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The Merino–Welsh Conjecture for Split
Matroids
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Abstract. In 1999, Merino and Welsh conjectured that evaluations of the
Tutte polynomial of a graph satisfy an inequality. In this short article, we
show that the conjecture generalized to matroids holds for the large class
of all split matroids by exploiting the structure of their lattice of cyclic
flats. This class of matroids strictly contains all paving and copaving
matroids.
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1. Introduction

In 1999, Merino and Welsh [14, Conjecture 7.1] posed the following conjecture.

Conjecture 1.1. For every connected graph G without loops and bridges, the
following inequality holds.

max(α(G), α∗(G)) ≥ τ(G),

where τ(G) denotes the number of spanning trees of G, α(G) the number of
acyclic orientations of G, and α∗(G) the number of totally cyclic orientations
of G.

The three invariants appearing in this conjecture are evaluations of the
Tutte polynomial of G, which we denote by TG(x, y). More precisely, we have
that τ(G) = TG(1, 1), α(G) = TG(2, 0) and α∗(G) = TG(0, 2). This point of
view allows to extend the preceding conjecture to all matroids. Furthermore,
Conde and Merino strengthened the Conjecture in [6], by proposing an “addi-
tive” and a “multiplicative” version of the conjecture for graphs. Generalized
to matroids, the three versions read as follows.

Conjecture 1.2. Let M be a matroid without loops and coloops. Then

max (TM(2, 0), TM(0, 2)) ≥ TM(1, 1), (1)
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TM(2, 0) + TM(0, 2) ≥ 2TM(1, 1), (2)

TM(2, 0) · TM(0, 2) ≥ TM(1, 1)2. (3)

An elementary argument and the non-negativity of the expressions above
shows that (3) implies (2), which in turn implies (1).

These inequalities have been discussed and established for specific classes
of graphs and matroids. Particularly regarding graphs, Thomassen [18] showed
that if a graph is either “sparse” or “dense” then it satisfies Conjecture 1.1.
Furthermore, Noble and Royle [15] proved that series-parallel graphs satisfy the
multiplicative version of Conjecture 1.2, whereas Jackson [10] proved several
inequalities that have a resemblance to (3), but his method does not extend
to our case.

Strictly within the scope of the matroidal version of the conjecture,
Knauer et al. proved in [12] that the class of lattice path matroids satisfy
the multiplicative version of Conjecture 1.2. The key feature of their method
is a clever way of setting up an induction where they manage to keep control
over the base cases.

In [5], Chávez-Lomeĺı et al. proved a related conjecture [6, Conjecture 2.4]
for all paving matroids without coloops. Namely, they showed that the Tutte
polynomial of such a matroid is a convex function on the segment x + y = 2
within the positive quadrant. This yields immediately that all such matroids
satisfy the additive version (2) of the inequality. The relevance of this class of
matroids comes from a conjecture [13, Conjecture 1.6] posed by Mayhew et
al. asserting that paving matroids are asymptotically predominant within all
matroids.

The purpose of this short article is to show that the class of split ma-
troids satisfies all of Conjecture 1.2. This class of matroids, introduced by
Joswig and Schröter in [11] is minor closed and strictly larger than both the
classes of paving and copaving matroids. It originates in the study of splits of
hypersimplices, i.e., the base polytopes of uniform matroids, and the tropical
Grassmannian. The main result of this note is the following.

Theorem 1.3. Let M be a split matroid without loops and coloops. Then

TM(2, 0) · TM(0, 2) ≥ TM(1, 1)2.

Moreover, we identify the cases in which equality is attained. The method
we employ is a modification of the arguments used in [5,12]. A key feature of
connected split matroids that we discuss below is a structural property of their
lattice of cyclic flats that we use as definition.

2. The Toolbox

Throughout the rest of the paper, we assume familiarity with basic concepts
in matroid theory; we follow the terminology and notation of [16] and point
to [2] for further details on the lattice of cyclic flats.
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2.1. Split Matroids

For the sake of simplicity in the exposition, we will use an alternative definition
of split matroids using their cyclic flats.

Definition 2.1. (Split matroids) A connected split matroid is a connected ma-
troid M whose proper cyclic flats form a clutter, that is if E denotes the ground
set of M and F1 � F2 are two cyclic flats then either F1 = ∅ or F2 = E.

We call a matroid a split matroid if it is isomorphic to a direct sum
in which exactly one of the summands is a connected split matroid and the
remaining summands are uniform matroids.

Remark 2.2. Let us explain why the above definition is equivalent to the orig-
inal definition of split matroids. Observe that the only connected matroids
with loops or coloops are U0,1 and U1,1. In particular, if the matroid M is con-
nected and has cardinality at least 2, then it is loopless and coloopless. From
the equivalence between (iii) and (iv) in [1, Theorem 11], it follows that if M
is connected and split it is either U0,1 or U1,1, or it is loopless and coloopless
and the proper cyclic flats of M form a clutter. Conversely, if M is a connected
matroid whose proper cyclic flats form a clutter, then by the same equivalence
M has to be a connected split matroid. The second part of the definition that
includes disconnected matroids is precisely [11, Proposition 15].

The name “split matroid” stems from a polyhedral point of view of ma-
troids. The facet defining equations of the matroid base polytope of a split
matroid are compatible splits of a hypersimplex, namely, the base polytope
of a uniform matroid. In this article, we focus only on combinatorial prop-
erties. For a thorough and detailed exploration of the interplay between the
combinatorics and the geometry of split matroids we refer to [9].

A fact that we will leverage is that the class of split matroids is closed
under duality and taking minors. A complete list of excluded minors for split
matroids can be found in [4] by Cameron and Mayhew, although we will not
require it here.

A basic and important example of a split matroid is the following.

Example 2.3. (Minimal matroids) Consider the graphic matroid induced by a
cycle of length k + 1 where one edge is replaced by n − k parallel copies of
that edge (see Fig. 1). We denote the corresponding matroid of rank k and
ground set of size n by Tk,n. In general, these matroids fail to be paving (or
co-paving), but they are split matroids. It is straightforward to check that the
set of all the parallel edges is the only proper cyclic flat of the matroid Tk,n

whenever k > 0.
The matroid Tk,n is known in the literature by the name “minimal ma-

troid.” Dinolt [7] introduced that name for Tk,n since it is the only connected
matroid (up to isomorphism) of rank k and cardinality n achieving the minimal
number of bases k(n − k) + 1.

Minimal matroids are lattice path matroids, which follows either by [12,
Theorem 3.2] or by [8, Proposition 2.4]. Moreover, notice that the dual of a
minimal matroid is again a minimal matroid, that is T∗

k,n
∼= Tn−k,n.
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Figure 1. The underlying graph of a minimal matroid T4,7

2.2. Tutte Polynomials and Inequalities

We will assume basic knowledge on Tutte polynomials of matroids. We refer
to [3] for a thorough exposition regarding Tutte polynomials. In the following
whenever we refer to the “multiplicative Merino–Welsh conjecture” we are
speaking about the inequality Conjecture 1.2(3).

Lemma 2.4. If M and N are matroids that satisfy the multiplicative Merino–
Welsh conjecture, then both the dual matroid M∗ and direct sum M⊕N satisfy
the conjecture, too.

Proof. This is immediate from the fact that Tutte polynomials fulfill the rela-
tions TM∗(x, y) = TM(y, x) and TM⊕N(x, y) = TM(x, y) · TN(x, y). �

Lemma 2.5. Let M be a loopless and coloopless matroid on the ground set E. If
there is an element e ∈ E such that both M/e and M\e satisfy the multiplicative
Merino–Welsh Conjecture, then the conjecture is fulfilled by the matroid M.

Proof. See [15, Lemma 2.2] or [12, Lemma 3.3]. �

Remark 2.6. The preceding two well-known results (more precisely, their proofs)
imply that if M and N are matroids satisfying Conjecture 1.2(3), then M ⊕ N
attains equality if and only if both M and N attain equality too. Similarly, if
M\e and M/e satisfy the multiplicative Merino–Welsh conjecture and for M
the equality is attained, then M/e and M\e attain equality as well.

Lemma 2.7. Every loopless and coloopless matroid of rank 1 or corank 1 sat-
isfies the multiplicative Merino–Welsh conjecture.

Proof. By Lemma 2.4, it suffices to consider only the case in which the rank is
1. Observe that a loopless and coloopless matroid of rank 1 is a uniform matroid
M ∼= U1,n for some n ≥ 2. Its Tutte polynomial is TM(x, y) = x+ y + y2 + y3 +
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· · · + yn−1. Thus, TM(1, 1) = n, whereas TM(2, 0) = 2 and TM(0, 2) = 2n − 2.
Therefore,

TM(2, 0) · TM(0, 2) = 2 · (2n − 2) ≥ n2 = TM(1, 1)2

where equality holds only if n = 2. This follows from the estimation 2·(2n−2) >
2n ≥ n2 for all n > 3 and 2 · (2n − 2) = 12 > 9 = n2 if n = 3. �

We observe that as an alternative to our arguments the preceding re-
sult also follows either from [15] or [12] given that all loopless and coloopless
matroids of rank or corank 1 are series-parallel matroids and lattice path ma-
troids.

Lemma 2.8. Every loopless and coloopless matroid of rank 2 or corank 2 satis-
fies the multiplicative Merino–Welsh conjecture. Furthermore, equality occurs
only for the matroid U1,2 ⊕ U1,2.

Proof. Again, by Lemma 2.4 it suffices to consider only the case in which
the matroid has rank 2. Observe that whenever M has rank 2, cardinality n,
and does not contain loops and coloops, we have that the two coefficients
[x2y0]TM(x, y) and [x0yn−2]TM(x, y) are both equal to 1 (see [3, Proposi-
tion 6.2.13(ii) and (v)]). Hence, we obtain TM(2, 0) · TM(0, 2) ≥ 22 · 2n−2 = 2n.

On the other hand, since TM(1, 1) is the number of bases of M, this ex-
pression is bounded from above by the binomial coefficient

(
n
2

)
. The inequality

(
n
2

)2
< 2n holds for every n ≥ 13. Hence, for all rank 2 matroids on n ≥ 13

elements we have

TM(2, 0) · TM(0, 2) ≥ 2n >

(
n

2

)2

≥ TM(1, 1)2.

We used a computer to verify this inequality for all matroids of rank 2 and
size n ≤ 12 that have neither a loop or coloop. The multiplicative Merino–
Welsh conjecture holds for these cases, and equality is obtained only if M ∼=
U1,2 ⊕ U1,2. The code for our computations can be found in Appendix 3. �

Remark 2.9. The preceding proof relies on the fact that the exponential growth
of the term 2n guarantees that it eventually dominates the polynomial term(
n
2

)2 for large values of n. This property easily extends to matroids of higher
fixed rank. However, as the rank grows, one has to deal separately with a
growing finite number of cases that could potentially yield a counterexample
to Conjecture 1.2(3).

3. The Proof of Theorem 1.3

Proposition 3.1. Let M be a connected split matroid without loops and coloops.
Assume that for every e ∈ E in the ground set E of M either the deletion M/e
or the contraction M\e has a loop or a coloop. Then M satisfies one of the
following, or both:

(i) The rank or corank of M is either one or two.
(ii) M is isomorphic to a minimal matroid.
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Proof. Let us assume that the rank of the matroid M is k and the ground set
E is of size n. We are in the first case of the statement unless 3 ≤ k ≤ n − 3.
Thus, we may assume that those inequalities hold. Notice that a contraction
of a coloopless matroid cannot lead to a matroid with a coloop and similarly
a deletion in M cannot create loops, thus the assumptions in the statement
imply that for every element e ∈ E we have either M/e has a loop or M\e
has a coloop. We assume without loss of generality that there is at least one
element e in the ground set such that M/e has loops because, otherwise, we
can replace our matroid by its dual M∗ which satisfies all assumptions as well.

Now, fix an element e ∈ E such that M/e has loops. Consider P = clM(e),
the set of all the elements in M that are parallel to e. This is of course a proper
cyclic flat of M. If j = |P | − 1 ≥ 1, then

M/e ∼= U0,j ⊕ Uk−1,n−j−1.

This is the case as P\e is the ground set of the first direct summand. To
justify the fact that the second direct summand is a uniform matroid, notice
that since M is connected and split, there is only one cyclic flat of M strictly
containing P , namely the ground set E. Recall that a set F is a flat of M/e
if and only if F ∪ e is a flat of M. Hence, in M/e the only cyclic flat which
strictly contains the rank 0 flat P\e is E\e. It is evident that the contraction
of M by any element in P has loops.

Suppose that some element f �∈ P has a parallel element in M, that is
clM(f) is a cyclic flat, and thus the closure of the two cyclic flats clM(e) and
clM(f) is clM({e, f}) which is a cyclic flat too. This is a contradiction to the
assumption that M is a split matroid, because ∅ � P = clM(e) � clM({e, f}) �

E is a chain of cyclic flats; to see why the last inclusion is strict recall that
we are assuming that the matroid M has at least rank 3 while clM({e, f}) is of
rank 2. We conclude that f /∈ P cannot have parallel elements in M; therefore
the contraction M/f is loopless for all elements f �∈ P .

In other words, so far we have shown that the only elements f ∈ E such
that M/f has loops are exactly the elements f ∈ P = clM(e). Since M has
rank at least 3 and rkM(P ) = 1, we have that E\P �= ∅. Furthermore, our
assumptions on M imply that for all elements f ∈ E\P we have that M\f
must contain a coloop. Rephrased in terms of the dual matroid M∗ the last
conclusion is equivalent to the fact that for all f ∈ E\P , the contractions
M∗/f have loops. By applying the same reasoning as above to the matroid
M∗, we may derive that E\P is a parallel class of M∗.

Using our findings, we obtain

1 = rkM∗(E\P ) = |E\P | + rkM(P ) − k = |E\P | + 1 − k.

And thus |E\P | = k; hence, it has to be a basis of M. Further, (E\P ) ∪ {e}
has to be a circuit of the matroid M as this matroid contains no coloops. It
follows that M is a minimal matroid. �

Now we are prepared to prove Theorem 1.3, the main result of this paper.

Proof of Theorem 1.3. We proceed by strong induction on the cardinality of
the ground set of our matroid. Our hypothesis is that whenever the cardinality
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of the ground set of a loopless and coloopless split matroid is smaller than n,
then the multiplicative Merino–Welsh conjecture holds. Fix a loopless and
coloopless split matroid M whose ground set is of size n. We may assume that
M is connected, as otherwise we apply Lemma 2.4 and the induction hypothesis
to conclude that the matroid fulfills the desired inequality. This is because split
matroids are minor closed, thus each direct summand is a split matroid on a
smaller ground set.

If there is an element of the ground set such that both M/e and M\e are
loopless and coloopless, then we use Lemma 2.5 and the induction hypothesis.
Here we are using the fact that both M/e and M\e are loopless and coloopless
split matroids. Now assume that there is no such element. Since M is connected,
we are able to use Proposition 3.1 to conclude that M has rank or corank
smaller than 2, or that it is a minimal matroid. In the first cases, Lemmas 2.7
and 2.8 show that the inequality is satisfied. In the case that the matroid is
a minimal matroid, we obtain the desired inequality as a corollary of either
[15, Theorem 4.5] or alternatively [12, Corollary 3.4] since every minimal ma-
troid is both a series-parallel matroid and a lattice path matroid (cf. Example
2.3). �

The next two results are consequences of Theorem 1.3 and the above
lemmas.

Corollary 3.2. Let M be a loopless and coloopless matroid that is isomorphic
to a direct sum of split matroids. Then the multiplicative Merino–Welsh con-
jecture holds true for M.

Corollary 3.3. Let M be a direct sum of split matroids without loops and coloops,
then

TM(2, 0) · TM(0, 2) = TM(1, 1)2 (4)

if and only if every connected direct sum component is isomorphic to the uni-
form matroid U1,2.

Proof. We follow the guidance of the main proof. As mentioned in Remark 2.6,
a matroid M which is a direct sum of split matroids satisfies Eq. (4) if and only
if all of its direct sum components do. Thus, we may focus on connected split
matroids. To conclude the proof, it suffices to show that in the only connected
split matroid attaining equality is U1,2.

First notice that by Lemma 2.8 there exists no connected matroid of
rank or corank 2 satisfying Eq. (4). Similarly, Lemma 2.7 tells us that the
only connected matroid of rank or corank 1 that fulfills the equation is U1,2.
In particular, the only two loopless and coloopless matroids U1,3 and U2,3 on
a ground set of cardinality 3 do not satisfy the equation. Moreover, it follows
from [12, Corollary 3.4] that there is no minimal matroid on more than two
elements for which Eq. (4) holds, because minimal matroids are connected
lattice path matroids.

Now we rule out the existence of connected split matroids on a ground
set of size n ≥ 4 and satisfying (4). Let us assume that M is such a matroid
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whose ground set is of minimal size. Since M does not have rank/corank at
most 2 nor it is minimal, we conclude by Proposition 3.1 that there is some
element e ∈ E with the property that M\e and M/e are loopless and coloopless.
Furthermore, since M is connected, by [16, Proposition 4.3.1] at least one of
the two matroids M\e and M/e is connected.

All three matroids M, M\e and M/e are split and hence satisfy the mul-
tiplicative Merino–Welsh conjecture. Remark 2.6 tells us that the fact that M
attains equality implies the same for both M/e and M\e. It follows that at least
one of them is a connected split matroid on n − 1 elements fulfilling Eq. (4)
which contradicts our assumption, or otherwise n = 3 which is not possible
either. �

We conclude by relating our results to some previous work in the litera-
ture.

Remark 3.4. It follows from the work of Chávez-Lomeĺı et al. [5] that the
additive version of the Merino–Welsh conjecture holds for paving matroids.
Notice that our Theorem 1.3 extends this result. However, it is not known
whether the assignment x 	→ TM(2 − x, x) is a convex function on [0, 2] for
every split matroid M.

Remark 3.5. Even if the general scheme of the proof of Theorem 1.3 is similar
in spirit to that of [12,15], the classes of matroids are quite different. The
families of split matroids and series-parallel matroids are essentially disjoint,
their only common members on ground set of size at least 2 are precisely the
minimal matroids, the graphic matroids whose simplification is U2,3 and their
duals; this follows from [1, Theorem 13] as series-parallel matroids are graphic
and hence binary. On the other hand, we also point out that neither of the
classes of lattice path matroids and split matroids contain one another. For
example, the Catalan matroid C3 having rank 3 and a ground set of size 6 is
a lattice path matroid that is not split because it has a chain of two proper
cyclic flats. Conversely, the Vámos matroid is split (it is in fact sparse paving)
but it is not a lattice path matroid as it is not representable over any field.
By using the notion of stressed subset relaxations of [9] it should be possible
to identify those matroids that are both lattice path and split matroids; this
class strictly contains all cuspidal matroids (see [9, Proposition 3.24]).
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Appendix A: Sage Code

The purpose of this appendix is to provide the code of two simple functions
that allow to verify Lemma 2.8 for matroids with a small ground set using
Sage [17].

# The following routine produces the list of all loopless

# matroids of rank 2 with ground set [n] (up to isomorphism).

# Note that the set of hyperplanes of a loopless rank 2 matroid

# forms a partition of the ground set

def all_rank_2_matroids(n):

ans = []

for P in Partitions(n):

if(len(P) >= 2):

circs = []

i = 1

for p in P:

circ = list(range(1, n + 1))

for j in range(i, i + p):

circ.remove(j)

i = i + p

circs.append(circ)

ans.append(Matroid(circuits=circs).dual())

return ans

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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# The following verifies that all loopless

# and coloopless matroids of rank 2 with ground set [n]

# (up to isomorphism) satisfy the multiplicative Merino-Welsh

conjecture

def check_mw_rank2(n):

mat = all_rank_2_matroids(n)

for M in mat:

if(len(M.coloops()) > 0):

continue

else:

T = M.tutte_polynomial()

d = T(2,0) * T(0,2) - T(1,1)^2

if(d < 0):

return false

if(d == 0):

print("Matroids with equality: ", M)

return true

# Testing the conjecture for rank 2 matroids of size at most 12

for n in range(2, 13):

print("size ", n, " Merino-Welsh conjecture ", check_mw_rank2(n))

size 2 Merino-Welsh conjecture True

size 3 Merino-Welsh conjecture True

Matroids with equality: Matroid of rank 2 on 4 elements with 4 bases

size 4 Merino-Welsh conjecture True

size 5 Merino-Welsh conjecture True

size 6 Merino-Welsh conjecture True

size 7 Merino-Welsh conjecture True

size 8 Merino-Welsh conjecture True

size 9 Merino-Welsh conjecture True

size 10 Merino-Welsh conjecture True

size 11 Merino-Welsh conjecture True

size 12 Merino-Welsh conjecture True
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Institut für Mathematik
Goethe-Universität
Frankfurt
Germany
e-mail: schroeter@math.uni-frankfurt.de

Communicated by Kolja Knauer.

Received: 6 May 2022.

Accepted: 4 December 2022.


	The Merino–Welsh Conjecture for Split Matroids
	Abstract
	1. Introduction
	2. The Toolbox
	2.1. Split Matroids
	2.2. Tutte Polynomials and Inequalities

	3. The Proof of Theorem 1.3
	Acknowledgements
	Appendix A: Sage Code
	References




