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Abstract

Oxygen vacancies in strontium titanate surfaces (SrTiO;) have been linked to the presence of a two-
dimensional electron gas with unique behavior. We perform a detailed density functional theory study
of the lattice and electronic structure of SrTiO; slabs with multiple oxygen vacancies, with a main
focus on two vacancies near a titanium dioxide terminated SrTiO; surface. We conclude based on
total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically,
while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spa-
cing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface
TiO, layer lead to population of Tit,, states and thus itinerancy of the electrons donated by the oxygen
vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti e, states and remain
localized on the two Tiions neighboring the vacancy. We find that both the formation of abound
oxygen-vacancy state composed of hybridized Ti 3e,and 4p states neighboring the oxygen vacancy as
well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap
state.

1. Introduction

The discovery of a two-dimensional (2D) electron gas at the interface between SrTiO; (STO) and LaAlO; (LAO)
in an LAO/STO heterostructure by Ohtomo and Hwang [ 1] initiated intense research efforts [2, 3] on these
materials and unexpected phases at the interface like superconductivity [4] and ferromagnetism [5] were
reported. However, there has been some controversy on the mechanisms leading to the conducting interface,
with proposals ranging from electronic reconstruction as a way to avoid a polar catastrophe [6] to various
mechanisms based on extrinsic defects like oxygen vacancies [7, 8] and site disorder [9, 10]. More recently, a
metallic state has also been discovered at the surfaces of freshly cleaved SrTiO; [11, 12] and KTaOs3 [13, 14]. In
the case of pure SrTiOj; surfaces, the metallic state and the photoemission spectra can be well explained with
oxygen vacancies [11, 15, 16]. Besides the spectral weight at the Fermi level, the presence of a peak atabout 1.3 eV
below the Fermi level was also reported [11]. Aiura et al [17] observed in photoemission experiments for lightly
electron-doped SrTiO; under different oxygen pressure conditions, that the peak at 1.3 eV appears to depend on
the oxygen defect density. As pristine SrTiOj is a semiconductor with alarge band gap of E, = 3.2 eV, creating a
number of Tit,, carriers and assuming a rigid band shift should lead to a photoemission spectrum with a wide
gap below the states near the Fermi level. However, several experiments [11, 12, 17-20] show thatthe E = —1.3
eV feature is robust and reproducible but sensitive to oxygen pressure. Understanding the nature and orbital
character of the E = —1.3 eV feature as well as the interplay between localized and itinerant states created by the
presence of oxygen vacancies will be the main focus of our study. In fact, the role of oxygen vacancies is presently
being intensively discussed in a wider context of materials. For instance, oxygen vacancies have been proposed to
be responsible for the suppression of the metal-insulator transition in VO, [21], as well as for the electron beam-
induced growth of iron nanowires on TiO, [22], to mention a few. Therefore, getting a deeper microscopic
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Figure 1. Schematic view of two inequivalent subsurface oxygen vacancy positions together with a sketch of the symmetry of the
resulting hybrid orbitals on the Ti sites next to the oxygen vacancy.

understanding of the role of oxygen vacancies in transition metal oxides can further elucidate the mechanisms
behind the above observed phenomena.

There have been a number of previous theoretical efforts dealing with oxygen vacancies in SrTiO5. Cuong
etal [23], using LDA+U calculations, found that oxygen vacancies in bulk SrTiO; tend to cluster in a linear
fashion. Hou and Terakura [24] performed GGA+U calculations of single and double oxygen vacancies in bulk
SrTiOs. Several calculations based on hybrid functionals [25, 26] or LDA+U [27] have found an oxygen defect
related in-gap state for SrTiOs. Lin and Demkov [28] used a three-orbital Hubbard model to study the effect of
electronic correlation on an oxygen vacancy in SrTiOs. Pavlenko ef al [29] analyzed the orbital reconstruction at
SrTiO5/LaAlO; interfaces due to oxygen vacancies within GGA+U. We will extend this existing work by (i)
focusing on SrTiO; surfaces and by (ii) using large supercells that allow us to investigate two and three oxygen
vacancies at realistic defect densities.

In our study we show that (i) multiple subsurface oxygen defects are energetically less favorable than
configurations with at least one defect in the TiO, surface layer. (ii) Vertically, defects show a clear tendency to
cluster; defect configurations with two oxygen defects in the first two layers (surface TiO, and first subsurface
SrO layer) are clearly preferred over configurations with one or two layers of vertical distance between the two
vacancies. In contrast, in the direction parallel to the surface, we find a tendency of vacancies to distribute
uniformly. (iii) Moreover, while the isolated surface oxygen vacancy creates itinerant Tit,, electrons, the
subsurface vacancy creates two localized states of Ti e, character in the two adjacent Tiions. The localized states
have 3d . character with some 4p_ weight for oxygen vacancies in a subsurface SrO layer, and 3d,>_2 character
with some 4p, /py weight for vacancies in a subsurface TiO, layer (see figure 1). Finally, we also show that (iv) the
precise condition for an in-gap state produced from surface vacancies is the formation of a TiO5(vacancy),
cluster.

2. Method

In order to investigate the role of oxygen vacancies in SrTiO;, we performed density functional theory
calculations for a number of SrTiOj; slabs with various configurations of oxygen vacancies and analyzed the
origin of the states appearing near the Fermi level. We have considered stoichiometric SrTiOj; slabs with (001)
surfaces, as discussed in [15]. We consider neutral oxygen vacancies. Based on our previous experience, we use
3 % 3 x 4 supercells with TiO, termination; we have also performed calculations for slabs with vacancies in SrO
terminated surfaces but in the present work we focus on the TiO, termination which is more relevant
experimentally. We use the energetically most favorable structures with a single vacancy in the TiO, surface layer
as a starting point for structures with a second or even a third oxygen defect. We relax these structure candidates
using the Vienna ab initio simulation package [30, 31] with the projector augmented wave basis [32]. As it has
been found that relaxations with the generalized gradient approximation (GGA) [34] tend to make the
octahedral environment of transition metal ions too homogeneous [33] we use a GGA+U functional [35] with
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literature values for SrTiO; [36] of U=5 eV and J = 0.64 eV. We analyze the electronic structure and total energy
of the predicted slab geometries using an all electron full potential local orbital [37] basis.

3. Results

In figure 2, we show examples of SrTiO; supercells with two oxygen vacancies. They correspond to the
energetically most favorable configurations with the first vacancy in the TiO, surface layer (layer 1) and the
second vacancy in (a) the surface layer (layer 1), (b) the first subsurface SrO layer (layer 2), (c) the first
subsurface Ti0, layer (layer 3) or (d) the second subsurface SrO layer (layer 4). An overview of the energetics is
shown in figure 3. Energies are given with respect to the energy E of the configuration drawn in figure 2(b)
which turned out to be the optimum. We find a clear trend: defect configurations with one vacancy on the
surface (layer 1) and the second one in the first subsurface layer (layer 2) are energetically more favorable than
configurations where the two oxygen vacancies are separated by one or two pristine layers. This means that there
is a clear tendency of oxygen vacancies to cluster vertically near the surface of SrTiO;. In the direction parallel to
the surface, however, the outcome of our simulations is more complex. While configurations with both defects
in the surface TiO, layer (circles in figure 3) show a weak tendency to cluster, the energetically most favorable
corresponds to distributing one defect in the first (TiO,) and one defect in the second (SrO) layer (triangle at

E = E,in figure 3) with a maximal distance between the two vacancies within our simulation cell. This result
suggests a tendency to uniform distribution of defects parallel to the surface. Turning to the defects separated by
a pristine SrO layer from the surface oxygen defect (diamonds in figure 3), we observe a weak preference of
defects to lower vacancy—vacancy separation, i.e. to cluster with the SrO spacer layer between the two defects.
Note that structures with both vacancies below the TiO, surface are 1.4 eV and more higher in energy than the
optimum and therefore do not appear in figure 3.

We now proceed with an analysis of the electronic structure of the two oxygen vacancy configurations.
Figure 4 shows the density of states for all structures discussed before. Gray shading indicates electronic states
which are populated with electrons donated by the oxygen vacancy. All investigated structures have Tit,, weight
near the Fermilevel. A detailed analysis of this weight shows that a large number of Tiions in the supercell
contribute to it and the corresponding bands are dispersive, indicating that these electrons are itinerant. We have
shown in [15] that this is a result of structural relaxation; if all ions are kept in the ideal perovskite position upon
creation of an oxygen vacancy, only Tit,;orbitals next to the vacancy are occupied, and an unphysical localized
t,q electron density is created. As in the previous study, the itinerancy of electrons is limited to a thin layer near
the oxygen vacancies; in this sense, the on-site energies of the Ti atoms affected by the oxygen defect can be
considered as a shallow trap as discussed in [38]. As a second important feature, all structures in figure 4(b) and
all except the first one in figure 4(a) also show sharp in-gap states; these are states typically created by subsurface
oxygen defects and localized on the two Tiions adjacent to the defect. These states have Ti e, character with small
admixture of 4p states, and they clearly fall into two categories: Tid 2 states created by vacancies in a SrO layer,
and Tid,:_,: states produced by vacancies in subsurface TiO, layers. This orbital occupancy is due to the fact
that in the case of an oxygen defect in a SrO layer, the Tiions neighboring the defect are above and below the
defect where the vertical axis corresponds to the z-axis in the orbital projection (see figure 1(a)). In the case of a
subsurface defect in a TiO; layer, the two neighboring Tiions sit at half a lattice spacing either along the x or y
direction with respect to the vacancy (see figure 1(b)). Figure 5(a) and (b) illustrate the orbital distribution of the
defect configuration shown in figure 2(b) where one vacancy is on the TiO, surface (layer 1) and the second
vacancy is on the subsurface SrO layer (layer 2). Figure 5 (c) and (d) display the orbital distribution for a
representative example of one vacancy on the TiO, surface (layer 1) and the second one on the TiO, subsurface
(layer 3), as in figure 2(c).

In-gap states are also present when oxygen vacancies cluster at the surface TiO, layer (cases 3 and 4 in
figure 4). Our calculations show that the precise condition for such in-gap states produced from surface
vacancies is the formation of a TiOs(vacancy), cluster. In fact, the energetically most favorable configuration
with two vacancies in the surface TiO, layer (see figure 2(a)) is of this type. On the other hand, well separated
oxygen vacancies in the surface TiO, layer which form TiO,(vacancy) clusters only (cases 1 and 2 in figure 4)
lead to an itinerant 2D electron gas of Tit,, electrons but no in-gap states.

In order to further test the distribution of oxygen-vacancy-induced extra charge, we also calculated the
electronic properties of 3 X 3 X 4 SrTiOj; slabs with three oxygen vacancy configurations as shown in figure 6.
In all three cases in-gap states appear below the Fermi level since some oxygen vacancies are either below the
TiO, surface layer or they are clustered around a Ti on the surface. Comparison of the two-vacancy with the
three-vacancy cases shows that the in-gap weight is proportional to the oxygen vacancy density. This observation
is in qualitative agreement with experiment [17] but it should be investigated further. We found that two oxygen
vacancies produce in-gap states with binding energies betweeen —0.4 and —0.8 eV which is significantly smaller
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(a) notation

=@ layer 1 (surface TiO, layer)
‘ 4! layer 2 (subsurface SrO layer)
layer 3 (subsurface TiO, layer)

| layer 4 (2nd subsurface SrO layer)

(c) layer 2

Figure 2. Examples of SrTiO; slab structures. 3 X 3 X 4 perovskite units have been considered in the calculation and in (a) the
notation used through the text is given. There are two oxygen vacancies: one is always in the surface TiO; layer (layer 1). Examples for
the energetically most favorable positioning of the second oxygen vacancy in the surface layer (layer 1) are shown in (b), in the
subsurface SrO layer (layer 2) in (c), in the first subsurface TiO, layer (layer 3) in (d) and in the second subsurface SrO layer (layer 4) in
(e).

than the position of the peak at E = —1.3 eV observed experimentally. However, the three vacancies already lead
to in-gap states with binding energies between —0.3 and —1.1 eV (see figure 7). This indicates that by including
more vacancies in the calculation, we are approaching the position of the in-gap state observed in experiment.
We have also tested the dependence of the in-gap peak position on the interaction parameter U of the GGA+U
functional. We find that as expected larger U values lead to higher binding energies of the in-gap state. However,
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Figure 3. Total energies of SrTiOj; slabs with two oxygen vacancies calculated within GGA+U. The first vacancy is always in the surface
TiO, layer (layer 1). Energies are given as function of distance to the second vacancy which can be in the surface TiO, layer (layer 1)
(circles), in the subsurface SrO layer (layer 2) (triangles), in the first subsurface TiO, layer (layer 3) (diamonds) or in the second
subsurface SrO layer (layer 4) (pentagon).
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Figure 4. Densities of states for two oxygen vacanciesin3 X 3 X 4 SrTiOj slabs calculated within GGA+U. The first vacancy is always
in the surface TiO, layer. (a) Second vacancy in surface TiO, layer or in first subsurface SrO layer. All but the first two structures lead to
an in-gap DOS peak. In the structure corresponding to DOS number 4, the two oxygen vacancies have a Tiin the middle, in contrast to
DOS number 2. (b) Second vacancy in first surface TiO, layer or in second subsurface SrO layer. Number 4 is the DOS for the
structure in figure 2(a), number 8 corresponds to figure 2(b), number 15 to figure 2(c) and number 16 to figure 2(d).

considering that GGA+U is only an approximate treatment of strong electronic correlations, we did not adjust
the interaction parameters to shift the in-gap states to the experimentally observed position.

4. Discussion

Analysis of the previous LDA+U results allows us to draw some important conclusions regarding the role of
oxygen vacancies in SrTiOs. (1) If oxygen vacancies are only on the surface and well separated from each other,
the two electrons per vacancy contribute only to the conduction band and no localized in-gap states are formed
independently of the U value considered in the LDA+U calculations. Only when oxygen vacancies cluster on the
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Figure 5. Partial densities of states for Tiions neighboring oxygen vacancies. (a) and (b) Tiions sitting above and below a vacancy in
the first subsurface SrO layer. (c) and (d) Tiions sitting right and left of a vacancy in the first subsurface TiO, layer.

(a) 1 vacancy in layer 1,

(b) 2 vacancies in layer 1, (c) 3 vacancies in layer 1
2 vacancies in layer 2

1 vacancy in layer 2

Figure 6. Three examples of three oxygen vacancy configurationsin3 x 3 x 4 SrTiOs slabs.

surface, assuming TiOs(vacancy), configurations, or are positioned in subsurface layers do we observe the
formation of in-gap states coming from the hybridized 3e, with 4p states from the Ti neighboring the vacancy.
This is in contrast to arecent study by Lin ef al [28] where it was suggested that the oxygen-vacancy-induced in-
gap state traps at most one electron from the oxygen vacancy while the second electron contributes to the
conduction. (2) The energy ordering of the different vacancies configurations with presence of in-gap states can
be attributed to two effects: (i) the gain in energy due to the formation of a bound oxygen-vacancy state (in-gap
state) composed of the hybridized Ti e, and 4p states neighboring the vacancy as well as (ii) the gain in elastic
energy due to the lattice deformation after extracting oxygen. In fact, calculations of total energies of relaxed
versus unrelaxed slab structures point to a significant contribution of the second effect that should be considered
together with the formation of the bound state. Moreover, the lattice deformation is important in the formation
of anitinerant 2D electron gas due to surface oxygen vacancies. (3) The weight of the in-gap state scales with the
oXygen vacancy concentration in agreement with photoemission experiments. (4) The formation energy of an
oxygen vacancy in SrTiOj; is about 7.7 eV for a single vacancy and 4.8 eV per vacancy for two and three vacancies.
From our present calculations we can only speculate about possible formation mechanisms of such vacancies.
Certainly the exposure to energetic photons in photoemission experiments is a possible cause. (5) The tendency
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Figure 7. Densities of states for three examples of three oxygen vacancy configurationsin3 X 3 X 4 SrTiOj; slabs calculated within
GGA+U.

for vacancy clustering in the vertical direction, but not in the plane of the surface could be understood in terms of
an effective vacancy—vacancy attraction by strain in the vertical direction, i.e. one vacancy takes advantage of the
deformation induced by the other vacancy, similar to what happens in a bipolaron. This strain-mediated
attraction competes with the Coulombic repulsion of the net charge of the vacancies. At short distances the
former wins due to the generation of a deep trap that localizes the carriers (in-gap states) and thereby neutralizes
the vacancies. We leave the study of this interplay as a function of the distance between vacancies for future work.

Finally, based on the present study of multiple oxygen vacancies near the SrTiO; surface, it will now be very
interesting to extend such an investigation to multiple oxygen vacancies near the interfaces of oxide
heterostructures such as LaAlO5/SrTiO5; where the polar character of the interface has been shown to strongly
influence the behavior of oxygen vacancies [38, 39].

In summary, by considering different configurations of oxygen vacancies in SrTiO3 and subsequent analysis
of the energetics and electronic properties via extensive DFT calculations we can explain the origin of observed
in-gap states as well as conduction electrons in photoemission experiments on SrTiOj; surfaces and provide
predictions for the behavior of a finite concentration of oxygen vacancies in SrTiOs.
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