s cars has been
chosen. Figure 7.6 shows its architecture in the frame of the system model. Thereby,
all gray marked applications are started on driver demand (dynamics), all other
applications are activated at system start. Furthermore, it is designed so that each
processor has access to each other and each sensor and actuator thus allowing the
applications to share the entire processor set. For the evaluation of more than one
vehicle, NetworkNodeD additionally offers a wireless communication link (Comm2)
to other vehicles.

Application Layer On the application layer, several common applications available in
today’s cars are present. Table 7.2 outlines the main parameters of these applications.
It shows the importance of an application as well as its period and priority, which
has been chosen according to rate monotonic scheduling (RMS, priority=̂1/period).
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Figure 7.6: Evaluation Scenario. Gray marked applications are started on driver
demand (dynamics), all other applications are activated at system start.

Furthermore, it gives the maximum allowed period for tuning (so the quality of less
important applications can be reduced to reduce their load for the system, - means
no period tuning allowed), the maximum allowed data compression rate (- means no
data compression) and the computational and data load range. The XML code of the
applications used in the simulator can be found in Appendix D.

The local monitoring period has been configured to 5-times the application period,
while the global monitoring period is 2-times the local monitoring period. These values
are a suitable compromise between monitoring resolution (as lower the values as better)
and overhead (as higher the values as better).

In the following, the various interactions1 of the applications with each other as well
as with sensors and actuators is briefly described:

• Steering is one of the three most important applications. It is responsible for
steering support of the driver (power steering, steering operations to ensure
stability, ...). It gets data from the steering sensors (steering wheel sensors,
steering angle sensors, ..) and delivers data to the steering actuators (steering
wheel motors). Additionally, the application Stability and Drive Dynamics
interacts with the application Steering by remote method invocation. Steering is
activated at system start.

• Brake is another one of the most important applications. It is responsible
for brake support of the driver (anti-locking brake, brake operations to ensure
stability, ...). It gets data from the brake sensors (wheel sensors, brake pedal
sensors, ...), delivers data to the brake actuators (brake calipers, cylinders, ...)
and messages to the application Lights to trigger the brake light. Additionally,

1Interactions which wait for return values all have a timeout. So in case the called application is
not available, the calling application can run with reduced functionality.
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the application Stability and Drive Dynamics interacts with the application Brake
by remote method invocation. Brake is activated at system start.

• Passenger Safety is the third of the most important applications. It handles
safety functions like airbags or seatbelt pretensioners. It gets data from the safety
sensors (e.g. crash sensors) and delivers data to the safety actuators (e.g. airbag
ingnition). Additionally, it handles messages from the applications Stability and
Drive Dynamics and Driver Warning to rate the current driving situation. Finally,
it exchanges data via the central application Data Repository. Passenger Safety
is activated at system start.

• Powertrain is responsible for the engine control. Therefore, it is also a very
important application, but is set here one level below the previous ones, since
an engine failure is usually a bit less critical than a Brake or Steering failure. It
gets data from various engine sensors (e.g. air intake and pressure, crankshaft
position, ...) and delivers data to engine actuators (e.g. fuel injection, ignition,
...). Additionally, the application Stability and Drive Dynamics interacts with the
application Powertrain by remote method invocation, e.g to reduce the engine
power in critical situations. Powertrain is activated at system start.

• Lights is an application set on the same importance level as Powertrain in
this scenario. It is responsible for lighting the vehicle (main lights, brake lights,
direction indicators, ...). It gets data from the light sensors (e.g. lightness) and
delivers data to the light actuators (the lights themselves). It receives messages
from the application Brake to handle the brake lights and exchanges data via the
central application Data Repository. Lights is activated at system start.

• Stability and Drive Dynamics is responsible for handling electronic stability
and dynamics functions like dynamic traction control or dynamic stability control.
In this scenario, the importance is set one level below PowerTrain and Lights, since
a careful driver is able to drive safely also without these features. Stabilty and
Drive Dynamics interacts with the applications Steering, Brake and Powertrain
by remote method invocation to intercept in case of a critical situation. The
applications Cruise Control and Driver Warning also interact with Stability and
Drive Dynamics by remote method invocation to execute driving commands.
Finally, it sends messages to the application Passenger Safety to inform about
the current driving situation and exchanges data via Data Repository. Stability
and Drive Dynamics is activated at system start.

• Data Repository is the central service for data exchange. It is the only reactive
application (all the others are periodic) in this scenario and its importance level
has been chosen the same as Stability and Drive Dynamics. Many of the other
applications use this service. Data Repository is activated at system start.

• Cruise Control is an application realizing functions like automatic distance
keeping. It receives data from obstacle sensors (e.g. Lidar or Radar) and controls
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the speed via remote method invocation of the application Stability and Drive
Dynamics. Its importance has been chosen one level below Stabilty and Drive
Dynamics, since it is more comfort oriented. Also, Cruise Control exchanges
data via Data Repository. Cruise Control is activated on driver demand.

• Driver Warning informs the driver if he is not keeping the right distance to
the vehicle ahead. This is also regarded here as a comfort function, as a careful
driver should be able to manage this on his own. Therefore, its importance is
set below Cruise Control. It uses the same obstacle sensors as Cruise Control
and interacts with Passenger Safety, Stability and Drive Dynamics and Data
Repository. Driver Warning is activated at system start.

• Navigation calculates routes and guides the driver to his target. This is mainly
a comfort function, therefore the importance has been chosen below Driver
Warning. It receives data from the GPS sensors and interacts with the driver via
the display and speaker actuators. Furthermore, it exchanges data with other
applications via the Data Repository. Navigation is activated on driver demand.

• Infotainment is a comfort application providing the driver with various in-
formation and entertainment. It has assigned the lowest importance level. It
receives data from the radio antenna sensors and uses the speaker and display
actuators. Furthermore, it exchanges data with other applications via the Data
Repository. Infotainment is activated on driver demand.

Please note that the importance values for the applications have been reasonably
chosen, but other importance assignments would also be possible1. However, for the
evaluation it is only necessary that different importance values exist to assess the
influence of mixed-criticallity to the adaptation mechanism.

1Remember: Importance must no be confused with priority (cf. Section 3). While importance

refers of the level of criticality of a task in the system, priority refers to the order in which tasks are
scheduled based on the period or deadline. This is also clearly shown in the Table 7.2.
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Application Importance Priority
Period
[ms]

Max Period
[ms] (tune)

Instructions*
Max (Min)

Data
Sent**
Max (Min)

Data
Received**
Max (Min)

Max
Compres-
sion

Steering 7 4 50 50 (-)
200000
(180000)

268 (128) 368 (128) -

Brake 7 4 50 50 (-)
200000
(180000)

640 (160) 640 (160) -

Passenger
Safety

7 5 25 25 (-)
25600
(10500)

580 (0) 1680 (240) -

Powertrain 6 5 25 25 (-)
100000
(80000)

720 (240) 960 (480) -

Lights 6 1 500 1000 (2)
105000
(80000)

800 (800) 832 (800) -

Stability
and Drive
Dynamics

5 4 50 100 (2)
270100
(190100)

2670 (1230) 1640 (1200) -

Data
Repository

5 i *** - - (-)
125000
(125000)

480 (480) 480 (480) -

Cruise
Control

4 4 50 100 (2)
300000
(260000)

960 (480) 12960 (12480) -

Driver
Warning

3 2 250 500 (2)
250100
(250100)

990 (990) 12960 (12960) -

Navigation 2 3 100 500 (5)
300000
(260000)

6480 (6000) 6480 (600) 0.8

Infotainment 1 4 50 500 (10)
84000
(44000)

6480 (6000) 6584 (6104) 0.8

Table 7.2: Application parameters. (* instructions per period (or invocation in case of the reactive Data Repository); ** bits
per period (or invocation in case of the reactive Data Repository); *** inherits priority from caller)
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Network Node Layer The vehicle configuration contains four networked computation
nodes, each of them a single threaded processor with a computational performance of
10 million instructions per second (MIPS). This resembles the typical performance of
mid-size microcontrollers which are quite common in automotive ECUs. As scheduling
scheme for the applications, fixed priority preemptive (FPP) scheduling is used. This
is also typical for automotive real-time ECUs [But11]. With four computation nodes,
the overall processing power is 40 MIPS. From Table 7.2, the maximum processing
demand of an application can be estimated by dividing the maximum number of
instructions by its period. Summing up the demand of all applications1 results in an
overall maximum demand of about 31.6 MIPS. On one side, this results in an overall
computational load of 79% which is a bit above the Liu/Layland bound [LL73] for
a single processor (n((21/n) − 1) = 71% for n = 11 applications) to guarantee all
timing constraints. Furthermore, due to the multi-processor configuration, not all
application/node combinations will work. So when all applications are running, in
worst-case the computational power might become a bottleneck. This becomes even
more true in case of node failures or slow-downs (e.g. due to thermal issues). On the
other side, it is a main scope of this thesis to evaluate how the proposed adaptation
mechanisms of the MAPE-K loop can handle such a bottleneck. Furthermore, for
economic reasons as less hardware resources as possible should be used. Therefore,
a tight configuration of four computation nodes have been chosen for the evaluation.
The initial assignment of applications to nodes can also be seen in Figure 7.6.

Network Layer As communication network in the vehicle, a bus (Comm1 in Figure 7.6)
with a data transmission capacity of 500000 bits/sec interconnects the computations
nodes, sensors and actuator. The bus also enables FPP scheduling for data transmission.
This represents the capabilities of a CAN bus, which is frequently used in automotive
configurations. From Table 7.2, also the maximum communication demand of the
interaction between applications, sensors and actuators can be estimated in the same
way as the computational demand. Building the sum of sent and received data over all
applications results in an overall maximum demand of about 520000 bits/sec. This
is a worst case load of 104%. So even a bit more than the computation nodes, the
communication bus in worst case might become a bottleneck. For the same reasons as
above, this enables the evaluation of how the MAPE-K loop can handle this and saves
hardware resources. For inter-car-communication, a wireless connection (Comm2) with
a maximum datarate of 1000000bits/s is established. This datarate is oriented on the
speed of a very low performance IEEE 802.11p WLAN.

Sensor/Actuator Layer The available sensors and actuators and their purpose have
already been mentioned in the interaction description of the application layer. All
the sensors used are reactive sensors with priority inheritance. This means they are
triggerd by the applications and deliver sensor data with the same priority as the

1The maximum invocation period of the reactive application DataRepository is assumed to 100ms

here.
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triggering application. The actuators of course receive their data also with the priority
of the sending application. Table 7.3 sketches the data packet sizes of the sensors and
actuators used in the simulator.

Sensors Packet size [bits] Actuator Packet size [bits]
Steering 128 Steering 128
Brake 160 Brake 128
Safety 240 Safety 240
Lights 320 Lights 320
Engine 480 Engine 240
GPS 6000 Display/Speaker 6000
Radio 6104
Obstacle 21000

Table 7.3: Sensor/actuator packet sizes in the simulator.

7.3.2. Basic Rule Set

Rango allows to write generic as well as application specific rules. If not otherwise
noted, a completely generic basic rule set is used for the following evaluations. This
rule set can be found in Appendix B. Hereafter, basic principles of the rule set are
explained.

The rules use the local condition global action scheme (cf. Table 5.5). Local condition
means that at least one subcondition, usually the trigger, is purely local. To demonstrate
this, a relocation rule from the basic rule set is used as example1. This rule has the
following condition:

DefineCondition RelocationMightBeUseful :

Cardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LocalUnhealthyNode ) > 0 And

Cardinal ( NonLocalSuitableNode ) > 0 And

Cardinal ( LocalUnhealthyComm ) = 0

Note2 "If there are unhealthy apps on an unhealthy

node , but comm is ok and there are powerful nodes

available , a relocation might be useful "

The trigger part of the condition is that the number of local unhealthy applications
which are not paused is above 0:

Cardinal ( LocalUnhealthyApps ) > 0

with:
1This is an extension of the relocation rule that was already used to introduce Rango in Section 5.2.2.
2Note is a specific form of a comment. While a comment (encapsulated by /* */) is simply ignored

during parsing, a note is stored with the statement. Therefore, when the rules are written back with
modified rewards after learning, notes are maintained while comments are lost.
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DefineSet LocalUnhealthyApps :

App Local Where Health < 0, PeriodTune >= 0

Note "Local Apps with health value below 0

(and not paused )"

There are two more local sub-conditions that require the local node to be unhealthy
while the local communication channels are healthy:

Cardinal ( LocalUnhealthyNode ) > 0 And

Cardinal ( LocalUnhealthyComm ) = 0

with:

DefineSet LocalUnhealthyNode :

Node Local Where Health <= 0.1

Note "Local node with health value of 0.1

and below"

DefineSet LocalUnhealthyComm :

Comm Local Where Health <= 0.15

Note "Local comm with health value of 0.15

and below"

The remaining sub-condition is global and requests a node suitable for the relocation
to be present somewhere else in the system:

Cardinal ( NonLocalSuitableNode ) > 0

with:

DefineSet NonLocalSuitableNode :

Node NonLocal Where

Capacity % >= Demand + 0.15 ( LocalUnhealthyApps ),

LifeSignAge <= Limit , Health Max

Note "Non local alive node with enough capacity

(leave 15% free) to take an unhealthy app"

This set selects non local nodes with enough capacity to take the first unhealthy
application in the set LocalUnhealthyApps. Since fixed priority preemptive scheduling
cannot guarantee a 100% node load, a spare capacity of 15% is left free. Furthermore,
only alive nodes are considered. If more than one of such nodes exist the one with the
maximum health is taken.

The local parts of the condition assure that only the local Chameleon middleware
can trigger this condition thus avoiding conflicts, when several Chameleon instances
would trigger the same rule for the same components. The global parts of the condition
take care for the global knowledge necessary to make good global decisions.

The action taken for this condition is global:

DefineAction RelocateLocalUnhealthyApp :

Relocate LocalUnhealthyApps To NonLocalSuitableNode
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Note " Relocate one local unhealthy app to a

suitable node"

The entire relocation rule then is as follows:

If RelocationMightBeUseful

Then RelocateLocalUnhealthyApp

Note "Rule for relocation "

The rule set itself contains 17 rules with 15 actions, 17 conditions and 23 sets. It is
structured into groups of rules for different purposes (see Appendix B.5).

The first group of three rules is dedicated to handle crashes of nodes and applications.

1. Restart dead applications:

– Applications are monitored for life sign ages, and if an application exceeds
its designated life sign age, it is considered dead.

– The rule automatically restarts dead applications, ensuring continuous
operation and recovery from crashes.

– Dead applications are ordered based on their importance, with higher im-
portant applications being restarted first. When multiple applications crash
simultaneously, the restarting process follows a strict descending order of
importance. This ordering ensures that critical applications are recovered
first.

2.&3. Make space by tuning (second rule of the group) or pausing (third rule of the
group) lower important applications:

– In cases where there is insufficient capacity to restart a higher important
crashed application, tuning or pausing lower important applications is
employed.

– Tuning is preferred over pausing as long as possible, aiming to reduce the
performance of lower important applications while freeing up resources.

To make space, applications are tuned or paused beginning with the lowest importance
in strictly ascending order of importance12. Thus, this group of three rules ensures
that applications are kept alive in the order of their importance at the cost of lower
important applications if necessary in an overload situation. If n high important
applications have to be restarted while m low important applications have to be tuned
or paused for this, then it takes n + m rule executions to perform this task3. Also,
these rules have the following local sub-condition to avoid conflicts.

1Pausing is done regardless if an application is crashed or not, thus ensuring the applications are
paused in strictly ascending order of importance to make room.

2A similar approach is used in [Hut22]. However, only pausing and no tuning is performed there.
3Application specific rules can further speed up the recovery of extremely high important applica-

tions (cf. Section 7.3.8).
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Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0

It ensures that only the alive node with the lowest node id in the system can trigger
any of these three rules. This is done by the following set:

DefineSet AliveNodeWithLowestIdIsLocal :

Node System Where

LifeSignAge <= Limit , Id Min , HopCount = 0

Note " Contains the alive node with the lowest

id in the system if this is the local node"

The first query restricts the system nodes to the alive ones, the second query takes the
one with the minimum id while the third one checks the hop count from the local node
to the target node. So only if the alive node with the lowest id is local, this query is
true. Otherwise the set is empty. Therefore, the above sub-condition is only true on
the alive node with the lowest id.

The second group of rules handles general overload situations not caused by crashes.
It contains 6 rules. Also here, all these rules use at least one local sub-condition.

1. Relocate an unhealthy application (example rule mentioned above):

– If the application’s node is unhealthy but the corresponding communication
channels are still healthy, a relocation of the unhealthy application is applied.

– This rule ensures that applications affected by an unhealthy node are moved
to healthier nodes.

2.&3. Data compression (second rule of the group) or tuning (third rule of the group)
of the least important applications:

– In cases where both applications and communication channels are unhealthy,
reducing the data transmission (data compression) or tuning of least impor-
tant applications is applied to alleviate the communication load.

4. Tuning of local unhealthy applications:

– If there are remaining unhealthy applications which can be tuned but the
communication channels are healthy, the fourth rule is triggered.

– This rule specifically deals with local tunable applications to reduce load on
the local node.

– This rule also makes room for relocation.

5. Global tunning of unhealty applications:

– Similar to the fourth rule, the fifth rule addresses unhealthy applications
which can be tuned when the communication channels are healthy.

– However, it encompasses global tunable applications ordered by importance.

– This rule also makes room for relocation.
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6. Pause least important applications:

– If there are no further options for compression or tuning applications, the
sixth rule pauses the least important applications to free up resources and
address the limitations in capacity or performance.

The third group is an example on how to deal with scheduling issues. It consists
of 4 rules, which change scheduling and preemption policies for computing nodes
and communication channels. All four rules trigger only if there are local unhealthy
applications.

1.&2. Activate Priority-Based Scheduling:

– The first two rules examine whether priority-based scheduling for nodes
(rule 1) and communication channels (rule 2) is available but not currently
used.

– If priority-based scheduling is not active, this rules triggers the activation of
priority-based scheduling for nodes and communication channels.

– Application priorities are assigned based on rate monotonic scheduling
(RMS) principles, ensuring efficient task scheduling.

3.&4. Activate Preemption:

– The third and fourth rule checks whether preemption for nodes (rule 3) and
communication channels (rule 4) is available but not currently utilized.

– If preemption is not active, this rule triggers the activation of preemption
capabilities for nodes and communication channels.

The fourth group of rules enables undoing of overload measures if the overall system
condition improves. All three rules act on local applications.

1. Undo pausing of the most important local application:

– The first rule focuses on undoing the pausing of the most important paused
local application.

– It applies when the health of the local node and all local communication
channels surpasses a specified threshold.

2. Undo tuning of the most important local application:

– The second rule addresses the successive undoing of tuning measures applied
to the most important tuned local application.

– It comes into effect when the health of the local node and all local commu-
nication channels exceeds a predetermined threshold.

3. Undo data compression for the most important local application:

– The third rule focuses on undoing data compression measures applied to
the most important compressed local application.
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– It comes into effect when the health of the local node and all local commu-
nication channels exceeds a predetermined threshold.

The fifth group consists of a single rule which focuses to kill foreign orphans (cf.
following set definition) if the connection to a CPS in the CPN is lost. The rules in
the previous groups might relocate some applications to another CPS if the resources
in the own CPS become critical. In case the connection to a CPS is lost, two things
have to happen: first these applications have to be reassigned to the own or another
CPS which is still connected. This is done by the rules of the first group, because due
to the loss of connection these applications are considered as crashed. Second, their
might be orphans left in the CPN, which belong to the lost CPS. These orphans have
to be killed which is done by the rule in the fifth group. The following set definition
contains all such foreign orphans on a local node:

DefineSet ForeignOrphans :

App LocalNonSystem Where SystemLifeSignAge > Limit

Note "Non - system apps running on our locale node

where we have lost contact to their systems "

The scope LocalNonSystem specifies all local applications which do not belong to
the own CPS while the query tests, if the life sign age of the CPS the application
belongs to has expired. Using this set, each node can kill its local orphans.

Overall, this is a basic generic rule set. It is not considered to be complete or the best
possible rule set, especially when it comes to application specific behavior. However,
the rules are well motivated and can be seen as a suitable basis for the following
evaluations and a foundation of learning and extensions.

7.3.3. Evaluation 1 - Handling of Dynamic Load Changes

The first evaluation of the adaptation mechanism uses a single vehicle (CPS). To
evaluate the potential of the adaptation mechanism, several events have been placed to
change the overall load of the system. Those are summed up in Table 7.4. Thereby,
the first two columns of the table show the time of the event and the event itself. First,
the system load is gradually increased: After 10 seconds the performance of computing
NodeA is slowed down from 10 Mips to 7.5 Mips due to thermal issues. At 25 seconds
the Cruise Control application is started by the driver. The Infotainment system and
the Navigation are started after 40 seconds respectively 55 seconds. Beginning with
second 70 the load now is gradually decreased back to its initial value. By this, it shall
be evaluated how the adaptation mechanism not only reacts on increased but also on
decreased load. Therefore, at 80 seconds the original performance of NodeA is restored.
Afterwards, the Cruise Control, Infotainment and Navigation are stopped at 80, 90
and 100 seconds.
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(Chameleon instance)
Components

Fitness
(before action)

Fitness
(after action)

Reward
(measured)

10
Slow down
NodeA
(10 to 7.5 Mips)

10.3 A1: RelocateLocalUnhealtyApp (A) Stability and Drive Dynamics: NodeD 0.347946 0.627541 0.279595

25
Start
Cruise Control

(NodeC )
25.41 A2: TuneLeastImportantApp (C) Driver Warning: Factor 2 0.283161 0.436721 0.15356
27.81 A3: TuneLeastImportantApp (C) Cruise Control: Factor 2 0.327877 0.569542 0.241665

40
Start
Infotainment

(NodeD)
40.25 A4: CompressLeastImportantApp (D) Infotainment: Factor 0.8 0.369106 0.554585 0.185479

55
Start
Navigation

(NodeD)
55.55 A5: CompressLeastImportantApp (D) Navigation: Factor 0.8 0.307556 0.312089 0.004533
57.65 A6: TuneLocalUnhealthyApps (D) Navigation: Factor 5 0.313027 0.44987 0.136843
59.65 A7: RelocateLocalUnhealthyApp (D) Navigation: NodeA 0.44987 0.512715 0.062845

70
Speed up
NodeA
(7.5 to 10 Mips)

80
Stop
Cruise Control

90
Stop
Infotainment

90.26
A8: UntuneMostImportantLocalApp (A) Navigation: Factor 4.5 0.59891 0.632326 0.033416
A9: UntuneMostImportantLocalApp (B) Driver Warning: Factor 1.5 0.598827 0.631418 0.032591

92.27
A10: UntuneMostImportantLocalApp (A) Navigation: Factor 4 0.632326 0.647241 0.014915
A11: UntuneMostImportantLocalApp (B) Driver Warning: Factor 1 0.631419 0.637067 0.005648

94.28 A12: UntuneMostImportantLocalApp (A) Navigation: Factor 3.5 0.647241 0.640076 -0.007165
96.28 A13: UntuneMostImportantLocalApp (A) Navigation: Factor 3 0.640076 0.639025 -0.001051
98.28 A14: UntuneMostImportantLocalApp (A) Navigation: Factor 2.5 0.639025 0.654917 0.015892

100
Stop
Navigation

Table 7.4: Evaluation 1 - Events and adaptation actions.
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The remaining columns of Table 7.4 show the actions selected by the autonomous
adaptation mechanism, the Chameleon middleware instance initiating the action, the
affected components, the system fitness and the gained reward. Selected adaptation
actions are described in more detail while explaining the evaluation results.

Figure 7.7 compares the number of unhealthy applications (applications which violate
their constraints) with and without the actions of the adaptation mechanism. As well,
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Figure 7.7: Evaluation 1 - Comparison of unhealthy applications with and without
adaptation.

the number of the overall activated applications, the events and the adaptation actions
as reference to Table 7.4 column three (e.g. A1 ≈ RelocateLocalUnhealthyApp) are
shown. It can be seen that the adaptation mechanism quickly reacts to unhealthy
applications in the system. Without adaptation, a large number of unhealthy appli-
cations occur. It also can be seen that some of the events can be counteracted by a
single adaptation action (e.g. A1, A4) while others require a sequence of adaptation
actions (e.g. A2-A3, A5-A7). None of these actions pauses an application. So here the
number of actually running applications is equal to the number of activated applications
(applications that want to run). The last actions (A8-A13) react to the decreased load
by undoing previous adaptation measures. This is not directly reflected in the number
of unhealthy apps but can be noted in Figure 7.8 where the system fitness is shown.

It can be seen that without adaptation the system fitness dramatically drops while
the fitness with adaptation stays always above zero and close to the maximal possible
fitness value of 1. Once the original load is gradually restored, the system fitness without
adaptation recovers1. With adaptation, the decrease of the fitness is counteracted by

1To avoid thrashing, the rule engine uses the worst of the last 5 health values of a component.
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Figure 7.8: Evaluation 1 - Comparison of the system fitness with and without adap-
tation.

the adaptation mechanism. For example, after slowing down NodeA the fitness of
the non-adapted system drops while the fitness of the adapted system remains at the
same level. This can be observed as well for the other events increasing the system
load. When the system gets back to its initial state, the undoing of the previous
adaptation measures also restore the fitness value back to its original level (like without
adaptations).

The following figures show the periods, execution times and health values of selected
applications in detail, ordered by their importance. First the diagrams for the most
important applications (importance level 7) Brake and Steering are displayed.

For the Brake (Figure 7.9), the start of the Cruise Control leads to a slight violation
of the execution time constraint given by the period as shown in the red line. This is
due to the fact that both applications reside on NodeC . The adaptation mechanism
reacts to this violation by tuning the least important active applications in the system
to the allowed limits (actions A2 and A3, cf. also Max Period (tune) in Table 7.2).

This leads to the restoration of the initial valid execution times. Also, all the other
load changes can be noticed in the diagram but do not cause any further violation
of the constraint. In contrast, without adaptation the constraint is heavily violated
especially after the start of the Infotainment. This is also reflected when comparing
the health values of the Brake application with and without adaptation as shown in

This enables a direct reaction to decreasing health values while the reaction to increasing health values
is delayed. Since the fitness is based on these health values, a delayed reaction of the fitness to system
improvement can be observed in the diagram.
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Figure 7.9: Evaluation 1 - Execution time and period of the Brake application.
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Figure 7.10. In particular, the two negative peaks of the yellow health curve (with
adaptation) trigger the adaptation actions A2 and A3.
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Figure 7.10: Evaluation 1: Health values of the Brake application.

For Steering, no violation occur at all when the adaptation mechanism is active (cf.
Figure 7.11a). In contrast, without adaptation (cf. 7.11b) the timing constraint given
by the period is violated after start of the Cruise Control and even more after the start
of Infotainment. The health values in Figure 7.12 clearly show this.

Next, the behavior of the medium important application Stability And Drive Dy-
namics (importance Level 5) is investigated. Figure 7.13 illustrates the execution time
and period of this application. Due to the slow down of the performance of NodeA,
this node no longer can handle the requirements of both applications Powertrain and
Stability and Drive Dynamics. Therefore, the adaption mechanism relocates the lower
important application Stability and Drive Dynamics to another suitable node (action
A1). The effect of this relocation on can also be seen on the node load shown in Figure
7.14, where the load of the nodes NodeA and NodeD is illustrated. When starting
Infotainment, another violation occurs which is counteracted by data compression
of the Infotainment application (action A4). Without adaptation, the system gets
massively overloaded leading to heavily violations of the constraint starting from the
first event. This is only resolved when the performance of NodeA is restored to its
original value. Also, the comparison of the health values as shown in Figure 7.15
confirm this observation.

Finally, the detailed timing of the low important Navigation application (importance
level 2) is shown in Figure 7.16. Once the Navigation is started after 55 seconds, the
load of the system is even more increased. Thus, the Navigation is initially not able to

101



7. Evaluation

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

e
xc

u
ti

o
n

 t
im

e
 [

s]
, p

e
ri

o
d

 [
s]

time [s]

execution time period

start
CruiseControl

slow down 
node A

start
Infotainment

speed up
node A

stop
CruiseControl

stop
Infotainment

stop
Navigation

start
Navigation

A1 A2

A3

A4 A5

A6

A7 A8&A9

A10&A11

A12

A13
A14

(a) With adaptation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120

e
xe

cu
ti

o
n

 t
im

e
 [

s]
, p

e
ri

o
d

 [
s]

time [s]

execution time period

start
CruiseControl

slow down 
node A

start
Infotainment

speed up
node A

stop
CruiseControl

stop
Infotainment

stop
Navigation

start
Navigation

A14

(b) Without adaptation.

Figure 7.11: Evaluation 1 - Execution time and period of the Steering application.
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Figure 7.12: Evaluation 1 - Health values of the Steering application.

keep its timing constraints given by the period. The adaptation mechanism reacts with
a sequence of three consecutive actions: First data compression (action A5) is applied.
As this is not enough to solve the issue, the period of the low important application
Navigation is tuned (action A6) to its maximum allowed value (tolerance parameter).
Additionally, the adaptation mechanism initiates a relocation of the Navigation to
reduce the load of NodeD (action A7). Also, this figure demonstrates nicely the undoing
of adaptation measures (untuning) when the system load is gradually decreased again.
After stopping Infotainment by the driver, the adaptation mechanism notices the
increased health of the available resources (node and bus) and therefore gradually
revokes the previous tuning (actions A8, A10, A12, A13, A14)1. Without adaptation,
the Navigation is completely unable to keep its constraint even when referring to the
maximum allowed tune value for the period (0.5s). The comparison of the health values
shown in Figure 7.17 also indicate the massive unhealthiness of the system without
adaptation while with adaptation the Navigation is restored to healthiness within a
short period of time after its activation.

The reaction times to the events comply to the bounds derived in Section 7.2. All ac-
tions are triggered on the state change of a local components (cf. Section 7.3.2), so equa-
tion 7.8 (tReactionT imelocalj

≤ tEvaluationPeriod+(nmonitorP eriods+1)·tMonitoringP eriodlocalj
)

applies for the reaction times. The involved components have a maximum local moni-
toring period of 250ms and the events increasing the load can be monitored within
the duration of a single period (nmonitoringP eriods = 1). The reaction time bound then

1The actions A9 and A11 refer to the untuning of the Driver Warning application.
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Figure 7.13: Evaluation 1 - Execution time and period of the Stability and Drive
Dynamics application.
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Figure 7.16: Evaluation 1 - Execution time and period of the Navigation application.
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Figure 7.17: Evaluation 1 - Health values of the Navigation application.

calculates to 100+2 ·250 = 600ms. This bound is kept for all reaction times in Table 7.4
(10s → 10.3s, 25s → 25.41s, 40s → 40.25s, 55s → 55.55s, 90s → 90.26s). For the se-
quences of actions A5-A7 and A8-A14, the adaptation times according to equation 7.21
(tAdaptation ≤ tReactionT ime1 +

∑x−1
i=1

(
tRewardDelayi

+ (Lagi+1 − 1) · tEvaluationPeriod

)
) also

hold. The reward delay for all this actions is the global value of 2000ms and the Lag is
1 for all actions except A6, which has a value of 2 (cf. Appendix B.5). Furthermore,
the sequence A8-A14 is partially executed on different Chameleon instances, so a small
communication overhead can be noticed. However, the behavior of A2-A3 is different
because this is not a real sequence but two separate actions. This can be clearly seen in
Figure 7.10, A2 is triggered by the unhealthy Brake after starting Cruise Control, which
rises the health value marginally above 0 (0.072) and therefore finishes the adaptation
process. However, due to variations in the execution of Cruise Control, the health
value of Brake again gets negative 2.7 seconds later triggering the second adaptation
A3. This adaptation now solves the problem and increases the health value of Brake to
a stable level above 0.5. So, A2 and A3 are separately triggered actions, which both
keep the reaction time bound of 600ms after the system gets unhealthy.

To get an impression of the communication situation during the experiment, Figure
7.18 examines the load of the communication bus. Once the additional applications are
started, the bus becomes a bottleneck due to the additional communication load. The
maximum capacity of the bus (500000 bits/s) (cf. Section 7.3.1) is strongly exceeded
without adaptation. With adaptation, the load mostly gets aligned to or below its
maximum value.

The previous diagrams also demonstrate that the health values are an excellent

107



7. Evaluation

0

100000

200000

300000

400000

500000

600000

700000

800000

0 20 40 60 80 100 120

lo
a

d
 [

b
it

s
/

s
]

time [s]

without adaptation with adaptation

start
CruiseControl

slow down 
node A

start
Infotainment

speed up
node A

stop
CruiseControl

stop
Infotainment

stop
Navigation

start
Navigation

A1 A2 A3 A4 A5
A6

A7
A8&A9

A10&A11

A12

A13

A14

Figure 7.18: Evaluation 1 - Load of the communication bus Comm1.

indicator for the violation of constraints and impact of the adaptation actions. Thus,
in the following evaluations the health values are used as the main metric for the
adaptation results.

Conclusion This evaluation clearly shows the benefits of the adaptation mechanism.
It is able to keep the system in a healthy state by keeping the defined constraints most
of the time. Especially for the high important apps the violations are non existent
to marginal. Without adaptation, the figures show a huge amount of violations. It
also can be seen that mixed-criticality is respected by the adaptation process due to
the basic rule set. For example, regarding tuning and compression the least important
applications are affected to create capacity for the more important applications. The
evaluation also confirms the time bounds retrieved in Section 7.2.

In following evaluation sections, these findings for the adaptation mechanism will be
successively deepened and extended.
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7.3.4. Evaluation 2 - Autonomous Versus Manual Adaptation

Before the implementation of the adaptation mechanism was finished, there was the
idea to test the effectivity of the available adaptation actions manually as a proof
of concept. The goal was to determine if the chosen action portfolio (cf. 4.4) would
be suitable to handle overload situations. The same application scenario used for
evaluation 1 including all events up to second 70 were chosen for this early experiment1.
As reaction to the events, adaptation actions were carefully selected manually by the
application developer. Besides its original goal of validating the effectivity of the
action portfolio, this experiment now also can serve as a comparison between the
effectivity of the autonomous adaptation mechanism versus manual adaptation by a
human developer. Although not being a strict evidence, it gives a good impression on
the quality and capability of the selected autonomous self adaptation mechanism in
conjunction with its rule set. Table 7.5 shows the manually chosen adaptation actions
in comparison to the autonomously selected ones.

time
[s]

Event
Actions

(Chameleon)
Action

(manual)
Components

10
Slow down
NodeA
(10 to 7.5 Mips)

10.3 RelocateLocalUnhealtyApp (A1)
Stability and Drive Dynamics:
NodeD

15 Relocate
Stability and Drive Dynamics:
NodeD

25
Start
CruiseControl

(NodeC )
25.41 TuneLeastImportantApp (A2) Driver Warning: Factor 2
27.81 TuneLeastImportantApp (A3) Cruise Control: Factor 2
30 Tune period and priority Cruise Control: Factor 1.5

40
Start
Infotainment

(NodeD)
40.25 CompressLeastImportantApp (A4) Infotainment: Factor 0.8

45
Compress Infotainment: Factor 0.75
Tune period and priority Infotainment: Factor 2

55
Start
Navigation

(NodeD)
55.55 CompressLeastImportantApp (A5) Navigation: Factor 0.8
57.65 TuneLocalUnhealthyApps (A6) Navigation: Factor 5
59.65 RelocateLocalUnhealthyApp (A7) Navigation: NodeA

60
Pause Infotainment

Tune period and priority Navigation: Factor 3

Table 7.5: Evaluation 2 - Events and adaptation actions of autonomous and manual
adaptation.

The manual actions had been chosen by the developer based on the node and
communication load. While the first action (action A1: relocate application to a
suitable node) is identical for both manual and autonomous adaptation, in the following
the autonomous actions are more fine grain and less restrictive. In particular, the
autonomous adaptation succeeds to keep the system healthy without pausing any
application by efficiently combining compression, tuning and relocation (e.g. actions
A5 - A7). The human developer did not find this solution and paused one application

1The manual adaptation experiment focused on increasing load only. The subsequent decrease of
load beginning with second 70 was added later for evaluation 1.
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instead. Overall, the autonomous adaptation performs significantly better than the
manual adaptation, as also can bee seen in the number of unhealthy applications
compared in Figure 7.19. Also, the pausing of an application by the manual adaptation
can be seen in the number of running applications1.
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Figure 7.19: Evaluation 2 - Comparison of unhealthy applications with autonomous
and manual adaptation including the number of running applications.

Conclusion Autonomous adaptation is a good choice for maintaining the system in a
healthy state and is able to find solutions hardly to see by a human.

7.3.5. Evaluation 3 - Communication Overhead

This evaluation examines the communication overhead introduced by the Chameleon
middleware. The overhead refers to the additional communication data required to
support the management and adaptation processes performed by Chameleon. It results
mainly from the data for the overlay network routing of the middleware (where is
which application running and how can it be reached) and the data of the remote
monitoring2 (cf. Sections 4.1, 4.3 and 5.1).

1Activated application: An application which should be running; Running application: An applica-
tion which is running.

2The communication overhead depends on the period and the number of events (changes) that
lead to the distribution of parameter and status data. The more frequently the data is distributed
in the system, the more up-to-date the remote monitoring data is but the higher the communication
overhead for the dissemination will become. Remote monitoring data is disseminated each n

th local
monitoring period, where n has been set to 2 for all evaluations.
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Figure 7.20 shows the overhead percentage (overhead[%]) during execution of evalu-
ation 1. It indicates the additional communication effort in relation to the payload.
In this context, payload (payload[bits/s]) refers to the data being transmitted by the
applications to perform their tasks. It represents the essential bits per second that
are conveyed and processed. The overhead (overhead[bits/s]) refers to the additional
communication data in bits per second introduced as a result of the management and
adaptation processes performed by the Chameleon middleware.

Thus, the overhead percentage overhead[%] is calculated as follows:

overhead[%] =





0 if payload[bits/s] + overhead[bits/s] = 0
overhead[bits/s]·100

payload[bits/s]+overhead[bits/s]
else

(7.25)
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Figure 7.20: Evaluation 3 - Percentage communication overhead of the adaptive
middleware Chameleon.

At the beginning, the overhead percentage is relatively high with 17.9%. This is the
case since the payload is rather small at system startup because the applications are
just starting. However, there is an overhead due to the notification events for setting
up the overlay network. Once the system has settled, the overhead is much lower and
relatively constant. The average overhead percentage is 6.3% and the minimum is 3.7%.
The fluctuations in the overhead percentage after the system startup are caused by the
varying total payload in the system. In general, the absolute overhead increases linearly
with the number of active applications, regardless of how much payload the applications
generate. This is clearly visible in Figure 7.20. As soon as (data-intensive) applications
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are started from second 25 (start of Cruise Control, Infotainment and Navigation),
the absolute overhead remains almost constant while the payload increases noticeably,
resulting in a lower overhead percentage. After 80 seconds, those applications are
gradually stopped which leads to an increase of the overhead percentage due to the
decreasing total payload in the system. This can also be seen when looking at the
overall communication load already shown in Figure 7.18 of evaluation 1.

Conclusion The evaluation shows a reasonable small overhead for the communication
of the adaptive middleware Chameleon.

7.3.6. Evaluation 4 - Handling of Failures

In the following, the pressure on the adaptation mechanism is increased by introducing
node failures. A node failure causes the middleware instance and all applications
running on this node to crash. It will be examined how the system reacts on such
failures. In a first step, the failure of a single node is triggered. The same scenario
as in evaluation 1 including all events is used. Additionally, a failure of NodeB is
injected after 5 seconds. Table 7.6 shows all events and the corresponding actions of
the adaptation mechanism.

It can be seen in Figure 7.21 that the adaptation mechanism is capable of quickly
restarting the applications crashed by the node failure.
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Figure 7.21: Evaluation 4 - Number of unhealthy, running and activated applications.

Furthermore, only when the load in the system is further increased there is shortly
a maximum of two unhealthy applications in the system. Otherwise, the adaptation
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mechanism manages to maintain all applications, including the restarted ones, in a
healthy state even with only three nodes left. The good condition of the entire system
despite the failure is also reflected in the fitness (cf. Figure 7.22).
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Figure 7.22: Evaluation 4 - System fitness.

Let us now have a look at the restart sequence. As expected, the two most im-
portant applications (Passenger Safety, Steering, both with importance level 7) are
restarted first. The time bound for the reaction time here calculates according to Equa-
tion 7.12 (tReactionT imeCrashk

≤ lLifeSignLimit · tMonitoringP eriodremotek
+ tCommunicationk

+

tEvaluationPeriod). Since the remote monitoring period for Passenger Safety is 250ms1

and the life sign limit lLifeSignLimit is 2, the reaction time bound calculates to 600ms
plus the communication time. This bound is kept for restarting Passenger Safety
(A1) as can be seen in Table 7.6. The rule for restarting a crashed application has
an individual reward delay of 300ms (cf. action definition in Section B.4). There-
fore, as second action of the sequence the application Steering is restarted this time
later (A2). Then, again after 300ms, the application Stability and Drive Dynamics
(importance level 5) is tuned (A3). Finally, the application Driver Warning (impor-
tance level 3) is restarted (A4). Since the tuning action (A3) uses the global reward
delay of 2000ms and due to communication (A4 is executed on Chameleon instance A
while A3 is executed on instance D), this happens 2120ms later (cf. Equation 7.21:
tAdaptation ≤ tReactionT ime1 +

∑x−1
i=1

(
tRewardDelayi

+ (Lagi+1 − 1) · tEvaluationPeriod

)
). The

restart of the fourth application Lights does not belong to this sequence. The reason
for that is not the slow down event of NodaA at 10 seconds. In fact, the reason is the

1
2-times its local monitoring period, which is 5-times its execution period.
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remote monitoring period of Lights. Due to its slow execution period (500ms), the
remote monitoring period of Lights is 5 seconds. Therefore, its worst case reaction
time to the crash calculates to 10 seconds plus the communication time. At the time
A4 is executed, the crash of Lights has not even been noticed yet. This also explains
why the higher important application Lights (importance level 6) is restarted after the
lower important application Driver Warning1. Thus, action A5 to restart Lights is not
part of the sequence, but a separate action which keeps its reaction time bound.

Finally, when looking at the reaction times of the other actions it can be seen
that the actions performed while the system load rises (A6-A10) keep the reac-
tion time bound of 600ms retrieved in Section 7.3.3. However, the actions per-
formed while the system load decreases (A12-A15) seem violate this bound. This
is explained by the value of nMonitoringP eriods in Equation 7.8 (tReactionT imelocalj

≤

tEvaluationPeriod + (nmonitorP eriods + 1) · tMonitoringP eriodlocalj
). As already mentioned in

Section 7.2, nMonitoringP eriods = 5 for increasing health values (decreasing load) while
it is 1 for decreasing health values (increasing load). It allows to quickly react to
decreasing conditions and to avoid trashing when conditions increase. In combination
with the slow local monitoring period of Lights and Driver Warning (1.25s), the
reaction time bound calculates to 7.6s, which is easily kept.

Conclusion The adaptation mechanism is not only capable of quickly restarting the
applications crashed by the node failure, but also manages to maintain the system
in good condition where all applications are running and in a healthy state. Even
with one node less the autonomous adaptation finds a solution to keep the complete
functionality at partially reduced quality for the low important functions.

1Such behavior can be circumvented by using the node life sign instead of the application life sign
to detect applications crashed due to a node failure, as done in evaluation 6 (c.f. Section 7.3.8). It
allows to notice the crashed applications simultaneously.
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time
[s]

Event
Actions

(Chameleon instance)
Components

Fitness
(before action)

Fitness
(after action)

Reward
(measured)

5
NodeB
fails

5.5 A1: RestartDeadApp (A) Passenger Safety: NodeD 0.13605 0.112684 -0.023366
5.8 A2: RestartDeadApp (A) Steering: NodeD 0.112685 0.57859 0.465905
6.1 A3: TuneLeastImportantApp (D) Stability and Drive Dynamics: Factor 2 0.415416 0.313172 -0.102244
8.22 A4: RestartDeadApp (A) Driver Warning: NodeC 0.313172 0.665961 0.352789

10
Slow down
NodeA
(10 to 7.5 Mips)

10.12 A5: RestartDeadApp (A) Lights: NodeC 0.180809 0.638305 0.457496

25
Start
Cruise Control

(NodeC )
25.43 A6: TuneLocalUnhealtyApp (C) Cruise Control: Factor 2 0.249993 0.527648 0.277655

40
Start
Infotainment

(NodeD)
40.25 A7: CompressLeastImportantApp (D) Infotainment: Factor 0.8 0.384588 0.3932 0.008612
42.39 A8: TuneLocalUnhealtyApp (C) Driver Warning:: Factor 2 0.3932 0.429646 0.036446
44.49 A9: TuneLeastImportantApp (C) Infotainment: Factor 6 0.428949 0.422615 -0.006334
46.59 A10: TuneLeastImportantApp (C) Lights: Factor 2 0.423491 0.466639 0.043148

55
Start
Navigation

(NodeD)
55.6 A11: TuneLocalUnhealtyApp (D) Navigation: Factor 5 0.376648 0.416008 0.03936

70
Speed up
NodeA
(7.5 to 10 Mips)

80
Stop
Cruise Control

81.03 A12: UntuneMostImportantLocalApp (C) Lights: Factor 1.5 0.52719 0.545674 0.018484
83.03 A13: UntuneMostImportantLocalApp (C) Lights: Factor 1.0 0.545674 0.569585 0.023911
85.03 A14: UntuneMostImportantLocalApp (C) Driver Warning: 1.5 0.569585 0.566342 -0.003243

90
Stop
Infotainment

93.33 A15: UntuneMostImportantLocalApp (C) Driver Warning: Factor 1.0 0.579286 0.584418 0.005132

100
Stop
Navigation

Table 7.6: Evaluation 4 - Events and adaptation actions.
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7.3.7. Evaluation 5 - Handling of Failures Leading to Extreme Overload
Situations

In the previous evaluation, the adaptation mechanism was able to keep all applications
running even with a single node failure. Now, the pressure and load on the system is
maximized by successively injecting node failures unless only a single node is left. In
particular, the aspect of mixed-criticality and the influence of the importance can be
investigated in such an extreme overload situation. The starting scenario is the same
as for evaluation 1. The failure of the nodes NodeB, NodeC and NodeD are injected
after 5, 20 and 35 seconds. In contrast to evaluation 1, no other events are triggered
to focus on the effect of massive node failures only. Table 7.7 shows the events and
the actions of the adaptation mechanism. It can be seen in Figures 7.23 and 7.24 that
the adaptation mechanism is capable of quickly restarting the applications crashed by
node failure as long as there is sufficient computing capacity left.
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Figure 7.23: Evaluation 5 - Number of unhealthy, running and activated applications.

Figure 7.24 thereby shows the allocation of applications ordered by importance
(highest importance on top).

Also it can be noticed, that as long as more than one node remains available, the
adaptation mechanism manages to keep all applications running only by restarting
the dead applications and tuning Stability and Drive Dynamic to the allowed limits
(actions A1-A8). Thereby, crashed applications are restarted beginning with the highest
importance. As in the previous evaluation, Lights (importance level 6) is only restarted
after Driver Warning (importance level 3) due to Lights longer remote monitoring
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Figure 7.24: Evaluation 5 - Allocation of applications on nodes ordered by importance.

period which leads to a later notice of the failure (cf. Evaluation 4 7.3.6)1.
The overall good condition of the entire system despite the failures is reflected in the

fitness (cf. Figure 7.25). The fitness value drops shortly below zero when NodeD fails
and thus, only NodeA is left for application execution. After the failure of NodeD the
adaptation mechanism first restarts the highest important application Passenger Safety
(actions A9-A10)2. Since the system load then is to high for further recovery, the task
dropping strategy pauses applications beginning with the lowest importance in strictly
ascending order to be able to restart the most important application Steering (actions
A11-A16). Figure 7.24 and Table 7.7 can be used to more detailed explain the behavior
of the first group of rules (which is dedicated to handle crashes, cf. Section 7.3.2 and
Appendix B.5) in the basic rule set when NodeD fails.

The applications Passenger Safety, Steering, Lights, Data Repository and Driver
Warning directly die together with NodeD. First, Passenger Safety is restarted. Then,
the lowest important applications are paused to free resources. This leads to the stop
of the applications Stability and Drive Dynamics and Powertrain. Pausing is done
regardless if an application is crashed or not, thus ensuring the applications are paused
in strictly ascending order of importance. Therefore, also the dead applications Driver
Warning, Data Repository and Lights are paused according to their importance to

1As already mentioned in the previous evaluation such behavior can be circumvented by using the
node life sign instead of the application life sign to detect applications crashed due to a node failure,
as done in evaluation 6 (c.f. Section 7.3.8). It allows to notice the crashed applications simultaneously.

2Life signs of applications and nodes are sent independently of each other. It is possible that the
application live sign has expired, but the node’s has not. Thus, the adaptation mechanism first tries to
restart Passenger Safety on the failed NodeD.
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Figure 7.25: Evaluation 5 - System fitness.

prevent them from being restarted at the cost of higher important applications. Finally,
the high importance application Steering is restarted. The timing constraints derived in
Section 7.2 are also kept. Especially the individual reward delay of 300ms for restarting
and pausing is directly reflected in the sequence A9 - A16, which is executed on the
same Chameleon middleware instance. Together with the reaction time of 520ms, the
overall adaptation process takes 2.62 seconds after the failure of NodeD

1.
In the end, the three highest important applications (Brake, Steering, Passenger

Safety) are running on the only remaining NodeA. Thus, the first group of rules
has ensured that applications are kept alive in the order of importance as desired.
Furthermore, the health of the most important applications is illustrated in Figure 7.26.
It clearly can be seen that all applications are in a healthy state (nearly) the whole
time. Only the health of Steering shortly drops below zero when NodeB fails, on which
the application is running.

Conclusion The adaptation mechanism is able to handle extreme overload situation
and behaves according to the application’s importance by tuning and or pausing of
less important applications for the benefit of the higher important ones. Thus, the
mixed-criticality of the system is respected by keeping the most important application
alive as long as the resources are still sufficient.

1For a highly critical application like Steering this is a long time which has to be covered by a
backup emergency mode. A possibility to speed this up is shown in the next evaluation section. It also
has to be taken into account that this is an extreme overload situation where 3 out of 4 nodes are
failing within a short period of time.
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Figure 7.26: Evaluation 5 - Health of the three most important applications in the
system.
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valu
a
tion

time
[s]

Event
Actions

(Chameleon instance)
Components

Fitness
(before action)

Fitness
(after action)

Reward
(measured)

5 NodeB fails
5.5 A1: RestartDeadApp (A) Passenger Safety: NodeD 0.13605 0.112684 -0.023366
5.8 A2: RestartDeadApp (A) Steering: NodeD 0.112685 0.57859 0.465905
6.21 A3: TuneLeastImportantApp (D) Stability and Drive Dynamics: Factor 2 0.415416 0.313172 -0.102244
8.22 A4: RestartDeadApp (A) Driver Warning: NodeC 0.313172 0.665961 0.352789
10.12 A5: RestartDeadApp (A) Lights: NodeC 0.182811 0.658373 0.475562
20 NodeC fails
20.52 A6: RestartDeadApp (A) Brake: NodeA 0.084679 0.517752 0.433073
23.32 A7: RestartDeadApp (A) Driver Warning: NodeD 0.213203 0.56628 0.353077
25.22 A8: RestartDeadApp (A) Lights: NodeD 0.089786 0.56599 0.476204
35 NodeD fails
35.52 A9: RestartDeadApp (A) Passenger Safety: NodeD 0.023876 -0.017908 -0.041784
35.82 A10: RestartDeadApp (A) Passenger Safety: NodeA -0.017908 -0.453675 -0.435767
36.12 A11: PauseLeastImportantAppFast (A) Driver Warning -0.453675 -0.491015 -0.03734
36.42 A12: PauseLeastImportantAppFast (A) Data Repository -0.491014 -0.337163 0.153851
36.72 A13: PauseLeastImportantAppFast (A) Stability and Drive Dynamics -0.337164 -0.218061 0.119103
37.02 A14: PauseLeastImportantAppFast (A) Lights -0.218061 -0.293416 -0.075355
37.32 A15: PauseLeastImportantAppFast (A) Powertrain -0.293416 -0.339557 -0.046141
37.62 A16: RestartDeadApp (A) Steering: NodeA -0.339558 0.14897 0.488528

Table 7.7: Evaluation 5 - Events and adaptation actions.
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7.3.8. Evaluation 6 - Handling Failures and Extreme Overload Situations with
Application Specific Rules

Now it will be evaluated how application specific rules can speed up the recovery
of specific extremely high important applications. Therefore, application specific
emergency rules are added to the basic rule set. They strictly distinguish between the
most important applications Brake, Steering and Passenger Safety with the importance
level 7 and all other applications with an importance level below 7. There are three
new rules (where the first two extent the basic rule set while the third replaces the If

RestartMightBeUseful Then RestartDeadApp rule from the basic rule set) together
with three new sets and actions, which can be found in Appendix C.

1. Simultaneous pause of applications below importance level 7:

– The first new rule detects if one or more importance level 7 applications
have failed.

– In response, it quickly creates space by pausing all applications with a
importance level below 7 simultaneously using a single action.

– This action efficiently frees up resources and prepares for the subsequent
restart of the failed importance level 7 applications.

2. Quick restart of all failed importance level 7 applications:

– The second new rule focuses on promptly restarting all failed importance
level 7 applications.

– It initiates a single action to restart these applications as quickly as possible.

– This ensures the restoration of critical functionalities provided by importance
level 7 applications without significant delay.

3. Sequential restart of paused applications below level 7:

– After the failed importance level 7 applications have been restarted, this
rule takes care of restarting the paused applications below importance level
7 one by one, beginning with the highest importance.

– By using this order of restarts, the system ensures that essential functionali-
ties are restored according to their importance.

For the evaluation, the same experiment as in the previous section has been conducted.
Table 7.8 shows the events and actions of the adaptation mechanism. The above
described strategy of the emergency rule set is clearly evident in Figures 7.27 and 7.28.
After each node failure, low and medium important applications are paused to make

room for the following simultaneous restart of the important applications (actions
A1-A2, A8-A9, A13-A14). Afterwards, the paused applications are restarted/unpaused
in order of decreasing importance until the resources are no longer sufficient for another
unpausing (actions A3-A7, A10-A12). As a result of the strategy, there aren’t any
unhealthy applications in the system (cf. Figure 7.27) because all the lower important
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Figure 7.27: Evaluation 6 - Number of unhealthy, running and activated applications.
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Figure 7.28: Evaluation 6 - Allocation of applications on nodes ordered by importance.
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applications are paused immediately so the high important applications can use all
resources. Then, applications of lower importance are restarted only if there is capacity
left. Therefore, the health of the high important applications shown in Figure 7.29 is in
a very good state the whole time. In comparison to the previous evaluation, there is no
drop of the health value below zero. This good state of the high important applications
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Figure 7.29: Evaluation 6 - Health of the three most important applications in the
system.

is due to the usage of the node life sign for the simultaneously detection of application
crashes1 caused by node failure and the strict distinction between the high important
application (Brake, Steering and Passenger Safety) and all other application which
lead to prioritized and fast restarting of high important applications. For example,
the overall adaptation process to restart the high important applications Steering
and Passenger Safety after the failure of NodeD takes only 0.94s with the emergency
rules, which is nearly 3-times faster as in the previous evaluation. This fast reaction
time comes on the expense of the other applications in system (as intended with
the prioritization in the emergency rules), which is also reflected in the fitness (cf.
Figure 7.30). It drops below zero after each node failure because the fitness reflects
not only the number of crashed but also the number of paused applications in the
system. Thus, the simultaneous pausing of multiple applications after a failure of a
node, together with the crashed application, lead to a drop of the fitness. However,
each time the fitness recovers quickly to a positive value due to the successive restart

1The simultaneous detection of application crashes by the node life sign avoids importance anomalies
where lower priority applications are restarted before higher important application because their death
has not been detected yet (cf. Sections 7.3.7 and 7.3.6).
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Figure 7.30: Evaluation 6 - System fitness.

of the applications in order of their importance1.

Conclusion The evaluation shows that application specific rules can significantly speed
up the recovery process for high important applications at the cost of lower important
applications. This demonstrates the flexibility of the rule based adaptation concept and
the language Rango. Besides the strict threshold between high and lower importance,
the speedup is also caused by the capability to start and pause several applications
simultaneously by the set concept of Rango. Furthermore, the use of the node life sign
age instead of the application life sign age offers the advantage to detect applications
crashed due to node failures at once.

1The importance is also taken into account in the fitness calculation (cf. Section 5.2.3).

124



7
.3

.
E

valu
ation

of
th

e
C

h
a
m

eleo
n

R
u
le

B
ased

M
A

P
E

-K
A

d
ap

tation
M

ech
an

ism

time
[s]

Event
Actions

(Chameleon instance)
Components

Fitness
(before action)

Fitness
(after action)

Reward
(measured)

5
NodeB
fails

5.7 A1: PauseAllLowMediumImportanceApps (A)
Lights, Driver Warning, Data Repository,
Stability and Drive Dynamics, Powertrain

-0.36981 -0.610137 -0.240327

6 A2: RestartAllHighImportanceDeadApps (A) Steering, Passenger Safety: NodeD -0.610136 0.424859 1.034995
8 A3: RestartLowMediumImportantDeadApp (A) Lights: NodeC 0.424859 0.504174 0.079315
10 A4: UnpauseMostImportantLocalApp (A) Powertrain 0.504173 0.533886 0.029713
12 A5: UnpauseMostImportantLocalApp (A) Stability and Drive Dynamics 0.533887 0.512797 -0.02109
14.01 A6: UnpauseMostImportantLocalApp (D) Data Repository 0.512797 0.586531 0.073734
16.02 A7: RestartLowMediumImportantDeadApp (A) Driver Warning: NodeC 0.587143 0.651019 0.063876

20
NodeC
fails

20.42 A8: PauseAllLowMediumImportanceApps (A)
Lights, Driver Warning, Data Repository,
Stability and Drive Dynamics, Powertrain

0.551913 -0.156417 -0.70833

20.72 A9: RestartAllHighImportanceDeadApps (A) Brake: NodeA -0.156416 0.36234 0.518756
22.72 A10: RestartLoveMediumImportantDeadApp (A) Lights: NodeD 0.36234 0.441468 0.079128
24.72 A11: UnpauseMostImportantLocalApp (A) Powertrain 0.441468 0.435052 -0.006416
26.73 A12: UnpauseMostImportantLocalApp (D) Data Repository 0.435052 0.508657 0.073605

35
NodeD
fails

35.64 A13: PauseAllLowMediumImportanceApps (A) Lights, Data Repository, Powertrain -0.506824 -0.707777 -0.200953
35.94 A14: RestartAllHighImportanceDeadApps (A) Steering, Passenger Safety: NodeA -0.707777 0.320886 1.028663

Table 7.8: Evaluation 6 - Events and adaptation actions.
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7.3.9. Evaluation 7 - Handling of Design Flaws

This evaluation gives an example on how design flaws can be handled by appropriate
rules. The same application scenario as for the previous evaluations together with the
basic rule set is used. Thereby, all eleven applications are activated simultaneously
at system startup. No events are triggered during runtime, but an initial design flaw
is set: No priorities are assigned to the applications and priority based scheduling
is deactivated for the computation nodes (NodeA, NodeB, NodeC and NodeD) and
the communication channel (Comm1). Table 7.9 shows the actions of the adaptation
mechanism.

time
[s]

Actions
(Chameleon instance)

Components
Fitness

(before action)
Fitness

(after action)
Reward

(measured)

0.2
A1: ActivatePriorityNodeScheduling (A) NodeA -2.484305 -0.251194 2.233111
A2: ActivatePriorityNodeScheduling (B) NodeB -1.855823 0.375527 2.23135

2.21

A3: TuneLeastImportantApp (A)
Infotainment:
Factor 10

-0.251194 -0.087314 0.16388

A4: TuneLeastImportantApp (B)
Infotainment:
Factor 10

0.375527 0.255901 -0.119626

A5: ActivatePriorityNodeScheduling (C) NodeC -0.251194 -0.087314 0.16388
A6: ActivatePriorityNodeScheduling (D) NodeD -0.251194 -0.087314 0.16388

4.22

A7: ActivatePriorityCommScheduliung (A) Comm1 -0.087314 0.503002 0.590316
A8: ActivateNodePreemption (B) NodeB 0.255901 0.503002 0.247101
A9: ActivateNodePreemption (C) NodeC -0.087314 0.503002 0.590316
A10: ActivateNodePreemption (D) NodeD -0.087314 0.503002 0.590316

6.23
A11: TuneLeastImportantApp (A)

Navigation:
Factor 5

0.503003 0.591159 0.088156

A12: ActivateCommPreemtion (B) Comm1 0.503003 0.591159 0.088156

A13: UntuneMostImportanLocalApp (D)
Infotainment:
Factor 9.5

0.503003 0.591159 0.088156

10.24
-
56.24

A14-A37:
UntuneMostImportantLocalApp (D)

Infotainment,
Navigation:
Factor 1

0.591159 0.678232 various

Table 7.9: Evaluation 7 - Adaptation actions.

The lack of the priority based scheduling on the nodes and communication channel
at system start is clearly visible in the system fitness and the number of unhealthy
applications shown in Figures 7.31 and 7.32.

The fitness increases strongly with the activation of the priority based scheduling1 on
the nodes and communication channel by the corresponding rules in the basic rule set
(third group of rules, cf. Section 7.3.2). With the further activation of preemption for
several of these components2, the fitness reaches a very good positive value. The same
observation can be made for the number of unhealthy applications (cf. Figure 7.32).
After the priority based scheduling and preemption is activated by the Chameleon
instances, all activated applications are running healthy.

Furthermore, the initial tuning of the applications Navigation and Infotainment to
the allowed limits (actions A3, A4, A11) can be gradually removed (actions A13-A37).

Conclusion This evaluation shows that Chameleon is able to correct certain design
flaws by appropriate rules within the scope of the system’s capabilities.

1The priorities are assign to the application autonomously at runtime based on RMS.
2By applying the rules, the autonomous adaptation process determines that it is not necessary to

activate preemption on all of these components to bring the system to a healthy state. Preemption on
NodeA can e.g. be omitted.
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Figure 7.31: Evaluation 7 - System fitness.
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Figure 7.32: Evaluation 7 - Number of unhealthy, activated and running applications.
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7.3.10. Evaluation 8 - E�ects of Learning

The following evaluation aims to demonstrate the effect of learning by the reward.
Therefore, an additional rule is introduced which has the same condition as an already
existing rule but a different action. The rule engine can now learn which of both rules
performs better under this condition and therefore has to be preferred.

Thus, the new rule

If TuningUnhealthyAppsMightBeUseful

Then TuneLocalUnhealthyAppsAlternative Lag 2

Note " Alternative rule if we have unhealthy

tunable apps but comm is ok , lag due to

race conditions "

has been added to the already existing rule with the same condition

If TuningUnhealthyAppsMightBeUseful

Then TuneLocalUnhealthyApps Lag 2

Note "Rule if we have unhealthy tunable apps

but comm is ok , lag due to race conditions "

with the alternate action

DefineAction TuneLocalUnhealthyAppsAlternative :

TunePeriodAndPriority LocalUnhealthyTunableApps

To 0.5

Note "tune a local unhealthy app to 0.5"

to the already existing action

DefineAction TuneLocalUnhealthyApps :

TunePeriodAndPriority LocalUnhealthyTunableApps

To Current Limit

Note "tune a local unhealthy app to its limit"

Exactly the same evaluation scenario and events as for evaluation 1 are used. The
only difference is the additional rule shown above. Table 7.10 outlines the events and
the adaptation actions. It can be seen that the new rule is executed exactly once at
time 57.65 (action A6) . The resulting reward is strongly negative (−0.815) which can
also be seen in a drop of fitness and the peak of unhealthy applications at that time in
Figures 7.33 and 7.34. Afterwards, the new rule is never applied again. Instead, the
alternate rule with the same condition is used to bring the system back into a healthy
state (actions A7 and A9).

Conclusion This evaluation shows that Chameleon is able to learn from past experience.
If a rule has not the desired effect, the reward decreases and thus is no longer applied.
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Figure 7.33: Evaluation 8 - System fitness.
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Figure 7.34: Evaluation 8 - Number of unhealthy applications.
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time
[s]

Event
Actions

(Chameleon instance)
Components

Fitness
(before action)

Fitness
(after action)

Reward
(measured)

10
Slow down
NodeA
(10 to 7.5 Mips)

10.3 A1: RelocateLocalUnhealtyApp (A) Stability and Drive Dynamics: NodeD 0.347946 0.627541 0.279595

25
Start
CruiseControl

(NodeC )
25.41 A2: TuneLeastImportantApp (C) Driver Warning: Factor 2 0.283161 0.436721 0.15356
27.81 A3: TuneLeastImportantApp (C) Cruise Control: Factor 2 0.327877 0.569542 0.241665

40
Start
Infotainment

(NodeD)
40.25 A4: CompressLeastImportantApp (D) Infotainment: Factor 0.8 0.369106 0.554585 0.185479

55
Start
Navigation

(NodeD)
55.55 A5: CompressLeastImportantApp (D) Navigation: Factor 0.8 0.307556 0.312089 0.004533
57.65 A6: TuneLocalUnhealthyAppsAlternative (D) Navigation: Factor 0.5 0.313027 -0.502291 -0.815318
59.75 A7: TuneLocalUnhealthyApps (D) Stability and Drive Dynamics: Factor 2 -0.502291 0.092478 0.594769
61.75 A8: RelocateLocalUnhealthyApp (D) Stability and Drive Dynamics: NodeA 0.092478 0.342574 0.250096
63.75 A9: TuneLocalUnhealthyApps (D) Navigation: Factor 5 0.342574 0.495224 0.15265
65.85 A10: TuneLeastImportantApp (D) Infotainment: Factor 10 0.495224 0.533213 0.037989

70
Speed up
NodeA
(7.5 to 10 Mips)

80
Stop
Cruise Control

80.65 A11: UntuneMostImportantLocalApp (D) Navigation: Factor 4.5 0.608246 0.622654 0.014408
82.65 A12: UntuneMostImportatnLocalApp (D) Navigation: Factor 4 0.622654 0.625853 0.003199
84.65 A13: UntuneMostImportatnLocalApp (D) Navigation: Factor 3.5 0.625853 0.62337 -0.002483
86.65 A14: UntuneMostImportatnLocalApp (D) Navigation: Factor 3 0.623371 0.625141 0.00177
88.65 A15: UntuneMostImportatnLocalApp (D) Navigation: Factor 2.5 0.625141 0.645066 0.019925

90
Stop
Infotainment

90.65 A16: UntuneMostImportatnLocalApp (D) Navigation: Factor 2 0.645066 0.645681 0.000615
92.65 A17: UntuneMostImportatnLocalApp (D) Navigation: Factor 1.5 0.645682 0.644233 -0.001449
94.65 A18: UntuneMostImportatnLocalApp (D) Navigation: Factor 1 0.644232 0.650314 0.006082

94.66
A19: UntuneMostImportantLocalApp (A) Stability and Drive Dynamics: Factor 1.5 0.653509 0.648119 -0.00539
A20: UntuneMostImportatnLocalApp (B) Driver Warning: Factor 1.5 0.654908 0.642723 -0.012185

96.67 A21: UntuneMostImportantLocalApp (B) Driver Warning: Factor 1 0.642724 0.637839 -0.004885

100
Stop
Navigation

Table 7.10: Evaluation 8 - Events and adaptation actions.
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7.3.11. Evaluation 9 - Exploiting the potential of CPN

So far, extensive evaluations of the adaptation mechanisms have been conducted on
a single mixed-critical CPS. Now, the benefits of a mixed-critical CPN consisting of
more than one mixed-critical CPS will be investigated. Therefore, two vehicles (V1, V2)
of the application scenario used before are combined as depicted in Figure 7.35.

끫롬끫롬끫롬끫롬2 끫뢂끫롬끫뢂끫뢤끫롮끫뢂끫롬끫뢂끫뢤끫롮끫뢒1 끫뢒2
Figure 7.35: Evaluatin 9 - Connection of two vehicles V1 and V2 via a wireless

connection.

Initially, both vehicles are isolated. After 15 seconds, both vehicles are interconnected.
This is done via a wireless connection established between the NodeD of both vehicles.
After 100 seconds, both vehicles are separated again. The same events as in evaluation
1 are applied to V1. The only difference is that after 100 seconds the Navigation
application is not stopped like in evaluation 1, but kept active after the separation of
the two vehicles. During the whole evaluation, V2 is left in its initial state. Table 7.11
shows these events and the adaptation actions performed in both vehicles. Before
the vehicles are connected, the performed adaptation action (A1) of evaluation 1 and
evaluation 9 is identical. Afterwards, vehicle V1 uses local adaptation actions first.
This results in almost the same actions as in evaluation 1 (actions A2-A6). After 59.53
seconds, a Chameleon instance in V1 exploits the potential of the additional resources
due to the connection to V2 (CPN) and relocates the Navigation application to a
node of vehicle V2 (action A7). Figure 7.36 shows the comparison of the period of the
Navigation application in evaluation 1 (CPS) and evaluation 9 (CPN). In evaluation 1,
the Navigation is tuned to a factor of 5 after the activation until the system load is
decreased (speed up of NodeA, stop of applications Cruise Control and Infotainment).
In evaluation 9, the Navigation application is also shortly tuned to a factor of 5 after
the activation and relocation, but then this factor is quickly decreased step by step
down-to 1.5. Thus, less tunning is needed due to the exploitation of the additional
resources of the CPN. The overall better system condition is also visible in the system
fitness illustrated in Figure 7.37. Of course, the fitness values of both evaluations
converge again with the reduction of the load in the entire system.

After the disconnection of vehicles V1 and V2, the Navigation application of V1

is stopped as an orphan in V2 (action A19) and restarted in V1 (action A20) af-
ter 1.57 seconds. This time also complies to the upper bound given by Equa-
tion 7.12 (tReactionT imeCrashk

≤ lLifeSignLimit · tMonitoringP eriodremotek
+ tCommunicationk

+
tEvaluationPeriod). With a remote monitoring period of 1000ms for the Navigation
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Figure 7.36: Evaluatin 9 - Comparison of the period of the Navigation application in
evaluation 1 (CPS) and evaluation 9 (CPN) while Navigation is running
in both evaluations.
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Figure 7.37: Evaluation 9 - Comparison of the system fitness of evaluation 1 (CPS)
and evaluation 9 (CPN) while Navigation is running in both evaluations.
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application1, a life sign limit of 2 times the remote monitoring period, an evaluation
period of 100ms and a communication time of 50ms, the upper bound for restarting
the Navigation locally after the connection loss calculates to 2.15 seconds.

Conclusion The adaptation mechanism can use the resources of CPNs and adapt the
system through global and local adaptation actions. The exploitation of abilities and
resources of the whole CPN leads to more adaptation options and better results.

1The Navigation application period is 100ms, cf. Table 7.2 ⇒ tMonitoringP eriodlocalNavigation
=

5 · 100ms ⇒ tMonitoringP eriodremoteNavigation
= 2 · 5 · 100ms.
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E

valu
a
tion

time
[s]

Event
Actions

(Chameleon instance)
Components

Fitness
(before action)

Fitness
(after action)

Reward
(measured)

10
V1: Slow down
NodeA

10.30 A1: RelocateLocalUnhealthyApp (V1:A)
Stability and Drive Dynamics (V1):
NodeD (V1)

0.350277 0.630047 0.27977

15.00
Connect
V1 and V2

25
V1: Start
Cruise Control

(NodeC )
25.41 A2: TuneLeastImportantApp (V1:C) Driver Warning (V1): Factor 2 0.412277 0.443544 0.031267
27.51 A3: TuneLeastImportantApp (V1:C) Cruise Control (V1): Factor 2 0.21784 0.574062 0.356222

40
V1: Start
Infotainment

(NodeD)
40.23 A4: CompressLeastImportantApp (V1:D) Infotainment (V1): Factor 0.8 0.464409 0.560813 0.096404

55
V1: Start
Navigation

(NodeD)
55.53 A5: CompressLeastImportantApp (V1:D) Navigation (V1): Factor 0.8 0.318298 0.320421 0.002123
57.53 A6: TuneLeastImportantApp (V1:D) Infotainment (V1): Factor 10 0.320422 0.392301 0.071879
59.53 A7: RelocateLocalUnhealthyApp (V1:D) Navigation (V1): NodeD(V2) 0.3923 0.54285 0.15055
61.64 A8: TuneLocalUnhealthyApps (V2:D) Navigation (V1): Factor 5 0.609599 0.614385 0.004786
64.14
-
68.14

A9-A11:
UntuneMostImportantLocalApp (V2:D)

Navigation (V1): Factor 3.5 0.612619 0.614034 various

70
V1: Speed up
NodeA

70.14
-
76.14

A12-A15:
UntuneMostImportantLocalApp (V2:D)

Navigation (V1): Factor 1.5 0.614033 0.610731 various

80
V1: Stop
Cruise Control

81.65 A16: UntuneMostImportantLocalApp (V1:B) Driver Warning (V1): Factor 1.5 0.623243 0.631515 0.008272
83.65 A17: UntuneMostImportantLocalApp (V1:B) Driver Warning (V1): Factor 1 0.631515 0.629142 -0.002373
89.26 A18: UntuneMostImportantLocalApp (V1:D) Infotainment (V1): Factor 9.5 0.624809 0.63713 0.012321

90
V1Stop
Infotainment

100
Disconnect
V1 and V2

100.47 A19: KillForeignOrphans (V2:D) Navigation (V1) 0.61109 0.617914 0.006824
101.57 A20: RestartDeadApp (V1:A) Navigation (V1): NodeA(V1) 0.337699 0.664436 0.326737
101.87 A21: UntuneMostImportantLocalApp (V1:A) Navigation (V1): Factor 1 0.664436 0.518178 -0.146258
103.97 A22: TuneLocalUnhealtyApps (V1:A) Navigation (V1): Factor 5 0.518177 0.556942 0.038765
106.07 A23: TuneLeastImportantApp (V1:A) Stability and Drive Dynamics (V1): Factor 2 0.556942 0.614247 0.057305
108.07
-
122.07

A24-A31:
UntuneMostImportantLocalApp (V1:A)

Navigation (V1): Factor 1 0.614248 0.624628 various

124.08
-
126.08

A32-33:
UntuneMostImportantLocalApp (V1:D)

Stability and Drive Dynamics (V1): Factor 1 0.646111 0.630105 various

Table 7.11: Evaluation 9 - Events and adaptation actions.
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8. Related Work

Research in MC-CPNs covers a wide range of different topics, which has been addressed
by a large number of research groups in academia as well as in industries in the last
years. Depending on the goals of the various approaches, a combination of generic
research fields is covered. Chameleon mainly contributes to the fields of middlewares,
self-organization, mixed-criticality and learning adaptation. Therefore, related work on
these topics is presented in the following.

8.1. Middleware

Middleware is a generic concept to ease the development of distributed systems. It
relieves the developer of taking care for the physical distribution of an application.
A middleware is responsible to identify, locate and access the distributed entities in
the system. It also handles events and errors occurring in distributed operations.
Furthermore, heterogeneous environments regarding operating systems, computation
nodes and communication links are concealed from the application developer.

Due to varying application fields and research objectives, the concepts for middleware
can be divided into different categories. Here, relevant categories for this thesis are
addressed.

8.1.1. Classical Middlewares

Classical middleware approaches mainly focus on the aspects of hiding the physical
distribution and heterogeneity. Depending on the granularity and access methods of
the distributed entities, service-based, object-based, procedure-based or message-based
middleware architectures can be distinguished. Service-base approaches allow the
distribution and interaction on the level of entire services, which can be invoked by
clients or other services. Object-based concept use objects known from the object
oriented programming paradigm as distributed entities. In procedure-based approaches,
procedures resulting from the paradigm of structured programming form the granularity
of distribution. Message-based middlewares focus on the pure message exchange between
any distributed item. Therefore, they can be used as a basis for the other concepts.

Due to the popularity of the object oriented programming paradigm, object-based
middleware concepts has been the major role model for classical middlewares. A good
example for this is CORBA (Common Object Request Broker Architecture) [Vin97],
which forms a standard for object-oriented middlewares developed in cooperation
of acadamia and industries. It allows to map interface specifications to different
programming languages and the interoperable inter-orb protocol (IIOP) provides
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interaction across different platforms with respect to programming languages and
operation system [Vin97]. Therefore, CORBA in combinition with IIOP can be used
for the development and deployment of applications in distributed heterogeneous
environments but there is no interaction to the physical world provided.

Other such approaches are DCOM [PS98] and .NET [Pro02], both mainly driven by
Microsoft. Therefore, they are deeply integrated in the Windows operating system and
enable distributed applications for that operating system using different programming
languages and hardware platforms.

Another classical middleware not focused on a specific operating system, but on a
specific programming language is Java RMI [Onl]. Like for all the other mentioned
classical middleware approaches, the interaction to the physical world is not in the
focus here.

8.1.2. Cyber-Physical Systems Middlewares

The connection of the physical world and computation devices regards many challenges
for systems, especially real-time communication, context-awareness, adaptiveness, het-
erogeneity of devices as well as applications (criticality) and communication channels,
scalability, or security [GLV13; Gun+14; JLS09]. As a result, the landscape of cyber-
physical middlewares is diversified. Some of the existing middlewares are presented in
the following. Each focuses on different aspects: timining, data distribution, modulari-
ty/composition, and heterogeneity.
Zhang, Gill, and Lu present an extension of the TAO middleware for timing aspects
[ZGL08]. There, each functionality is seen as a sequence of events and scheduled to
devices by a central scheduler. This is different to the approach presented here, where
scheduling is dezentralized. Also, the authors do not further stress the communication
functionality nor do they consider adaptation and different criticality levels.

RDDS offers a publish/subscribe based data distribution middleware supporting
semantic aware communication [KKS12]. Further, this approach enables reactive and
proactive adaptations to keep QoS-bounds. Nevertheless, it is focused on data dissemi-
nation rather than communication itself. Furthermore, mixed-critical applications are
not in the focus of this work.

iLAND enables time-bound reconfigurations of service-oriented soft real-time systems
[GLV13]. It offers reconfiguration graphs and paths for service compositions and
discovery but neglects to cover specifics of the communication channels for enabling
QoS-bounded communication. As well, only soft real-time applications are considered
and the mixture of applications with different criticality on same platform is not
supported.

[GB15] provides an initial-architecture for a CPS middleware. Thereby, the target
is on subsystems where timing deadlines are not hard nor safety critical. Thus, this
architecture is not suitable for the goals of this thesis.

In [NCA13], the authors extend the Flexible Time-Triggered (FTT) paradigm by a
middleware architecture called FTT-MA. FTT-MA focuses on scheduling and resource
management for dynamic reconfiguration at runtime. A very first prototype was
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implemented in CORBA. Different to our event-triggered approach, FTT-MA is based
on a time triggered protocol. Also, the communication network parameters are not
monitored nor adapted at run-time.

None of the presented works follows a comprehensive adaptive approach like
Chameleon, where the entire system (mixed-critical real-time applications, network
nodes, network, sensors and actuators) is addressed (cf. Section 3). Further, networks
of CPSs (CPNs) are not regarded by these works..

8.1.3. Self-Organizing Middlewares

As postulated by research hypothesis 2 (c.f. Section 1.2), the middleware is a well
suitable place to encapsulate autonomous behavior. This directly leads to the research
field of self-organizing middlewares (e.g. [Rot+11; RBP11; NB08; Rat+17]). They
enrich the field of middlewares by using different mostly decentralized adaptation
mechanisms to provide a set of self-X properties (cf. Section 2.3.1).

Since self-organization itself is an important and vivid research field, this will
be discussed more detailed in the next section. First, the basic principles of self-
organization will be addressed and then the resulting impact on middleware concepts
will be regarded.

8.2. Self-Organization

Self-organization has been a research focus for many years. Publications like [Jet89] or
[Whi95] deal with general mechanisms of self-organizing systems, like e.g. emergent
behavior, reproduction, etc. These can be used in a wide range of application fields as
ecomonics, enterprises or societies.

In the last two decades, self-organization has also be adopted by computer science.
The major reason for this is the enormously rising complexity of computer systems in
this time frame. It has triggered a considerable number of projects and initiatives. In
the following, research efforts on the basic principles of self-organization in computer
science will be listed. Then, projects dealing with the encapsulation of self-organization
in middleware will be addressed.

8.2.1. Basic Principles

There are many definitions of the term self-organization. According to [Mue+07],
self-organizing systems are adaptive systems, which are self-managing and adapt their
structure according to the user’s expectation and environmental conditions. The control
of the self-managing process as well as the structural adaptation are decentralized.

IBM’s and DARPAS’s Autonomic Computing project [KC03] deals with self-organization
of IT servers in networks. The project seeks to adapt and optimize the system behavior
in response to changing conditions and requirements autonomously without human
intervention. They are characterized by several so-called self-X properties like self-
optimization, self-configuration, self-protection and self-healing. The MAPE feedback
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loop consisting of four main stages or components: (i) Monitor, (ii) Analyze, (iii) Plan
and (iv) Execute was defined to realize these properties. It is an iterative process,
which is continuously executed in the background and in parallel to normal server
activities similar to the autonomic nervous system. The loop is often augmented with
additional component for the knowledge management(cf. Section 2.3.3).

The German Organic Computing Initiative was founded in 2003. Its basic aim is to
improve the controllability of complex embedded systems by using principles found in
organic entities [VDE03; Sch05]. Organization principles which are successful in biology
are adapted to embedded computing systems and used to acquire self-X properties
(cf. Section 2.3.1). One of the basic concepts of Organic Computing systems is the
Observer-Controller Architecture [Hel+04] which has some similarities to the MAPE-K
loop (cf. Section 2.3.1). Here, the system under observation and control is monitored
by an observer and guided by a controller based on the observer results. Learning
strategies like e.g. LCS are frequently used for the observer. Related work regarding
LCS is addressed in Section 8.4.

On the European level, the EU program Future Emerging Technologies FET - complex
systems [EU09] also hosted research on self-organization for computing systems. In
Australia, the Centre for Complex Systems (CSS) in the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) [CSI09] conducted basic research on
self-organisation.

Self-organization for embedded systems has been addressed especially at the ESOS
workshop [Bri13]. Furthermore, there are several projects related to this topic like
ASOC [Lip+05; BBR09], CARSoC [Klu+06; Klu+08] or DoDOrg [JBe+06]. ASOC
(Autonomic System on Chip) brings Autonomic Computing to the system on chip
level. Such an autonomic system on chip consists of functional elements, which perform
the real work. Associated with each functional element is an autonomic element,
which monitors and controls its operation. CARSoC (Connective Autonomic Real-time
System on Chip) also addressed systems on chip. Here, an network of system on
chips is controlled locally and globally by autonomic feedback loops. DodOrg (Digital
on Demand Computing Organism) arose from the Organic Computing Initiative. It
uses a mammal heart as a blueprint for a reliable and robust computer architecture
by mimicking cells and hormones (see also AHS in next section). However, all these
projects do not deal with CPS.

A self-healing framework for building resilient CPS which achieves self-healing
through structural adaptation is presented in [Rat+17]. In contrast, Chameleon is not
limited to structural adaptation. Instead also parametric adaptation to modify the
behavior of the system is applied.

8.2.2. Encapsulating Self-Organziation into Middleware

Self-Organization is often encapsulated into a middleware. Such a middleware is usually
called a self-organizing middleware. For example, several project related to Organic
Computing use this approach. In the frame of the DoDOrg project, the Artifical
Hormone System (AHS) was introduced [JBe+06; BPR08; RBP11]. The AHS has been
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later extended by the Artifical DNA (ADNA) [Bri17].
Another hormone based middleware approach called OCµ respectively AMUN has

been proposed in [Rot+11; TTU06]. [Wei+09] describes self-organization in automotive
embedded systems.

The CARISMA middleware [NB08] uses an agent based approach featuring the
ContractNet protocol, which is a communication protocoll used for auction based
negotiation in multi-agent systems [Smi80]. An introduction to multi-agent systems
can be found in [Woo09]

All these middleware architectures mainly deal with self-organizing task allocation.
In Chameleon, task allocation is one adaptation possibility in a wider range of other self-
organizing adaptation capabilities. Further, the mentioned self-organizing middlewares
are not designed for CPS/CPN and neglect CPS/CPN aspects like sensor/actuator
interaction.

Also, in the research area of Wireless Sensor Networks (WSN), task allocation has
also been researched for several years using self-organization approaches [Guo+15;
Yan+14; Yin+17]. In comparison to Chameleon, the focus in the field of WSNs lies on
energy-efficiency rather than on safety-related timing constraints.

Besides the online task allocation methods described above, also offline task allocation
has been researched. There, the task mapping is solved at design time of the system.
Examples for such offline mapping are e.g [Orl+19; Osz+18; Kov+20; Kov+17; Bar04].
However, for Chameleon a static offline task mapping is not suitable due to the necessity
to adapt at run-time to varying system and operational conditions. The shifting of
decisions from the design time to the runtime is one of the classification features of
adaptive systems [TSM17; MT17].

For task allocation in mixed-critical systems, the criticality of the tasks has to be
respected. This aspect is addressed in the next section.

8.3. Handling Mixed-Criticality

An approach for a self-organizing and dynamic task allocation with prioritization is
presented in [HB21]. This is an extension of the bio inspired middleware AHS which
is already mentioned above. Assignment priorities similar to the importance value
to express criticality in Chameleon are introduced to determine the order of task
assignment. The assignment priorities for tasks also enables self-healing in overload
situation by gradually dropping low-priority tasks. Thus, the task allocation on
nodes with regard to a criticality expressed by priorities is possible. In comparison
to Chameleon, the system view is limited to the nodes and the adaptation actions to
handle overload situations are limited to task dropping.

There are several other approaches dealing with the handling of mixed-criticality.
Those are in general based on different scheduling strategies to ensure the sound
execution of critical system tasks:

Hu et al. introduces an adaptive real-time scheduling algorithm to handle dynamic
multiple-criticality applications based on a least-laxity first strategy. Thereby, a mode-
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switch scheme and virtual deadlines to meet the different requirements of multiple-
criticality applications are used [HCZ19].

ASDYS is a a dynamic scheduling approach using active strategies where the mixed-
criticality is actively treated throughout the scheduling process. The aim of the
approach is to minimize the deadline miss rate ratio [Bai+21].

GoodSpread is a framework that statically allocates multi QoS resources to a set of
control applications so that each of them meets its performance requirements in all
scenarios while using the minimum amount of high-QoS resources [Roy+20]. All of
those approaches address mixed-criticality in terms of scheduling only.

Chameleon uses scheduling as one of many adaptation possibilities. The compre-
hensive approach in combination with the rule language Rango allows to consider the
criticality in all possible adaptation conditions and actions by the use of the importance
parameter.

8.4. Learning - LCS and Adaptation Languages

In an insightful overview [DAn19], D’Angelo et al. compare which learning techniques
are applied in adaptive systems. Approaches that rely on Reinforcement Learning
(RL) are dominantly applied to realize simple learning tasks (e.g., with Q-Learning) as
well as sophisticated ones (e.g., with LCS). Further, Multi-agent RL (MARL) is often
employed to solve problems in a distributed manner when centralized control becomes
infeasible [MDC17].

In Chameleon, the focus lies on LCS because those and variants — such as the
Extended Classifier System (XCS) [ST21] by Wilson [Wil95] or XCS for real-valued
input spaces (XCSR) [WS21] — are well-suitable for real-time systems, have a low
computational complexity and have been widely used for implementing adaptive
behavior with runtime learning capabilities in various domains. For instance, they have
been applied in typical CPS use cases such as self-adaptive traffic management [Ste+17a;
STH16], autonomous parameter adjustment of data communication protocols [TH11],
or Industry 4.0 [HPH20]. Beyond the domain of CPS, Rosenbauer et al. [Ros+21]
applied XCS for function approximation (XCFS) for automated test case prioritization
and Stein et al. targeted a smart cameras application [Ste+17b].

In contrast to most LCS based solutions which use simple bitstrings to define rules,
Chameleon uses Rango as a high-level adaptation language to express the rules. To the
best of the author’s knowledge, none of the approaches mentioned above focuses on
supporting the system administrator in the process of the rule set generation. Still,
the applied learning principles can be combined with the Chameleon approach to learn
new rules or optimize existing ones.

In general, several requirement modeling and adaptation languages as well as mod-
elling approaches such as FLAGS [BPS10], CARE [QJP12], RELAX [Whi+10],
LOREM [BCZ05] or [Ram+12] exist. The main purpose of such languages is the
definition of requirements at design time. At runtime, the resulting models can be used
as a knowledge base to support the reasoning for adaptation.
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Similarly, languages such as Stitch [CG12] and Ctrl-F [ARS15] focus on the definition
of adaptation behavior. The structural specification language Clafer [Bak+16] is used
to model adaptation behavior and UML to model the target system in the REACT
framework [Pfa20b] and its extension REACT-ION [Pfa20a].

[Kru18] focuses on a clear separation of the adaptation decision logic and the rules.
Here, an initial rule set can be defined in a spreadsheet.

In comparison to these approaches for specifying adaptation behavior, Rango has two
key strengths: First, Rango is specifically designed for the usage in CPS. It includes,
for instance, a large variety of CPS-specific keywords. Second, Rango is well-integrated
with a learning mechanism while the languages mentioned above do not integrate
mechanisms to learn or adjust the models.

Instead of learning rule and language based adaptation, another research stream
focuses on the reasoning of adaptation under uncertainty [EKM11; Mor+16; Mor+18;
GPB18; Kin+18], which is typical for CPS. Those works do focus on applying statistical
approaches such as Markov decision processes or Bayesian optimization to reflect
uncertainty. Also, they do not integrate learning. For example, SimCA* [SWM19]
provides a control-theoretic approach that offers guarantees for uncertainty related to
system parameters, component interactions, system requirements, and environmental
uncertainty.

8.5. Contribution

In summary, Chameleon contributes to the state of the art by introducing and combining
the following concepts:

• A comprehensive self-adaption mechanism on all levels of the system model is
provided.

• This mechanism allows a flexible combination of parametric and structural
adaptation actions (relocation, scheduling, tuning, ...) to modify the behavior of
the system.

• Real-time constraints of mixed-critical applications (hard real-time, soft real-time,
best-effort) are considered in all possible adaptation conditions and actions by
the use of the importance parameter.

• CPNs are supported by the introduction of different scopes (local, system, global)
for the adaptation conditions and actions. This also enables the combination of
different scopes for conditions and actions.

• Instantiating the MAPE-K loop by a distributed LCS allows for real-time capable
reasoning of adaptation actions which also works on resource-spare systems.

• Rango offers an intuitive way to specify an initial rule set for LCS in the context
of CPS/CPNs and supports the system administrators in the process of rule set
generation.
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The thesis presented here deals with the question on how to conveniently, effectively
and efficiently handle the management and complexity of MC-CPN’s. This question
arises due to the increasing complexity of MC-CPN’s which can’t be handled effectively
and efficiently anymore by the system developer without the assistance of the system
itself. Thus, efficient, reliable and scalable solutions for managing MC-CPNs and their
complexity while ensuring safety are needed.

Based on five research hypotheses (cf. Section 1.2) Chameleon — an adaptive
middleware for MC-CPN — was designed, developed and implemented in C++. This
middleware encapsulates a rule based MAPE-K loop to realize autonomous behavior
through the realization of self-X properties. The mixed-criticality is modeled by the
introduction of an importance parameter which reflects the criticality level of various
system tasks. Furthermore, a distributed and comprehensive approach in which the
entire system (cf. Section 3) is modeled and subject for management and adaptation,
is used. A summary of the contributions of Chameleon to the state-of-the art can be
found in the previous Section 8.5.

To evaluate the approach, an extensive evaluation was conducted. First the usefulness,
usability and performance of the rule language Rango has been evaluated in Section 7.1.
Afterwards, the real-time behavior of Chameleon has been examined in Section 7.2.
Finally, the usability of the rule-based MAPE-K adaptation mechanism for managing
MC-CPN’s and their complexity while considering the mixed-criticality has been
investigated in Section 7.3 by an automotive application scenario. Therefore, Chameleon
has been embedded in a simulated environment (cf. Section 6) and nine evaluation
scenarios were conducted which focuses on the following aspects:

• Dynamic load changes and handling of mixed-criticality in overload situations
(Evaluation 1, cf. Section 7.3.3).

• Autonomic vs. manual adaptation (Evaluation 2, cf. Section 7.3.4).

• Communication overhead of Chameleon (Evaluation 3, cf. Section 7.3.5).

• Handling of failures (Evaluations 4-6, cf. Sections 7.3.6-7.3.8).

• Handling of design flaws (Evaluation 7, cf. Section 7.3.9).

• Effects of learning (Evaluation 8, cf. Section 7.3.10).

• Exploitation of the increased number of available resources in CPNs (Evaluation
9, cf. Section 7.3.11).
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9.1. Conclusion

The extensive evaluation presented in Section 7 has demonstrated the validity of the
posed five research hypotheses for the design development of Chameleon (cf. Section 1.2
and Figure 9.1).

1 2 3 4 5

The realization 
of autonomous 

behavior 
through self-X 
properties is a 

suitable 
approach to 
handle the 

management 
and complexity 

of MC-CPN's.

The realization 
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be 

encapsulated 
into a 

middleware 
framework.

A context-free 
grammar can 

be used to 
describe a rule 

language to 
intuitively and 

comfortably 
express 

flexible and 
generic rules.

A rule-based 
MAPE-K 

feedback loop 
is a feasible 
adaptation 

mechanism to 
realize the 
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behavior.

Handling of 
mixed-

criticality can 
be enabled by 

the 
introduction of 
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Chameleon

Figure 9.1: Validity of the research hypotheses for the design and development of
Chameleon.

The realization of autonomous behavior through self-X properties has shown to be a
suitable approach to handle the management and complexity of MC-CPN’s (Hypothesis
1 ). Furthermore, the encapsulation of this autonomous behavior into a middleware
software layer has provided features that allow the MC-CPN to self-organize and adapt
to changing conditions and system goals without requiring a central control or human
interacting (Hypothesis 2 ). Thereby, the comprehensive approach considers the entire
system consisting of applications, computing nodes, communication channels, sensors,
actuators and the middleware itself in terms of management and adaptation. Thus,
the capabilities of Chameleon clearly exceeds specific research in related areas (cf.
Section 8) by addressing a multitude of issues simultaneously while effectively reliving
the system developers from handling the management and complexity of MC-CPN by
themselves.

A rule-based MAPE-K feedback loop has shown to be a feasible adaptation mech-
anism for realizing the self-X properties for autonomous behavior in the middleware
(Hypothesis 3 ). Furthermore, the use of a distributed LCS to instantiate the MAPE-K
feedback loop allows for real-time capable reasoning of adaptation actions on resource-
spare systems. Finally, Rango has turned out to offer an intuitive way to specify
an initial rule set for LCS in the context of MC-CPNs and to support the system
administrators and developers in the process of rule set generation (Hypothesis 4 ).
Due to the distributed nature of MC-CPN, Chameleon also uses a distributed rule
evaluation (no central control). Therefore, the middleware additionally offers strategies
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for interference treatment and reward calculation. The rule language allows for a
flexible combination of different scopes for adaptation actions and conditions. Further,
it allows to combine various combinations of parametric and structural adaptation
actions to modify the behavior of the system while considering real-time constraints
of mixed-critical applications. Finally, the introduction of an importance parameter
in combination with the rule language has demonstrated to be a valid and powerful
apporach to handle mixed-criticality (Hypothesis 5 ).

Overall, Chameleon enables an autonomous, efficient, effective, reliable and flexible
management of MC-CPNs and their complexity while considering the mixed-criticality
aspect.

9.2. Outlook

Finally, it’s important to consider the next steps and potential avenues for future
work and research. The presented thesis has introduced a promising approach for the
management of CPNs and their complexity, but there is still much left to be explored
and optimized.

To begin with, the learning of Chameleon can be improved by establishing strong
interference avoidance. As discussed in Section 5.2.3, the reward calculation in a
distributed LCS poses the challenge of interferences. In the current implementation
of Chameleon, these interferences are prevented by introducing and adapting reward
delays. Nevertheless, they can occur. In case of an interference is detected, it is handled
by reducing the learning rate. Thus, learning can be improved by introducing strong
interference avoidance. Several realization options can be investigated and compared in
future work. For example, a central interference handler could be implemented. Because
this centralized solution would represent a single-point-of failure, also a decentralized
solution would be favorable. E.g., a handshake solution with action announcement
including their importance in the system can be realized. This would also allow to
prioritize in case of interference conflicts.

Moreover, the generation of new rules can be explored. In the presented approach,
the basic rule set is modified by reward based online learning. This could be extended.
Offline learning, e.g. based on genetic algorithms, could be investigated to modify
existing rules or to create completely new ones. By mutation, cross-over and selection,
condition clauses, action parameters and value ranges of existing rules could be varied.
New rules could be created randomly or by genetic combination of well-rewarded
existing rules. In an evolutionary process, good rules could prosper while bad ones
would become extinct.

Another important step in future work is the real-world deployment and evaluation
of Chameleon in various application scenarios. In this context, the use of Chameleon in
wireless sensor networks, which focus more one energy efficiency than mixed-criticality,
can also be investigated since the energy aspect can easily be integrated through a
modification of the health value derivation.

Additionally, other adaptation mechanisms (e.g. bio-inspired approaches from the
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field of Organic Computing or deep learning neural networks) could be investigated in
the middleware framework.

In summary, the presented thesis has laid the groundwork for future research, and
the proposed modifications and improvements offer potential for advancing the field.
By onward exploring and optimizing the presented approach, the performance and
effectiveness of the management of complex MC-CPNs can be further enhanced.
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A. Contextfree LL(1) - grammar – Rango

RuleContainer = Configuration RuleSet .

Configuration = { ConfigurationDirective }.

ConfigurationDirective =

(’EvaluationPeriod ’ | ’RewardDelay ’ |

’LearningRate ’ | ’InterferenceWeight ’ |

’MinLearningRateScale ’ | ’FitnessWeightAppHP ’ |

’FitnessWeightAppImportance ’ | ’FitnessWeightApp ’ |

’FitnessWeightNode ’ | ’FitnessWeightComm ’ |

’FitnessLifeSignScale ’ | ’FitnessCrashHealth ’)

Real |

’FitnessSicknessBoost ’ Real Real |

’FitnessScope ’ BasicScope | ’FitnessMode ’ Integer |

’SkipImpossibleActions ’ (’On’ | ’Off ’) | Lag.

RuleSet = {Rule | NamedSet | NamedCondition | NamedAction }.

Rule = ’If’ Condition

’Then ’ Action [Lag] [ Reward ] [ Experience ] [Note ].

A.1. Condition Production Rules

Condition = ConditionDefinition | ConditionName .

NamedCondition = ’DefineCondition ’ ConditionName ’:’

ConditionDefintion [Note ].

ConditonName = Identifier .

ConditionDefinition = SubCondition {’And ’ SubCondition }.

SubCondition = CardinalCondition | AverageCondition |

MinCondition | MaxCondition .
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A. Contextfree LL(1) - grammar – Rango

CardinalCondition = ’Cardinal ’ ’(’ Set ’)’

DOperator ( Integer |’MaxSet ’ [Real ]).

AverageCondition = ’Average ’ ’(’

AttributeAndSet DOperator Real.

MinCondition = ’MinElement ’ ’(’

AttributeAndSet DOperator Real.

MaxCondition = ’MaxElement ’ ’(’

AttributeAndSet DOperator Real.

Set = AppSet | NodeSet | CommSet .

AttributeAndSet = AppAttributeAndSet |

NodeAttributeAndSet |

CommAttributeAndSet .

AppAttributeAndSet = AppSet ’)’ AppAttribute .

NodeAttributeAndSet = NodeSet ’)’ NodeAttribute .

CommAttributeAndSet = CommSet ’)’ CommAttribute .

A.2. Action Production Rules:

Action = ( ActionDefinition | ActionName ).

NamedAction = ’DefineAction ’ ActionName ’:’

ActionDefinition [Note ].

ActionName = Identifier .

ActionDefinition = ActionType [’RewardDelay ’ Real ].

ActionType = StartApp | StopApp | RemoveApp | RelocateApp |

RestartApp | TuneApp | CompressApp |

SmoothPeriodExtensionApp | SchedulingMode |

PreemptionMode | SetPriority | MonitorPeriod |

DoNothing .

StartApp = ’Start’ [ SetOption ] AppSet .
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A.2. Action Production Rules:

StopApp = ’Stop’ [ SetOption ] AppSet .

RemoveApp = ’Remove’ [ SetOption ] AppSet .

RelocateApp = ’Relocate’ [ SetOption ] AppSet

’To’ [ SetOption ] NodeSet [’ResetTuning ’].

RestartApp = ’Restart’ [ SetOption ] AppSet

’On’ [ SetOption ] NodeSet [’ResetTuning ’].

TuneApp = (’TunePeriod’ | ’TunePriority’ | ’TuneDeadline’ |

’TuneReactionTime’ | ’TunePeriodAndPriority’ |

’TunePeriodAndDeadline’ |

’TunePeriodAndReactionTime’) [ SetOption ]

AppSet ’To’ Factor .

CompressApp = ’Compress’ [ SetOption ]

AppSet ’To’ Factor .

SmoothPeriodExtensionApp = ’Extend’ [ SetOption ]

AppSet ’To’ (’On’ | ’Off ’).

SchedulingMode = ’SetScheduling’ [ SetOption ]

( NodeSet ’To’ Integer [’Adjust ’] |

CommSet ’To’ Integer ).

PreemptionMode = ’SetPreemption’ [ SetOption ]

( NodeSet | CommSet ) ’To’ Integer .

SetPriority = ’SetPriority’ [ SetOption ]

( AppSet ) ’To’ Factor .

MonitorPeriod = ’SetMonitoringPeriod’ [ SetOption ]

( AppSet | NodeSet | CommSet ) ’To’ Factor .

DoNothing = ’DoNothing’

Reward = ’Reward ’ Real.

Experience = ’Experience ’ Integer .

Lag = ’Lag ’ Integer .

Note = ’Note ’ String .
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A. Contextfree LL(1) - grammar – Rango

A.3. Set Production Rules

AppSet = ( AppSetDefinition | AppSetName ).

NodeSet = ( NodeSetDefinition | NodeSetName ).

CommSet = ( CommSetDefinition | CommSetName ).

NamedSet = ’DefineSet ’

( AppSetName ’:’ AppSetDefinition ) |

( NodeSetName ’:’ NodeSetDefinition ) |

( CommSetName ’:’ CommSetDefinition ) [Note ].

AppSetName = Identifier .

NodeSetName = Identifier .

CommSetName = Identifier .

AppSetDefinition = ’App’ ( DirectAppId |

Scope [ AppQueryClausesList ]).

NodeSetDefinition = ’Node’ ( DirectId |

Scope [ NodeQueryClausesList ]).

CommSetDefinition = ’Comm’ ( DirectId |

Scope [ CommQueryClausesList ]).

A.4. Support Production Rules

SetOption = ’All ’.

Scope = BasicScope | CompositeScope .

BasicScope = ’Global’ | ’System’ | ’Local’.

CompositeScope = ’NonLocal’ | ’NonSystem’ |

’LocalSystem’ | ’LocalNonSystem’ |

’NonLocalSystem’ | ’NonLocalNonSystem’.

DirectAppId = DirectId [’Started ’ | ’NonStarted ’]
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A.4. Support Production Rules

DirectId = String [’Local ’].

Unsigned = Digit {Digit }.

Integer = [’-’] Unsigned .

Real = Integer [’,’ Unsigned ].

Identifier = Letter { Letter | Digit }.

Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ |

’8’ | ’9’.

Letter = (’a’ .. ’z’) | (’A’ .. ’Z’) | ’_’ | ’#’.

String = ’"’ { Letter | Digit | ’/’ | ’<’ | ’>’ |

’!’ | ’?’ | ’=’ | ’(’ | ’)’ | ’*’ | ’+’ |

’-’ | ’;’ | ’:’ | ’.’ | ’,’ | ’ ’} ’"’.

Factor = AbsoluteValue | RelativeValueToCurrent .

AbsolutValue = Real.

RelativeValueToCurrent =

’Current ’ LinearExpression [(’Limit ’ [Real] |

(’ExpLimitUp ’ | ’ExpLimitDown ’) Real ]].

LinearExpression = [’*’ Real] [(’+’ | ’-’) Real ].

RelativeValueToDemand = ’Demand ’ LinearExpression

’(’ [ SetOption ] AppSet ’)’.

AppQueryClausesList = ’Where ’ AppClauses {’,’ AppClauses }.

AppClauses = AppAttribute ( DOperator AppValue | MOperator ).

AppAttribute = ’Importance’ | ’NodeDemand’ [’%’]|

’CommDemand’ [’%’]| ’PeriodTune’ |

’MaxPeriodTune’ | ’PriorityTune’ |

’DeadlineTune’ | ’ReactionTimeTune’ |

’CompressFactor’ | ’MaxCompressFactor’ |

’Health’ | ’NodeHealth’| ’CommHealth’ |

’HopCount’ | ’AvgCommTime’ |

’LastCommTime’ | ’Period’ |’Priority’ |
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A. Contextfree LL(1) - grammar – Rango

’Deadline’ | ’ReactionTime’ |

’PeriodExtension’ | ’MonitoringPeriod’ |

’Id’ |’LifeSignAge’ |

’NodeLifeSignAge’ | ’SystemLifeSignAge’.

NodeQueryClausesList =

’Where ’ NodeClauses {’,’ NodeClauses }.

NodeClauses = NodeAttribute

( DOperator NodeValue | MOperator ).

NodeAttribute = (’Capacity’ | ’NodeCapacity’ |

’CommCapacityBest’ | ’CommCapacityWorst’ |

’CommInCapacityBest’ |

’CommInCapacityWorst’ |

’CommOutCapacityBest’ |

’CommOutCapacityWorst’) [’%’] |

’Health’ | ’CommHealth’ | ’HopCount’ |

’AvgCommTime’ | ’LastCommTime’ |

’Scheduling’ | ’Preemption’ |

’MaxScheduling’ | ’MaxPreemption’ |

’MonitoringPeriod’| ’Id’ | ’LifeSignAge’|

’NodeLifeSignAge’ | ’SystemLifeSignAge’.

CommQueryClausesList =

’Where ’ CommClauses {’,’ CommClauses }.

CommClauses = CommAttribute

( DOperator CommValue | MOperator ).

CommAttribute = ’Capacity’ [’%’] |

’InCapacity’ [’%’] | ’OutCapacity’ [’%’] |

’Health’ | ’Scheduling’ | ’Preemption’ |

’MaxScheduling’ | ’MaxPreemption’.

DOperator = ’<’ | ’>’ | ’=’ | ’!=’ | ’<=’ | ’>=’.

MOperator = ’max ’ | ’min ’.

AppValue = AbsoluteValue | RelativeValueToLimit .

RelativeValueToLimit = ’Limit ’ LinearExpression .

NodeValue = AbsoluteValue | RelativeValueToDemand |
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A.4. Support Production Rules

RelativeValueToLimit .

CommValue = AbsoluteValue | RelativeValueToDemand .
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B. Basic Rule Set

B.1. Configuration Objectives

/* -- configuration ----------------------------- */

EvaluationPeriod 0.1

RewardDelay 2

B.2. Set Definitions

/* -- app sets ---------------------------------- */

DefineSet LocalUnhealthyApps :

App Local Where Health < 0, PeriodTune >= 0

Note "Local Apps with health value

below 0 (and not paused )"

DefineSet LocalUnhealthyTunableApps :

App Local Where Health < 0, PeriodTune < Limit

Note "Local Apps with health value

below 0 that still can be tuned"

DefineSet GlobalUnhealthyApps :

App Global Where Health < 0

Note " Global Apps with health value

below 0"

DefineSet LeastImportantTunableApps :

App Global Where LifeSignAge <= Limit ,

NodeLifeSignAge <= Limit ,

PeriodTune < Limit , Importance Min

Note "The least important apps in the system which

still can be tuned (so app and node have also

to be alive)"

DefineSet LeastImportantCompressableApps :

App Global Where CompressFactor < Limit ,
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B. Basic Rule Set

Importance Min

Note "The least important apps in the system which

still can be compressed "

DefineSet LeastImportantPausableApps :

App Global Where PeriodTune >= 0,

Importance Min

Note "The least important apps in the system

which still can be paused "

DefineSet MostImportantLocalCompressedHealthyApps :

App Local Where CompressFactor > 0, Health >= 0.6,

Importance Max

Note "The most important local apps that

are compressed "

DefineSet MostImportantLocalTunedHealthyApps :

App Local Where PeriodTune > 1, Health >= 0.6,

Importance Max

Note "The most important local apps that are tuned"

DefineSet MostImportantLocalPausedApps :

App Local Where PeriodTune < 0,

Importance Max

Note "The most important local apps that

are paused "

DefineSet MostImportantDeadApps :

App System Where LifeSignAge > Limit ,

PeriodTune >= 0, Importance Max

Note "The most important system apps with expired

life signs (an which are not paused )"

DefineSet ForeignOrphans :

App LocalNonSystem Where SystemLifeSignAge > Limit

Note "Non - system apps running on our locale node

where we have lost contact to their systems "

/* -- node sets --------------------------------- */

DefineSet LocalUnhealthyNode :

Node Local Where Health <= 0.1

Note "Local node with health value of

0.1 and below"
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B.2. Set Definitions

DefineSet LocalHealthyNode :

Node Local Where Health >= 0.36

Note "Local node with health value of

0.36 and above"

DefineSet NonLocalSuitableNode :

Node NonLocal Where

Capacity % >= Demand + 0.15 ( LocalUnhealthyApps ),

LifeSignAge <= Limit , Health Max

Note "Non local alive node with enough

capacity (leave 15% free) to take an unhealthy app"

DefineSet

LocalNodeWithFifoAlsoAllowsPriorityScheduling :

Node Local Where Scheduling = 0, MaxScheduling > 0

Note "Local node which uses FIFO scheduling ,

but also allows priority scheduling "

DefineSet

LocalNodeWithoutPreemptionAlsoAllowsPreemption :

Node Local Where Preemption = 0, MaxPreemption > 0

Note "Local node which uses no preemption , but

also allows preemption "

DefineSet AliveNodeWithLowestIdIsLocal :

Node System Where LifeSignAge <= Limit ,

Id Min , HopCount = 0

Note " Contains the alive node with the lowest

id in the system if this is the local node"

DefineSet SuitableNodeForMostImportantDeadApps :

Node Global Where LifeSignAge <= Limit ,

Capacity >= Demand ( MostImportantDeadApps ),

Health Max

Note " Global alive node with enough capacity

to take the most important dead app"

/* -- comm sets --------------------------------- */

DefineSet LocalUnhealthyComm :

Comm Local Where Health <= 0.15

Note "Local comm with health value of

0.15 and below"
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B. Basic Rule Set

DefineSet LocalHealthyComm :

Comm Local Where Health >= 0.5

Note "Local comm with health value of

0.5 and above"

DefineSet LocalVeryHealthyComm :

Comm Local Where Health >= 0.65

Note "Local comm with health value of

0.65 and above"

DefineSet

LocalCommWithFifoAlsoAllowsPriorityScheduling :

Comm Local Where Scheduling = 0, MaxScheduling > 0

Note "Local comm which uses FIFO scheduling ,

but also allows priority scheduling "

DefineSet

LocalCommWithoutPreemptionAlsoAllowsPreemption :

Comm Local Where Preemption = 0, MaxPreemption > 0

Note "Local comm which uses no preemption , but

also allows preemption "

B.3. Condition Definitions

/* -- the conditions ---------------------------- */

DefineCondition RelocationMightBeUseful : C

ardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LocalUnhealthyNode ) > 0 And

Cardinal ( LocalUnhealthyComm ) = 0 And

Cardinal ( NonLocalSuitableNode ) > 0

Note "If there are unhealthy apps on an

unhealthy node , but comm is ok and there are

powerful nodes available , a relocation might

be useful "

DefineCondition CompressionMightBeUseful :

Cardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LocalUnhealthyComm ) > 0 And

Cardinal ( LeastImportantCompressableApps ) > 0

Note "If there are unhealthy apps and an unhealthy

comm and there are still apps that can be

compressed , compression might be useful "
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B.3. Condition Definitions

DefineCondition TuningMightBeUseful :

Cardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LocalUnhealthyComm ) > 0 And

Cardinal ( LeastImportantCompressableApps ) = 0 And

Cardinal ( LeastImportantTunableApps ) > 0

Note "If there are unhealthy apps and an unhealthy

comm and there are no more apps that can be

compressed but still apps that can be

tuned , tuning might be useful "

DefineCondition TuningUnhealthyAppsMightBeUseful :

Cardinal ( LocalUnhealthyTunableApps ) > 0 And

Cardinal ( LocalUnhealthyComm ) = 0

Note "If there are unhealthy apps that still

can be tuned while comm is healthy , tuning

might be useful (also to make room for relocation )"

DefineCondition

TuningRemainingTunableAppsMightBeUseful :

Cardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LocalUnhealthyComm ) = 0 And

Cardinal ( LocalUnhealthyTunableApps ) = 0 And

Cardinal ( LeastImportantTunableApps ) > 0

Note "If there are unhealthy apps while comm is

healthy and there are still tunable apps left ,

tuning these apps might be useful

(also to make room for relocation )"

DefineCondition PausingMightBeUseful :

Cardinal ( LocalUnhealthyApps ) > 0 And

Cardinal ( LeastImportantCompressableApps ) = 0 And

Cardinal ( LeastImportantTunableApps ) = 0 And

Cardinal ( LeastImportantPausableApps ) > 0

Note "If there are unhealthy apps and there

are no more apps that can be compressed or

tuned but still apps that can be paused ,

pausing might be useful

(also to make room for relocation ) "

DefineCondition

PriorityNodeSchedulingMightBeUseful :

Cardinal ( GlobalUnhealthyApps ) > 0 And

Cardinal

159



B. Basic Rule Set

( LocalNodeWithFifoAlsoAllowsPriorityScheduling ) > 0

Note "If there are unhealthy apps in the system

and our local node is on fifo scheduling but allows

also priority based scheduling , a switch to

priority based scheduling might be useful "

DefineCondition

PriorityCommSchedulingMightBeUseful :

Cardinal ( GlobalUnhealthyApps ) > 0 And

Cardinal

( LocalCommWithFifoAlsoAllowsPriorityScheduling ) > 0

Note "If there are unhealthy apps in the system and

our local comm is on fifo scheduling but allows

also priority based scheduling , a switch to

priority based scheduling might be useful "

DefineCondition NodePreemptionMightBeUseful :

Cardinal ( GlobalUnhealthyApps ) > 0 And

Cardinal

( LocalNodeWithoutPreemptionAlsoAllowsPreemption )>0

Note "If there are unhealthy apps in the system

and our local node allows preemption but preemption

is not active , a switch to preemption

might be useful "

DefineCondition CommPreemptionMightBeUseful :

Cardinal ( GlobalUnhealthyApps ) > 0 And

Cardinal

( LocalCommWithoutPreemptionAlsoAllowsPreemption )>0

Note "If there are unhealthy apps in the

system and our local comm allows preemption but

preemption is not active , a switch to preemption

might be useful "

DefineCondition UnpausingMightBePossible :

Cardinal ( MostImportantLocalPausedApps ) > 0 And

Cardinal ( LocalHealthyNode ) > 0 And

Cardinal ( LocalHealthyComm ) = MaxSet

Note "If there are local paused apps and the state

of the local node and comm is quite good ,

unpausing might be possible "

DefineCondition UntuningMightBePossible :

Cardinal ( MostImportantLocalTunedHealthyApps ) > 0
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B.3. Condition Definitions

And Cardinal ( MostImportantLocalPausedApps ) = 0

And Cardinal ( LocalHealthyNode ) > 0 And

Cardinal ( LocalHealthyComm ) = MaxSet

Note "If there are local tuned healthy apps and

no more local paused apps and the state of the

local node and comm is quite good ,

untuning might be possible "

DefineCondition UncompressingMightBePossible :

Cardinal

( MostImportantLocalCompressedHealthyApps ) > 0 And

Cardinal ( MostImportantLocalTunedHealthyApps ) = 0

And Cardinal ( MostImportantLocalPausedApps ) = 0

And Cardinal ( LocalHealthyNode ) > 0 And

Cardinal ( LocalVeryHealthyComm ) = MaxSet

Note "If there are local compressed healthy apps

and no more local tuned or paused apps and the

state of the local node and comm is good ,

uncompresssing might be possible "

DefineCondition RestartMightBeUseful :

Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0 And

Cardinal ( MostImportantDeadApps ) > 0 And

Cardinal ( SuitableNodeForMostImportantDeadApps ) > 0

Note "If the alive node with the lowest id is the

local node and this node detects important apps

with expired lifesigns and we have node capacity ,

a restart of these apps might be a good idea

(so only one node does the restart , no conflicts )"

DefineCondition

TuningToEnableRestartMightBeUseful :

Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0 And

Cardinal ( MostImportantDeadApps ) > 0 And

Cardinal ( SuitableNodeForMostImportantDeadApps ) = 0

And Cardinal ( LeastImportantTunableApps ) > 0

Note "If the alive node with the lowest id is the

local node and this node detects important apps

with expired lifesigns and we have no node capacity

but still tunable apps , tuning might be

useful to create capacity "

DefineCondition

PausingToEnableRestartMightBeUseful :
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B. Basic Rule Set

Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0 And

Cardinal ( MostImportantDeadApps ) > 0 And

Cardinal ( SuitableNodeForMostImportantDeadApps ) = 0

And Cardinal ( LeastImportantTunableApps ) = 0 And

Cardinal ( LeastImportantPausableApps ) > 0

Note "If the alive node with the lowest id is

the local node and this node detects important apps

with expired lifesigns and we have no node capacity

and no tunable apps but still pausable apps ,

pausing might be useful to create capacity "

DefineCondition ForeignOrphansExist :

Cardinal ( ForeignOrphans ) > 0

Note "Do foreign orphans exist once a

foreign CPS gets lost and we still

have remains running "

B.4. Action Definitions

/* -- the actions ------------------------------- */

DefineAction RelocateLocalUnhealthyApp :

Relocate LocalUnhealthyApps To NonLocalSuitableNode

Note " Relocate one local unhealthy

app to a suitable node"

DefineAction CompressLeastImportantApp :

Compress LeastImportantCompressableApps To

Current Limit

Note " Compress the least important

compressabe app to its limit"

DefineAction TuneLeastImportantApp :

TunePeriodAndPriority LeastImportantTunableApps To

Current Limit

Note "Tune the least important tuneable

app to its limit"

DefineAction TuneLocalUnhealthyApps :

TunePeriodAndPriority LocalUnhealthyTunableApps To

Current Limit

Note "Tune a local unhealthy app to its limit"
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B.4. Action Definitions

DefineAction PauseLeastImportantApp :

TunePeriod LeastImportantPausableApps To -1

Note "Pause the least important pausable app"

DefineAction PauseLeastImportantAppFast :

TunePeriod LeastImportantPausableApps To -1

RewardDelay 0.3

Note "Pause the least important pausable app

(short reward delay to quickly make room)"

DefineAction ActivatePriorityNodeScheduling :

SetScheduling

LocalNodeWithFifoAlsoAllowsPriorityScheduling To

1 Adjust

Note " Activate priority based scheduling on local

node which currently is on fifo scheduling and

assign app priorities "

DefineAction ActivatePriorityCommScheduling :

SetScheduling

LocalCommWithFifoAlsoAllowsPriorityScheduling To 1

Note " Activate priority based scheduling on local

comms which are currently on fifo scheduling "

DefineAction ActivateNodePreemption :

SetPreemption

LocalNodeWithoutPreemptionAlsoAllowsPreemption To 2

Note " Activate preemption on local node

which currently does not use preemption "

DefineAction ActivateCommPreemption :

SetPreemption

LocalCommWithoutPreemptionAlsoAllowsPreemption To 2

Note " Activate preemption on local comms

which currently do not use preemption "

DefineAction UnpauseMostImportantLocalApp :

TunePeriodAndPriority MostImportantLocalPausedApps

To Current Limit

Note " Unpause the most important local app that

is paused "

DefineAction UntuneMostImportantLocalApp :

TunePeriodAndPriority
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B. Basic Rule Set

MostImportantLocalTunedHealthyApps To

Current -0.5 ExpLimitDown 1

Note " Untune the most important local app

that is tuned down by 0.5, don ’t go below 1"

DefineAction UncompressMostImportantLocalApp :

Compress MostImportantLocalCompressedHealthyApps To

Current -0.1 ExpLimitDown 0

Note " Uncompress the most important local app

that is compressed down by 0.1, don ’t go below 0"

DefineAction RestartDeadApp :

Restart MostImportantDeadApps On

SuitableNodeForMostImportantDeadApps

RewardDelay 0.3

Note " Restart the most important dead app

on a suitable alive node"

DefineAction KillForeignOrphans :

Remove All ForeignOrphans

Note "Kill all foreign orphans "

B.5. Rule Definitions

/* -- the rules --------------------------------- */

/* -- group 1: rules for crashes -- */

If RestartMightBeUseful Then RestartDeadApp

Note "Rule for restarting dead apps"

/* rules to make room for restarting crashed

apps in overload situations */

If TuningToEnableRestartMightBeUseful

Then TuneLeastImportantApp

Note "Rule to tune the least important app in case

there is no capacity to restart a crashed app"

If PausingToEnableRestartMightBeUseful

Then PauseLeastImportantAppFast

Note "Rule to pause the least important app in

case there is no capacity to restart a crashed
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B.5. Rule Definitions

app (this also includes crashed apps => the most

important apps will run)"

/* -- group 2: general rules for

overload situations -- */

If RelocationMightBeUseful

Then RelocateLocalUnhealthyApp

Note "Rule for relocation "

If CompressionMightBeUseful

Then CompressLeastImportantApp

Note "Rule for compression "

If TuningMightBeUseful Then TuneLeastImportantApp

Note "Rule for tuning "

If TuningUnhealthyAppsMightBeUseful

Then TuneLocalUnhealthyApps Lag 2

Note "Rule if we have unhealthy tunable

apps but comm is ok , lag due to race conditions "

If TuningRemainingTunableAppsMightBeUseful

Then TuneLeastImportantApp Lag 2

Note "Rule if we have unhealthy apps but comm

is ok and there are still tunable apps left ,

lag due to race conditions "

If PausingMightBeUseful Then PauseLeastImportantApp

Note "Rule for pausing "

/* -- group 3: rules for scheduling issues -- */

If PriorityNodeSchedulingMightBeUseful

Then ActivatePriorityNodeScheduling

Note "Rule to fix scheduling issues on nodes"

If PriorityCommSchedulingMightBeUseful

Then ActivatePriorityCommScheduling

Note "Rule to fix scheduling issues on comms"

If NodePreemptionMightBeUseful

Then ActivateNodePreemption

Note "Rule to fix preemption issues on nodes"
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B. Basic Rule Set

If CommPreemptionMightBeUseful

Then ActivateCommPreemption

Note "Rule to fix preemption issues on comms"

/* -- group 4: rules for undoing

overload measures -- */

If UnpausingMightBePossible

Then UnpauseMostImportantLocalApp

Note "Rule for undo pausing if the

situation gets better "

If UntuningMightBePossible

Then UntuneMostImportantLocalApp

Note "Rule for undo tuning if the

situation gets better "

If UncompressingMightBePossible

Then UncompressMostImportantLocalApp

Note "Rule for undo compression if the

situation gets better "

/* -- group 5: rules to kill foreign orphans -- */

If ForeignOrphansExist Then KillForeignOrphans

Note "Rule for killing foreign orphans once a

foreign CPS gets lost and we still have

remains running "
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C. Additional Application Specific Emergency
Rules

C.1. Additional Set Definitions

/* -- app sets ---------------------------------- */

DefineSet HighImportanceDeadApps :

App System Where NodeLifeSignAge > Limit ,

Importance > 6, PeriodTune >= 0

/* we use node life sign age for the apps since

we strive for node failures and failures

of long period apps might be detected lately

by simply using life sign age */

Note "are there dead apps of highest importance

(steering , brake , passenger safety )"

DefineSet LowMediumImportanceApps :

App System Where Importance <= 6, PeriodTune >= 0

Note "are there apps of lower importance which

are not paused "

DefineSet

MostImportantLowMediumImportancePausedAppsDead :

App System Where Importance <= 6, PeriodTune < 0,

Importance Max , NodeLifeSignAge > Limit

Note "get the most important of the low/ medium

importance paused apps , take those of them who

are dead"

C.2. Additional Action Definitions

/* -- the actions ------------------------------- */

DefineAction PauseAllLowMediumImportanceApps :

TunePeriod All LowMediumImportanceApps To

- 1 RewardDelay 0.3

Note "we pause all low medium importance apps to
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C. Additional Application Specific Emergency Rules

make room for the high importance apps

(we do it fast)"

DefineAction RestartAllHighImportanceDeadApps :

Restart All HighImportanceDeadApps On Node System

Where LifeSignAge <= Limit , Health Max

Note "we restart all dead high importance apps

on the most healthy node alive"

DefineAction RestartLowMediumImportantDeadApp :

Restart

MostImportantLowMediumImportancePausedAppsDead

On Node System Where LifeSignAge <= Limit ,

Health >= 0.36

Note "we restart a most important low/ medium

importance paused dead app on a good alive node"

C.3. Rule Definitions

/* -- the rules --------------------------------- */

If Cardinal ( HighImportanceDeadApps ) > 0

And Cardinal ( LowMediumImportanceApps ) > 0

And Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0

Then PauseAllLowMediumImportanceApps

Reward 10000

Note "if we have high importance dead apps

then we make room as quickly as possible ,

this rule has high priority "

If Cardinal ( HighImportanceDeadApps ) > 0

And Cardinal ( LowMediumImportanceApps ) = 0

And Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0

Then RestartAllHighImportanceDeadApps

Reward 10000

Note "if we have high importance dead apps

and no more unpaused low medium importance

apps then we restart all high importance apps ,

this rule has high priority "

/* this rule replaces the general rule

"If RestartMightBeUseful Then RestartDeadApp " */

If Cardinal ( HighImportanceDeadApps ) <= 0

And Cardinal
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C.3. Rule Definitions

( MostImportantLowMediumImportancePausedAppsDead )>0

And Cardinal ( AliveNodeWithLowestIdIsLocal ) > 0

Then RestartLowMediumImportantDeadApp

Reward 10000

Note "if we have a most important low/ medium

importance paused dead app , we restart it on

a good alive node , this rule has high priority "
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D. XML Code of the Applications used in the
Evaluations

D.1. Powertrain

<Instructions >

<DoRequestSensorData Target =" engineSensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" engineSensors "/>

<DoLocalProcessing InstructionCount ="60000"/>

<WaitForLocalProcessing />

<WaitForMethodInvocation Timeout =" -1"/>

<DoMethodReturn InstructionCount ="20000" Datasize ="480"

PreCondition =" -1"/>

<DoDataToActuator Target =" engineActuators "

InstructionCount ="10000" Datasize ="240"/>

</ Instructions >

D.2. Stability and Drive Dynamics

<Instructions >

<DoMethodInvocation Target =" Brake " InstructionCount ="40000 "

Datasize ="480"/>

<DoMethodInvocation Target =" Steering " InstructionCount =" 40000 "

Datasize ="240"/>

<DoMethodInvocation Target =" Powertrain "

InstructionCount =" 40000 " Datasize ="480"/>

<DoMethodInvocation Target =" DataRepository "

InstructionCount =" 40000 " Datasize ="480" SkipCycles ="4"/>

<WaitForMethodInvocation Target =" CruiseControl " Timeout =" -1"/>

<WaitForMethodInvocation Target =" DriverWarning " Timeout =" -1"/>

<!-- Return for Driver Warning -->

<DoMethodReturn InstructionCount =" 20000 " Datasize ="480"

PreCondition =" -1"/>

<!-- return for Cruise Control -->

<DoMethodReturn InstructionCount =" 20000 " Datasize ="480"

PreCondition =" -3"/>
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D. XML Code of the Applications used in the Evaluations

<DoLocalProcessing InstructionCount =" 70000 "/>

<WaitForLocalProcessing />

<DoMessagePassing Target =" PassengerSafety "

InstructionCount ="100" Datasize ="30" />

<WaitForMethodReturn Target =" Brake " Timeout = " 0.005 "/>

<WaitForMethodReturn Target =" Steering " Timeout = " 0.005"/>

<WaitForMethodReturn Target =" Powertrain " Timeout = " 0.005 "/>

<WaitForMethodReturn Target =" DataRepository " Timeout = " 0.005 "

SkipCycles ="4"/>

</ Instructions >

D.3. Steering

<Instructions >

<DoRequestSensorData Target =" steeringSensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" steeringSensors "/>

<DoLocalProcessing InstructionCount =" 160000 "/>

<WaitForLocalProcessing />

<WaitForMethodInvocation Timeout =" -1"/>

<DoMethodReturn InstructionCount ="20000" Datasize ="240"

PreCondition =" -1"/>

<DoDataToActuator Target =" steeringActuators "

InstructionCount ="10000" Datasize ="128"/>

</ Instructions >

D.4. Light

<Instructions >

<DoRequestSensorData Target =" lightSensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" lightSensors "/>

<WaitForMessagePassed Timeout =" -1"/>

<DoLocalProcessing InstructionCount ="25000"

PreCondition =" -1"/>

<WaitForLocalProcessing PreCondition =" -2"/>

<DoLocalProcessing InstructionCount ="20000"/>

<WaitForLocalProcessing />

<DoDataToActuator Target =" lightActuators "

InstructionCount ="10000" Datasize ="320"/>
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D.5. Passenger Safety

<DoMethodInvocation Target =" DataRepository "

InstructionCount ="40000" Datasize ="480"

SkipCycles ="0"/>

<WaitForMethodReturn Timeout = "0.25" SkipCycles ="0"/>

</ Instructions >

D.5. Passenger Safety

<Instructions >

<DoRequestSensorData Target =" safetySensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" safetySensors "/>

<WaitForMessagePassed Target =" StabilityAndDriveDynamics "

Timeout = " -1" />

<WaitForMessagePassed Target =" DriverWarning "

Timeout = " -1" />

<DoLocalProcessing InstructionCount ="500"/>

<WaitForLocalProcessing />

<DoDataToActuator Target =" safetyActuators "

InstructionCount ="100" Datasize = "26"

SkipCycles ="19"/>

<DoMethodInvocation Target =" DataRepository "

InstructionCount ="15000" Datasize ="480"

SkipCycles ="9"/>

<WaitForMethodReturn Timeout = " 0.0125 " SkipCycles ="9"/>

</ Instructions >

D.6. Driver Warning

<Instructions >

<DoRequestSensorData Target =" obstacleSensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" obstacleSensors "/>

<DoLocalProcessing InstructionCount =" 160000 "/>

<WaitForLocalProcessing />

<DoMethodInvocation Target =" StabilityAndDriveDynamics "

Datasize ="480" InstructionCount ="40000"/>

<DoMessagePassing Target =" PassengerSafety "

InstructionCount ="100" Datasize ="30" />

<DoMethodInvocation Target =" DataRepository "

InstructionCount ="40000" Datasize ="480"
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D. XML Code of the Applications used in the Evaluations

SkipCycles ="0"/>

<WaitForMethodReturn Timeout = "0.125"/>

<WaitForMethodReturn Timeout = "0.125" SkipCycles ="0"/>

</ Instructions >

D.7. Brake

<Instructions >

<DoRequestSensorData Target =" brakeSensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" brakeSensors "/>

<DoLocalProcessing InstructionCount =" 120000 "/>

<WaitForLocalProcessing />

<WaitForMethodInvocation Timeout =" -1"/>

<DoMethodReturn InstructionCount ="20000"

Datasize ="480" PreCondition =" -1"/>

<DoDataToActuator Target =" brakeActuators "

InstructionCount ="10000" Datasize ="128"/>

<DoMessagePassing Target ="Light"

InstructionCount ="40000" Datasize ="32"/>

</ Instructions >

D.8. Cruise Control

<Instructions >

<DoRequestSensorData Target =" obstacleSensors "

InstructionCount ="10000"/>

<DoLocalProcessing InstructionCount =" 210000 "/>

<WaitForSensorData Target =" obstacleSensors "/>

<WaitForLocalProcessing />

<DoMethodInvocation Target =" StabilityAndDriveDynamics "

Datasize ="480" InstructionCount ="40000"/>

<DoMethodInvocation Target =" DataRepository "

InstructionCount ="40000" Datasize ="480"

SkipCycles ="4"/>

<WaitForMethodReturn Timeout = "0.02"/>

<WaitForMethodReturn Timeout = "0.02" SkipCycles ="4"/>

</ Instructions >

D.9. Data Repository
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D.10. Navigation

<Instructions >

<WaitForMethodInvocation

Target =" StabilityAndDriveDynamics " OrWithNext ="y"/>

<WaitForMethodInvocation Target =" Light " OrWithNext ="y"/>

<WaitForMethodInvocation Target =" CruiseControl "

OrWithNext ="y"/>

<WaitForMethodInvocation Target =" DriverWarning "

OrWithNext ="y"/>

<WaitForMethodInvocation Target =" Navigation "

OrWithNext ="y"/>

<WaitForMethodInvocation Target =" Infotainment "

OrWithNext ="y"/>

<WaitForMethodInvocation Target =" PassengerSafety "

OrWithNext ="y"/>

<!-- return for PassengerSafety -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="7"/>

<!-- return for Infotainment -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="6"/>

<!-- return for Navigation -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="5"/>

<!-- return for DriverWarning -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="4"/>

<!-- return for CruiseControl -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="3"/>

<!-- return for Light -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="2"/>

<!-- return for StabilityAndDriveDynamics -->

<DoMethodReturn InstructionCount =" 125000 " Datasize ="480"

PreCondition ="1"/>

</ Instructions >

D.10. Navigation

<Instructions >

<DoRequestSensorData Target =" gpsSensors "

InstructionCount ="10000"/>

<WaitForSensorData Target =" gpsSensors "/>

<DoLocalProcessing InstructionCount =" 240000 "/>

<WaitForLocalProcessing />

<DoMethodInvocation Target =" DataRepository "
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D. XML Code of the Applications used in the Evaluations

InstructionCount ="40000" Datasize ="480"

SkipCycles ="2"/>

<DoDataToActuator Target =" displaySpeakerActuators "

InstructionCount ="10000" Datasize ="6000"/>

<WaitForMethodReturn Timeout = "0.05" SkipCycles ="2"/>

</ Instructions >

D.11. Infotainment

<Instructions >

<DoRequestSensorData Target =" radioAntennaSensors "

InstructionCount ="10000"/>

<DoLocalProcessing InstructionCount ="24000"/>

<WaitForLocalProcessing />

<DoMethodInvocation Target =" DataRepository "

InstructionCount ="40000" Datasize ="480"

SkipCycles ="4"/>

<WaitForSensorData Target =" radioAntennaSensors "/>

<DoDataToActuator Target =" displaySpeakerActuators "

InstructionCount ="10000" Datasize ="6000"/>

<WaitForMethodReturn Target =" DataRepository "

Timeout = "0.02" SkipCycles ="4"/>

</ Instructions >
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