```
25
```


Supplementary Figure 1. Membranes of *T. maritima* catalyze Fd²⁻:NAD⁺-oxidoreductase
activity. 100 µg membranes of *T. maritima* were added to 1 ml buffer (20 mM Tris-HCl, 20
mM NaCl 2 mM DTE, 2.2 µM resazurin, pH 7.7) and ferredoxin:NAD⁺ oxidoreductase was
measured as described in Material and Methods with (--) and without (---) addition of 30 µl
NAD⁺ (100 mM). The absorption was followed at 340 nm.

38	Supplementary Figure 2. Size exclusion chromatography of the Rnf/F1F0-ATP synthase
39	complex from <i>T. maritima</i> . The Q-sepharose pool was applied on a Sephacryl S300 column
40	equilibrated with buffer C (50 mM Tris-HCl, 20 mM MgSO ₄ , 150 mM NaCl, 2 mM DTE, 4.4
41	μM resazurin, 0.02 % DDM [w/v], 5 μM FMN, pH 8.0). The protein was separated with a
42	flowrate of 0.5 ml/min and the separation was followed by measuring the extinction at 280 nm
43	(). After 46 ml the main protein eluted from the column in one peak. The dotted line ()
44	indicates the ferredoxin:NAD ⁺ oxidoreductase activity. mAu, milli absorbance units.

Supplementary Figure 3. Purification of Rnf/F1F0-ATP synthase complex from *T*. *maritima*. 20 µg protein from each purification step were separated on a 12.5% SDS-gel according to Laemmli *et al.*¹. The proteins were visualized by staining with silver (a) or under UV light (b). The "Page Ruler Prestained Protein Ladder" (Thermo Fisher Scientific, Waltham, Massachusetts, USA) was used as protein standard.

- υZ

Supplementary Figure 4. Temperature dependence of the NADH:MV-oxidoreductase activity of the Rnf complex from *T. maritima*. 2.5 μ g of the purified protein was added to 1 ml buffer (20 mM Tris-HCl, pH 7.7, 20 mM NaCl, 2 mM DTE, 4 μ M Resazurin) and were incubated for 5 min at the corresponding temperature. The reaction was started by adding 10 μ l MV (1 M) and 30 μ l NADH (100 mM), and the absorption was followed by 604 nm. The data represent N = 2 independent experiments.

- -

Supplementary Figure 5. Effect of Li⁺ (A) and K⁺ (B) on DCCD inhibition of ferredoxin:NAD⁺ oxidoreductase activity. 14 µg of purified Rnf complex was added to 1 ml buffer (20 mM Tris-HCl, 2 mM DTE, 2.2 µM resazurin, pH 7.7) containing 0 - 10 µM DCCD in absence (■) or presence of 20 mM LiCl (A) or KCl (B) (▲). The sample was incubated for 30 min at room temperature followed by 5 min at 60 °C and ferredoxin:NAD⁺ oxidoreductase was measured as described in Material and Methods. If LiCl or KCl was omitted during the preincubation, 20 mM LiCl (A) or KCl (B) was added before the reaction start. The data represent N = 2 independent experiments.

Supplementary Figure 6. Molecular mass of the purified Rnf complex and it's subunit
composition. 15 μg of the purified enzyme was either separated in a native PAGE (c) or under
denaturating conditions in a SDS-PAGE (a). The gels were stained with Instant BlueTM
(Expedeon, Cambridgeshire, UK) or with a NADH:MTT in gel activity assay under native
conditions. The covalently bound FMN was visualized under UV-light (b).

NorD V.c.	MSSAKELKKSVLAPVLDNNPIALOVLGVCSALAVTTKLETAFVMTLAVMFVTALSNFFVS 60
Roff V.C.	MSENRTLMLNGMWNNNPALVOLLGLCPLLAVSSTVTNALGLGTATLLVLVGSNVTVS 57
Doff Tm	MSD-LDFLTKGITKENDTV/0// GMCDTLAVTTSAINGLGMGLATTAVLTMSN///IS_56
KIILE 1.III.	
KNIE A.W.	MNF-MKNLIRGIIRENPIFVLVLGMCPILAVIISAINGMGMGLAIMLVLIGSNVAIS 56
NgrD V.c.	LIRNHIPNSVRIIVOMAIIASLVIVVDQILKAYLYDISKOLSVFVGLIITNCIVMGRABA 120
PofF V c	LURDYVPKEVPT PVEVMTTASIA/TCVOLIMNAVAYGLVLSLGTFT PLTVTNCTTTGPARA 117
Doff Tm	LIDETUDDETDIDIDIDIDISEUTATOLIMUCEAVDINETICIETDITUDECIMODADS 116
RHIE I.M.	LIRATVPDATRIPTETVVTASEVINIDELAAGEADEWATEDEWATEDELVAACTINGRASS 110
KNIL A.W.	ALREVIPDNIRIPAFVVVIASEVIIVGMLMKAIVPALDAALGIFIPLIVVNCIILARABA 116
	·*. ·*** · ·***·* · ···· · *.·*· ***··***
NorD V.c.	FAMKSEPIPSFIDGIGNGLGYGFVLMTVGFFRELLGSGKLFGLEVLPLISNG 172
RnfE V c	FASKNDVLPAALDGEWMGLGMTSVLVVLGSLPEIIGNGTLFDGADLLLGEWAKVLBTEVE 177
Dafe Ta	
KNIL I.M.	FASKRGVLDSALDGLGVGLGFIGSLVLLGSVKELFGNGIIFGIKVWEL 164
RnfE A.W.	FAFSNGIADSFADAVGMGLGFTLALTILGSIREILGAGSIFGFSLFGA 164
	** . * *** * .* .***
NorD V c	GNYOPNGLMLAPSAFFLIGFMIWAIRTEKPEOVEAKE 210
Doff V.c.	WEDSAFLIALIDDCAFTCVCFLIAAVSVID-VOIAADODVOOVOATEDADVTNU 220
KIILE V.U.	
RNIE T.m.	KIFLEILPPGAYITLGLLSALFTYIG-IRRKKRGEAK 200
RnfE A.w.	A-YEPVLLMILPPGAFLTLGLLIGLINWKT-KKA 196
	* ** *.*:: :*::

Supplementary Figure 7. Sequence alignment of NqrD from *V. cholerae (V. c.)* with RnfE from *A. woodii (A. w.)*, *T. maritima (T. m.)* and *V. cholerae*. The conserved acidic amino acids are marked in red and the amino acid that is potentially involved in Na⁺ binding is highlighted in gray. Positions with a star (*) are fully conserved residues. Positions with a colon (:) are residues with high similarities (reference value > 0.5 in Gonnet PAM 250 Matrix), dots (.) are residues with low similarities (reference value < 0.5 in Gonnet PAM 250 Matrix).</p>

NgrE	V.C.	MEHYISLL	VKSIFI	ENMAL	SFFLG	MCTFI	AVSKKV	/KTSFGI	LGIAVIV	VLTISVPV	NNLVY	60
RnfA	V.c.	MTEYLLLL:	IGTVLV	NNFVL	VKFLG	LCPFM	GVSKKI	ETAIG	IGLATTF	VLTLASVO	AYLVE	60
RnfA	T.m.	-MKVFLLF	FSAIFV	NNEVL	ARFLG	ICPFL	GVSKRI	ETATG	GIAVTE	MTVSAAI	SWFLD	59
RnfA	A. w.	M	ISAIFV	NNEVL	SRFLG	ICPFL	GVSKOV	ETAVG	GVAVTE	VMALASAI	OVVYT	53
		:	. ::::	:*:.*	***	:* *:	.***::	:*: *:	*:*	*::::	.:	
NgrE	V.c.	NLVLKPDA	LVEGVD	LSFLN	FITFI	GVIAA	LVQIL	MILDRI	FFPPLYN	ALGIFLPI	JITVNC	120
RnfA	V.c.	SYVLRP	LG	IEYLR	TMSFI	LVIAV	VVQFT	MVVHK:	[SPTLYR]	LLGIFLPI	LITTNC	114
RnfA	T.m.	KL-LIS	TG	LEFLR	TIVFI	LVIAS	FVQFV	LFLKKI	SPDLYE	ALGIFLPI	LITTNC	112
RnfA	A. w.	YAILDP	LS	LGYLO	TIAFI	LIIAA	LVOLV	MIIKKS	SPSLYO	ALGVYLPI	ITTNC	114
		*		*	. **	.**	**		* **	** ***	** **	
NgrE	V.c.	AIFGGVSFI	IVQRDY	SFAES	VVYGE	GSGVG	WMLAIN	ALAGI	REKMKYSI	DVPPGLRG	LGITE	180
RnfA	V.c.	AVLGVALL	NINENH	NEIOS	IIYGE	GAAVG	FSLVLI	LEASME	RERIHVA	DVPAPEKG	MAIZA	174
Dofa	Tm	ATLOMULT	IST.MKT.	NEVEA	VEHAL	CSCLC	FALATA	TEACT	FEMDLY	DT.DEDEKO	TATAT.	172
Dafa	2	AULCUALT	TOMEY	METET	TEMOL	CANTO	ETT ATT	TEACT	FDIFTC	NUDVATEC	FDTAT	174
RILLA	A. F.	AVEGVALI	ALGHEI	NEILI	TENGA	GAADG	FILMIN	DERGIN	KERLEI 3	AVFINES	FIAD	1/4
		:: . :	-	.* :::	•••••	*:.:*	: *.::		*::.		*::	
NorE	V.c.	ITAGLMAL	FMSES	GVOL-	198							
Dafa	Va	TTACIMET	EMORT	CTUNT	102							
Data	v.c.	TELCITOR	APPIGE I	CLURL	100							
KNIA	1.m.	TINGLESE	AFMGEQ	GMVKL	191							
RnfA	A. W.	LTAGLMAI	AFLGFS	GMKLG	193							
		:****::::	.*:.*	* :								

Supplementary Figure 8. Sequence alignment of NqrE from *V. cholerae* (*V. c.*) with RnfA from *A. woodii* (*A. w.*), *T. maritima* (*T. m.*) and *V. cholerae*. The conserved acidic amino acids are marked in red and the amino acid that is potentially involved in Na⁺ binding is highlighted in gray. Positions with a star (*) are fully conserved residues. Positions with a colon (:) are residues with high similarities (reference value > 0.5 in Gonnet PAM 250 Matrix), dots (.) are residues with low similarities (reference value < 0.5 in Gonnet PAM 250 Matrix).</p>

NqrB V.c. RnfD V.c. RnfD T.m. RnfD A.w.	MGLKKFLEDIEHHFEPGGKHEKWFALYEAAATLFYTPGLVTKRSSHVRDSVDLKRIMIMV 	60 24 24 27
NgrB V.c.	WLAVFPAMFWGMYNAGGQAIAALNHLYSGDQLAAIVAGNWHYWLTEMLGGTMSSDAGWGS	120
RnfD V.c.	LVCALPGLIAQT	36
RnfD T.m.	LIALSPAVIGAA	36
RnfD A.w.	IIALLPALAVAG	39
	:. *.:	
NgrB V.c.	KMLLGATYFLPIYATVFIVGGFWEVLFCMVRKHE-VNEGFFVTSILFALIV	170
RnfD V.c.	YFFGYGTLIQLLLAISVAVALEAGIMLLRKRSPISALRDYSAVVTAWLLAVAI	89
RnfD T.m.	YFFGWYALFLCIAGAVIGELFDIF-VMRYLRGVKDFVPDGSGAVTGLLLAMNV	88
RnfD A.w.	YVFGLWALALVAICVI-SSVATEA-VIQKLLKKPITVNDWSAVVTGVLLAFNL	90
	*.: : . : :. **. *:*. :	
NgrB V.c.	PPTLPLWQAALGITFGVVVAKEVFGGTGRNFLNPALAGRAFLFFAYPAQISGDLV	225
RnfD V.c.	PPLSPWWVVVIGLIFAIVIAKHLYGGLGQNPFNPAMIAYVVLLISFPVQMTSWMAPIKLT	149
RnfD T.m.	STRLPFWAFLLGLVFALGIGKHVFGGLGQNIFNPALVGRAFLLISFPTYMTTWVVPGAGF	148
RnfD A.w.	PINAPWWIGVVGSVFAIAIVKQCFGGLGQNFINPALAARAFLLASWPGHMTSTA	144
	* ** * *. :** *:* :***:*: ::* ::	
NgrB V.c.	WTAADGYSGATALSQWAQGGAGALINNATGQTI	258
RnfD V.c.	AEPSSLVDSFSLIFGGFDSDGLSLQQIRTGIDGITMATPLDAIKTSLKAGHTMSET	205
RnfD T.m.	WKSHGVFT	172
RnfD A.w.	YIPGETGSMP	170
	* : ** *	
NgrB V.c.	TWMDAFIGNIPGSIGEVSTLALMIGAAFIVYMGIASWRIIGGVMIGMILLSTLFNVIG	316
RnfD V.c.	LTQPQFSGFAGIGWEWVNIAYLLGGLILLKLRIIRWHIPVAMLAGLVFTALLAQLFA	262
RnfD T.m.	PYWDLFIGKVGGSLGETSALLLIIGFIYLLLRKRVKIFIPVSYIGTVLVFSSIAYLMN	230
RnfD A.w.	STLDLFTGLNGVYGCIGEISALALLIGGLYLIYKGIISWRIPTIYLLTIAIFAL	224
	** : * : ::* :: * : : . :	
NarB V.c.	SDTNAMFNMPWHWHLVLGGFAFGMFFMATDPVSASFTNSGKWAYGILIGVMCVLIRVVNP	376
RnfD V.c.	PGTTASPMIHLLSGATMLGAFFIATDPVSASTTDKGRLIYGFFIGAMVFLIRSW-G	317
RnfD T.m.	P-RYGDPLFHLLSGGLMLGALFMATDMVTSPITAKGQVIFGIGCGVLTMAIRLF-G	284
RnfD A.w.	L-VGQDPIVHMVSGGVMLGAFFMATDYASSPVTAKGQIIYAIGCGLITMIIRLY-G	278
	*:: *. :* :*:*** .:: * .*: :.: * : * : *	
NorB V.C	AVPROMILATIEFANLFAPLETHVVVERNTKRRLARYGKO- 415	
RnfD V.c.	GFPDGVAFAVLLANMCVPLIDYYTKPRTYGH 348	
RnfD T.m	AYPEGVSFSILFMNALVPLIDRYTRPRIFGEVKK 318	
RnfD A.w.	GYPEGCSYSILLMNVATPLIERFTKERIYGVTKIKKEAKA 318	
	*.**. * .** *	

Supplementary Figure 9. Sequence alignment of NqrB from *V. cholerae* (*V. c.*) with RnfD from *A. woodii* (*A. w.*), *T. maritima* (*T. m.*) and *V. cholerae*. The conserved acidic amino acids are marked in red and the amino acid that is potentially involved in Na⁺ binding is highlighted in gray. Positions with a star (*) are fully conserved residues. Positions with a colon (:) are residues with high similarities (reference value > 0.5 in Gonnet PAM 250 Matrix), dots (.) are residues with low similarities (reference value < 0.5 in Gonnet PAM 250 Matrix).</p>

Supplementary Figure 10. A model of glucose metabolism linked to a Mrp-Mbx and Rnf 141 complex in *T. maritima*. Glucose is oxidized *via* glycolysis and Entner-Doudoroff pathway 142 and acetate is produced. NADPH generated in the gluose-6-phosphate dehydrogenase reaction 143 is oxidized by a Mrp-Mbx complex by producing H_2 , thereby establishing a Na⁺ or H⁺ gradient². 144 Electrons from Fd²⁻ are shuffled to NAD by the Rnf complex, thereby generating an additional 145 Na⁺ gradient; the Na⁺ gradient is used by the F₁F₀ ATP synthase to generate ATP. A potential 146 H⁺ gradient could be converted to a secondary Na⁺ gradient *via* a Na⁺/H⁺ antiporter and then 147 used for ATP synthesis or the ATP synthase may use Na⁺ and H⁺ simutaneously³. All other 148 reducing equivalents are used by the electron bifurcating/confurcating hydrogenase (Hyd) to 149 generate H₂. KDPG, 2-keto-3-desoxy-6-phosphogluconate, GAP, glyceraldehyde 3-phosphate, 150 BPG, bisphosphoglycerate. Please note that the ion/electron and ion/ATP stoichiometries are 151 based on thermodynamics (see $also^4$). 152

Supplementary Figure 11. A model of glucose metabolism linked to a Mrp-Mbx and Rnf 154 complex in T. maritima under high H₂ partial pressure and presence of sulfur. Glucose is 155 oxidized via glycolysis and Entner-Doudoroff pathway and acetate is produced. Most of the 156 reducing equivalents are used from the NADH-dependent Fd²⁻:NADP⁺-transhydrogenase (Nfn) to 157 confurcate electrons to NADP⁺. NADPH generated in the gluose-6-phosphate dehydrogenase and 158 transhydrogenase reaction is used by a Mrp-Mbx complex to reduce elemental sulfur to H₂S, 159 thereby establishing a Na⁺ or H⁺ gradient². A potential H⁺ gradient could be converted to a 160 secondary Na⁺ gradient via a Na⁺/H⁺ antiporter and then used for ATP synthesis or the ATP 161 synthase may use Na⁺ and H⁺ simultaneously³. Further electrons from Fd²⁻ are shuffled to NAD 162 by the Rnf complex, thereby generating an additional Na⁺ gradient; the Na⁺ gradient is used by the 163 F_1F_0 ATP synthase to generate ATP. All remaining reduction equivalents are used by the electron 164 bifurcating/ confurcating hydrogenase (Hyd) to generate H₂. KDPG, 2-keto-3-desoxy-6-165 phosphogluconate, GAP, glyceraldehyde 3-phosphate, BPG, bisphosphoglycerate. Please note that 166 the ion/electron and ion/ATP stoichiometries are based on thermodynamics (see also⁴). 167

168 Supplementary Tables

169 Supplementary Table 1. Purification of the Rnf F₁F₀-ATP synthase complex from *T*.

170 *maritima*.

Sample	Protein (mg)	Fd ²⁻ :NAD ⁺ - oxidoreductase activity (mU/mg)	total-activity (U)	enrichment	yield (%)
Membranes*	2200	97	213	1	100
Solubilisate	304	594	181	6.1	85
Q-Sepharose TM	47	1340	63	13.8	30
Sephacryl S-300	13	2100	27	21.6	13

171 *Membranes were prepared from 30 g (wet weight) of cells

172

173 Supplementary Table 2. Proteins identified by LC-MS/MS and MALDI-TOF in the

174 **ATPase + Rnf complex preparation.**

Protein	Accession number	Protein Idetification Propabillity	#Peptides	% Coverage
electron transporter RnfC [Thermotoga]	gi 490184336	100%	14	43%
electron transporter RnfG [Thermotoga]	gi 740209784	100%	8	31%
electron transporter RnfD [Thermotoga]	gi 740191358	32%	1	3.2%
ATP synthase epsilon chain [Thermotoga]	gi 490183443	100%	9	58%
ATP synthase subunit beta [Thermotoga]	gi 490183445	100%	27	60%
ATP synthase F1 subunit gamma [Thermotoga]	gi 490183448	100%	21	59%
ATP synthase subunit alpha [Thermotoga]	gi 490183450	100%	39	59%
ATP synthase subunit delta [Thermotoga]	gi 490183452	100%	13	54%
ATP synthase subunit B [Thermotoga]	gi 490183458	100%	19	71%
ATP synthase subunit c [Thermotoga]	gi 490183460	100%	3	32%
F0F1 ATP synthase subunit A [Thermotoga]	gi 490183462	100%	3	7.9%

177 Supplementary Table 3. Proteins identified by LC-MS/MS and MALDI-TOF in the Rnf

178 complex preparation.

Protein	Accession number	Protein Idetification Propabillity	#Peptides	% Coverage	
electron transport complex subunit RnfC	CAEHES THEMA	1000/	19	40%	
[Thermotoga maritima]	04FIIF6_THEMA	10070	10	4970	
electron transport complex subunit RnfG	CONVERSE THEN A	4000/	10	4.407	
[Thermotoga maritima]	Q9WY88_IHEMA	100%	12	44%	
electron transport complex subunit RnfD	OONNOZ THENA	1000/	1	2 10/	
[Thermotoga maritima]	Q9WY8/_THEMA	100%	1	3.1%	
electron transport complex protein RnfB		1000/	3	220/	
[Thermotoga maritima]	G4FHG3_IHEMA	100%		23%	
electron transport complex subunit RnfA		000/	1	5 90/	
[Thermotoga maritima]	Q9W190_IHEMA	99%	1	3.070	

179

180

181 Supplementary References

182 183	1	Schägger, H. & von Jagow, G. Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa <i>Anal</i>
18/		Riochem 166 369-379 (1987)
104	_	
185	2	Lim, J. K., Mayer, F., Kang, S. G. & Müller, V. Energy conservation by oxidation of
186		formate to carbon dioxide and hydrogen via a sodium ion current in a
187		hyperthermophilic archaeon. Proc. Natl. Acad. Sci. U.S.A. 111, 11497-11502 (2014).
188	3	Schlegel, K., Leone, V., Faraldo-Gomez, J. D. & Müller, V. Promiscuous archaeal
189		ATP synthase concurrently coupled to Na ⁺ and H ⁺ translocation. Proc. Natl. Acad. Sci.
190		<i>U.S.A</i> 109 , 947-952 (2012).
191	4	Schut, G. J., Boyd, E. S., Peters, J. W. & Adams, M. W. The modular respiratory
192		complexes involved in hydrogen and sulfur metabolism by heterotrophic
193		hyperthermophilic archaea and their evolutionary implications <i>FEMS Microbiol</i> , <i>Rev.</i>
194		37 , 182-203 (2013).