Wächter and Vestweber et al.:

Unravelling host-pathogen interactions by biofilm infected human wound models

Supplementary Data

Table of contents

1	Supplementary figures	2
2	Supplementary tables	3
3	References	4

1 Supplementary figures

Figure S1. 3D-printed device to ensure reproducible wounding

The model was designed with Autodesk Inventor (Autodesk GmbH, Germany) and further processed for printing using a slicing software (Prusa Slicer, Prusa a.s., Czech Republic). Subsequently, the wounding device was printed from polylactic acid with a 3D printer (i3 MK3S+, Prusa Research a.s., Czech Republic).

Figure S2. Pareto plots of the percent variability explained by each principal component revealed by the principal component analysis of the epidermal and the dermal spectra.

2 Supplementary tables

Table S1. Raman bands in spectra of human derived skin models assigned to their vibrational mode and the corresponding biological entities [1–5]

Raman shift [cm ⁻¹]	Vibrational mode	Assignment
856	C-C stretching of protein backbone	Collagen (proline and hydroxyproline)
883	C-C stretching of Pro/Hypro ring	
923	C-C stretching of Pro/Hypro ring	
944	C-C stretching of protein backbone	
1008	C-C stretch aromatic ring	Phenylalanine
1035	C-C stretch (skeletal)	
1066	C-C stretch (skeletal)	Trans acyl chain, lipids
1095	PO ₂ ⁻ stretch	Nucleic acids
1134	CC stretch (skeletal)	Trans acyl chain
1171	C-C stretch	
1246	CH ₂ deformation, C-N stretch	Amide III
1300	CH ₂ deformation (twist)	Trans acyl chain
1340	CH ₂ deformation (scissoring)	
1444	CH ₂ deformation (scissoring)	Cholesterol, fatty acids
1650	C=O stretch	Amide I
2850	CH ₂ symmetric stretch	Predominantly linids
2882	CH ₂ asymmetric stretch	
2933	CH ₃ symmetric stretch	
2958	CH₃ asymmetric stretch	Predominantly proteins

3 References

- [1] C.R. Flach, D.J. Moore, Infrared and Raman imaging spectroscopy of ex vivo skin, Int. J. Cosmet. Sci. 35 (2013) 125–135. https://doi.org/10.1111/ics.12020.
- [2] L. Franzen, M. Windbergs, Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery, Adv. Drug Deliv. Rev. 89 (2015) 91–104. https://doi.org/10.1016/j.addr.2015.04.002.
- [3] M.G. Martinez, A.J. Bullock, S. MacNeil, I.U. Rehman, Characterisation of structural changes in collagen with Raman spectroscopy, Applied Spectroscopy Reviews 54 (2019) 509–542. https://doi.org/10.1080/05704928.2018.1506799.
- [4] S. Tfaili, C. Gobinet, G. Josse, J.-F. Angiboust, M. Manfait, O. Piot, Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin, Analyst 137 (2012) 3673–3682. https://doi.org/10.1039/c2an16292j.
- [5] B.W. Barry, H.G.M. Edwards, A.C. Williams, Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands, J. Raman Spectrosc. 23 (1992) 641–645. https://doi.org/10.1002/jrs.1250231113.