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We show the absence of an instability of homogeneous (chiral) condensates against spatially
inhomogeneous perturbations for various (2þ 1)-dimensional four-fermion and Yukawa models. All
models are studied at nonzero baryon chemical potential, while some of them are also subjected to chiral
and isospin chemical potential. The considered theories contain up to 16 Lorentz-(pseudo)scalar fermionic
interaction channels. We prove the stability of homogeneous condensates by analyzing the bosonic two-
point function, which can be expressed in a purely analytical form at zero temperature. Our analysis is
presented in a general manner for all of the different discussed models. We argue that the absence of an
inhomogeneous chiral phase (where the chiral condensate is spatially nonuniform) follows from this lack of
instability. Furthermore, the existence of a moat regime, where the bosonic wave-function renormalization
is negative, in these models is ruled out.
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I. INTRODUCTION

Quantum field theories (QFTs) with four-fermion (FF)
interactions, so-called FF models, are relevant for several
branches of physics and, recently, much attention has been
paid to their investigation. FF models, such as the Nambu–
Jona-Lasinio (NJL) model [1,2], and also Yukawa-type
models, such as the quark-meson (QM) model [3], are
considered as low-energy effective models of quantum
chromodynamics (QCD) and light meson physics, describ-
ing, e.g., spontaneous chiral symmetry breaking or color
superconductivity. The models are applied to study strongly
interacting, fermionic matter under (extreme) external
conditions such as, e.g., temperature, density, chiral or
isospin imbalance or magnetic fields (see, e.g., [4–21]). In
contrast to QCD, the models do not exhibit a sign problem
for finite baryon chemical potential rendering, e.g., lattice
investigations possible (see, e.g., Refs. [9,22,23]).
Often, FF models are studied in two spatial dimensions,

where they are, in contrast to three spatial dimensions,
renormalizable [24,25]. The motivation of many works
[26–41] is the study of physical phenomena in high-energy
physics such as chiral symmetry breaking or color

superconductivity in rather simple, low-dimensional
QFTs. For example, the phenomenon of spontaneous chiral
symmetrybreaking induced byanexternalmagnetic field has
first been observed in a (2þ 1)-dimensional Gross-Neveu
(GN)-type model [42,43] (see Ref. [44] for the original
definition of the GN model in 1þ 1 dimensions). Also,
(2þ 1)-dimensional FF and Yukawa models are interesting
for the study of technical aspects and the development of
techniques in QFT; see Refs. [24,25,27,45–54]. Another
motivation for the study of these models is the application to
condensed matter systems with an effectively planar struc-
ture, which can be described by a relativistic fermionic
dispersion relation.1 For example, symmetry breaking
schemes of graphene effective field theory [65–68] are also
present in FF models. Thus, studies of fermionic models in
2þ 1 dimensions under the influence of external parameters,
as, e.g., Refs. [40,41,59,60,69–74], are motivated both from
the high-energy and the condensed matter perspective.
In many of the above works the (chiral) order parameters

are considered to be homogeneous in space. This is a
reasonable choice for first investigations of the phase
diagram. In strongly interacting systems in condensed
matter physics, however, crystallinelike ground states are
quite common [75–82] suggesting that the assumption
of homogeneous order parameters has to be reevaluated.*pannullo@itp.uni-frankfurt.de
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1For example, it was shown that the (1þ 1)-dimensional GN
model is suitable for the description of polyacetylene and similar
systems [55,56]. In a similar way, (2þ 1)-dimensional FF and
Yukawa models can be applied in descriptions of condensed
matter systems in 2þ 1 dimensions [57–64].
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More refined investigations of FF and Yukawa-type models
have indeed revealed the presence of a chiral inhomo-
geneous phase (IP), where the corresponding order param-
eter is a function of the spatial coordinates, also in effective
theories in nuclear and high-energy physics, see Refs. [83–
85], where IPs have first been found in this context. This
has stimulated conjectures that inhomogeneous chiral
condensates and related phenomena might also be relevant
in the phase diagram of QCD. However, it has to be
remarked that many of the existing model investigations
have been carried out within the mean-field approximation,
where the bosonic quantum fluctuations are neglected.
One of the most prominent examples for an IP is the

chiral kink in the (1þ 1)-dimensional GN model2 [56,86],
but also various other types of IPs with a more complicated
structure have been found in (1þ 1)-dimensional models
[87–93]. In recent literature, there is an ongoing discussion
whether these phases persist when allowing for bosonic
quantum fluctuations [94–99], where a spontaneous break-
ing of translational invariance, as in an IP, should be
forbidden in 1þ 1 dimensions according to the Mermin-
Wagner theorem [100–103].
In 3þ 1 dimensions, many of the models for sponta-

neous chiral symmetry breaking in QCD feature an IP—
typically appearing at low temperature and intermediate
densities, where one would expect a first-order phase
transition between homogeneous phases; see Ref. [104]
for a review. However, these results are mostly obtained in
the mean-field approximation and their predictive power
for QCD can be questioned. In case of the FF models, we
recently documented a regulator dependence of the IP in
the NJL model [23], where the existence and shape of the
IP depends on the chosen regularization scheme. In
combination with the nonrenormalizability of the NJL
model this raises questions about the predictive power
for QCD, especially since the chemical potentials in the
region of the IP are in the order of the necessary regulator.
The results in the renormalizable QM model suffer from
other technical problems, such as instabilities at large field
values [105,106].
Besides these difficulties of the model studies, there are

still indications that inhomogeneous chiral condensates
might be relevant in QCD [107,108]. A recent functional
renormalization group study of QCD [109] finds a so-called
moat or Lifshitz regime, where the bosonic wave-function
renormalization is negative and a modified dispersion
relation is obtained [110]. Such a phenomenon is often
related to an IP [111]. Experimental signals of this regime
are discussed in Refs. [110,112–114].
In (2þ 1)-dimensional models, only recently the atten-

tion has moved toward the study of IPs [41,115–120]. In
the (2þ 1)-dimensional GN model, IPs were observed at

finite lattice spacing [115], but it turned out that these are
regulator artifacts depending on the chosen regularization
scheme [116,117]. After renormalization homogeneous
phases are favored. This regulator dependence further
highlights the problem of nonrenormalizability with respect
to high chemical potentials relevant in the IP of the (3þ 1)-
dimensional NJL model [23]. In lattice simulations of the
(2þ 1)-dimensional GN model, oscillating, but damped
correlators have been observed in Refs. [37,38], but
considering the found regulator dependence of the IP
[116,117] it is unclear whether these are reminiscent from
the above-described regulator artifacts or from underlying
physical reasons, such as Fermi surface effects. We note
that the existence of an IP is also not favored by the
introduction of chiral imbalance [118,119] or of a magnetic
field [41].
In this paper, we rule out the instability of homogeneous

condensates with respect to inhomogeneous perturbations
for a large class of models with Lorentz-(pseudo)scalar
isospin FF interactions. This extends the previous findings
in the GN model to a variety of different FF and Yukawa
models. We apply the framework of analyzing the stability
of the bosonic two-point functions (as, e.g., used in
Refs. [23,111,115,117,119–126]) to these models. This
analysis tests whether homogeneous field configurations
are energetically unstable against inhomogeneous perturba-
tions. Among the limitations of the method is that one can
only show the existence of an IP and not the shape of
energetically preferred inhomogeneous field configuration
(see Ref. [111] for a detailed discussion of this method). As
discussed in Ref. [111], there might still exist an IP, which is
not detected by the stability analysis. However, to our
knowledge no phase diagram has been found, where an IP
does not at least enclose a region in parameter space with
instabilities of the homogeneous minimum against inhomo-
geneous perturbations. Moreover, all IPs so-far observed in
model studies are connected by a second-order phase
transition to the chirally symmetric phase. Such a phase
transition can always be detected by analyzing the stability of
the symmetric minimum of the effective potential.
This work is outlined as follows. A general FF model,

containing all the studied interaction channels, is intro-
duced in Sec. II. Furthermore, we present an extension of
these models to Yukawa models. In Sec. III, the stability
analysis of the bosonic two-point function for finite baryon
chemical potential and temperature is presented for the FF
models and their extension to Yukawa models. Based on
this analysis, we argue that all models with Lorentz-
(pseudo)scalar interaction channels do not exhibit IPs or
moat regimes. In Sec. IV, examples for these FF models are
presented. Allowing for multiple chemical potentials, we
also show the stability of homogeneous condensates for a
few theories each containing a small subset of the pre-
viously discussed interaction channels. Finally, we sum up
our results and conclude in Sec. V.

2In condensed matter, the equivalent model is known as the
Fröhlich model [77].
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II. DEFINITION OF THE CONSIDERED MODELS

In this section, we introduce a FF model, which serves as
the general prototype for the models, which will be later
studied using the stability analysis introduced in Sec. III.
We perform a bosonization with auxiliary fields and obtain
the effective action. Finally, in Sec. II B, the Yukawa
models, obtained from extending the bosonized FF models,
are defined.

A. Four-fermion models

In order to set up our general analysis, we define

SFF½ψ̄ ;ψ �

¼
Z

β

0

dτ
Z

d2x

�
ψ̄ð∂þ γ3μÞψ −

�X16
j¼1

λj
2N

ðψ̄cjψÞ2
��

;

ð1Þ

as the most general FF action studied in this work in
(2þ 1)-dimensional Euclidean spacetime [x ¼ ðx; τÞ rep-
resents the spacetime coordinate]. The integration over the
periodic Euclidean temporal coordinate τ goes from 0 to
β ¼ 1=T, where T is the temperature, while the integration
over d2x goes over the two-dimensional spatial plane. The
vector ψ contains 2N four-component fermion fields (N
identical spinors with isospin up/down respectively). We
work in the chiral limit, so no bare mass term is introduced.
The Dirac matrices are reducible, 4 × 4 representations of
the (2þ 1)-dimensional Euclidean Clifford algebra

fγμ; γνg ¼ γμγν þ γνγμ ¼ 2δμνI; μ; ν ¼ 1; 2; 3; ð2Þ

where I is the 4 × 4 identity matrix. Useful representations
for computations in 2þ 1 dimensions can, e.g., be found in
Refs. [117,119,127,128]. The interaction vertices cj are
8 × 8 matrices in isospin and spin space and elements of

C ¼ ðcjÞj¼1;…;16 ¼ ð1; iγ4; iγ5; γ45; τ⃗; iτ⃗γ4; iτ⃗γ5; τ⃗γ45Þ; ð3Þ

where τ⃗ is the vector of Pauli matrices acting on the isospin
degrees of freedom. The spin matrices γ4 and γ5 anti-
commute with the γν, while γ45 ≡ iγ4γ5 commutes with the
γν. All elements of C are 8 × 8 matrices, where the identity
matrices in spin and isospin space are not explicitly written
down whenever the matrix cj is diagonal in the corre-
sponding space. The channels ðψ̄ðxÞcjψðxÞÞ2 are local,
Lorentz-(pseudo)scalar FF interactions in the SU(2) isospin
space and spinor space. The vector and matrixlike FF
channels are not taken into account, since the analysis of
these interactions differs technically from the (pseudo)
scalar ones. Therefore, these interaction terms will be left to
forthcoming work. The couplings λj of each channel have
inverse energy dimension and will be set to either 0 or λ in

order to study different models and allow for different
symmetry groups of the action.3 The chemical potential μ is
introduced in the usual way and induces a nonvanishing
baryon density ∝ ψ̄γ3ψ.
It is well known that the partition function of Eq. (1) is

identical to a partition function with auxiliary bosonic scalar
fields ϕ⃗, where ϕj can be introduced via a Hubbard-
Stratonovich transformation (an inverse shifted Gaussian
integration) in order to get rid of the FF interaction
ðψ̄ðxÞcjψðxÞÞ2, up to a physically irrelevant integration
constant [44]. The partially bosonized action is then given by

S½ψ̄ ;ψ ; ϕ⃗� ¼
Z

d3x
�
N
X
j∈J

ϕ2
j

2λj
þ ψ̄Qψ

�
; ð4Þ

Q ¼ =∂þ γ3μþ
X
j∈J

cjϕj; ð5Þ

where J is an index set containing4 all integers 1 ≤ j ≤ 16
with λj ≠ 0. The auxiliary fieldsϕj have the dimension of an
energy and fulfill the Ward identity5

hϕji ¼ −
λj
N
hψ̄cjψi; j ∈ J: ð6Þ

In order to relate to the literature about FF models
as low-energy effective models (e.g., Refs. [1–3,5,8,10,
12,19,21,104]), we define phenomenologically motivated
symbols for the ϕj, i.e., the tuple

Φ ¼ ðϕjÞj¼1;…;16 ¼ ðσ; η4; η5; η45; a⃗0; π⃗4; π⃗5; π⃗45Þ: ð7Þ

The ordering of this tuple is used to directly map a fieldϕj to
the corresponding fermion bilinear ψ̄cjψ by reading of the
index j in the tupleC in Eq. (3). As one can see from Eq. (5),
nonvanishing hϕji give rise to dynamically generated mass
terms for the fermion fields. Thesemass terms spontaneously
break different symmetries of the action Eq. (5). The
possibility of certain symmetry breaking schemes is, of
course, dependent on the choice of interaction channels, i.e.,
on the set J [see the definition below Eq. (5)].
In Appendix A, we define the (chiral) symmetry group

for (2þ 1)-dimensional fermion fields. Considering no
interaction terms, the fermion fields contained in ψ are

3Typically, a FF model, which is invariant under a continuous
chiral symmetry transformation, involves two or more FF
channels, whose couplings all take an identical value in order
to allow for a rotational symmetry transformation between them.

4The definition of this set ensures that an auxiliary field ϕk is
only introduced when the coupling λk of the corresponding
channel is nonvanishing.

5The relations for these one-point functions can be derived
imposing the invariance of the functional integration measureQ

i Dϕi under the infinitesimal shifts of the fields ϕ⃗.
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invariant under transformations of the group Uð4NÞ com-
posed of chiral transformation of the group Uγð2NÞ and
isospin transformations, which are elements of SUτ⃗ð2Þ.
This invariance is not explicitly broken in the action (5) [or
Eq. (1)] if λj ¼ λ for6 j ¼ 1;…; 16. When a subgroup of the
interaction channels is taken into account in the partially
bosonized action (5), only subgroups of the chiral sym-
metry transformations might be realized (depending on the
choice of J). The reminiscent symmetry transformations,
which are relevant in Sec. IV, are also defined in
Appendix A.
A mass term of the form mψ̄ψ , as spontaneously

generated by a nonvanishing expectation value of
ϕ1 ¼ σ, breaks the full symmetry group Uγð2NÞ down
to the UI4ðNÞ × Uγ45ðNÞ subgroup of vector transforma-
tions. Mass terms of the form im4ψ̄γ4ψ (generated by
ϕ2 ¼ η4) and im5ψ̄γ5ψ (generated by ϕ3 ¼ η5) have the
same symmetry breaking pattern, but, in addition also break
one of the two Z2 parity transformations7

P4∶ ψðxÞ → γ4ψð−xÞ; ψ̄ðxÞ → ψ̄ð−xÞγ4; ð8Þ

P5∶ ψðxÞ → γ5ψð−xÞ; ψ̄ðxÞ → ψ̄ð−xÞγ5: ð9Þ

In addition, there is a fourth mass term m45ψ̄γ45ψ , which
does not break a continuous symmetry, but both P4 and P5.
This parity-odd mass can be dynamically generated by a
nonvanishing expectation value of ϕ4 ¼ η45. These four
different mass terms have an interpretation in condensed
matter applications, such as graphene or similar systems
[129–131]; see Ref. [51] for a summary. We assign
quantum numbers þ;− to the auxiliary bosonic fields in
Eq. (7) according to their transformation behavior under the
parity transformations (8) and (9). The fields and their
quantum numbers are listed in Table I. Later, we will refer
to the fields by their behavior under parity, e.g., η4 and π⃗4

are fields with quantum numbers ð−;þÞ and σ; a⃗0 are
ðþ;þÞ fields.
After integration over the fermion fields in Eq. (5), one

obtains an effective action depending solely on the bosonic
fields,

Seff ½ϕ⃗�
N

¼
Z

d3x
X
j∈J

ϕ2
j

2λj
− Tr ln βQ; ð10Þ

where Q has been multiplied with β in order to ensure a
dimensionless argument of the logarithm. This introduces
only a temperature-dependent constant to the partition
function. We recognize that Seff is proportional to N.
Taking the limit N → ∞ for the FF models is equivalent to
a mean-field approximation at finite N, which is what we
consider for the rest of this work. In this approximation one
takes the fermionic fluctuations fully into account through
the functional Tr ln over the Dirac operator Q, while all
quantum fluctuations in the bosonic degrees of freedom are
neglected. This causes the global minimum ϕ⃗ðxÞ ¼ Φ⃗ðxÞ
of Seff to be the only relevant contribution in the partition
function. Thus, expectation values of observables can be
computed by evaluating them on the respective global
minimum. This can become problematic when the effective
action has multiple, degenerate global minima, for example
in the case of a first-order phase transition or minima which
are related by symmetry transformations on the level of the
effective action. In the latter case, one formally has to
introduce a small symmetry breaking parameter z and make
the extrapolation z → 0 in order to remove ambiguities. In
the mean-field approximation, however, it is common (see,
e.g., Refs. [4,8,104]) and more practical to pick one of the
degenerate minima whenever facing this situation. In the
case of a first-order phase transition or critical end point, we
will refrain from evaluating any quantities that depend on
the minimum of the effective action in order to avoid
ambiguities.

B. Yukawa models

In order to generalize our analysis of the FF models, as
defined in Eq. (1), to corresponding Yukawa models in
Sec. III, we introduce their action in (2þ 1)-dimensional
Euclidean spacetime as

SY ½χ⃗� ¼
Seff ½hχ⃗�

N

þ
Z

d3x

�
1

2
ð∂νχ⃗ðxÞÞ2 þ

X
n>1

κn

�X
j∈Jχ

2
jðxÞ

�
n
�
;

ð11Þ

where χ⃗ ¼ ðχjÞj∈J contains scalar fields of canonical

dimension energy1=2, h is the Yukawa coupling, κn are
the couplings of the self-interaction terms between the

TABLE I. The quantum numbers ðP4; P5Þ of the fields ϕj
in Eq. (7).

ðP4; P5Þ ϕj

ðþ;þÞ σ; a⃗0
ð−;þÞ η4; π⃗4
ðþ;−Þ η5; π⃗5
ð−;−Þ η45; π⃗45

6In fact, the full chiral symmetry group is already realized,
when λj ¼ λ for j ¼ 1, 2, 3.

7The parity transformation in (2þ 1)-dimensional Euclidean
spacetime is defined as an inversion of an odd number of axes.
Our convention is to flip all three spacetime coordinates. The
ambiguity of having two different parity transformations, that can
act on the fermion fields, has its origin in the reducible spinor
representation.
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fields χ⃗ and Seff is defined in Eq. (10). In the mean-field
approximation, these models can be analyzed using the
stability analysis in the same manner as the FF models, as is
discussed in Sec. III B. Thus, quantum fluctuations of the
fields χ⃗ are neglected and observables are computed by
evaluating them on the global minimum of SY using the
same formalism as described above for the FF models. A
field χj, that by its interaction channel in Seff corresponds
to a field ϕj in a FF model, has the same parity quantum
numbers defined in Table I from ϕj. Equation (11) defines a
QM-type of model. One can think of the fermion fields
contained in Seff via the fermionic determinant as interact-
ing through the exchange of the dynamical bosonic fields
χj, which in the QM model correspond to light mesons.
We note that the Ward identity for the expectation values

of the scalar fields χj, analogous to Eq. (6) for the auxiliary
fields ϕj, contains additional contributions from the self-
interaction and kinetic terms. Thus, the expectation value of
χj does not directly yield the expectation value of a fermion
bilinear (although these can nevertheless be computed).
However, the spatial homogeneity of the bosonic fields still
directly leads to the absence of inhomogeneous conden-
sates. Consequently, the investigation of IPs in Yukawa
models is possible by studying the stability of the fields χj
in the same way as we study the stability of ϕj in the FF
models.

III. STABILITY ANALYSIS OF MODELS
WITH A BARYON CHEMICAL POTENTIAL

The stability analysis is a technique to determinewhether a
spatially homogeneous field configuration is unstable with
respect to inhomogeneous perturbations. It follows from this
instability that an inhomogeneous field configuration is
energetically favored over the homogeneous expansion
point. This technique has seen regular use in such inves-
tigations, e.g., in Refs. [111,117,123,126] and, thus, we

recapitulate only the most relevant steps. We provide,
however, a more detailed derivation in Appendix B. Note
that the central result of this work, i.e., showing the stability
of homogeneous condensates against inhomogeneous per-
turbations in all models with Lorentz-(pseudo)scalar inter-
action channels in a general manner, is discussed below in
Sec. III A.
We start by considering homogeneous field configura-

tions ⃗ϕ̄ and apply spatially inhomogeneous perturbations
δϕ⃗ to them, i.e.,

ϕ⃗ðxÞ ¼ ⃗ϕ̄þ δϕ⃗ðxÞ; ð12Þ

where the perturbations are of an arbitrary shape and
assumed to be of an infinitesimal amplitude. Inserting this
into the effective action (10) enables a systematic expan-
sion of Seff in powers of δϕ. The zeroth-order contribution

Sð0Þ
eff (B5) is the so-called homogeneous effective potential

and the leading-order contribution Sð1Þ
eff (B6) is proportional

to the homogeneous gap equation [compare with

Eqs. (B11) and (B12)]. Thus, Sð1Þ
eff vanishes if the homo-

geneous expansion point ⃗ϕ̄ corresponds to a solution of the
gap equation. The second-order contribution contains the
Hessian of the effective action, which is found to be
diagonal in momentum space, but not necessarily diagonal
in field space. The diagonalization—if possible—is done
via a change of the field basis ϕ⃗ → φ⃗. For the theory
considered in Eq. (10), where only a baryon chemical
potential is present, the Hessian is already diagonal in field
space, i.e., φ⃗ ¼ ϕ⃗, if we set all nonzero λj to λ.
Nevertheless, we use the “new” basis from here on in
order to be consistent with the later analysis, where a proper
diagonalization is indeed needed. We then obtain as the
second-order contribution

Seff
ð2Þ

N
¼ β

2

Z
d2q
ð2πÞ2

�X
j∈J

jδφ̃jðqÞj2Γð2Þ
φj ðM2;μ;T;q2Þ

�
; ð13Þ

where δφ̃ðqÞ are the Fourier coefficients of the perturbations and the magnitude of the perturbation’s momentum q ¼ jqj.
The bosonic two-point function Γð2Þ

φj ðM2; μ; T; q2Þ is the curvature of the effective action with respect to jδφ̃ðqÞj. For the
curvature we find the explicit form

Γð2Þ
φj ðM2; μ; T; q2Þ ¼ 1

λ
þ 8

β

X
n

Z
d2p
ð2πÞ2

�
−1

ν̃2n þ p2 þM2
þ 1

2

q2 þ aφj
M2

½ν̃2n þ p2 þM2�½ν̃2n þ ðpþ qÞ2 þM2�
�

≡ 1

λ
− l1ðM2; μ; TÞ þ 1

2
ðq2 þ aφj

M2Þl2ðM2; μ; T; q2Þ≡ 1

λ
− l1ðM2; μ; TÞ þ L2;φj

ðM2; μ; T; q2Þ; ð14Þ

where ν̃n ¼ ðνn − iμÞ, the fermionic Matsubara frequencies νn ¼ 2πðn − 1
2
Þ=β and

ABSENCE OF INHOMOGENEOUS CHIRAL PHASES IN (2þ 1)- … PHYS. REV. D 108, 036011 (2023)

036011-5



M2ðϕ⃗Þ ¼
X
j∈J

c⋆j cjðϕjÞ2 ≡M2 with c⋆j ¼
�
cj for cj ¼ 1; τ⃗;

−cj otherwise:
ð15Þ

We find that aφj
¼ aþ ¼ 4 for fields φj with parity quantum numbers ðP4; P5Þ ¼ ðþ;þÞ; ð−;−Þ and aφj

¼ a− ¼ 0 for
fields with ðP4; P5Þ ¼ ðþ;−Þ; ð−;þÞ. Accordingly, we find two possible momentum-dependent contributions

L2;þðM2; μ; T; q2Þ ¼ 1

2
ðq2 þ 4M2Þl2ðM2; μ; T; q2Þ; L2;−ðM2; μ; T; q2Þ ¼ 1

2
q2l2ðM2; μ; T; q2Þ ð16Þ

to the two-point function. The integral l2 at T ¼ 0 assumes the simple form

l2ðM2; μ; T ¼ 0; q2Þ ¼ 2

πq

8>>>>><
>>>>>:

0; μ2 > M2 þ q2=4;

arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ4ðM2−μ2Þ

p
2μ

�
; M2 ≤ μ2 ≤ M2 þ q2=4;

arctan
	

q
2jMj


; μ2 < M2:

ð17Þ

Further expressions for l1 and l2 for various cases of μ; T;M2; q2 can be found in Appendixes B 1 and B 2.

In order to make conclusions about whether inhomo-
geneous condensates are favored over homogeneous ones,
we use the global homogeneous minimum as the homo-
geneous expansion point, i.e., the field configuration ⃗Φ̄ that

minimizes Sð0Þ
eff globally with the corresponding mass

M2 ≔ M2ð ⃗Φ̄Þ. This field configuration is also a solution

of the gap equation (B12). Therefore, Sð0Þ
eff assumes its

minimal value while Sð1Þ
eff vanishes [since it is proportional

to the gap equation, compare with Eqs. (B11) and (B12)].

Thus, negative values of Γð2Þ
φj ðM2; μ; T; q2Þ will signal that

there is an even deeper minimum in the direction of δφ̃jðqÞ.
In order to provide dimensionless quantities, we express all
parameters in units of the mass M0, which is the mass
corresponding to the global homogeneous minimum in the
vacuum of the theory.

A. Absence of instability

The global homogeneous minimum, that is the only
relevant expansion point when searching for an IP, is stable
against homogeneous perturbations, i.e.,Γð2Þ

φj ðM2;μ;T;q2 ¼
0Þ≥ 0 ∀ φj. Consequently, negative values for finite q2 and,
thus, an instability against inhomogeneous perturbations can

be ruled out, if the q-dependent part L2;φj
of Γð2Þ

φj ðM2; μ;
T; q2Þ is a monotonically increasing function of q2. This is
exactly the case for L2;�. For T ¼ 0 the analytical form of
L2;� given by Eqs. (16) and (17) reveals its monotonically
increasing behavior for all M2; μ; q2. The same is true for
finite temperatures which can be verified by numerical
calculations of l2. In Fig. 1, the functional behavior of
L2;� for μ=M0 ¼ 1.0 and T=M0 ¼ 0.0, 0.05 is plotted in a
color plot. We conclude that the general model defined by

Eq. (10) does not experience an instability toward an IP. This
conclusion holds when considering any set of interaction
channels as given by J. Moreover, these models also do not
feature a so-calledmoat regime [110]. This regime is defined
by a negative wave-function renormalization Z ∝ d2Γð2Þ=
dq2 and is often an accompanying phenomenon to an IP but
can also exist independently [111]. Our computations show
that L2;� always yields Z ≥ 0, since they are monotonically
increasing functions in q.
Additionally, we note that l2 ∼ Θðμ2 −M2 − q2=4Þ at

T ¼ 0, which causes the two-point function to be constant
for momenta 0 < q2=4 < μ2 −M2. Here not only the
wave-function renormalization Z vanishes, but also any
higher derivative of Γð2Þ with respect to q. A special point is
at μ=M0 ¼ 1 and T ¼ 0, where the homogeneous phase
transition in the (2þ 1)-dimensional GN is often regarded
as being first order. However, the system rather exhibits a
critical end point at this point [29]. This means that the
effective potential (e.g., computed in Refs. [26,117]) is
flat between some homogeneous field values with
M ∈ ½0.0; 1.0�. Such a flatness is also observed in the
two-point function where the contribution 1=λ − l1 van-
ishes, which causes the two-point function to be constant
zero for momenta 0 < q2=4 < μ2 −M2. This vanishing
curvature of the effective action is a hint for a degeneracy
between homogeneous and inhomogeneous condensates.
Such a behavior has already been observed in the
case of the (2þ 1)-dimensional GN model also at
μ=M0 ¼ 1.0; T=M0 ¼ 0, which has been revealed by a
study [132] with a one-dimensional ansatz for the chiral
condensate. We expect this degeneracy to be restricted to
ðμ; TÞ=M0 ¼ ð1.0; 0.0Þ and, especially, the homogeneous
condensates to be favored against inhomogeneous ones for
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all nonvanishing T. The analysis in Ref. [132] suggests that
also higher orders of the expansion of the effective action
would vanish for a certain range of finite momenta. In
Sec. IVA, we show that the homogeneous phase diagram of
all possible models described by Eq. (10) is identical to the
one of the (2þ 1)-dimensional GN model. Thus, the above
discussion of the flatness of the effective potential and the
two-point function also applies to these models.
It should be noted that the absence of an instability does

not completely rule out the existence of an IP. As
discussed in Ref. [111] at the example of the (1þ 1)-
dimensional GN model, it is possible for the homo-
geneous minimum and global inhomogeneous minimum
to be separated by a energy barrier. Here, the homo-
geneous minimum appears stable against inhomogeneous
perturbations even though an IP is energetically favored.
Such a phase can only be found by calculations with a
guess of ansatz functions for the condensates or by
explicit numerical brute-force minimizations using lattice
field theory. For the (2þ 1)-dimensional GN model, there
is evidence in the literature that this is not realized. Lattice

minimizations of this model have not found any other IP at
finite lattice spacings than the ones also obtained by a
stability analysis of the lattice regularized models
[117,119,120]. It is important to note that these IPs vanish
when taking the continuum limit [116,117], as the bosonic
two-point function converges toward a momentum
dependence proportional to L2;þ. These results of the
(2þ 1)-dimensional GN model suggest that the stability
analysis applied to our general FF model (10) also does
not miss an IP. Also, to our knowledge all IPs, which are
observed in model investigations, can at least in some
parameter region be detected by the stability analysis. In
these studies, one finds a second-order phase transition
between the IP and the chirally symmetric phase. At least,
this second-order transition can always be detected by
analyzing the stability of the symmetric minimum of the
effective potential. The sum of these arguments combined
with our analysis is strong evidence for the absence of
inhomogeneous condensates in all of the models described
by Eq. (10) [or, equivalently, Eq. (5)] independent of the
considered (sub)set of interaction channels given by J.

FIG. 1. L2;þ and L2;− for T=M0 ¼ 0, 0.05 and μ=M0 ¼ 1.0 as a function of q and M. Also at finite temperature
L2;−ðM2; μ; T; q2 ¼ 0Þ ¼ 0. However, the 0.0 contour line and its label are not drawn, because they would be obscured by the
axis. In the Supplemental Material [133], we provide a script, which allows us to do the numerical computation of L2;� for arbitrary
values of ðM2; μ; T; q2Þ and that produces this figure. See Eqs. (14) and (16) for the definition of L2;�.
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Since this result is obtained in the mean-field approxi-
mation, one needs to consider its predictive power for the
full quantum theories. It is typically found that bosonic
fluctuations tend to disfavor and/or disorder (in)homo-
geneous condensation8 [41,94,95,98,99,135]. Based on
these findings, we expect that the nonexistence of IPs in
(2þ 1)-dimensional FF and Yukawa models in the mean-
field approximation is a clear signal that inhomogeneous
ground states are not present in the corresponding full
quantum theories. A scenario with an inhomogeneous
ground state in a full quantum theory which is not present
in the mean-field approximation has—to our knowledge—
never been observed. In (2þ 1)-dimensional FF models,
one has so far only seen oscillating but also damped corre-
lation functions for the auxiliary fields [38]. However, these
lattice results [38] have been obtained on rather crude
lattices. So, we expect these oscillations to be reminiscent
of the IP, which can be found in mean-field investigations
of FF models at finite lattice spacings, but vanish in the
continuum limit [116,117].

B. Generalization to Yukawa models

When the models are only subjected a baryon chemical
potential, it is rather straightforward to generalize the
stability analysis of FF models to Yukawa models, which
are defined as in Eq. (11). We only discuss the final result
here and a more detailed derivation can be found in
Appendix B 3.
Applying the stability analysis to the effective action as

defined in Eq. (11), the second-order contribution again is
the first nonvanishing correction to the homogeneous
action Sð0ÞY , when the homogeneous expansion point is a
solution of the gap equation. We find the second-order
contribution to the effective action

Sð2Þ
Y

N
¼ β

2

Z
d2q
ð2πÞ2

�X
j∈J

jδζ̃jðqÞj2Γð2Þ
ζj
ðq2Þ

�
; ð18Þ

where ζ is the field basis that was used in the diagonaliza-
tion of the Hessian.9 The two-point function

Γð2Þ
ζj
ðM2;μ; T; q2Þ

¼ 1

λ
− l1ðM2;μ; TÞ þL2;ζjðM2;μ; T;q2Þ

þ 1

2
q2 þ

X
n>1

κnn
h
2ð ⃗̄ζ2Þn−1 þ 4ðn− 1Þζ̄2jð ⃗̄ζ

2Þn−2
i

ð19Þ

can now be identified as the curvature of the effective action
in the field direction δζ̃jðqÞ. Again, one finds either L2;þ or
L2;− as the momentum dependence of the two-point
function. As is obvious from Eq. (19), the additional
contributions compared to the FF two-point function are
either constant or monotonically increasing in q2. Thus, by
the reasoning given in the last section, these additional
terms cannot facilitate the appearance of an instability
toward an IP since the corresponding FF model does not

exhibit such an instability for any ⃗Φ̄; μ; T; q2 already.

IV. RESULTS OF THE ANALYSIS
FOR SPECIFIC MODELS

In this section, we present examples of FF and Yukawa
models where the condensates do not develop an instability
toward inhomogeneous perturbations and are, thus, very
unlikely to feature an IP. In Sec. IVA 1, FF models with
only a baryon chemical potential but multiple interaction
channels [see Eq. (1)] are presented. These results are
obtained using the stability analysis, as explained in detail
in Sec. III, where also the reasoning for the absence of
instabilities is explained in detail. After that, we allow for
multiple chemical potentials in Sec. IVA 2 and explain the
differences of the analysis compared to only a baryon
chemical potential. Again, examples for model calculations
are discussed. Finally, we turn toward the extension of our
findings to Yukawa models in Sec. IV B.

A. Four-fermion models

Before we turn toward the stability analysis of the
bosonic two-point functions, we shortly present our finding
for the homogeneous phase diagram of FF models
described by Eqs. (1) and (5) (by considering different
interactions channels in the set J).
The homogeneous phase diagram of the (2þ 1)-

dimensional GN model, i.e., the phase diagram when
restricting the field to homogeneous field configurations,
as first obtained in Ref. [26], features a phase at low
temperature and chemical potential where the discrete
chiral symmetry is spontaneously broken by a nonzero
chiral condensate [24,26]. At finite temperature this phase is
separated from the chirally symmetric phase by a second-
order phase transition. At ðμ; TÞ=M0 ¼ ð1.0; 0.0Þ one
obtains a first-order transition point, where degenerate
minima with M=M0 ∈ ½0.0; 1.0� have the same minimal
effective potential, which becomes flat.

8Ref. [134] provides a rather general argumentation which
excludes the spontaneous breaking of a discrete symmetry in one
dimension, which is backed by the results in Ref. [98] that found
no homogeneous condensation in this model at T ≠ 0. The
breaking of a continuous symmetry such as the translational
symmetry is forbidden in 1þ 1 dimensions at finite temperature
by the no-go theorem presented in Ref. [100]. Thus, we expect
that also inhomogeneous phases are disordered by the bosonic
fluctuations. In Ref. [94], the authors cannot distinguish between
a long-range-order scenario and an IP in the (1þ 1)-dimensional
GN model.

9In contrast to the ordinary FF models, it is possible for the
Yukawa models with a baryon chemical potential to exhibit off-
diagonal terms in the Hessian matrix. These contributions are,
however, independent of q and can be removed by using symmetry
transformations on the homogeneous expansion point.
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The homogeneous phase diagram for all possible mod-
els, that can be obtained from Eq. (1) by setting certain
couplings either to zero or λ, is identical to that of the GN
model. This result is related to the present symmetries of
the action, which allow us to pick homogeneous minima,
where only the scalar channel σ develops a nonzero
expectation value (note that this is only possible when
the fields are restricted to being homogeneous). Other
homogeneous, global minima are connected to this one via
a (chiral) symmetry transformation. Exempt from this are
the fields with parity quantum numbers ð−;−Þ namely η̄45
and π⃗45. By analyzing the homogeneous effective potential,
we can nevertheless show that the homogeneous fields
η̄45; π⃗45 develop vanishing expectation values for all tem-
peratures and baryon chemical potentials. First, we discuss
this allowing for all isoscalar channels, which yields the
introduction of the auxiliary fields σ; η4; η5; η45. Using the
symmetries of Eq. (10) [or equivalently Eq. (5)] one can use
the chiral transformations Eq. (A5) to obtain nonvanishing
expectation values only for σ and η45, Then, we analyze the
fermion contribution Tr ln Q, which can be represented in
a block-diagonal form with 2 × 2 blocks corresponding to
the irreducible spin representation in 2þ 1 dimensions.
These blocks canbe interpreted asGNmodel contributions in
the irreducible fermion representation with chemical poten-
tial μ and homogeneous fields ϕ̄L=R ≡ σ̄ � η̄45 (see the
theory sections of Refs. [117,119] for a more in-depth
discussion of these irreducible blocks). The model decom-
poses into twoGNmodelswith the same chemical potentials,
which gives us ϕ̄L ¼ ϕ̄R and, thus η̄45 ¼ 0. An analogous
analysis involving some additional isospin rotations is valid
for π⃗45. Thus,we do not observe spontaneous parity breaking
in the FF models for all μ and T.
The order of the homogeneous phase transition might be

relevant, since the stability analysis of the bosonic two-
point function in the (1þ 1)-dimensional GN revealed that
a first-order phase transition can cause stability of the
homogeneous minimum even though there is an energeti-
cally preferred IP [111]. Here, the global energetically
preferred inhomogeneous minimum was only connected to
the symmetric homogeneous field configuration which was
not energetically favored over the stable nonzero minimum.
The fact that in 2þ 1 dimensions the critical point occurs at
a single point at zero temperature increases the confidence
in the presented results obtained via the stability analysis.
Moreover, by inspecting all possible expansion points via
varying the mass M, we can rule out a scenario as in 1þ 1
dimensions, since in 2þ 1 dimensions there is no other
unstable expansion point while the physically relevant
expansion point M is stable.

1. Models with baryon chemical potential

Table II summarizes the central findings from the
stability analysis for some models that are obtained from
Eq. (5) by defining J and setting λj ¼ λ, j ∈ J. The specific

models are chosen with respect to their relevance to
phenomenology and the literature. The two-point functions
for models with other combinations of channels can easily
be calculated as discussed in Sec. III. The respective
symmetry transformations of the effective actions allow
us to obtain homogeneous expansion points ϕ̄j, which are
vanishing except for σ̄. None of the two-point functions in
these models exhibit a different momentum dependence
from L2;�. As discussed in Sec. III and illustrated by Fig. 1,
L2;� are positive, monotonically increasing functions of the
square of the momentum q of the inhomogeneous pertur-
bations. Thus, we expect the absence of IPs and moat
regimes in all of these models, as discussed in detail in
Sec. III A. Therein, we also explain that there is the
possibility of a degeneracy between the homogeneous
condensate and the inhomogeneous condensate, as
observed at ðμ; TÞ=M0 ¼ ð1.0; 0.0Þ in the GN model
[132]. By our analysis, we expect this degeneracy to be
restricted to ðμ; TÞ=M0 ¼ ð1.0; 0.0Þ and, especially, the
homogeneous condensates to be favored against inhomo-
geneous ones for all nonvanishing T.
In Table II, we discuss four FF models explicitly and give

their respective symmetry groups (defined in Appendix A)
and indicate whether the momentum dependence of the
two-point functions is L2;þ or L2;−.
The first row shows the renowned GN model with one

single isoscalar channel with parity quantum number
ðþ;þÞ [see Eqs. (8) and (9) for the definition of the parity
in 2þ 1 dimensions and Table I for the quantum numbers
of the fields]. The two-point function exhibits the L2;þ
dependence, which was already documented in Ref. [117].
The second row shows the (2þ 1)-dimensional analog

of the (3þ 1)-dimensional NJL model. It breaks the axial
symmetry transformations Eqs. (A3) and (A4), leaving
only the combined isospin and axial symmetries Eqs. (A7)
and (A8) as chiral transformations. Due to the ambiguity of
the γ5 operator in 2þ 1 dimensions, it makes sense to use
the generators of both transformations to construct an
“NJL” Lagrangian. Similar to the case in 3þ 1 dimensions,
we find that the momentum dependence of the two-point
functions of the π-fields are given by L2;−, while it is L2;þ
for the σ field [23,126].
The third row shows the (2þ 1)-dimensional chiral

Heisenberg Gross-Neveu (χHGN) model [62] with an
additional ðψ̄γ45ψÞ2 interaction term that is special to
2þ 1 dimensions.10 Again, due to there being two axial
transformations Eqs. (A3) and (A4), a Lagrangian involv-
ing both generators is an appropriate choice. A nonzero
bosonic field η45 breaks both parity symmetries Eqs. (8) and
(9) spontaneously, but does not break one of the continuous
chiral symmetries. Due to η̄45 ¼ 0 for all temperatures and

10The analysis of this model with respect to an IP and their
disordering at finite flavor numbers is also motivated in
Ref. [112].
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baryon chemical potentials, the two-point functions of the
fields do not mix [as the only off-diagonal terms are ∝ η̄45,
compare with Eq. (B16)] and the diagonalizing field basis
coincides with the auxiliary bosonic fields introduced in the
bosonization. Thus, one of the two parity transformations
could only be spontaneously broken if one of the fieldswith a
negative parity quantum number (compare Table I) develops
a spatial modulation. However, also for this model we found
that the momentum-dependent part of the two-point func-
tions of all present bosonic fields is either L2;þ or L2;− and,
thus, homogeneous condensates never develop an instability
toward a spatially dependent condensate.
The last row lists what we call the Pseudoscalar four-

fermion (PSFF) model, since it features all interaction
channels present in Sec. II andEq. (1). Again, note that η̄45 ¼
⃗π̄45 ¼ 0 which prevents off-diagonal second-order terms
from the fermionic contribution; see Eq. (B17). Even though
we considered by far the largest amount of interaction
channels in thismodel, no two-point functionwith a different
momentum dependence than L2;� is obtained.
As discussed in Sec. III A, two-point functions for fields,

which have mixed parity quantum numbers [ðP4; P5Þ ¼
ðþ;−Þ or ðP4; P5Þ ¼ ð−;þÞ], have a momentum depend-
ence proportional toL2;−, while the others have amomentum
dependence proportional toL2;þ. This is independent of how
large the symmetry group is and of the number of interaction
channels considered. Even when considering all 16 Lorentz-
scalar FF interactions [see Eq. (3)], we do not see a different
mathematical structure of the two-point functions.Therefore,
according to the argument given in Sec. III A, none of the
models, which can be described by Eq. (5) by defining J and
setting λj ¼ λ, j ∈ J, exhibits an instability toward an IP for
any M2; μ; T;q2. As argued in detail in Sec. III A, this is
strong evidence for the absence of IPs in these models.

2. Models with multiple chemical potentials

In this section, we allow for multiple chemical potentials
in FF models in addition to the baryon chemical potential,
which is introduced in Eq. (1) via the usual μψ̄γ3ψ term.
Namely, we will study the effect of finite isospin chemical
potential introduced with the term μIψ̄γ3τ3ψ , and chiral
chemical potential that is introduced as μ45ψ̄γ3γ45ψ .
Although this requires an extensive analysis, we can again
identify the well-known function L2;þ in the two-point
functions. Thus, also the models discussed below do not
develop an instability toward an IP. Also, the existence of a
moat regime with a negative wave-function renormalization
can be ruled out, as Z ≥ 0 according to the discussion
in Sec. III.
In general, the introduction of multiple chemical poten-

tials induce that (homogeneous) expectation values of
several of the auxiliary fields ϕ̄i will have nonzero expect-
ation values; e.g., studying finite μ45 can lead to a non-
vanishing expectation value of η̄45. Also, the homogeneous
phase diagram has to be computed separately for each
individual case and can have a more involved phase
structure (compare, e.g., Ref. [119]).
This also significantly complicates the analysis of the

bosonic two-point functions, although in principle the
method can be applied as introduced in Sec. III. The main
difficulty is the diagonalization of the bracketed field space
matrix in Eq. (B17), which becomes quite involved depend-
ing on the studied action. For a large number of interaction
channels and multiple nonvanishing ϕ̄i it can become even
impossible to diagonalize this expression. Thus, a general
analysis for multiple theories, as in Sec. III for FF models
with baryon chemical potential, cannot be presented by us.
However, there are still some combinations of interaction

channels and chemical potentials, where one can still obtain

TABLE II. Stability analysis of the bosonized FF models. We allow for finite baryon chemical potential μ and finite temperature T.
The first column gives the models’ abbreviations for their names for further reference (whenever available names existing in the
literature are used). In the second column, the respective interaction channels kept from Eq. (1) are listed. The rest is removed by setting
λk ¼ 0. The third column lists the field basis φj, for which the Eq. (B8) can be diagonalized and, thus, a meaningful stability analysis can

be performed. The fourth column indicates whether the momentum dependence of Γð2Þ
φj is given by L2;þðM2; μ; T;q2Þ or

L2;−ðM2; μ; T;q2Þ. The fifth column gives the full symmetry group of the model. The groups are clickable and refer to the definition
of the symmetry group.

Model Used channels cj

Field basis φ⃗j

diagonalizing Sð2Þ
eff

Momentum
dependence of Γð2Þ

φj Symmetry groups

L2;þ L2;−

GN 1 σ σ UI4ðNÞ × Uγ45ðNÞ × Zγ5ð2Þ
×SUτ⃗ð2Þ × P4 × P5

NJL 1; iτ⃗γ4; iτ⃗γ5 σ; π⃗4; π⃗5 σ π⃗4; π⃗5 UI4ðNÞ × Uγ45ðNÞ × SUA;γ4ð2NÞ
×SUA;γ5ð2NÞ × SUτ⃗ð2Þ × P4 × P5

χHGNP 1; iγ4; iγ5; γ45 σ; η4; η5; η45 (for η̄45 ¼ 0) σ; η45 η4, η5 Uγð2NÞ × SUτ⃗ð2Þ × P4 × P5

PSFF 1; iγ4; iγ5; γ45,
τ⃗; iτ⃗γ4; iτ⃗γ5; iτ⃗γ45

σ; η4; η5; η45 a⃗0; π⃗4; π⃗5; π⃗45
(for η̄45 ¼ ¯π⃗45 ¼ 0)

σ; η45; ς⃗; π⃗45 η4; η5; π⃗4; π⃗5 Uγð2NÞ × SUτ⃗ð2Þ × P4 × P5
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the momentum dependence of the two-point functions by a
comparatively easy diagonalization obtained by a suitable
choice of field coordinates φj. For these models, we find
the fields φj such that the fermion propagator (B9) is block
diagonal with 2 × 2 blocks, where each corresponds to an
irreducible spinor representation. Then, the contribution of
the fermion loop [as written down in, e.g., Eqs. (B13) and
(B15)] also decomposes when ΔQ is written as a function
of the δφj. The vertices

11 corresponding to the interaction
of the fermions with the new field basis φj project out either
one or multiple of the 2 × 2 blocks and diagonalize the
bracketed field space matrix in Eq. (B17). Then one can
proceed with the analysis as described in Sec. III and
Appendix B.
Table III summarizes the models, where such an analysis

with respect to the stability of homogeneous condensates
against inhomogeneous perturbations was performed by us.
All two-point functions obtained in the models in Table III
are proportional to L2;þ. This originates in the circum-
stance, that in our derivation of the two-point function the
field variables φj are chosen such that one obtains a block-
diagonal structure of the homogeneous fermion propagator
(B9). These blocks behave as (2þ 1)-dimensional GN

models (see Table II for the momentum dependence of the
two-point function of the σ field in the GN model) with a
single effective chemical potential and a single field φj or
sums of the fields. The effective chemical potentials are
linear combinations of μ; μ45; μI . The momentum depend-
ence of the obtained two-point functions is given by linear
combinations of L2;þ with M2 and effective chemical
potentials.
The model in the first row is a GN model with an

additional ðψ̄γ45ψÞ2 interaction channel and a chiral imbal-
ance via finite μ45. A standard GN model subjected to μ45
without the additional interaction channel has been studied
in Ref. [119]. The corresponding homogeneous expectation
value of the field η45, as induced by finite μ45 breaks parity
spontaneously. However, the new field basis ϕL=R effec-
tively decouples the theory into two, independent GN
models with chemical potentials μ� μ45. This leads to
two “GN-like” two-point functions each with one inde-
pendent field and chemical potential. The same procedure
can be performed for the model in the second row, where
instead of a ðψ̄γ45ψÞ2 the isospin channel ðψ̄τ3ψÞ2 (leading
to an auxiliary bosonic field a0;3 in the bosonic theory) is
added to the GN interaction and an isospin chemical
potential μI introduces an isospin imbalance.
In the third row, we allow for both isospin and chiral

imbalance introducing both corresponding chemical poten-
tials in addition to the baryon chemical potential μ.

TABLE III. Stability analysis of the bosonized FF models with multiple chemical potentials and interaction channels. The first column
describes the used FF interaction vertices [compare Eq. (3)] in the model. The second column gives the corresponding auxiliary bosonic
fields after bosonization, that correspond to the fermion bilinear via the Ward identity (6). The third column lists the used chemical
potentials. In the fourth column, the field basis φj is defined, which diagonalizes the second-order correction, as described in detail in

Sec. IVA 2. Then, the momentum dependence of the two-point functions Γð2Þ
φj is given in the fifth column, right to the field definition.

The last column gives an overview of the present symmetries in the model. The groups are clickable and refer to the definition of the
symmetry group.

Used
channels cj

Bosonic
auxiliary
fields ϕj

Nonzero chemical
potentials

Field basis φ⃗j

diagonalizing Sð2Þ
eff

Momentum dependence
of Γð2Þ

φj fðM2; μÞ ¼
L2;þðM2; μ; T;q2Þ

Underlying
symmetry group

1; γ45 σ; η45 μL ¼ μþ μ45
μR ¼ μ − μ45

ϕL ¼ ðσ þ η45Þ
ϕR ¼ ðσ − η45Þ

fðϕ̄2
L; μLÞ fðϕ̄2

R; μRÞ UI4ðNÞ × Uγ45ðNÞ × Zγ5ð2Þ
×SUτ⃗ð2Þ × P4 × P5

1; τ3 σ; a0;3 μ↑ ¼ μþ μI
μ↓ ¼ μ − μI

ϕ↑ ¼ ðσ þ ς3Þ
ϕ↓ ¼ ðσ − ς3Þ

fðϕ̄2
↑; μ↑Þ fðϕ̄2

↓; μ↓Þ UI4ðNÞ × Uγ45ðNÞ × Zγ5ð2Þ
×Uτ3ð1Þ × P4 × P5

1; τ3γ45 σ; π45;3 μL;↑ ¼ μL þ μI
μL;↓ ¼ μL − μI
μR;↑ ¼ μR þ μI
μR;↓ ¼ μR − μI

φþ ¼ ðσ þ π45;3Þ
φ− ¼ ðσ − π45;3Þ

fðφ̄2þ; μL;↑Þ þ fðφ̄2þ; μR;↓Þ
fðφ̄2

−; μL;↓Þ þ fðφ̄2
−; μR;↑Þ

UI4ðNÞ × Uγ45ðNÞ × Zγ5ð2Þ
×Uτ3ð1Þ × P4 × P5

1; τ3; γ45 σ; a0;3; η45 μL;↑, μL;↓,
μR;↑, μR;↓

ϕL ¼ ðσ þ η45Þ
ϕR ¼ ðσ − η45Þ

a0;3

fððϕ̄L þ ā0;3Þ2; μL;↑Þ
þfðϕ̄L − ā0;3Þ2; μL;↓Þ
fððϕ̄R þ ā0;3Þ2; μR;↑Þ
þfðϕ̄R − ā0;3Þ2; μR;↓Þ

Γð2Þ
ϕL

þ Γð2Þ
ϕR

UI4ðNÞ × Uγ45ðNÞ × Zγ5ð2Þ
×Uτ3ð1Þ × P4 × P5

11By vertices, we mean the 8 × 8 matrices, that describe the
coupling between the bosonic field to the spin/isospin degrees of
freedom of the fermion fields.

ABSENCE OF INHOMOGENEOUS CHIRAL PHASES IN (2þ 1)- … PHYS. REV. D 108, 036011 (2023)

036011-11



A ðψ̄γ45τ3ψÞ2 interaction channel is studied in addition to
the ðψ̄ψÞ2 interaction. The corresponding bosonic auxiliary
fields π45;3 and σ can again be combined via linear
combination to obtain the diagonalizing field basis φ�.
The two-point functions Γð2Þ

φ� are now sums of different L2;þ
contributions, each withM2 ¼ ϕ2

�, but with differing linear
combinations of the chemical potentials dictating the exact
form of L2;þ. Again, we refer to Ref. [119] where an
analogous competition between two chemical potentials is
studied in the phase diagram and, although this is not
explicitly computed therein, in the two-point function of
the σ field.
In the forth row, the most involved model in Table III is

considered containing both previously introduced inter-
actions resulting in the presence of the auxiliary bosonic
field η45 and a0;3 in addition to the σ channel simulta-
neously at a finite baryon, isospin and chiral density. We
find the diagonalizing field basis to be ϕL;ϕR; a0;3. The
momentum dependence of the two-point functions of ϕL=R

are again sums of two L2;þ contributions each with
different linear combinations of the chemical potentials

andM2 ¼ ðϕ̄L=R � ā0;3Þ2. However, Γð2Þ
a0;3 is proportional to

the sum of Γð2Þ
ϕL

and Γð2Þ
ϕR
, combining four different con-

tributions each proportional to L2;þ.
Concluding, all the studied FF models in Table III do

not exhibit an instability of the homogeneous ground
state when subjected to inhomogeneous perturbations
and, thus, it is very unlikely that they feature an IP
(cf. Refs. [111,116,117] and Sec. III A). Nevertheless, it is
important to state that in the investigation of FF models
subjected to multiple, nonvanishing chemical potentials
we restricted ourselves to a very limited set of interaction
channels. We want to highlight at this point that the
restriction to a few interaction channels also limits the
predictive power of our models for high-energy phenom-
enology. For example, at finite isospin chemical potential
one needs to account for charged pion condensation (see,
e.g., Ref. [136]). Attentive readers may notice that the
corresponding channels are not present in the models in
Table III. In order to provide an adequate description of
this phenomenon one certainly has to extend our study in
this direction. To study a larger set of interactions with
several of the chemical potentials μ; μ45; μI or even more
axial imbalances12 in models with more interaction chan-
nels, is in principle possible but requires a different,
technically more involved analysis than the one done in
this work. Thus, we postpone such an analysis to future
works. However, our study allows us to conclude that the
presence of multiple imbalances in fermion densities does
not generically allow for the existence of inhomogeneous
ground states.

B. Yukawa models

In this section, the results for the Yukawa model
extension of the FF models discussed above are presented.
The generalization of the bosonized FF models (5) to a
Yukawa model is discussed in Sec. II B. In Eq. (11), the
Yukawa action is constructed out of the FF models’
effective action (10).
The homogeneous phase diagram of these models might

drastically change compared to the FF models due to the
introduction of additional couplings and self-interaction
terms. Nevertheless, the stability analysis, as described in
Sec. III, can be performed for all possible, homogeneous
expansion points χj ¼ χ̄j such that conclusions about the
stability of these homogeneous condensates against inho-
mogeneous perturbations can be made.
First, we discuss the generalization of the results in

Sec. IVA 1, where the FF models are studied at finite
baryon chemical potentials μ. The key observation is that
all bosonic two-point functions are positive, monotonically
increasing functions of q2 and, thus, no instabilities are
observed. This observation is directly obtained for the
Yukawa extensions of these models, as these only affect
the momentum-independent offset [compare Eq. (19)] and
the physical expansion point M. The momentum structure
of the two-point function is still proportional to L2;� plus an
additional positive, monotonically increasing q2 term. As
discussed in Sec. III A and illustrated by Fig. 1, there is no
expansion point for which L2;� is not a monotonically
rising function of q2. Thus, we can conclude that there exist
no instabilities toward an IP for the Yukawa models, which
are generated by extending the FF models in Table II.
According to the reasoning in Sec. III A, the moat regime
with a negative wave-function renormalization is also ruled
out. Nevertheless, it might be possible, that such a Yukawa
model features a first-order phase transition between the
homogeneous phases. Then, one might also find the
existence of a first-order phase transition toward an IP.
In many model calculations the IP covers the homogeneous
first-order transition [86,104,105,125,126] and, thus, the
existence of such a transition could also mean that an IP
exists in these models, which is not detected by our
analysis. To our knowledge, however, a model, which
features no instability toward an inhomogeneous perturba-
tion in the whole phase diagram, but which still has an IP,
has never been observed before.
Next, we discuss the extension of the FF models from

Table III with multiple chemical potentials to Yukawa
models. In the case of multiple chemical potentials, it is not
straightforward to derive the two-point functions for the
Yukawa models, corresponding to the FF models by
Eq. (11), starting from the FF model results. This is caused
by the necessity of multiple nonvanishing homogeneous
expectation values χ̄j as expansion points for the analysis
when the models are subjected to multiple chemical
potentials. Then, the Yukawa self-interactions of the

12For example, one could introduce chemical potentials for the
conserved currents ψ̄γνγ5ψ or ψ̄γνγ4ψ as in Refs. [39,72].
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bosonic fields cause nonvanishing second-order contribu-
tions, which are off diagonal in the field perturbations δχj
[compare Appendix B 3 and Eq. (B33)], in addition to the
off-diagonal fermion contributions Eq. (B17). This is the
case for all Yukawa extensions of the models in Table III.
In the analysis of such a model one needs to diagonalize

the whole second-order contribution in Eq. (B33).
Typically, we choose a basis ζj for the dynamical scalar
fields that corresponds to the field basis φj, which
diagonalizes the FF model part. Then, one still needs to
diagonalize the off-diagonal contributions coming from the
bosonic self-interactions. The diagonalization can become
very complicated, even when using symbolic diagonaliza-
tion of the expressions as provided by MATLAB [137]. We
provide an example of this procedure in Appendix C, where
we discuss the Yukawa extension of the model in the first
row in Table III. In this analysis, we find a more
complicated structure of the two-point functions and a
diagonalizing field basis, which depends on the studied
momentum q of the perturbation as well as the homo-
geneous expectation values of the scalar fields and the
external parameters such as temperature and the chemical
potentials. Nevertheless, the obtained two-point functions
can be shown to be monotonically increasing functions in q
and, thus, again no instabilities toward inhomogeneous
perturbations are observed. For the other three models in
Table III, we do not show an explicit calculation as the
expressions become very lengthy and the analysis becomes
very involved. However, by first calculations and due to
the fact that the off-diagonal contributions coming from the
scalar fields’ self-interaction terms are not dependent on the
momentum q of the inhomogeneous perturbations we
expect that also these Yukawa models do not develop an
instability toward an IP.

V. CONCLUSION AND OUTLOOK

In this work, we analyzed the stability of homogeneous
condensates against inhomogeneous perturbations in a
wide range of (2þ 1)-dimensional FF models and their
Yukawa extensions under the influence of combinations of
baryon chemical potential, isospin chemical potential and
chiral chemical potential. All investigations were per-
formed in the mean-field approximation, i.e., neglecting
bosonic quantum fluctuations. The most involved model
features 16 Lorentz-(pseudo)scalar FF interaction channels
and the other models are subsets of this model [see Eqs. (1)
and (3) for the FF model].
Our main finding was the stability of homogeneous

condensates against inhomogeneous perturbations in these
FF and Yukawa models at any finite baryon chemical
potential and temperature. As argued in Sec. III A, this is
strong evidence that IPs do not exist in (2þ 1)-dimensional
FF models with Lorentz-(pseudo)scalar interaction chan-
nels and their corresponding Yukawa extension (the cor-
respondence is given in Sec. II B). Also, we can completely

rule out the existence of a moat regime whose characteristic
is a negative wave-function renormalization Z (see Sec. I
for a short discussion). The momentum dependence of the
obtained two-point functions only allows Z ≥ 0. We drew
similar conclusions for models with a subset of the above-
mentioned FF interaction subjected to multiple chemical
potentials. In the case of multiple chemical potentials, the
extension to Yukawa models causes technical difficulties,
but, in principle, we expect the result regarding stability of
homogeneous phases to be the same. This is motivated in
Sec. IV B and an example computation for an explicit
model is provided in Appendix C. We note, however, that
the used models are not very well suited for high-energy
phenomenology in the presence of multiple chemical
potentials, as they lack, for example, the description of
charged pion condensation for finite isospin chemical
potential. Thus, one should interpret our results as a first
step to generically show that multiple imbalances of
fermion densities do not result in the existence of an IP.
Our results suggest that there might be a general argu-

ment, similar to Derrick’s theorem [138], behind the
absence of IPs in (2þ 1)-dimensional models. Such a
principle could possibly be found by studying the proper-
ties of a general Ginzburg-Landau free energy as done in
Ref. [139]. Therefore, one would probably need to encode
the fermionic determinant in our models by allowing for
higher orders in the gradient expansion.
In the present study, we did not consider vector FF

interactions, since their inclusion yields a technically differ-
ent analysis than the one presented in Sec. III. The inclusion
of these channels would also be relevant for low-energy
effective theories of QCD, where both vector and scalar FF
interaction should emerge. However, the interplay of (repul-
sive) vector interactions and the scalar interactions couldplay
a crucial role in developing an instability toward an IP,
especially as vector fields directly couple to fermionic
momenta in the calculation.13 In (3þ 1)-dimensionalmodels
it was already observed that vector interactions can enlarge
the IP [140,141]. The presence of such interactions causes
additional contributions to appear in the two-point functions
of the corresponding bosonic fields, which do not have a
definite monotony as the momentum dependence of the two-
point functions in the present work. Calculations for (2þ 1)-
dimensional FF models with vector interactions are already
under way and we hope to report soon about the results.
With respect to high-energy phenomenology, there are

many ways to build on the present work—for example
allowing for finite quark masses, studying three-flavor
versions of the FF models allowing for strangeness effects
or the inclusion of bosonic quantum fluctuations using
lattice field theory. With respect to the stability analysis, it

13This is also the reason why the analysis of these models
differs from the ones presented in this work and has to be
consistently presented elsewhere.
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is interesting to note that using finite bare quark masses
disfavors an IP [126] and the inclusion of strange quarks
only has marginal effects on inhomogeneous condensation
[142]. However, the effect of bosonic quantum fluctuations
beyond the mean-field approximation on the phase diagram
is a very important aspect and also currently discussed in
the literature [41,94,95,98,99,135]. The general result of
these studies is that bosonic quantum fluctuations tend to
disfavor ordered phases (such as condensed phases) similar
to the effect of thermal fluctuations. Thus, it can be
anticipated that the absence of an IP in a mean-field
calculation implies that there will be no inhomogeneous
ground states in the full quantum theories. To our knowl-
edge, there is no observation of an inhomogeneous ground
state being generated by bosonic quantum fluctuations
when there is no IP present when these fluctuations are
suppressed. An interesting aspect for (2þ 1)-dimensional
theories in general could be the inclusion of difermion
interactions in order to allow for color-superconducting
order parameters, which often are in competition with the
chiral ones; see, e.g., Refs. [11,72,143,144].
Regarding the general understanding of strongly inter-

acting fermions in 2þ 1 dimensions, it would be very
interesting to study the interference and competition of the
different chiral chemical potentials, which can be intro-
duced as μ4ψ̄γ3γ4ψ , μ5ψ̄γ3γ5ψ or μ45ψ̄γ3γ45ψ (as done in
the beginning of Sec. IVA 2) and correspond to different
conserved charges. However, the first results in our work
and in Ref. [119] suggest that this would not change the
phase diagram with respect to the existence of IPs.
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APPENDIX A: SYMMETRIES OF
(2 + 1)-DIMENSIONAL FERMIONS

In this section, we want to elaborate on the symmetries of
the fermionic models, which are introduced in Sec. II in
Eq. (1). Their partially bosonized action can be found in

Eq. (5) and are invariant under certain symmetry trans-
formations acting on the 2N four-component spinor fields
(the factor of 2 comes from introducing an isospin space).
The specific symmetry group, under which the model is
invariant, is determined by the choice of the set J, i.e., by
the choice λj ≠ 0, j ∈ J and, correspondingly, by which
auxiliary bosonic fields ϕj, j ∈ J have to be introduced in
the bosonization. This section is intended to provide an
overview of the relevant symmetry groups present in the
models discussed in Sec. IV and Tables II and III.
Taking J ¼ fjgj¼1;…;16 the N isospin up/down fermion

fields in Eq. (5) will be invariant under transformation of
the group Uð4NÞ, similar to the free case. This group has
ð4NÞ2 generators, which we split up into three different
categories. There are rotations within the internal space of
the N spinors generated by N × N matrices given by the
generalized Gell-Mann matrices Ta with a ¼ 1;…; N2 − 1

and the identity matrix TN2 ¼ IN . These generators Ta can
be combined with any of the chiral symmetry transforma-
tions of a free fermion fields, which are generated by
ðI4; γ4; γ5; γ45Þ. Together with the internal rotations either of
these can generate a UðNÞ symmetry labeled by the
corresponding chiral generator, namely

UI4ðNÞ∶ ψ → eiα
aI4Ta

ψ ; ψ̄ → ψ̄e−iα
aI4Ta

; ðA1Þ

Uγ45ðNÞ∶ ψ → eiβ
aγ45Ta

ψ ; ψ̄ → ψ̄e−iβ
aγ45Ta

; ðA2Þ

Uγ4ðNÞ∶ ψ → eiζ
aγ4Ta

ψ ; ψ̄ → ψ̄eiζ
aγ4Ta

; ðA3Þ

Uγ5ðNÞ∶ ψ → eiι
aγ5Ta

ψ ; ψ̄ → ψ̄eiι
aγ5Ta

; ðA4Þ

with real parameters αa, βa, ζa, ιa. Thus, the whole chiral
symmetry group can be defined as

Uγð2NÞ∶ ψ → Uψ ; ðA5Þ

where U is a matrix element of Uð2NÞ. In addition, the FF
model in Eq. (1) is invariant under isospin transformations
of the group U(2), which is composed of a U(1) phase
factor and

SUτ⃗ð2Þ∶ ψ → eiξ⃗ τ⃗ψ ; ψ̄ → ψ̄e−iξ⃗ τ⃗; ðA6Þ

where ξ⃗ are three real parameters.
Some of the models discussed in Sec. IV are only

invariant under a subgroup of the Uð4NÞ transformations.
We will define these symmetry transformations as a
reference for Tables II and III. As in the NJL model,
one can choose J such that one or more of the two axial
transformations (A3) and (A4) is broken. Then, the action
can be still invariant under a combined isospin and chiral
rotation given by
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SUA;γ4ð2NÞ∶ ψ → eiζ⃗
0aτ⃗γ4Ta

ψ ; ψ → ψ̄eiζ⃗
0a τ⃗γ4Ta

; ðA7Þ

SUA;γ5ð2NÞ∶ ψ → eiι⃗
0aτ⃗γ5Ta

ψ ; ψ → ψ̄eiι⃗
0a τ⃗γ5Ta

; ðA8Þ

where the isovectors ι⃗0a and ζ⃗0a contain three real param-
eters and a ¼ 1;…; N2. Typically in these cases, the vector
symmetry Eq. (A6) is not broken.
Some of the choices of J break the continuous chiral

symmetries to discrete subgroups

Zγ4ð2Þ∶ ψ → γ4ψ ; ψ → −ψ̄γ4; ðA9Þ

Zγ5ð2Þ∶ ψ → γ5ψ ; ψ̄ → −ψ̄γ5: ðA10Þ

Typically, when a model is in addition invariant under the
transformation (A2), then either of (A9) and (A10) can be
reproduced by a combination of (A2) and the other of the
discrete symmetries.
In Table III, only a remnant of the isospin symmetry

transformation SUτ⃗ð2Þ is present in some of the models,
namely

Uτ3ð1Þ∶ ψ → eiξ3τ3ψ ; ψ̄ → ψ̄e−iξ3τ3 : ðA11Þ

APPENDIX B: DERIVATION OF
THE STABILITY ANALYSIS

In this section, the stability analysis for a general FF theory
subjected to a baryon chemical potential is derived. This
discussion is similar to model-specific discussions, as, e.g.,
found in Refs. [111,117,126]. The core idea of this technique
is to analyze the stability of a homogeneous field configu-
ration under inhomogeneous perturbations. Furthermore, we
outline how an extension to Yukawa models can be done.
Consider an expansion of the auxiliary bosonic fields

ϕ⃗ðxÞ ¼ ⃗ϕ̄þ δϕ⃗ðxÞ; ðB1Þ

where δϕ⃗ðxÞ is a spatially dependent inhomogeneous

perturbation of the homogeneous expansion point ⃗ϕ̄.
These perturbations are of an arbitrary shape and assumed
to be of an infinitesimal amplitude. The Dirac operator then
also separates into a homogeneous and an inhomogeneous
part

Q ¼
�
∂þ γ3μþ

X
j∈J

cjϕ̄j

�
þ
X
k

ckδϕkðxÞ

≡ Q̄þ ΔQðxÞ; ðB2Þ

which we can use to expand the lnDetQ as

lnDet½βQ� ¼ ln Det½βQ̄� −
X∞
n¼1

1

n
Tr½ð−ΔQQ̄−1Þn�; ðB3Þ

where Tr denotes a functional trace over all spaces. We
insert the expansion from Eqs. (B3) and (B1) into the
effective action Eq. (10) to obtain the expansion

Seff ½ϕ⃗�
N

¼
Z

d3x
X
j∈J

ðϕ̄þ δϕðxÞÞ2
2λj

þ − lnDet½βQ̄� þ
X∞
n¼1

1

n
Tr½ð−ΔQQ̄−1Þn�

≡ 1

N

X∞
n¼0

SðnÞ
eff ; ðB4Þ

where SðnÞ
eff contains all terms of order n in the perturbations

δϕj, i.e., terms ∝
Q

j δϕ
mj

j with
P

j mj ¼ n. The first three
terms in the series are given by

Sð0Þ
eff

N
¼ βV

X
j∈J

ϕ̄2
j

2λj
− lnDet½βQ̄�; ðB5Þ

Sð1Þ
eff

N
¼ β

X
j∈J

ϕ̄j

λj

Z
d2xδϕjðxÞ − Tr½ΔQQ̄−1�; ðB6Þ

Sð2Þ
eff

N
¼ β

2

X
j∈J

1

λj

Z
d2xδϕ2

jðxÞþ
1

2
Tr½ΔQQ̄−1ΔQQ̄−1�; ðB7Þ

where the zeroth-order term is proportional to the effective
potential. In the position space representation, the fermion
propagator depends only on the difference of two spacetime
variables, i.e., Q̄−1 ¼ Q̄−1ðx; yÞ≡ Q̄−1ðx − yÞ. The func-
tional traces are represented in position space as

Tr½ðΔQQ̄−1Þn� ¼
Z Yn

j¼1

d3xðjÞtrðΔQðxð1ÞÞQ̄−1ðxð1Þ; xð2ÞÞ

×…ΔQðxðnÞÞQ̄−1ðxðnÞ; xð1ÞÞÞ; ðB8Þ

with tr denoting the trace in spinor and isospin space. In
order to evaluate these traces, it is instructive to consider the
Fourier representation of the homogeneous propagator

Q̄−1ðx; yÞ≡ 1

β

X∞
n¼−∞

Z
d2p
ð2πÞ2 e

i½νnðτx−τyÞþpðx−yÞ� ˜̄Q−1ðνn;pÞ;

ðB9Þ

with
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˜̄Q−1ðνn;pÞ ¼
−iγip̃i þ

P
kc

⋆
k ϕ̄k

ν̃2n þ p2 þM2
; ðB10Þ

where ν̃n ¼ ðνn − iμÞ, νn ¼ 2πðn − 1
2
Þ=β are the fermionic Matsubara frequencies, and M and c⋆ are defined in Eq. (15).

Using the Fourier representation, Eq. (B6) evaluates to

Sð1Þ
eff

N
¼
X
j∈J

β

�Z
d2xδϕjðxÞ

��
ϕ̄j

λj
−
1

β

X
n

Z
d2p
ð2πÞ2 trð

˜̄Q−1ðνn;pÞcjÞ
�
; ðB11Þ

which we can identify to be proportional to the homogeneous gap equations

1

N
∂Sð0Þ

eff

∂ϕ̄k

���� ⃗ϕ̄¼ ⃗ϕ̄
0
¼ β

�Z
d2x

��
ϕ̄k

λk
−
1

β

X
n

Z
d2p
ð2πÞ2 trð

˜̄Q−1ðνn;pÞckÞ
����� ⃗ϕ̄¼ ⃗ϕ̄

0
¼ 0; ðB12Þ

where ⃗ϕ̄
0
is a homogeneous field configuration that is a solution of the gap equations. Therefore, Sð1Þ

eff vanishes when the
homogeneous field configurations used as an expansion point are solutions of the gap equations. If these expansion points
are used, the second-order term is the first nonzero correction. We evaluate the trace in Eq. (B8) to

Tr½Q̄−1ΔQQ̄−1ΔQ� ¼
Z

d2q
ð2πÞ2

�X
j;k∈J

δϕ̃�
jðqÞδϕ̃kðqÞΓF

ϕjϕk
ðM2; μ; T; q2Þ

�
; ðB13Þ

where q ¼ jqj and we used the Fourier representation of the spatial inhomogeneous perturbations

δϕjðxÞ ¼
Z

d2q
ð2πÞ2 e

iqxδϕ̃jðqÞ: ðB14Þ

The matrix in field space ΓF
ϕjϕk

can be cast into the form

ΓF
ϕjϕk

¼ 1

β

X
n

Z
d2p
ð2πÞ2 trðcj

˜̄Q−1ðνn;pþ qÞck ˜̄Q−1ðνn;pÞÞ

¼ −
1

β

X
n

Z
d2p
ð2πÞ2

Acjck

½ν̃2n þ p2 þM2�½ν̃2n þ ðpþ qÞ2 þM2� ðB15Þ

with

Acjck ¼ ðν̃2n þ p2 þ p · qÞtr½cjγickγj� þ −
X
l;m∈J

ϕ̄lϕ̄mtr½cjc⋆l ckc⋆m�

¼ δj;k8ðν̃2n þ p2 þ p · qÞ −
X
l;m∈J

ϕ̄lϕ̄mtr½cjc⋆l ckc⋆m�; ðB16Þ

where we used that trðγicjckclÞ ¼ 0, c2j ¼ �I and that the anticommutator fγi; ckg evaluates to 0 or 2ckγi for all considered
cj. Thus, we obtain for the second-order correction of the effective action

Sð2Þ
eff

N
¼ β

2

Z
d2q
ð2πÞ2

X
j;k∈J

δϕ̃�
jðqÞδϕ̃kðqÞ½δj;kλ−1j þ ΓF

ϕjϕk
ðM2; μ; T; q2Þ�: ðB17Þ

In order to make statements about the stability of a homogeneous field configuration one has to determine a basis φjðϕ⃗Þ,
j ∈ J for which δj;kλ

−1
j þ ΓF

ϕjϕk
ðq2Þ is diagonalized. This is not possible in general and depends on the present chemical

potentials and the interactions of the model. Furthermore, we assume that all λj are either λ or 0 according to the subset J of

LAURIN PANNULLO and MARC WINSTEL PHYS. REV. D 108, 036011 (2023)

036011-16



the field content that we consider. If this diagonalization is then indeed possible as is the case for all channels considered in
Eq. (1) at finite baryon chemical potential, one obtains the form

Sð2Þ
eff

N
¼ β

2

Z
d2q
ð2πÞ2

�X
j∈J

jδφ̃jðqÞj2Γð2Þ
φj ðM2; μ; T; q2Þ

�
ðB18Þ

with

Γð2Þ
φj ðM2; μ; T; q2Þ ¼ 1

λ
−
8

β

X
n

Z
d2p
ð2πÞ2

�
p̃2 þ p · qþ a0φj

M2

½ν̃2n þ p2 þM2�½ν̃2n þ ðpþ qÞ2 þM2�
�
; ðB19Þ

where a0φj
is a coefficient that is determined by the

considered field φj. In this diagonalized form, we identify

Γð2Þ
φj ðq2Þ as the curvature of the effective action for an

inhomogeneous perturbation in field direction φj with
momentum q. By writing the denominator of the integrand
in Eq. (B19) in a partial fraction, we can split the integral
and obtain the final form of the bosonic two-point function
as given in Eq. (14), where aφj

¼ 2ða0φj
− 1Þ. Note that the

integral l1 is also obtained in the fermionic trace in the gap
equation (B12) for ϕ̄1 ¼ σ̄ (compare also the GN model
gap equation in Sec. III of Ref. [117]). The gap equation
and, correspondingly, l1 is typically used as a renormal-
ization condition in vacuum for the coupling con-
stant λj ¼ λ.

1. The momentum-independent part L1

We consider the integral

l1ðM2; μ; TÞ ¼ 8

β

X
n

Z
d2p
ð2πÞ2

1

ðνn − iμÞ2 þ E2
; ðB20Þ

where E2 ¼ p2 þM2. The factor of 8 comes from the
traces over the four-dimensional spinor and the two-
dimensional isospin space. Performing the sum over n,
we obtain the standard result

l1ðM2;μ; TÞ ¼ 8

Z
d2p
ð2πÞ2

1− nðβðEþ μÞÞ− nðβðE− μÞÞ
2E

;

ðB21Þ

where nðxÞ is the fermionic-distribution function

nðxÞ ¼ 1

ex þ 1
: ðB22Þ

The vacuum part is UV divergent, which we can regulate
with a spatial momentum cutoff Λ,

l1ðM2; 0; 0Þ ¼ 8

2π

Z
Λ

0

dp
p
2E

¼ 8

4π

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
− jMj




⟶
Λ≫M2 8

4π
ðΛ − jMjÞ ðB23Þ

and use to set the value of λk via the gap equations
Eq. (B12)

1

λk
¼ 8

4π
ðΛ − jM0jÞ ðB24Þ

with the mass M0 corresponding to the minimum of the
effective action in the vacuum (defined in Sec. III).
We are interested in the contribution of l1 to the two-

point function Γð2Þ, where l1 appears exclusively as
L1 ¼ 1

λk
− l1. Using Eqs. (B23) and (B24) we find

L1ðM2; μ; TÞ

¼ 8

�jMj − jM0j
4π

þ
Z

d2p
ð2πÞ2

nðβðEþ μÞÞ þ nðβðE − μÞÞ
2E

�
;

ðB25Þ

where the medium integral over the fermionic-distribution
function can be evaluated to

L1ðM2;μ;TÞ¼ 8

4π

�
jMj− jM0j

þ1

β
lnð1þ e−βðjMj−μÞÞþ1

β
lnð1þ e−βðjMjþμÞÞ

�
:

ðB26Þ

For T ¼ 0, this evaluates to

L1ðM2; μ; T ¼ 0Þ

¼ 8

4π
½jMj − jM0j þ Θðμ2 −M2Þðjμj − jMjÞ�; ðB27Þ

from which we can naively take the limits μ → 0 and/
or M → 0.
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2. The momentum-dependent part L2;�
In order to calculate the momentum-dependent part of the two-point function, we start by carrying out the Matsubara

summation in l2 and obtain

l2ðM2; μ; T; q2Þ ¼ 8

Z
d2p
ð2πÞ2

1

2p · qþ q2

�
1 − nðβðEþ μÞÞ − nðβðE − μÞÞ

2E
−
1 − nðβðEq þ μÞÞ − nðβðEq − μÞÞ

2Eq

�
; ðB28Þ

where Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðpþ qÞ2

p
. This integral is UV finite and, thus, we do not have to implement a regularization scheme.

However, the integrand has a divergence at 2p · q ¼ −q2 that has to be treated with a Cauchy principal value prescription.
The vacuum contribution can be calculated analytically and we obtain

l2ðM2; μ; T; q2Þ ¼ 8

4πq

�
arctan

�
q

2jMj
�
þ −

Z
q=2

0

dp
p
E
nðβðEþ μÞÞ þ nðβðE − μÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2=4 − p2
p �

: ðB29Þ

At any finite T, the medium contribution has to be
calculated numerically. However, taking the limit T → 0
enables us to also calculate the medium contribution
analytically and we find Eq. (17). From this expression,
we can take either the limit q → 0 to obtain

l2ðM2; μ; T ¼ 0; q2 ¼ 0Þ ¼ 1

π

�
0; μ2 > M2;
1
jMj ; μ2 < M2 ðB30Þ

or the limit jMj → 0 to obtain

l2ðM2 ¼ 0; μ; T ¼ 0; q2Þ

¼ 2

πq

8>>>>><
>>>>>:

0; μ2 > q2=4;

arctan

� ffiffiffiffiffiffiffiffiffiffiffiffi
q2−4μ2Þ

p
2μ

�
; 0 < μ2 ≤ q2=4;

π
2
; μ2 ¼ 0:

ðB31Þ

While l2 is not defined for M ¼ q ¼ T ¼ 0 for some
values of μ, the whole momentum-dependent contribution
to the two-point functions L2;� is defined with

L2;�ðM2 ¼ 0; μ; T ¼ 0; q2 ¼ 0Þ ¼ 0: ðB32Þ

3. Generalization to Yukawa models

It is straightforward to generalize the stability analysis of
FF models to Yukawa models, which are defined as in
Sec. II B in Eq. (11). Thus, we outline only the meaningful
differences with respect to the discussion of FF models in
order to preserve brevity.
After an expansion of SY in powers of inhomogeneous

perturbations of the fields, one identifies again Sð0Þ
Y as

proportional to the effective potential. The first-order

correction Sð1Þ
Y is proportional to the gap equations and,

consequently, vanishes when one expands about homo-
geneous extrema of SY .
For the second-order correction Sð2Þ

Y we find

Sð2Þ
Y

N
¼ β

2

X
j∈J

1

hλj

Z
d2xδχ2jðxÞ − Tr½Q̄−1hΔQQ̄−1hΔQ�

þ 1

2

X
j∈J

�Z
d2xð∂νδχjðxÞÞð∂νδχjðxÞÞ þ

X
n>1

κn2nð ⃗χ̄2Þn−1
Z

d2xδχ2jðxÞ
�

þ 2
X
j;k∈J

X
n>1

κnnðn − 1Þχ̄jχ̄kð ⃗χ̄2Þn−2
Z

d2xδχjðxÞδχkðxÞ; ðB33Þ

where the second line and third line contain the additional
terms resulting from the extension to Yukawa models. Note
that the third line contains nondiagonal contributions from
the self-interaction terms of the χ⃗ fields. However, these are
proportional to χ̄jχ̄k, and, thus, vanish when either of χ̄j; χ̄k
can be rotated to zero through a symmetry transformation,

as is the case for all Yukawa-type extensions of the model
Eq. (10), where only a baryon chemical potential is present.
If this is not the case, one needs to take into account this
off-diagonal contribution in addition to the, in principle,
off-diagonal fermionic contribution. This is the case for the
models discussed in Table III with additional chemical
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potentials. A more involved diagonalization needs to be
performed, although the Yukawa contribution is not ex-
pected to change the general momentum dependence of the
two-point function, as the term is q independent. An
example for such an analysis is presented in Appendix C.
In the case of only a baryon chemical potential, we

utilize symmetry transformations to obtain a homogeneous
expansion point χ⃗ ¼ ⃗χ̄ such that the off-diagonal contri-
butions in the third row of Eq. (B33) vanish. Performing
similar steps to those between Eqs. (B16) and (14) leads to
the second-order correction Eq. (18) and the corresponding
bosonic two-point function Eq. (19).

APPENDIX C: STABILITY ANALYSIS FOR A
YUKAWA MODEL WITH MORE THAN ONE

CHEMICAL POTENTIAL

In this section, we will show how the off-diagonal
contribution from the Yukawa self-interactions [compare

the third line of Eq. (B33)] makes the diagonalization of

Sð2Þ
Y more involved. However, we will also demonstrate that

this q-independent contribution does not alter the predic-
tions coming out of the analysis.
The model that we will study is defined as the Yukawa

model extension according to Eq. (11) of the FF model in
the first row of Table III; i.e., it contains the σ and η45 fields
as well as a baryon chemical potential μ and a chiral
chemical potential μ45. As documented in Table III and
Ref. [120], the FF part of the model is diagonalized by the
field basis proportional to

ðσ � η45Þ: ðC1Þ

In analogy to this FF model, we study the effective
action

Seff ½χL; χR�
N

¼ −Tr ln½∂þ γ3ðPLμL þ PRμRÞ þ hPLχL þ hPRχR� þ
Z

d3xh2
�
χ2L þ χ2R

2λ
þ 1

2
ð∂χLÞ2 þ

1

2
ð∂χRÞ2

þ
X
n>1

κnh2ðn−1Þðχ2L þ χ2RÞn
�
; ðC2Þ

where χL=R are fields of canonical dimension and proportional to the dynamical scalar fields χσ and χη45 as

χL ¼ 1ffiffiffi
2

p ðχσ þ χη45Þ; χR ¼ 1ffiffiffi
2

p ðχσ − χη45Þ: ðC3Þ

We, again, introduced a Yukawa coupling h as well as couplings κn for the self-interactions and define projectors and
chemical potentials accordingly

PL ¼ 1ffiffiffi
2

p ð1þ γ45Þ; PR ¼ 1ffiffiffi
2

p ð1 − γ45Þ; ðC4Þ

μL ¼ 1ffiffiffi
2

p ðμþ μ45Þ; μR ¼ 1ffiffiffi
2

p ðμ − μ45Þ: ðC5Þ

All terms except for the last row in Eq. (C2) either contain only14 χL or only χR. Thus, the second-order correction is given
by

Sð2Þ
eff

N
¼ β

2

Z
d2q
ð2πÞ2

�X
j¼L;R

jδχjðqÞj2
�
h2ΓF

χj þ q2 þ
X
n>1

κnnð2ðM2Þn−1 þ 4ðn − 1Þχ̄2jðM2Þn−2Þ
�

þ δχLð−qÞδχRðqÞ4κnnðn − 1Þχ̄Lχ̄RðM2Þn−2 þ L ↔ R

�
; ðC6Þ

where M2 ¼ χ̄2σ þ χ̄2η45 ¼ χ̄2L þ χ̄2R and

14The Dirac operator within the Tr ln can be decomposed into a block-diagonal form, where each block only contains either μL and χL
or μR and χR. In this sense, the fermionic contributions completely decouples χL and χR.
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ΓF
χj ¼

1

λ
− l1 þ L2;þðh2χ̄2j ; μj; T; q2Þ ðC7Þ

is the contribution that also appears in the corresponding FF
model (see Table III and Ref. [120]). The integrals l1 and
L2;þ are defined in Eqs. (14) and (16).
The last row of Eq. (C6) contains the off-diagonal

contribution of the self-interaction. This contribution is
not dependent on the spatial momentum q of the perturba-
tion, but it makes the diagonalization more complicated
[compare Eq. (B33) for the form of this contribution in the
more general case]. In fact, we are only able to diagonalize
this symbolically using MATLAB [137]. Using the definitions

Yj ¼ q2þ
X
n>1

κnnð2ðM2Þn−1þ4ðn−1Þχ̄2jðM2Þn−2Þ; ðC8Þ

with j ¼ L, R as well as

I ¼
X
n>1

4κnnðn − 1Þχ̄Lχ̄RðM2Þn−2 ðC9Þ

and

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2ΓF

χL − h2ΓF
χR þ YL − YRÞ2 þ ð2IÞ2

q
ðC10Þ

we write the diagonalization of Sð2Þ
eff in the ðδχLðqÞ; δχRðqÞÞ-space

Sð2Þ
eff

N
¼ β

2

Z
d2q
ð2πÞ2 ðδχLð−qÞ; δχRð−qÞÞBðq

2; χ̄L; χ̄R; μL; μR; TÞ

×

 
h2
2
ðΓF

χL þ ΓF
χRÞ þ 1

2
ðYL þ YRÞ − 1

2
A

h2
2
ðΓF

χL þ ΓF
χRÞ þ 1

2
ðYL þ YRÞ þ 1

2
A

!

× B−1ðq2; χ̄L; χ̄R; μL; μR; TÞðδχLðqÞ; δχRðqÞÞT; ðC11Þ

whereBðq2; χ̄L; χ̄R; μL; μR; TÞ is a basis changingmatrixdeterminedbyMATLAB,whose form is not relevant for our analysis. In
this formone can determinewhether the diagonal entries of thematrix inEq. (C11) are non-negative. For thephysically relevant
homogeneous expansion pointM both entries are non-negative for q ¼ 0, since otherwise the expansion point would not be a
minimum when only considering homogeneous field values. Therefore, in order to prove positivity for all q ¼ jqj it suffices
again to show that the entries aremonotonically increasing functions of q.We take the derivative of the entries with respect to q
and require it to be non-negative

h2

2
½ðL2;LÞ0 þ ðL2;RÞ0� þ 2q ∓ h2

2
½ðL2;LÞ0 − ðL2;RÞ0�

h2ΓF
χL − h2ΓF

χR þ YL − YR

A
≥
!
0; ðC12Þ

where L2;L=R ¼ L2;þðh2χ̄2L=R; μL=R; T; q2Þ and its derivative with respect to q is non-negative, i.e., d
dq L2;L=R ¼ ðL2;L=RÞ0 ≥ 0,

since it is a monotonically increasing function of q (compare Sec. III). We can rearrange Eq. (C12) and square it to obtain

�
½ðL2;LÞ0 þðL2;RÞ0�þ

2q
h2

�
2

≥ ½ðL2;LÞ0− ðL2;RÞ0�2
ðh2ΓF

χL −h2ΓF
χR þYL−YRÞ2

ðh2ΓF
χL −h2ΓF

χR þYL−YRÞ2þð2IÞ2¼ ½ðL2;LÞ0− ðL2;RÞ0�2c2; ðC13Þ

where obviously 0 ≤ c2 ≤ 1 and, thus, the inequality is fulfilled for all q.

Summarizing this lengthy and delicate analysis: We
diagonalized the second-order corrections (C6) of a
Yukawa model with multiple chemical potentials given by
Eq. (C2) using computer algebra systems such as MATLAB

[137]. Analyzing the resulting expression, we find that both
eigenvalues of the relevant curvature matrix in the second-
order corrections are positive, monotonically increasing
functions of themomentumsquaredq2 of the inhomogeneous

perturbation. Thus, we do not observe instabilities of the
homogeneous condensates in the Yukawa model given by
Eq. (C2). By the same reasoning, a negative wave-function
renormalization (proportional to the second derivative of the
two eigenvalues with respect to q), i.e., a so-called moat
regime, is not observed in the model. Similar behavior is
expected for the other Yukawa models that correspond to the
FF models in Table III according to Sec. II B and Eq. (11).
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