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Introduction and Summary

Intertemporal choice is one of the prime objects of economic study. It is im-
possible to understand topics such as investment, interest rates, technological
advancement, and growth without understanding how firms and societies at large
allocate resources between present and future. On a more individual level, time
preferences govern decisions relating to saving, education, health, and even labor
supply (Golsteyn et al., 2014). The ability to delay gratification in favor of larger
goals in the future is often argued to be a main determinant of both success and
satisfaction. A second core motif of modern economic analysis is strategic inter-
action: Few scientific advancements can match the influence of game theory on
economics and more generally the social sciences over the last 70 years.

However, there appears to be a divide between these two fields of study and
their models: Intertemporal decision making is generally analyzed in the frame-
works of partial and general equilibrium. On the other hand, intertemporal trade-
offs often take a rather simplistic form in applied game theoretic models. Extensive
form games incorporate some dynamics, but essentially remain one-shot and lack
the recursive structure that is typical for intertemporal optimization. And while
this structure is present in repeated games, these still presume a static environ-
ment in which actions have lasting consequences only through the reactions of
others: A quite limiting perspective.

Stochastic games offer a framework that combines both aspects: One can un-
derstand them either as multi-player Markov decision processes, or as repeated
games with added state transitions (Shapley, 1953; Solan and Vieille, 2015; Mertens
et al., 2015). The result is a very general framework that allows to model a wide
range of economic situations. Such opportunities notwithstanding, adoption has
been slow. A likely reason is the complexity of actually solving stochastic games.
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2 INTRODUCTION AND SUMMARY

This problem is at the core of three chapters of this cumulative dissertation:
Chapters 2 and 3 introduce and discuss algorithms for the computation of sta-
tionary equilibria. In the hope that these methods do not remain theoretical pos-
sibilities, but become practically used tools, Chapter 4 introduces sgamesolver, a
python-based toolbox for stochastic games. In particular, it contains an imple-
mentation of the aforementioned methods. The aim of programming this package
was to provide ready-made solution tools for stochastic games, so that applied
researchers can design and solve stochastic games without heavy investment into
learning computational methods. As the odd one out, Chapter 1 presents an
experiment – but with direct connection to the topic of intertemporal choice.

The following short summaries give the reader some idea what to expect from
the individual chapters. In the spirit of a cumulative dissertation, each chapter is
entirely self-contained and can be read independently. Since chapters 2–4 overlap
thematically, I could regretfully not avoid some repetition in the introduction of
background and key concepts. At the same time, notation is consistent between
these chapters, so that the reader may go over the respective sections quickly. It
should be noted that Chapters 2 and 3 are rather formal and abstract; readers
unfamiliar with stochastic games may consider peeking ahead to Chapter 4, where
we tried to include some illustrative examples.

Chapter 1

In the first chapter, I present an experiment that studies learning in a setting where
actions have both immediate and delayed consequences. More concretely, subjects
make many binary decisions between a total of six abstract options whose value
they have to learn by sampling. The core novelty is that the value is disclosed in
two parts: One immediately after each choice, and one with a round delay, after
the next choice has been made. Although both value components are equally
important, subjects systematically react much more strongly to the immediate
one. This implies that options with a large immediate component are overvalued,
those with a large delayed component undervalued; this resembles the discounting
which is typical in intertemporal choice. However, it is a crucial feature of the
experiment that it varies the incidence of information, but not of reward: All
points earned are paid at the end of the experiment. Thus, the discounting cannot
be explained by actual time preferences; rather, it must result from frictions in
learning. As the experiment demonstrates, this immediacy bias affects not only
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behavior, but also beliefs; it is also reflected in characteristic patterns in decision
times. A treatment variation lets subjects first learn by observation, without
making own decisions; afterwards, subjects make a series of own decisions. The
bias is attenuated, indicating that the active decision situation is conducive to the
bias.

As I argue, the presence of this immediacy bias has important implications
for our understanding of intertemporal choice. First, it suggests that observed
discount rates need not always reflect actual time preferences. Outside the exper-
iment, timing of information and reward often coincides; then, observed behavior
should combine preference-based discounting and the immediacy bias. But the
phenomenon might also be helpful in understanding the formation of time pref-
erences themselves. If preferences are formed by experience, and the impact of
experience decreases with delay, immediate experience will have over-proportional
influence on preferences. The bias could thereby contribute to a general explana-
tion why impatience and present-bias are such widespread phenomena (Ericson
and Laibson, 2019). Moreover, it could help explain individual differences in time
discounting. If people are affected to heterogeneous degree, a more severe bias
should ceteris paribus be associated with less patient preferences. My experiment
indeed offers some evidence in that direction. I also elicit answers for a series of
hypothetical, intertemporal decision situations. Relating measures of time pref-
erences to individual measures of immediacy bias reveals a significant effect: The
more biased subjects are, the less patient their choices.

It is natural to ask why such a bias should exist in the first place. At the end of
the chapter, I discuss a potential explanation based on noisy memory and Bayesian
decision theory: If immediate feedback is remembered with higher precision, it is
actually rational to overweigh it, just as seen in the experiment.

To close this summary with a more personal anecdote: While the chapter has
no overt connection to stochastic games – the experiment features no interaction,
and the chapter never even mentions the word game – it was actually inspired by
my work on them. I was wondering how subjects would learn to play (simple)
stochastic games, and quickly came to the hypothesis that instantaneous utilities
would be much easier to learn than continuation values, and that subjects would
therefore discount much steeper than warranted. I then realized that this effect
does not directly rely on strategic interaction, a thought that ultimately resulted
in this chapter. Still, I am hopeful to eventually come up with a design that
combines my interests in experiments and stochastic games more directly.



4 INTRODUCTION AND SUMMARY

Chapter 2

The second chapter is based on work with Steffen Eibelshäuser on Markov quantal
response equilibrium (QRE), an adaptation of QRE to stochastic games. This idea
has found some mention (Herings and Peeters, 2004) and use (Breitmoser et al.,
2010; Battaglini and Palfrey, 2012), but no formal treatment. We focus on a
particular variant, logit Markov QRE, which is based on a logit choice rule with
precision parameter λ. Following definition and proof of existence, we study three
important properties in detail.

First, we show that logit Markov QRE can be given a homotopy interpretation
and that the graph of its correspondence is well-behaved in the following sense.
It consists of paths and loops that share at most a finite number of intersection
points. It always contains a principal branch that starts at the unique QRE at
λ = 0 and converges to a stationary equilibrium of the game as λ→∞. Following
this path numerically allows to find a stationary equilibrium for arbitrary finite
stochastic games, making it a valuable computational tool. The python package
sgamesolver (introduced in Chapter 4) contains a ready-to-use implementation.

The second property we discuss concerns logit Markov QRE as an approxi-
mate solution concept. As we show, logit Markov QRE are always ε-equilibria,
with a bound for ε that depends on the precision parameter λ and the discount
factor, but not on the payoff function of the game. Essentially, by setting λ ac-
cordingly, players can guarantee that the loss from following logit choice rather
than maximizing does not exceed an arbitrary threshold, no matter what game is
played.

Finally, we show a connection of logit Markov QRE to reinforcement learning,
specifically to the algorithm expected SARSA (van Seijen et al., 2009). We derive
a continuous game dynamic from the assumption that all players in a stochastic
game learn and play according to expected SARSA, and then show that its sta-
tionary points coincide exactly with the set of logit Markov QRE of the game. One
reason why this is particularly interesting pertains to the understanding of QRE.
A common interpretation is that players still act strategically, i.e. form (accurate)
beliefs about others’ actions and react to expected payoffs, albeit with mistakes.
However, our result shows that logit Markov QRE remains a reasonable solution
concept even under much weaker assumptions. It can arise from a dynamic based
on a very mechanical form of learning, where players are only required to track
own actions and realized instantaneous utilities, without keeping a mental model
of the game or other players at all. The dynamic interpretation might also help to
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give meaning to the traversal of the principal branch mentioned before: In some
sense, this resembles all players starting to learn with precision parameter λ = 0,
while then gradually increasing it.

Chapter 3

The third chapter is joint work with Steffen Eibelshäuser, Victor Klockmann, and
Alicia von Schenk. We introduce the logarithmic stochastic tracing procedure, a
homotopy method to compute stationary equilibria in arbitrary finite discounted
stochastic games that improves over existing methods in two ways. First, it is
guaranteed to be well-defined for all games of the given class, rather than just
generic ones; as almost all games actually studied in applied economics are non-
generic, this is an important advantage. The second improvement is speed. The
ready-to-use implementation we provide (Chapter 4) is over 500 times faster than
the fastest algorithm with comparable scope for which timings have been reported
(Dang et al., 2022); at the same time, it allows to solve much larger games in
reasonable computation times.

The method is based on the linear tracing procedure for stochastic games by
Herings and Peeters (2004), which in turn is based on the method by Harsanyi and
Selten (1988) for normal form games. Essentially, the tracing methods work by
introducing a prior which is then gradually transformed into equilibrium beliefs.
Harsanyi and Selten (1988) understand this as a process of Bayesian strategic
reasoning and base their theory of equilibrium selection on this interpretation.
Herings and Peeters (2004) show that their linear method allows to compute sta-
tionary equilibria in generic stochastic games. However, in non-generic games,
the solution set of the homotopy function may contain higher-dimensional subsets
that make path tracking impossible. In this chapter, we show that the introduc-
tion of logarithmic penalties which are then faded out solves this problem, making
our variant well-defined for all games. Moreover, the penalties have a regularizing
function and make the homotopy path smooth and interior, thereby improving
computational performance significantly.

Because the homotopy path depends on the choice of prior, which is free, the
method also allows to search the prior space and uncover potentially multiple
equilibria of a given game. This is demonstrated with a practical example in
Chapter 4, where we also devote some discussion to the selective properties of the
procedure.
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Chapter 4

The final chapter, again based on collaborative work with Steffen Eibelshäuser,
presents the python package sgamesolver in which we implement the homotopy-
based solution methods developed in chapters 2 and 3. The main goal behind
the package is to provide interested researchers with a ready-made tool to solve
stochastic games, without the need to invest heavily into the study of compu-
tational methods. In addition to computational performance, ease of use was
therefore an important consideration. Finally, we wanted the solution methods
to be as general as possible. Which economist has not devised a model, only to
realize there is no hope of actually solving it? In an ideal world, modeling deci-
sions could be taken without considering the constraints of a solution technique.
That is certainly not attainable, but one can strive for it nonetheless. In that
sense we are content that the methods implemented in sgamesolver apply to finite
discounted games regardless of their specific structure – and are generally limited
only by size.

The chapter itself aims to give a first introduction into using sgamesolver; a
more complete online documentation supplements it in this regard. The chapter
discusses the general concept of stochastic games and how to define them for use
with the program, aided by some examples. We also illustrate how homotopy
methods operate in general, the role of the homotopy function, and some specific
properties of those implemented. Furthermore, we discuss the principle of the
predictor-corrector method which is responsible for actually following the homo-
topy paths and give a reference of its implementation in sgamesolver. Finally,
the slightly more informal nature of this chapter allowed us to also discuss some
aspects that found no space in Chapters 2 and 3, for example the selective prop-
erties of the logarithmic tracing procedure, and symmetries in stochastic games.

As stated before, we hope that the package will find active usage – previous
interaction with users of earlier versions from various disciplines and institutions
have always suggested to us that there is demand. Users are encouraged to get
in touch, to give us an idea what the package is used for and how it could be
improved.
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Chapter 1
Learned Impatience. Delay of

Reinforcement and Time
Discounting

Abstract: I study learning in an experimental setting where actions have both
immediate and delayed consequences. Subjects make a series of choices between
abstract options, with values that have to be learned by sampling. Each option
is associated with two payoff components: One is revealed immediately after the
choice, the other with one round delay. Objectively, both payoff components are
equally important, but most subjects systematically underreact to the delayed
consequences. The resulting behavior appears impatient or myopic. However,
there is no inherent reason to discount: All rewards are paid simultaneously, after
the experiment. Elicited beliefs on the value of options are in accordance with
choice behavior. These results demonstrate that revealed impatience may arise
from frictions in learning, and that discounting does not necessarily reflect deep
time preferences. In a treatment variation, subjects first learn passively from the
evidence generated by others, before then making a series of own choices. Here,
the underweighting of delayed consequences is attenuated, in particular for the
earliest own decisions. Active decision making thus seems to play an important
role in the emergence of the bias.

9



10 CHAPTER 1. LEARNED IMPATIENCE

1.1 Introduction

Experience shapes behavior. Actions with satisfying consequences tend to be
repeated, those with unpleasant ones avoided – a principle named “law of effect”
by Thorndike (1911, p. 244) and studied in countless variations since. On the
other hand, economics and increasingly also other social sciences examine behavior
primarily through the lens of rational choice theory, where preference rather than
experience is the main explanans of behavior. It is natural and important to ask
how such analysis can and should incorporate insights from behavioral learning
theory. Two pathways from experience to preference immediately spring to mind.
The first is learning as a mediator between preference and behavior. It is often
argued that the process of learning is an important justification for the assumption
of utility-maximizing behavior in the first place (Erev and Roth, 2014). However,
where learning involves systematic frictions and adaptation remains incomplete,
behavior will match preference only imperfectly. We should then be cautious
in relying solely on the principle of revealed preference to explain behavior and
conduct welfare analysis. The second pathway is the formation of preference
itself: Often, taste is acquired, i.e. learned. Differences in preferences can then
be explained by contingencies of experience, a research program that has received
increasing empirical validation in recent years. A seminal example is the study by
Malmendier and Nagel (2011) on risk attitudes. But it is not only the environment,
but also the process of learning itself that should be scrutinized here. If preferences
are partly learned, then biases, frictions, and limitations in learning will partly
determine what we like.

In this paper, I present a controlled experiment to study a specific learning fric-
tion, namely the influence of the delay in the experience of consequences. The core
idea is simple. Subjects learn the values of abstract options by sampling; feedback
after each choice is given in two parts, one immediate, one delayed. Although both
are equally important, I find that subjects heavily discount the delayed feedback,
both in choice behavior and stated beliefs. Subjects thus exhibit a costly immedi-
acy bias: They overvalue options with a larger immediate value component, and
undervalue those where the delayed component is larger. An important feature of
the experiment is that it varies the timing of information, but not of reward: All
earned points are paid at the same time, at the end of the experiment. Therefore,
while the behavior appears to conform to standard time discounting, it can not
be explained by time preference, but must be attributed to a bias in learning.
A majority of subjects is affected, to heterogeneous degree. The experiment also
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shows that the immediacy bias is not simply a transient phenomenon, but can
have lasting influence on behavior and beliefs. The bias develops quickly and then
remains remarkably stable, although subjects have ample time and evidence to
correct it throughout the experiment. In a treatment variation, I show that the
bias is reduced in a setting where subjects first get to observe the values of the
options passively, before then making own decisions.

While it is well established for humans and a wide range of species that learning
becomes slower the more time passes between action and reinforcement (Lattal,
2010), the present experiment demonstrates that the effect of varying delay goes
beyond the mere speed of learning. It also affects what is ultimately learned, here:
Which options the subjects end up preferring.

These findings are of twofold importance, in line with the two pathways men-
tioned earlier. First, the experiment demonstrates the possibility of “as if”-
discounting: Behavior that appears impatient, yet is attributable not to deep
preference, but to learning frictions. The experiment strictly separates incidence
of information and reward; in everyday decisions, they often coincide. In that
case, observed impatience will combine actual preference-based discounting and
any influence the bias has in the given situation. Welfare analysis should take this
into consideration. Moreover, it may also help our understanding of certain empir-
ical regularities, for example the apparent domain specificity of time discounting
(Gabaix and Laibson, 2017).

Second, it is possible that the bias plays a role in shaping time preferences
themselves. Just like other decisions, inter-temporal trade-offs generate reinforce-
ment, e.g. the instant gratification when indulging, or conversely the satisfaction
about a reward for having waited patiently. The bias would then increase the
reinforcement value of the former, decrease that of the latter, and thereby system-
atically skew preferences to become more impatient than they otherwise would be.
This paper offers some tentative evidence in this regard: Between subjects, the
severity of the bias correlates with typical measures of actual time discounting.

Connecting time preferences and learning frictions might help explain the
widespread occurrence of myopia, impatience, and temporal inconsistency, one
of the most important areas of research in behavioral economics (see O’Donoghue
and Rabin, 2015, and Ericson and Laibson, 2019 for recent overviews). It also
suggests why their correction is often so hard: The offending behavior continu-
ously receives reinforcement, which is amplified by the bias. A classical example
are physiological addictions, which typically involve substances with almost im-
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mediate effect. A related phenomenon is the experience of inner conflict often
associated with intertemporal choice. If one adopts the idea of competing sys-
tems in decision making, it is natural to think that the more habitual subsystems
are most strongly influenced by visceral, most direct consequences. Pursuing dis-
tant, abstract goals then often requires to overrule these habitual systems. Many
regularly fail in doing so; perhaps a more promising approach is to ensure that
behavior aligned with long-term goals also receives regular and early positive rein-
forcement. The experiment in this paper demonstrates just how important small
changes in the timing of such feedback can be.

The paper proceeds as follows. Following a brief discussion of related liter-
ature, Sections 1.2 and 1.3 present design and results of the main experiment.
Section 1.4 discusses the aforementioned observational treatment and its results.
In Section 1.5, I show how a framework of Bayesian updating from noisy memory
can offer an explanation for the experimental results. Section 1.6 concludes.

1.1.1 Related Literature

It was already noted by Thorndike (1911, p. 248) that learning slows down with
increasing delay between action and consequence, and does eventually cease en-
tirely. This effect has since been documented for a range of species, for example
pigeons in Herrnstein (1997, chap. 5).

Commons, Woodford, and coauthors show that stimuli are discounted as tem-
poral distance to action increases, again using data from animal experiments
(Commons et al., 1982, 1991). They propose an explanation based on noisy
memory, signal detection, and statistical decision theory: If memory is subject
to distortions that are additive over time, it is actually optimal to decrease deci-
sion weight as delay increases. Gabaix and Laibson (2017) expand this theoretical
framework, offering a rational explanation for discounting from information fric-
tions. Their model has agents perform mental simulations to assess the future
values of alternatives. If simulation noise increases with time horizon, and sim-
ulations are combined with priors to form value estimates, agents will rationally
exhibit discounting even when their actual preferences are completely patient.

This paper offers the first clean experimental evidence with human subjects
for “as if”-discounting as predicted by these models. In Section 1.5, I will discuss
in more detail how these models apply to the experimental setting.

The experimental design follows the so-called clicking paradigm, which has
found increasing use in the study of decision under risk. In classical list-based
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experiments, subjects are presented with a list of options and a description of
their payoff consequences, say a reward distribution for each. In the clicking
paradigm, subjects receive no such information explicitly: Instead, they must
learn the distribution by sampling. Interesting differences in choice behavior in the
two settings have been documented. Most prominent is the so-called description–
experience gap: Rare events are underweighed in the clicking paradigm, while
the list method classically evokes overweighting (Hertwig and Erev, 2009). A
comprehensive overview is given by Erev and Haruvy (2015).

One interesting result is due to Barron et al. (2008), who investigate order
effects between list and clicking methods. Subjects are either given verbal descrip-
tions of lotteries first, and then a chance to sample, or vice versa. Even though
subjects’ total information is identical afterwards, the final choices in either con-
dition resemble the typical patterns of whichever condition was encountered first.
This demonstrates that value judgments formed in a more habitual mode of deci-
sion making are not necessarily superseded once complete analytical information
becomes available. This suggests that similarly, experience may continue to inform
intertemporal choice even where substantial descriptive information is at hand.

Dai et al. (2019) also recently present an application of the clicking paradigm
to intertemporal choice. In contrast to this paper, delay is not actually experi-
enced; rather, subjects make choices between lotteries with fixed payment, but
with random future payment dates. In a list-like condition, the according dis-
tributions are disclosed explicitly; in a clicking condition, subjects get to sample
the distribution of different options before then making a binding choice. The
authors find a description–experience gap similar to that documented for choice
under risk.

The core idea of this paper owes in particular to the work of Herrnstein (1997),
who proposed melioration theory as a foundation for the empirical matching law,
and as an alternative to the principle of maximization to describe behavior. Me-
lioration theory predicts that behavioral shifts are guided by the local rate of
reinforcement, and not global optima; in the temporal context, this of course
means immediate gains rather than long-term averages. A series of experiments
exist, typically in the clicking paradigm, to demonstrate this effect in dynamic
settings. Most well known is the Harvard game, which is closely related to the
present experiment, so that brief discussion is justified (a recent overview is Pr-
elec, 2014). Its protocol is as follows: In each of many rounds, subjects can choose
either a black or white button. After each choice, a reward is presented whose
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magnitude depends on past choices, albeit the subject is not told any further
specifics. The goal is to maximize total reward in a fixed number of rounds.1 A
choice of black increases the next 10 rewards by 0.2; white increases only the next
reward by 1. Subjects are shown only the total reward for each round. Clearly,
exclusive choice of black is optimal. However, switching from black to white is
always associated with an immediate increase of reward, switching from white
to black with an immediate decrease. Consistent with melioration, a substantial
share of subjects chooses white often or exclusively.

While elegant in its simplicity, the opaque nature of the experiment limits
interpretation. Subjects lack any information on the causal structure of the en-
vironment. They do not know how many rounds are (potentially) affected by
current choice; whether the solution consists in a single color or a complex se-
quence, and so on. Using simulations, Sims et al. (2013) demonstrate that a fully
rational Bayesian algorithm with perfect memory may need thousands of rounds
before arriving at the solution, even when starting from quite reasonable priors.
The reason for this is the uncertainty about how far back current consequences
have to be attributed. A potential implication is that melioration is not a bias,
but a rational response to a fundamentally uncertain environment. Experimental
variations of the Harvard game indeed show that lowering complexity reduces the
share of meliorizing subjects, for example when fewer rounds are affected by the
maximizing option (Prelec, 2014). This raises the question whether melioration
would not altogether disappear if subjects reached a clear causal understanding
of the reward mechanism. Another reason for cautious interpretation is that the
optimal behavior in the Harvard game is a corner solution, making it hard to
distinguish erratic from systematically biased behavior.

The experiment I present in this paper is close in spirit, but aims to address
these shortcomings. In particular, subjects are explicitly informed about the com-
plete causal structure of the environment. The only aspect not disclosed is a
set of payoff vectors which subjects must try to learn. The task is solved easily
and quickly by algorithms much simpler than the one mentioned in the preceding
paragraph. And while human subjects generally do extract significant value, they
also exhibit mistakes in a systematic direction, namely by underweighting delayed
feedback. I will discuss these features in more detail in Section 1.2.3.

1To be precise, the original implementation has a fixed per-round payment, has choices affect
inter-trial delay, and a fixed total duration rather than number of rounds. Both have been used,
and the interpretation is of course unchanged.
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1.2 Experimental Design

This section discusses the design of the main experiment. For an experiment like
this, it is often illuminating to experience it first hand; an online demo is available
at davidpoensgen.github.io/learned-impatience.

Subjects’ task in the experiment was to learn the values of six abstract options,
each represented by a distinct color. These values were initially unknown, and
could be learned by sampling. The experiment lasted 105 rounds; in each round,
subjects were presented two colors and could choose one. Each color would gener-
ate a specific amount of points, with a small random perturbation. These points
were displayed after each round, allowing subjects to learn throughout the exper-
iment. Payment depended on total points earned, giving subjects an incentive to
learn the relative values as quickly and precisely as possible.

As central feature of the experiment, feedback for each choice was not given
at once, but split into two components: One shown directly after the choice,
one shown with one round delay. Thus, each color x was characterized by two
numbers: An immediate component x1 and a delayed component x2, so that its
total value was x1 + x2. Points and feedback were generated as follows. Directly
after choosing x, x1 + ϵ points were displayed with clear association to the color x

and added to the total. One round later, the subject would earn x2 + ϵ′ points for
this same choice, again clearly displayed in association with color x (and alongside
the immediate feedback for this round’s choice). ϵ and ϵ′ were orthogonal noise
terms, the purpose of which was to make learning slightly more difficult. Detailed
discussion of noise terms and visual presentation will follow below.

Splitting feedback in an immediate and delayed component allows to address
the central claim of this paper: Feedback which follows sooner after a decision
exerts stronger influence on behavior. This effect is due to information frictions,
and can occur independently of any actual preferences that would warrant dis-
counting. I will call this immediacy bias; its occurrence is the main hypothesis of
the paper.

Hypothesis 1: Subjects place higher decision weight on x1 than on x2.
Assuming a latent utility function u = δ1x1 + δ2x2, this implies δ1 > δ2.

Importantly, the split into x1 and x2 varied the temporal incidence of infor-
mation, but not of reward: All points were paid out simultaneously, at the end of
the experiment. Regardless of individual time preferences, subjects were therefore
incentivized to treat x1 and x2 symmetrically, and to choose options with higher
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Option Payoff Vectors
color (e.g.) (total value) (immediate: x1, delayed: x2)

Group A Group B
(18) (11,7)A (7,11)B
(16) (6,10)A (10,6)B
(14) (9, 5)A (5, 9)B
(12) (4, 8)A (8, 4)B
(10) (7, 3)A (3, 7)B
(8) (2, 6)A (6, 2)B

Table 1.1: The six options, valued 8–18, and their payoff vectors for the two
groups. Assignment of colors was randomized per subject.

total value x1 + x2. Observing greater weight on x1 will be a clear indication that
learning frictions can cause behavior that appears impatient (places high weight
on immediate outcomes), but can not be explained by actual reward discounting.

1.2.1 Option Values

The central identifying variation was the split of the total value of each option x

into the components (x1, x2). A direct implication of hypothesis 1 is that options
with x1 > x2 should be overvalued by subjects, and those with x1 < x2 under-
valued. The options in the experiment were designed to allow clean identification
of this effect; they are listed in Table 1.1. Subjects were randomly assigned to
groups A and B. While the bias is identified within subject, this design helps to
rule out potential confounds, as will be detailed shortly.

Subjects in both groups faced six options with total values 8, 10, ..., 18. These
values were split so that alternatingly, x1 was four points higher, respectively
lower, than x2. This arrangement maximized the number of rounds in which
subjects had to choose between options close in value, but with opposite temporal
profiles. Hypothesis 1 directly translates to the prediction that subjects make
many mistakes in choice sets such as (7,11)B and (10,6)B, and few in sets like
(10,6)B and (5, 9)B, even though the objective value difference is identical. It is
helpful to introduce terminology to distinguish such choice sets. Suppose a choice
between x any y, where x is objectively better than y. If x1 > x2 and y1 < y2,
the choice set will be called congruent, as bias and objective value go in the same
direction. Conversely, if x1 < x2 and y1 > y2, the choice set is called incongruent.
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Hypothesis 1a: Error rates are high in incongruent choice sets and low in con-
gruent choice sets.

Note that by design, subjects could make errors in the opposite direction just
as easily and just as often. This allows to differentiate whether observed deviations
from optimal behavior are indeed due to temporal ordering, or due to unrelated
factors. Consider once more incongruent pairs like (7,11)B and (10,6)B: If the bias
is strong enough, one will even see reversals in the sense that the objectively worse
option is in fact preferred by subjects, i.e. chosen more often or always.

Hypothesis 1b: If the bias is sufficiently strong, some subjects (or even subjects
on average) will prefer worse options with x1 > x2 over the adjacent, objectively
better option with y1 < y2.

The preceding hypotheses are within subject, or within group. The bias should
also produce a distinct pattern when comparing the two groups. Note that the
only difference between the two groups is that x1 and x2 are exactly reversed for
all options. Consequently, each option should be chosen more often by the group
for which it has x1 > x2: (11,7)A more often than (7,11)B, and (10,6)B more often
than (6,10)A, and so on.

Hypothesis 1c: When comparing options of equal value between the two groups,
the choice frequency is always higher in the group for which the option has x1 > x2.

Including two groups with an exact reversal of x1 and x2 is also an important
safeguard against potential confounds. Suppose some option, e.g. (10,6)B, was
overvalued by subjects. If the reason for this was unrelated to temporal ordering,
e.g. the specific saliency of its payoff numbers, then (6,10)A should be equally
overvalued by the other group. If the option is undervalued in one and overvalued
in the other, a clean attribution to ordering alone is possible. Similarly, suppose
group A reacted more strongly to x1 across all options. In isolation, a potential
explanation would be that x1 has higher variance than x2 for group A. But all
these properties are exactly reversed for group B, so that if both overreact to x1,
this is again cleanly attributable to temporal ordering.

The other details of the experiment were designed to allow clean identifica-
tion of the aforementioned effects and rule out potential confounds. They are
documented in the following sections.
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1.2.2 The Sequence of Choice Sets

In each round, only two rather than all six colors were presented as options. To
maximize points earned, subjects therefore had to track a complete ordering over
all options, rather than just identify a single best option.

The sequence of these choice sets obeyed the following rules. The 105 rounds
were split into 5 blocks of 21 decisions (which followed each other seamlessly).
Every block in turn contained each of the 15 possible 2-color combinations, and
6 rounds in which both options were of the same color. These degenerate choice
sets were included for several reasons. Most importantly, they forced subjects to
sample each color in regular intervals. This greatly limited the need for deliberate
exploration, and in particular made sure subjects could not stop sampling a specific
color altogether. More generally, note that irrespective of their specific beliefs,
subjects would have to sample each color at least once per block, each but the
least preferred at least twice per block, and so on. Consequently, even when
choices were heavily biased, they would still continuously generate ample evidence
to correct this bias.

Using the block structure allowed to collect a rich set of choice data. In partic-
ular, a complete measure of subjects’ revealed preferences was elicited five times,
in regular intervals. The duration also gave choice behavior ample time to stabi-
lize. Together, this allows to address whether the bias is a transient phenomenon
which appears early on during learning, but is then corrected when subjects gen-
erate more and more information. On the other hand, it is also possible that the
higher efficacy of immediate feedback in fact continuously reinforces the biased
beliefs on relative values. The bias would then remain stable throughout the ex-
periment. Either alternative has some ex ante plausibility; and which one holds
true might arguably depend on the specifics of the environment, especially its
complexity. However, if the following hypothesis does hold true, it would show
that the bias, under the right conditions, can have lasting influence on behavior.

Hypothesis 2: The bias is stable rather than transient: Once it has developed, it
remains stable from block to block.

The block structure also generates enough observations to measure the bias of
individual subjects. In particular, it allows to measure the degree of the bias in a
continuous fashion, rather than just detect presence. To do so, one can estimate
the ratio of weights placed on x1 and x2 per subject, or use the difference in error
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rates between congruent and incongruent choice sets. Naturally, the expectation
is to find considerable heterogeneity in a standard subject population.

Hypothesis 3: Subjects vary in their degree of immediacy bias. This is reflected
in their differential weighting of x1 and x2, or in the error rates in different types
of choice sets.

Regarding individual heterogeneity, note that temporal bias is only one of
many possible sources of error in the task. It is therefore possible that a subject
is biased to some degree, but still scores well in terms of points. On the other
hand, a subject may treat x1 and x2 symmetrically, but still make many mistakes,
simply due to bad memory or lack of concentration. This is a helpful feature, as
it allows to separate a specific temporal bias and general ability when relating
results from the task to secondary measures.

Subjects were explicitly informed that the order of choice sets was predeter-
mined and independent of their choices. Within the blocks, the order of choice
sets was randomized per subject, with the following restriction: If a color was
available in round t, it was not available in rounds t + 1 and t + 2. This en-
sured that subjects had seen equally many realizations of x1 and x2 whenever x

was available. The possibility of having more information on x1 would have been
a clear confound. The rule further guaranteed that whenever x was available,
neither x1 nor x2 could be on screen.

1.2.3 Noise Terms and Task Complexity

Each choice generated points, which primarily depended on the color, but also
included a small random disturbance: Choosing x would yield x1 + ϵ immediately
and x2 + ϵ′ with one round delay. The disturbances took integer values from 1
to 4 with equal probability, and were independent of choices. In the instructions,
subjects were informed about this transparently. They also interacted with a
sample task first without and then with disturbances, to get an impression on
their impact. Because variance was independent of choices, risk preferences were
irrelevant for the task.

Disturbances mainly served as an obstacle to learning. The slight fluctuations
make it hard to memorize exact values for the different colors, thus making it more
likely that subjects resorted to imprecise estimates. This would allow frictions in
learning to play a role.
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However, note that the variance is small relative to the value differences be-
tween the colors. For options two points apart, the chance of the worse option
appearing better is only .14 after a single draw for each, and quickly shrinks with
additional sampling. For colors four points apart, this probability is .02, and
reversal is impossible for larger value differences.

The experimental environment was designed to concentrate all difficulty in
the memorization of values and to avoid other sources of complexity potentially
associated with value learning. First is the trade-off between exploration and ex-
ploitation, which is of greatly limited importance here. This is partly because
variance is so small, partly because choice sets rotate in a way which essentially
removes any need for deliberate exploration. The latter ensures presumably infe-
rior options will soon be sampled anyway: Either when up against an even worse
option, or when forced in a degenerate choice set.2

The causal structure is explicitly revealed to subjects, and values depend only
on color, so that subjects do not need to infer any complex rules or memorize states
of the world. Subjects clearly see which choice had which consequences. Credit
attribution, the major complication in the Harvard game (see Section 1.1.1) is not
an issue here.

A simple greedy algorithm with perfect memory solves the task near per-
fectly; its error rate is below .3% after a few initial samples. Details are found in
Appendix 1.A. This illustrates nicely that the disturbances are no hindrance in
solving the task, and that no complex strategy or inference are necessary. All it
takes is to memorize values. Finally, note that it is not even necessary to treat x1

and x2 separately; it suffices to track a single average over both.

1.2.4 Interface and Instructions

The experiment was implemented using oTree (Chen et al., 2016). An online
demo can be played at davidpoensgen.github.io/learned-impatience. The
interface aimed to make the rules as transparent as possible and underlined the
structure of the experiment with animations. Figure 1.1 shows the screen which
subjects saw throughout the task. At the beginning of each round, two colored
buttons appear in region (a), representing the current options. Area (b) shows

2Note also that the issue of exploration-exploitation is completely orthogonal to the temporal
ordering of feedback: The trade-off would be completely unchanged if feedback was given at once.
Thus, even if subjects were mistakenly concerned with exploration, identification of the main
hypotheses would be unaffected.
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Figure 1.1: Choice screen, as seen by subjects throughout the experiment; boxes
a,b,c are added for illustration. Current options are displayed in (a); the most
recent choice with immediate feedback in (b); the choice from one round before,
with delayed feedback in (c).

the color chosen last round, red, with an immediate payoff of 13, i.e. red1 + ϵ.
Blue, shown in (c), was the choice two rounds ago, with delayed payoff of 5, i.e.
blue2 + ϵ′. All payoffs are visually attributed to the corresponding color, and there
is never a need to memorize own past choices.

After the next choice, say purple on the left, the following would happen.
The numbers in (b) and (c) fade out. The foregone option disappears. The
purple button moves to (b); red moves from (b) to (c); blue leaves the screen
downwards. Once this transition is finished, immediate feedback for purple and
delayed feedback for red appear simultaneously. This concludes one round of play,
and the next begins when two new options appear in (a) 2 seconds later.

Round number and current total points were displayed on the right. Once
new options had appeared, subjects had a time limit of 10 seconds per decision,
represented by a shrinking bar. If time ran out, a choice was made at random,
and a penalty of 5 points deducted. The time limit enforced a steady, comparable
pace for all subjects, and prevented excessive use of time to perfectly memorize
feedback. Effectively, subjects spent significantly less time per decision than al-
lotted, using about 2 seconds per decision. In over 13,000 observations, only a
single timeout occurred.
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An important feature of the experiment was complete transparency of its causal
structure. Only the payoff vectors were explicitly not disclosed to subjects. They
also received no information on their range, average or similar. All other mechanics
of the experiment were clearly explained in the instructions. Before starting the
main task, subjects played an interactive tutorial, which replicated the main task
with slight modifications: Detailed on-screen explanations of all rules could be
shown and hidden at any time. Instead of six colors, four shades of gray were
used; after a few rounds had been played, their respective values (x1, x2) were
revealed to make it completely transparent how points are generated.3 The ϵ-
disturbances could be turned on and off at will during the tutorial.

1.2.5 Payment

At the end of the experiment, subjects were paid 0.05€ for each point scored above
1800 in the task, and nothing if below that threshold. This created steep incentives
in the relevant region: Each of the 75 non-degenerate decisions effectively had a
stake between 0.10€ and 0.50€. Subjects could score between 1715–2065 points
(ignoring penalties for timeouts), and random behavior was expected to earn 1890.
As intended, all subjects reached the incentivized region by a safe margin. Subjects
were paid an additional 2€ for completion of the remaining questionnaire.

1.3 Results

The experiment was conducted at FLEX (Frankfurt Laboratory for Experimental
Economic Research) in February and June 2018; participants were recruited using
ORSEE (Greiner, 2015). Subjects mean age was 22.5 (sd 3.4), 53.4% were female,
all were students with 37% majoring in economics, finance, or business adminis-
tration, 11% in STEM, and most others in law and social sciences. Sessions lasted
around 50 minutes; subjects earned 10.78€ on average.

The results in this section are based on 102 subjects, each playing 105 rounds.
Because subjects start without knowledge of values, initial choices must be quite
random. All analysis therefore excludes the first block of 21 choices, unless stated
otherwise. This represents a natural threshold, because subjects afterwards have
seen feedback for every color at least once. In addition, it leaves a well balanced set

3Options in the tutorial were valued (3, 6), (1, 2), (4, 4), and (2, 1), illustrating that for a given
color, the second component could be higher, lower or equal the first, which was also stressed
verbally. Moreover, the numbers were chosen such that the second component had higher mean
and variance, to avoid any priming that the first might be of more importance.



1.3. RESULTS 23

of observations which includes each binary decision exactly four times per subject.
Degenerate choice sets (containing the same color twice) are also excluded from
analysis. This leaves 4 blocks with 15 decisions per subject, for a total of 6120
observations. Finally, a single decision is excluded because the time limit was
exceeded. Choices are independent between, but not within subjects; all reported
tests and standard errors account for this.

1.3.1 Aggregate Choices: Visual Analysis

Aggregated choice frequencies are plotted in Figure 1.2. The resulting graphs are
first, visually striking evidence that subjects overreacted to immediate feedback.
In particular, all patterns predicted in hypotheses 1a–c are present, as the following
explains.

The six options are ordered by total value from 8 to 18 on the x-axis; the
y-axis shows choice frequency, conditional on the option being available. To give
some orientation: Optimally, one would never pick (8), pick (10) only when paired
against (8) and so on. Thus, perfect play would yield the diagonal dotted line.
In contrast, completely random behavior would result in the horizontal line at
probability 0.5.

The gray graph shows choice behavior of both groups combined. Its slope is
roughly halfway between random and perfect play: Subjects did extract significant
value from the task, but still erred considerably often. The near linearity of the
graph reflects that subjects were able to discriminate better from worse equally
well for high- and low-value options.

Red and blue graphs show the same data separated by groups and thereby
reveal the highly systematic nature of mistakes. Notice the zigzag-shape of both
graphs, which conforms exactly to the predictions of hypotheses 1a–c. First, for
all six options, choice frequency is always higher in the group for which x1 > x2.
This was the prediction of hypothesis 1c. The difference is sizable and amounts to
roughly 20 percentage points for each option; it is most pronounced for medium
values, but only slightly attenuated at the extremes. Further, within each group,
choice frequencies are elevated for options with x1 > x2 and reduced for options
with x1 < x2 – this matches hypothesis 1a. In fact, this effect is strong enough
that reversals occur whenever possible: (6, 2)B is actually chosen more often than
(3, 7)B, (7, 3)A more often than (4, 8)A, and so on. This pattern, predicted by
hypothesis 1b, shows that the bias is not only present, but of considerable strength.
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Figure 1.2: Choice frequencies for the 6 options, conditional on availability.
Options ordered by total value along the x-axis; the splits into immediate and
delayed components are listed alongside the graphs. The horizontal dotted line
represents random play, the diagonal dotted line best possible play.

In sum, the graphs clearly illustrate that both groups systematically overreact to
immediate feedback, to considerable degree and with regularity across all options.

A natural question is whether the bias is an initial, transient phenomenon and
gradually corrected as subjects see more and more evidence. To the contrary,
Figure 1.3 shows that the bias is extremely stable. It mirrors the previous graphs,
but displays blocks 1–5 separately, thus illustrating the development of choice
behavior throughout the task. By design, choices in the first block must be quite
random. As expected, the graphs in the first column are therefore flatter; but
both Groups A and B already show a hint of the zigzag-pattern. In the second
block, the pattern is fully developed. Going forward, changes are small and not
systematic. There is no sign that the bias attenuates; if anything, the pattern
becomes slightly more pronounced towards the end.

This conforms exactly to hypothesis 2: Subjects form their biased beliefs early
on, and do not correct them throughout, even though their choices continuously
produce contrary evidence. Cluster-corrected χ2-tests (not reported) statistically
confirm the visual impression. Equality of distributions can be rejected between
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Figure 1.3: Development of choice frequencies over the course of the experiment:
Each column represents a block of 21 rounds.

the first and any other block, but not in any pairwise comparison between the
later blocks.

1.3.2 Aggregate Choices: Regression Analysis

The bias will now be analyzed in regressions. The dependent variable in all models
is the probability of color x being chosen, conditional on the other option y in the
choice set: Pr(x chosen|Ct = {x, y}). Let x̂1 and x̂2 denote the averages of x1 + ϵ

and x2 + ϵ′ as seen by the subject up to the current choice; these will serve as
explanatory variables.4

All models will be based on a latent utility function of the form

u(x) := δ1x̂1 + δ2x̂2

The linear probability model (LPM) is then

Pr(x chosen|Ct = {x, y}) = u(x)− u(y) + 0.5
4In principle, subjects could react more strongly to the earliest or perhaps the latest realiza-

tions they have seen – known as primacy and recency, the latter a typical observation in risky
choice (Erev and Haruvy, 2015). In this case, a weighted average would better explain behav-
ior. A comparison of different specifications is performed in Appendix 1.B. A simple average
outperforms other alternatives, and will be used throughout. Notably, recency seems to play no
role in the current setting.
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and the logit specification

Pr(x chosen|Ct = {x, y}) = eu(x)

eu(x) + eu(y) = 1
1 + eu(y)−u(x)

This section in addition reports mixed logit models, a refinement of the logit
model which will be discussed in more detail when turning to heterogeneity in Sec-
tion 1.3.4. In principle, all models could be augmented with secondary variables,
such as left-right-position, lagged choices or similar. Since these are orthogonal to
the variables of interest and the added precision is not needed, this is not pursued
here.

The central aim of the experiment is to show that subjects react more strongly
to variation in x1 than in x2. The regressions offer a direct test: If the bias
exists, we should see δ1/δ2 > 1, and the stronger the bias, the higher this ratio.
(Conveniently, the coefficient ratio has the same direct interpretation across all
specifications, so that accounting for different scaling of the models or marginal
effects is not necessary.)

Results are given in Table 1.2. The ratio δ1/δ2 is stable across all models, and
amounts to over 2.5. This finding is strongly statistically significant: The null
hypothesis of δ1 = δ2 is clearly rejected in all models (p ≪ 0.001), as reported
in the table. This confirms hypothesis 1 statistically and thus represents the
central result of this paper: Subjects indeed place substantially more weight on the
immediately visible consequences of their choices. The regressions also show once
more how large the immediacy bias is: In the perception of the average subject,
increasing x1 by 1 point is equivalent to increasing x2 by 2.5. Put differently,
subjects discount x2 by a factor 0.4 over the short period of roughly 10 seconds
between two rounds. For reasons laid out earlier, this discounting can not be
attributed to temporal preferences, but must result from learning frictions.

1.3.3 Aggregate Choices: Non-Parametric Analysis

This section will analyze error frequencies, which offers a non-parametric, robust
alternative to the preceding regressions. Choice sets are categorized according to
the temporal profiles of both options. As mentioned before, choice sets are called
incongruent if the better option has low immediate value (x1 < x2), while the
worse option has high immediate value (y1 > y2), for example (6,10) and (9, 5). In
such choice sets, immediacy bias should lead to a particularly high error rate. The
opposite case – such as (2, 6) and (7, 3) – will be called congruent: Here, placing
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LPM Logit Mixed Logit Mixed Logit
(uncorrelated) (correlated)

δ1 0.0663∗∗∗ 0.355∗∗∗ 0.480∗∗∗ 0.482∗∗∗

(0.00263) (0.0236) (0.0324) (0.0325)
δ2 0.0265∗∗∗ 0.136∗∗∗ 0.181∗∗∗ 0.185∗∗∗

(0.00333) (0.0184) (0.0246) (0.0249)
δ1/δ2 2.50 2.61 2.65 2.61

σ(δ1) 0.265∗∗∗ 0.268
(0.0238)

σ(δ2) 0.218∗∗∗ 0.221
(0.0181)

ρ(δ1, δ2) 0.264

Test of H0 : δ1 = δ2
F/χ2 95.11 78.73 71.87 68.30
p-value 3.15e-16 7.14e-19 2.30e-17 1.41e-16

(pseudo) R2 0.310 0.256
log-likelihood -3304.5 -3153.7 -2806.3 -2804.1
AIC 6614.9 6313.5 5620.7 5618.2
BIC 6635.1 6333.6 5650.3 5655.2
N 6119 6119 6119 6119
Standard errors in parentheses; cluster = participant. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
For the mixed models, coefficient entries represent E(δ).

Table 1.2: Main regression results. Dependent variable is choice probability of
x; explanatory variables are x̂1 and x̂2, i.e. immediate and delayed feedback as
previously seen by the subject.

more weight on x1 should actually reduce errors, so that a low error frequency
is expected. For all remaining choice sets – where the options both have low x1

or high x1 – the immediacy bias should have no direct effect, and they will be
disregarded here.

Table 1.3 shows the contingencies of errors in cases of interest. Error rates
of 47% in incongruent, and of only 15% in congruent choice sets again show how
strong the bias is. A signed rank test on individual error rates in both settings
confirms that this difference is highly significant (p ≪ 0.001). This is further
statistical evidence for hypothesis 1, and of 1a in particular.

1.3.4 Individual Heterogeneity

Since each subject contributes 60 observations, it is possible to perform the same
regressions subject by subject. The left panel of Figure 1.4 plots the resulting co-
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Choice sets
Congruent Incongruent Combined

Correct % 84.9 52.7 68.8
# 1,559 968 2,527

Error % 15.1 47.3 31.2
# 277 868 1,145

Total % 100.0 100.0 100.0
# 1,836 1,836 3,672

Wilcoxon signed-rank test: z = 7.09, p ≈ 0.000
Table 1.3: Contingency of errors in congruent choice sets (worse option x1 < x2,
better option y1 > y2) and incongruent choice sets (worse option x1 > x2, better
option y1 < y2).

efficients for the LPM, each point representing one subject.5 Subjects who do not
react at all to payoffs are around the origin. Subjects that react to both compo-
nents equally are close to the 45°-line, the higher their precision the further from
the origin. Subjects above the 45°-line react more strongly to immediate feedback.
This applies to 84 of 102 subjects, clearly showing that the main hypothesis 1 holds
not only for the average subject, but for most subjects individually. Their smooth
distribution in the upper half of the quadrant indicates that the aggregate results
were not driven by a small subset of subjects who might have misunderstood the
task.

The right panel shows the same data, but rotated 45° counterclockwise. The
result is simply a linear transformation of the former model, which allows conve-
nient interpretation of coefficients. The estimated utility function is then u(x) =
δ+(x̂1 + x̂2) + δ−(x̂2 − x̂1). δ+ on the y-axis measures how subjects react to total
value x̂1 + x̂2. This is the objective of the task, and a higher coefficient implies
better performance. δ− on the x-axis represents sensitivity to x̂2 − x̂1, i.e. to the
split of total value into immediate and delayed component. To maximize points,
this should be ignored: Ideally, this coefficient should be zero; both positive and
negative values will cause errors. A majority of subjects however reacts negatively.
δ− is a suitable measure for the bias of individual subjects and will be related to
other characteristics later. Note that there is only a moderate relation between δ+

5The LPM is preferable for this purpose: For some subjects, logit coefficients cannot be
obtained as complete separation is achieved.
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u(x) = δ1x̂1 + δ2x̂2 u(x) = δ+(x̂1 + x̂2) + δ−(x̂2 − x̂1)

Figure 1.4: Per-subject measures of behavior. Left panel corresponds to LPM
from Section 1.3.2. Right panel is rotated by 45°; see above for the implied latent
utility function.

and δ−; this underscores that subjects make plenty mistakes which are unrelated
to temporal ordering of feedback.6

Mixed logit models are a viable way to get an accurate estimate of the un-
derlying heterogeneity (Train, 2009). Results are reported in columns 3 and 4
of Table 1.2. These models are essentially a random coefficient extension of the
regular logit model, with the assumption that coefficients are not constant in the
population, but normally distributed: δ ∼ N(d, W ). The likelihood contribution
of each subject is then

L =
∫ ∏

t∈T

eδ1xt
1+δ2xt

2

eδ1xt
1+δ2xt

2 + eδ1yt
1+δ2yt

2
ϕ(δ)dδ

where xt is the selected, and yt the foregone option of observation t. The param-
eters d and W are estimated via maximum simulated likelihood. The correlated
model in column 4 allows for full covariance matrix W ; column 3 is nested by
imposing diagonality; the standard logit model in column 2 is in turn nested with
W = 0. The ratio of population means, E(δ1)/E(δ2) closely resemble those in the
fixed coefficient models. The estimated population standard deviations, σ(δ), are
highly significant. In addition, the mixed models are clearly favored over the fixed

6In particular, a small fraction of subjects is clustered at the origin. Their choices appear
completely random, perhaps they simply aimed to finish as fast as possible. As a result, these
subjects are completely unbiased (δ− ≈ 0), but also insensitive to total value (δ+ ≈ 0).



30 CHAPTER 1. LEARNED IMPATIENCE

Figure 1.5: Subject heterogeneity: Error rates in incongruent and congruent
choice sets. Dots denote 1/2/3 subjects by size.

coefficient models by information criteria (and likelihood ratio tests, not reported).
Together, these results confirm that there is indeed considerable heterogeneity in
immediacy bias in the sample, confirming hypothesis 3.

Figure 1.5 shows a non-parametric representation of individual heterogeneity.
Error rates in congruent choice sets are plotted on the x-axis: Most subjects make
no or very few mistakes in these rounds, and only a single subject more than
50%. For incongruent choice sets, the error rates vary much more, approximately
centered around 50%. As noted before, any source of errors unrelated to temporal
ordering is expected to cause either type of error with equal probability. The fact
that almost all subjects fall above the 45°-line once more indicates the system-
atic nature of mistakes. The difference in error rates between incongruent and
congruent choice sets can be used as a secondary, non-parametric measure of an
individual’s bias.

1.3.5 Beliefs

After completing the main task, subjects were asked which of the colors gave
the most points, the second most points, and the least points (both components
combined). The same color could not be named twice; the questions were not
incentivized.

Figure 1.6 plots the answers by group. As the following will show, all patterns
which an immediacy bias would predict are present in the data. Looking at group
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Figure 1.6: Answer counts to the question “Which color do you believe gave the
most/second most/least points in total?”. 51 subjects per group.

A, the bias should actually help to identify (11,7) as best, and (2, 6) as worst. And
indeed, almost all subjects answered these correctly. In contrast, the question
which option gave the second most points should be much harder for A, as the
bias implies undervaluation of (6,10) and overvaluation of (9, 5). A clear majority
of subjects indeed incorrectly named the latter. As all options for B are reversed,
the immediacy bias should make the questions for best and worst options much
harder for this group. In fact, a majority of subjects incorrectly named (10,6)
rather than (7,11) for most points. Likewise, a majority selected (3, 7) and not
(6, 2) for least points.

The reversals in valuation implied by the bias even show in smaller details.
Among the subjects who erred in the upper left panel, more named (9, 5) than
(6,10); the same holds for (4, 8) over (7, 3) in the upper right. In the lower left,
(8, 4) was named repeatedly, but (5, 9) never. In the lower right, more subjects
answered (5, 9) than (8, 4).

In summary, beliefs show the same bias as choice behavior: x1 is given higher
weight than x2. This further corroborates the hypothesis that information frictions
can lead to behavior and value judgments in which delayed consequences are
discounted. The finding in particular shows that subjects actually believed to act
in a manner that would maximize points. A perhaps unlikely, but theoretically
possible explanation for biased choices would have been that subjects willingly
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accepted lower payoffs, because they were impatient to receive positive feedback
early.7 Belief data rules this out.

1.3.6 Bias and Intertemporal Choice

A specific feature of the experiment was that the bias in choices can not be ex-
plained by reward discounting. Nevertheless, bias and time preferences might be
linked. If preferences are at least partly learned from experience, and this learning
is – in some settings – subject to the immediacy bias, then a stronger bias should
ceteris paribus result in less patient preferences. As shown before, the experiment
allowed to identify considerable heterogeneity in degree of bias across subjects. If
there is indeed a connection between bias and reward discounting, the following
should hold:

Hypothesis 4: The stronger an individual’s bias in the main task, the more im-
patient this subject is in decisions involving actual reward discounting.

To test this prediction, a set of hypothetical intertemporal choice data was
elicited from all subjects after conclusion of the main task. This was done using
a staircase estimator, a procedure that has been validated against incentivized
decisions by Falk et al. (2016). In three series of questions, subjects were asked
how they would decide between 100€ today or x in one month; 100€ today or x

in six months; 100€ in one month or x in six months. By in- or decreasing x from
question to question, effectively performing bisection search, indifference points in
the range 100–132€ were obtained for each time horizon. By nature of the staircase
procedure, more extreme values are censored. In the given sample, indifference
points for the three time horizons were highly correlated within subjects. Analysis
is reported for today versus in one month; using the other time horizons or an
index yields similar results.

The indifference point as measure of impatience was regressed on individual
bias, alongside some controls. Table 1.4 shows results; all coefficients are stan-
dardized. The first four columns use δ− as measure of bias. As the results show,
the more biased an individual in the task (δ− ≪ 0) the higher their stated indif-
ference points, and thus the impatience they expressed. This effect is significant
and sizable; the results thus support hypothesis 4.

7Another argument also makes this explanation unlikely: It requires extreme assumptions
on subjects’ valuation of positive feedback and discount rates. After all, every single intentional
mistake would have cost 0.10–0.50€, with the only upside of gaining a piece of positive feedback
just the 10 seconds earlier a round approximately lasted.
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Dependent variable: Subject indifferent between 100€ today and y in 1 month

δ− -0.283∗∗∗ -0.272∗∗∗ -0.225∗∗ -0.226∗∗
(0.004) (0.007) (0.028) (0.032)

Excess errors in 0.287∗∗∗ 0.278∗∗∗ 0.222∗∗ 0.222∗∗
incongruent choice sets (0.003) (0.005) (0.030) (0.036)

Total points -0.051 -0.065 -0.056 -0.074 -0.081 -0.071
(0.603) (0.526) (0.596) (0.450) (0.420) (0.495)

Study majors ✓ ✓ ✓ ✓

Age & gender ✓ ✓

N 102 102 102 99 102 102 102 99
Standardized beta coefficients; p-values in parentheses. ∗∗ p < 0.05, ∗∗∗ p < 0.01.
δ−is the coefficient on x̂2 − x̂1; excess errors is error rate in incongruent minus congruent choice sets, see section 1.3.4.
Study majors are categorized as economics/finance/business administration, MINT, law, social sciences, others.

Table 1.4: Regressions of a measure of impatience on immediacy bias and a set
of controls.

The relation is unchanged when introducing controls, which notably also carry
much less explanatory power than the measure of bias. The first of these is total
points. As discussed earlier, temporal bias is only one of many potential sources of
errors; in consequence, total points can be used as proxy for general ability in the
task. The coefficients are small and insignificant, indicating that ability carries
no relation to measured time preferences. Field of study shows some relation to
the degree of immediacy bias in the data, yet its inclusion reduces the coefficient
only slightly; age and gender are without effect. The remaining columns repeat
the same estimation, but using a non-parametric measure of bias instead, namely
error rate in incongruent minus error rate in congruent choice sets. Results are
unchanged.

1.3.7 Decision Times

To conclude discussion of the main experiment, I briefly turn to decision times,
where the immediacy bias also manifests. To recapitulate Section 1.2.4, timing
during the task was as follows. Right after each choice, feedback for the two
previously chosen colors was revealed. 2 seconds after the feedback, two new
options appeared on screen. Subjects now had up to 10 seconds to make a choice,
and also to still consider the previous feedback, which remained on screen until
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Figure 1.7: Left: Average decision times in different types of choice sets. Error
bars show 95% confidence intervals. Right: Difference in error rates between
incongruent and congruent choice sets against difference in average decision times,
per subject. Red line represents regression fit.

the choice was made. In the following, decision time refers to the time a subject
took from the appearance of new options until making a choice.

The average decision time in blocks 2–5 was slightly less than 2 seconds; among
over 13 000 observations, only a single timeout occurred. The left panel of Fig-
ure 1.7 shows average decision times for different types of choice sets. First, the
average time of 1.49s in degenerate choice sets (the same color twice) is essentially
a baseline, indicating how long subjects took when no decision was to be made
at all. Next, contrast congruent and incongruent choice sets, with averages of
1.96s and 2.19s. This difference of .23s is highly significant (t = −4.62, clustered
per participant). It is a general observation that decisions with smaller perceived
value difference are taken more slowly (Shevlin et al., 2022). While congruent and
incongruent choice sets are perfectly symmetric in terms of objective value (see
Table 1.1), under an immediacy bias subjective value difference is much smaller
in incongruent choice sets. Thus, the bias is also apparent in decision times.

This also shows when considering choice sets where either both early compo-
nents are high, or both late are high, with decision times of 1.95s and 2.15s. The
difference is again highly significant (t = 4.47). Here too, objective value is sym-
metric; the bias induces higher valuation of both options in both early and lower in
both late. Decision times are therefore in line with the finding that when holding
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value difference constant, higher average value is associated with faster decisions
(Shevlin et al., 2022).8

Between subjects, the bias in timing is correlated with the bias in choice (ρ =
0.33, p < 0.001). The former is measured as difference in decision times between
congruent and incongruent choice sets; the latter as difference in error rate. The
right panel of Figure 1.7 shows data and a regression fit.

1.4 Active and Passive Learning

In the main condition of the experiment, subjects learn from actual reinforcement:
All displayed numbers result from a choice made by the subject and are payoff-
relevant. Thus, they are not purely neutral information that could help future
decisions, but they also carry judgment of own performance, and signify a reward
to be received later. It seems plausible that in such a setting the immediacy bias
will be particularly strong: The immediate feedback is displayed moments after
the decision, when the subject will be anxious to know whether it was a good
choice. By the time the delayed feedback comes around, another decision has
been made on which the mind is now focused, so that this part of feedback might
arouse much less interest.

To address the question whether reducing these elements tied to active deci-
sion making reduces also the bias, a variation of the experiment allowed subjects
to learn more passively, without such involvement. The new set of subjects first
learned simply observing, without making any choices and without payoff impli-
cations. Afterwards they would face own incentivized decisions. The hypothesis is
that this encourages a less visceral, more detached and analytical processing of the
given information. This should reduce the asymmetry between both components
and lead to a reduction in bias.

1.4.1 Passive Treatment: Design

The passive treatment kept all rules and mechanics of the main experiment, and
implemented only one change: In the first 63 rounds, subjects did not make
any decisions, but could learn passively from feedback shown on their screen.

8The bias makes no direct prediction in terms of error rates between these choice sets;
however, the error rate is higher in both late sets, with 21.1% vs 18%. This difference is however
only marginally significant with p = 0.09 in a clustered LPM. Note that in the current design,
a direct comparison of these choice sets with the (in-)congruent ones is not sensible, as the
objective value differences have other magnitudes, see Table 1.1.
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Specifically, at the beginning of each round, a single button appeared in the center
of region (a) in Figure 1.1, moved to (b) a few seconds later, and one round later to
(c), both times displaying immediate respectively delayed feedback. Starting from
round 64, 42 normal rounds of decisions followed seamlessly, including feedback
as usual. These decisions carried the same marginal incentive of 0.05€ per point.
Instructions were unchanged, with an added section that explained the learning
phase.

To allow comparison with the main treatment, it was important that subjects
would see comparable information up to round 64, when decisions in the passive
treatment started. This was achieved as follows. Each treatment subject was
partnered at random to one of the main subjects from earlier sessions. During the
learning phase, the sequence of colors displayed to the new subject were exactly
the colors chosen by the other. Values of all colors were the same, and the feedback
exactly replicated what the former subject had seen. Timing of the rounds followed
the pace the partner had set. In summary, it was almost as if the second subject
got to watch over the shoulder of the first during these initial rounds. However,
subjects were not explicitly informed how the data had been generated. Moreover,
the color the previous subject had foregone was not displayed. This was both to
limit similarity to a choice situation, and not to convey information on the first
subject’s beliefs to the second. This way, partner and new subject entered the
final 42 rounds with exactly the same information. The sequence of choice sets in
these rounds was again kept identical. The procedure resembles a yoked control
design common in studies of operant conditioning. Within the economic literature,
Merlo and Schotter (2003) use a similar setup to specifically examine differences
in observational and active learning.

If active learning is indeed conducive to the immediacy bias, this should show
as follows:

Hypothesis 5: Subjects in the passive treatment show less bias than subjects in
the main condition, when comparing the final 42 rounds. In regressions, their
coefficient ratio δ1/δ2 is lower. They show less excess errors in incongruent choice
sets.

1.4.2 Passive Treatment: Results

All results in this section are based on 57 subjects in the passive learning condition,
whose behavior is compared to the 102 subjects from the main condition. For
each new subject, a partner was drawn from the main subjects at random without
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Figure 1.8: Comparison of choice frequencies in main and passive condition.

replacement. All results are robust to omitting the un-partnered subjects from the
main condition. Data for each subject consists of the 30 non-degenerate decisions
made in the final 42 rounds.

Figure 1.8 plots choice frequencies by group and treatment. For the main
condition, the graph is familiar, with a zigzag-pattern and reversals reflecting
the immediacy bias. For treatment subjects, the pattern is similar, but visibly
attenuated: relative to the main subjects, the graphs are less jagged and closer to
a straight line. In comparison, passive subjects’ choice frequencies are lower for
options with x1 > x2, and higher for options with x1 < x2. Both are consistent
with a decreased bias. The only exceptions are (2, 6)A (decrease in frequency) and
(11,7)A (increase). However, these cases are consistent with a general improvement
offsetting a decrease in bias. For the treated group, reversals are attenuated or
even absent, e.g. between (7, 3)A and (4, 8)A. In summary, the visual evidence
suggests that subjects in the passive treatment still show immediacy bias, but
to a lesser degree. The following corroborates this both by regressions and non-
parametric analysis.

The latent utility function estimated in the treatment regressions is

u(x) = (δ1 + 1T γ1) x̂1 + (δ2 + 1T γ2) x̂2

where δ and x̂ are as before. 1T is an indicator for the passive treatment group, so
that γ1 and γ2 capture the differential reaction of treated subjects to immediate
and delayed feedback. Table 1.5 summarizes results. δ1 and δ2 are almost un-
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Mixed logit Mixed logit LPM Logit LPM
uncorrelated correlated (subsample)

δ1 0.627∗∗∗ 0.635∗∗∗ 0.0712∗∗∗ 0.403∗∗∗ 0.0731∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
δ2 0.229∗∗∗ 0.243∗∗∗ 0.0291∗∗∗ 0.158∗∗∗ 0.0259∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
γ1 -0.00654 -0.00236 -0.00246 -0.00586 -0.00410

(0.927) (0.976) (0.635) (0.916) (0.493)
γ2 0.116∗∗ 0.122∗∗ 0.0115∗ 0.0672∗ 0.0146∗∗

(0.036) (0.045) (0.060) (0.097) (0.032)

δ1/δ2 2.73 2.61 2.45 2.55 2.82
δ1/(δ2+γ2) 1.80 1.74 1.75 1.81 1.80

N 4769 4769 4769 4769 3420
log-likelihood -1950.5 -1945.3 -2380.4 -2284.0 –
AIC 3913.1 3904.6 4770.9 4578.0 –
BIC 3956.1 3954.7 4803.2 4610.4 –

p-values in parentheses. Cluster = participant. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Mixed models: δ are random coefficients; E(δ) reported, Var(δ) omitted for brevity.

Table 1.5: Regression results, comparing the reaction of subjects to x1 and x2
in main (δ only) and passive conditions (δ + γ).

changed from the main results; this is expected, as these coefficients describe the
same subjects (albeit now in a subset of rounds). In terms of treatment effects,
γ1 is a clear null result. γ2 on the other hand amounts to roughly half of δ2. This
is significant at 5% in the preferred mixed logit models (and at least marginally
so in the others). Subjects in the treatment show a similar reaction to x1, but
a much stronger reaction to x2 in comparison to the main subjects. The bias is
clearly attenuated in the treatment, in accordance with hypothesis 5. The ratio of
coefficients shrinks from around 2.6 for main subjects to around 1.8 for treatment
subjects. The mixed models again clearly outperform the others. As shown in the
last column, results are also significant when using only the 57 matched subjects
from the main treatment as comparison group.

Error frequencies reported in Table 1.6 show similar results. In congruent
choice sets, treated subjects commit 1.6 percentage points more errors. This is in
accordance with an attenuation of bias, even though this difference is insignificant.
In incongruent choice sets, the error rate is 8 percentage points lower, and the
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Incongruent choice sets Congruent choice sets
Main Passive Total Main Passive Total

Correct % 53.5 61.6 56.4 87.5 85.9 86.9
# 491 318 809 803 438 1,241

Error % 46.5 38.4 43.6 12.5 14.1 13.1
# 427 198 625 115 72 187

Total % 100.0 100.0 100.0 100.0 100.0 100.0
# 918 516 1,434 918 510 1,428

Wilcoxon rank-sum test: z = 1.97, p = 0.049 z = −0.36, p = 0.72

Table 1.6: Comparison of main and passive condition: Error frequencies in
incongruent and congruent choice sets.

according rank-sum test on individual error frequencies turns out significant. This
again supports hypothesis 5.

As the results show, the immediacy bias is significantly attenuated for treat-
ment subjects, but it is still clearly present. One interpretation of these findings
is that the active setting is conducive, but not necessary for its occurrence. There
is also an alternative explanation: Subjects in the passive condition might start
their active choices with little or no bias, but then quickly develop it. After all,
from round 64 onward they do get active feedback; and in the main condition, the
bias was already discernible in the first block of choices (see Figure 1.3). Contrast-
ing treatment subjects’ earliest choices with their last offers some support for the
latter alternative; but the data is unfortunately not conclusive. This is discussed
in Appendix 1.C.

1.5 A Bayesian Framework

As mentioned in Section 1.1.1, models based on signal detection can offer an ex-
planation why delayed feedback is discounted. These go back to Commons et al.
(1991) and have recently been taken up by Gabaix and Laibson (2017) in the
context of time preferences. This section briefly sketches an application to the
experiment. As will be seen, noisy memory offers a parsimonious explanation of
the immediacy bias, which avoids to presume any biased beliefs or any misunder-
standing of the environment on behalf of the subjects.

The core assumption is that memory is unbiased, but imprecise: An agent
trying to remember some quantity z will retrieve not this number exactly, but
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z + ζ instead, where ζ is a mean-zero random disturbance. Bayesian decision
theory dictates that when an agent bases decisions on a noisy signal like z + ζ, it
should be weighted according to its variance. One should think of this correction
not necessarily as conscious; often, it may be automatic and hard-wired into the
perception and decision processes (see e.g. Khaw et al., 2017).

Consider now a typical choice situation in the experiment. The decision maker
has to choose between options x and y. She does not exactly remember the values
they have generated previously, but has to rely on her fallible memory, represented
by the following vector s:

s =


sx1

sx2

sy1

sy2

 =


x̂1 + ζx1

x̂2 + ζx2

ŷ1 + ζy1

ŷ2 + ζy2


As before, x̂1, . . . , ŷ2 stands for a summary of the actual evidence as it was visible
on screen. ζ are i.i.d. noise terms with mean zero, reflecting imperfect, but unbi-
ased memory. To ease exposition, I will assume normal distributions, but nothing
rests on this. Since x and y are interchangeable, it is a natural assumption that the
standard deviations of ζ are symmetric, i.e. σx1 = σy1 = σ1 and σx2 = σy2 = σ2.

To proceed with Bayesian updating, a set of priors needs to be specified. I will
assume that the decision maker has the same prior distribution N(p, σp) for all
four components, avoiding any underhand introduction of bias. Normality is again
just for tractability. As will be shown, the prior mean p is actually irrelevant for
the result; one may for example assume that it is the true mean for all components
across all options.

Standard Bayesian updating gives posterior distributions, again normal. Their
means are a convex combination of prior mean and the noisy signal retrieved from
memory:

E(x̂1|sx1) =
σ2

p

σ2
1 + σ2

p

sx1 + σ2
1

σ2
1 + σ2

p

p E(x̂2|sx2) =
σ2

p

σ2
2 + σ2

p

sx2 + σ2
2

σ2
2 + σ2

p

p

Introducing δi = σ2
p(σ2

i + σ2
p)−1 and decomposing s, posterior expected value of

option x can be written

E(x̂1 + x̂2|s) = δ1x̂1 + δ1ζx1 + δ2x̂2 + δ2ζx2 + (2− δ1 − δ2)p
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To maximize expected value, the decision maker should choose x over y iff

E(x̂1 + x̂2 − ŷ1 − ŷ2|s) = δ1x̂1 + δ2x̂2 − δ1ŷ1 − δ2ŷ2 + Z > 0

where Z is a weighted sum of ζ and thus itself a mean-zero normal random variable.
Due to symmetry between x and y, the prior means have canceled out. This
equation corresponds exactly to a probit version of the choice models estimated
earlier. Moreover, one has δ1 > δ2 if and only if σ1 < σ2.

Thus, a model of noisy memory and Bayesian updating can explain the dis-
counting of delayed feedback under the simple assumption that immediate feed-
back is remembered with higher accuracy, i.e. σ1 < σ2. Arguably, this is not an
unreasonable assumption. First, noise may simply be increasing due to the pass-
ing of time or the presence of intermittent decisions (Commons et al., 1991). In
many situations, immediate consequences are easiest to attribute, because there
is less ambiguity to which action they have to be attributed. Arguably, when
interacting with the physical surroundings, immediate consequences are also most
common and often most important. Perception and cognition may be organized
such that an over-proportionate share of resources is devoted to tracking them.
Finally, there is evidence that changing the delay of feedback from one to only a
few seconds can substantially change the neurophysiological pathways in which it
is processed (Foerde and Shohamy, 2011; Foerde et al., 2013).

1.6 Conclusion

This paper advocated the view that myopic behavior may arise from frictions in
learning: If reinforcement loses efficacy with temporal delay, immediate conse-
quences will receive undue weight relative to delayed ones. If one takes prefer-
ences as learned, this has important ramifications for our understanding of time
discounting.

As its main contribution, the paper is first to provide clean evidence for the
occurrence of such “as if”-discounting in a controlled experiment with human par-
ticipants. Subjects learn from immediate and delayed value signals, and discount
the latter to striking extent. The design allows to rule out temporal preferences
as an explanation, so that the observed behavior must be attributed to learning
frictions. Corroborating this view, subjects’ elicited beliefs mirrored exactly the
bias observed in behavior.
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The experiment further showed that this bias may be stable even when facing
a continuous stream of contrary evidence. A majority of subjects is affected; the
experiment allows to measure the degree of bias per individual, revealing consid-
erable heterogeneity. Consistent with the perspective that preferences in actual
intertemporal choice are partly shaped by such biases, it was shown that subjects
with higher degree of bias indeed gave more impatient answers in a classical, albeit
hypothetical measure of time preferences.

Turning to the question which factors are important for the occurrence of the
discussed bias, a treatment variation was introduced in which subjects could learn
by observation, before then making active decisions. The leading hypothesis was
that a passive setting would mitigate the bias. Here, results were mixed: Subjects
in the treatment group showed less, but still considerable bias. This is compatible
with the active setting either being conducive, but not necessary, or with subjects
quickly picking up a bias during their active decisions.

Finally, it was shown that the bias could be explained by a model of Bayesian
updating from noisy memory, based on the simple assumption that delayed feed-
back is processed or remembered with less precision.

Together, the results support the view that time preferences are shaped by
learning processes and their limitations. This offers new perspectives on time
preferences as they are studied in behavioral economics. At the same time, it seems
worthwhile to consider potential avenues for interventions that target impatient
behaviors. After all, if an adverse environment can foster the development of
impatience, then designing the right environment for learning may be a good way
to teach patience.
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Appendix

1.A Simulation: Greedy Algorithm

Figure 1.9 shows choice data obtained from a simple greedy algorithm in the
experimental task. The algorithm is programmed as follows: For each color, it
stores a continually updated average over all realizations. In the first 21 rounds,
it chooses a random option. Afterwards, it always chooses the option with higher
current average (ties are resolved randomly).

This strategy requires to store only 6 values and 6 counts, and performs no
inference of any sort. Still, in rounds 22–105 it achieves an error rate of only
0.3%. Clearly, no explorative strategy could improve on that. The algorithm’s
performance illustrates that memorization is the only difficulty present in the
given task.

Figure 1.9: Simulation results; the black graph represents a greedy algorithm,
perfectly tracking the mean of past observations; it coincides with the diagonal
indicating perfect play. Grey is observed human behavior in the same rounds.
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1.B Specification of x̂

Table 1.7 shows the linear probability model, comparing candidate 3 specifications
how all observations of xi + ϵ a subject has up to a specific choice situation may
be aggregated to hx̂i. These are average over all realizations, as used in the text,
the most recent observation, and the average over only the first 21 observations.
The first seems to outperform both others. In particular, when combined with the
most recent observation (fourth column), the result suggests the latter plays no
significant role of its own. This suggests the absence of any recency effect. When
paired with the early aggregate, colinearity becomes an issue, and standard errors
go up.

Linear probability models: Pr(x chosen|Ct = {x, y})
δ1 – mean 0.0663∗∗∗ 0.0674∗∗∗ 0.0462∗∗

(0.00263) (0.00506) (0.0151)
δ2 – mean 0.0265∗∗∗ 0.0243∗∗∗ 0.0207

(0.00333) (0.00550) (0.0127)
δ1 – last 0.0580∗∗∗ -0.00109

(0.00233) (0.00394)
δ2 – last 0.0226∗∗∗ 0.00211

(0.00299) (0.00418)
δ1 – early 0.0656∗∗∗ 0.0204

(0.00265) (0.0152)
δ2 – early 0.0257∗∗∗ 0.00582

(0.00326) (0.0124)
Constant 0.510∗∗∗ 0.510∗∗∗ 0.510∗∗∗ 0.510∗∗∗ 0.510∗∗∗

(0.00720) (0.00705) (0.00717) (0.00717) (0.00719)

Observations 6119 6119 6119 6119 6119
Standard errors in parentheses; cluster = participant.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1.7: Comparison different specifications of x̂i – mean is the average over all
previous realizations, last the last seen, and early is the average only from rounds
rounds 1–21.
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1.C Passive Treatment: Early and Late Bias

As discussed in Section 1.4, subjects in the passive condition appear biased, but to
a lesser degree than those in the main condition. One possible explanation is that
subjects end the passive learning phase unbiased, or almost unbiased, but then
quickly adapt a bias as they start making own decisions. If this is true, the earliest
active decisions of these subjects should show less bias than those following later.

The data has some features that are consistent with this interpretation. Fig-
ure 1.10 plots the first 6 active choices of these subjects on the left, and their final
6 on the right. It is apparent that the graphs on the left are much closer to a
straight line, which would indicate unbiasedness, while the final choices show the
typical serrated pattern. It is also obvious that these graphs are based on much
noisier data than any shown earlier. This is no coincidence, as each graph now
represents only 28× 6 choices. Accordingly, with the given data, the difference is
not statistically significant.

Figure 1.10: Choice behavior right at the beginning (left) and at the end of the
decision phase for subjects in the passive treatment.
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Chapter 2
Markov Quantal Response

Equilibrium: Existence,
Computation, and Characterization

This chapter is based on joint work with Steffen Eibelshäuser.

Abstract: We introduce and prove existence of Markov quantal response equi-
librium (QRE), an application of QRE to finite discounted stochastic games. We
then study a specific case, logit Markov QRE, which arises when players react to
total discounted payoffs using the logit choice rule with precision parameter λ.
We show that the set of logit Markov QRE always contains a smooth path that
leads from the unique QRE at λ = 0 to a stationary equilibrium of the game as
λ→∞. Following this path allows to solve arbitrary finite discounted stochastic
games numerically; an implementation of this algorithm is publicly available as
part of the package sgamesolver. We further show that all logit Markov QRE are
ε-equilibria, with a bound for ε that is independent of the payoff function of the
game and decreases hyperbolically in λ. Finally, we establish a link to reinforce-
ment learning, by characterizing logit Markov QRE as the stationary points of a
game dynamic that arises when all players follow the well-established reinforce-
ment learning algorithm expected SARSA.

49
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2.1 Introduction

Economic environments are typically not stable, but highly dynamic. Current
choices carry not only immediate consequences, but also shape the options avail-
able in the future. Examples include pricing, the accumulation or depletion of
resources, savings or capacities, as well as entering legal obligations through con-
tracts. Such intertemporal trade-offs are clearly reflected in partial and general
equilibrium analysis, where dynamic programming (Bellman, 1954) is ubiquitous.
However, if one looks at the analysis of strategic interaction, the picture changes.
The most prominent models here are either one-shot games, or at best repeated
games – which incorporate some dynamics between the players, but assume an
essentially state-less world in which the only lasting consequences of actions stem
from the reactions of others. This limitation is not due to a lack of theoretical
concepts. Dynamic interaction among forward-looking economic agents can be
modeled as a stochastic game, a broad class of games that dates back to Shapley
(1953) and generalizes both repeated games (by introducing states) and Markov
decision processes (by introducing strategic interaction).

But stochastic games are typically difficult to solve. Analytical solution is gen-
erally not feasible. This is true for dynamic programming problems as well – but
here, powerful numerical methods are available. Unfortunately, these methods
are not readily transferable to stochastic games: They are iterative in nature, and
typically do not converge when strategic interaction is present. When multiple
players interact in a dynamic environment, the corresponding Bellman operator is
generally not a contraction – in contrast to single-player case. Therefore, develop-
ing well-suited numerical methods is a crucial step to enable applied economists
to analyze strategic interaction in general dynamic environments.

The most common solution concept for stochastic games is stationary equilib-
rium (Shapley, 1953), a refinement of subgame perfect Nash equilibrium in which
strategies are conditional on the current state of the game, but otherwise indepen-
dent of past play. The most famous algorithms to compute stationary equilibria
are due to Pakes and McGuire (1994, 2001). The algorithms are based on value
function iteration, but are not guaranteed to converge. In addition, they only
allow to find stationary equilibria in pure strategies – which in many games do
not exist. Up to now, to the best of our knowledge, the only algorithms able
to compute stationary equilibria in mixed strategies are based on homotopy con-
tinuation (Herings and Peeters, 2004; Govindan and Wilson, 2009; Dang et al.,
2022, Chapter 3). However, existing homotopy methods often involve draw-
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backs. Take for example the linear stochastic tracing procedure by Herings and
Peeters (2004), which resembles the famous linear tracing procedure for normal
form games (Harsanyi, 1975; Harsanyi and Selten, 1988). It starts at arbitrary
prior beliefs about other players’ strategies and gradually transforms beliefs un-
til equilibrium beliefs are obtained. However, convergence is only guaranteed for
generic games. Convergence fails if, at some intermediate belief along the homo-
topy path, the set of Nash equilibria is at least two-dimensional, which may very
well happen in applications.1

In this paper, we introduce (logit) Markov quantal response equilibrium, an
approximate solution concept for stochastic games. As we show, it offers a new
homotopy method to compute stationary equilibria that is guaranteed to converge
for all finite discounted stochastic games. As a by-product, it can also be used as
a selection criterion for stationary equilibria. The method is based on the logit
quantal response framework (McKelvey and Palfrey, 1995, 1998). As a founda-
tion, we provide a formal extension of quantal response equilibrium (QRE) to the
domain of stochastic games, substantiating Breitmoser et al. (2010), and prove ex-
istence, finiteness and a limiting relation to stationary equilibria. Furthermore, we
generalize the homotopy interpretation of QRE proposed by Turocy (2005, 2010)
for normal-form and extensive-form games to the domain of stochastic games.

We discuss two further specific properties of logit Markov QRE that, to the
best of our knowledge, have not been established even for QRE in normal-form
games yet. First, we show that logit Markov QRE are ε-equilibria and establish
a bound for ε that, interestingly, is independent of the payoffs of the game and
decreases in the precision parameter λ of the model. Thus, while players do incur
some loss by adopting the logit choice rule rather than maximizing perfectly, this
loss can be bounded arbitrarily by choosing λ accordingly. Moreover, the result
shows that this is possible even before having knowledge of the specific payout
structure of the game.

The second property is a link of logit Markov QRE to reinforcement learning.
Reinforcement learning is a sub-discipline of machine learning concerned with op-
timal control in Markov decision processes. Since stochastic games are essentially
the multi-player extension of this problem class, it is very natural to apply rein-
forcement learning algorithms to them. We derive a game dynamic that arises

1Harsanyi and Selten themselves were aware of this problem. In order to ensure uniqueness of
best responses, they devise the logarithmic tracing procedure which adds a logarithmic penalty
term, forcing strategies towards the centroid. See also Chapter 3, where we take a similar
approach for stochastic games.
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if all players adopt expected SARSA, a well-established and often recommended
reinforcement learning algorithm (van Seijen et al., 2009; Sutton and Barto, 2018).
As we show, logit Markov QRE exactly coincide with the stationary points of that
dynamic, which gives it additional credence as an approximate solution concept.
Moreover, the finding opens possibilities for the interpretation of the aforemen-
tioned homotopy procedure: Following the path can be understood as all players
employing the learning procedure with continuously increasing precision.

2.1.1 Related Literature

The following paragraphs summarize the most important references for the con-
cepts we draw upon. Stochastic games and stationary equilibria find extensive
formal treatments in Mertens et al. (2015), or in the monographs by Filar and
Vrieze (1997) and Basar and Olsder (1999). A comprehensive, general introduc-
tion to the homotopy method is given by Zangwill and Garcia (1981), who focus
on the mathematical foundation of this technique. Allgower and Georg (1990)
complement this with a thorough treatment of its efficient and stable numerical
implementation. Overviews of its applications in computational game theory are
due to Borkovsky et al. (2010) and Herings and Peeters (2010); this includes in
particular the linear tracing homotopy for stochastic games by Herings and Peeters
(2004) themselves.

The homotopy we propose is based on the concept of quantal response equi-
librium (QRE), first formulated for normal-form games by McKelvey and Pal-
frey (1995) and subsequently extended to extensive-form games as agent QRE in
McKelvey and Palfrey (1998). A recent overview over applications and findings
is provided by Goeree et al. (2016). While QRE is originally a behavioral solu-
tion concept, the classical equilibria typically arise as limiting cases, which can
be utilized for computational purposes. Turocy (2005) is the first to discuss a ho-
motopy based on the QRE correspondence, first for normal-form games. This is
extended to extensive-form games in Turocy (2010), allowing the computation of
sequential equilibria using agent QRE as a homotopy. Herings and Peeters (2004)
first suggested that it should be possible to extend QRE to stochastic games.
While the concept of logit Markov QRE and an according homotopy were then
first discussed and used by Breitmoser et al. (2010) and Battaglini and Palfrey
(2012), an explicit formal treatment is yet lacking in the literature. This is done
in the present paper. Specifically, we provide a formal definition of Markov QRE
and prove its existence for all finite stochastic games. For the special case of logit
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Markov QRE, we show that the set of equilibria is finite and that all branches of
the logit Markov QRE correspondence converge to stationary equilibria. Further-
more, we prove the existence of a unique smooth principal branch connecting the
centroid of the strategy simplex to a unique limiting stationary equilibrium.

The remainder of this paper is organized as follows. Section 2.2 familiarizes the
reader with stochastic games, stationary equilibrium and homotopy continuation.
Section 2.3 introduces the concept of Markov quantal response equilibrium and
establishes existence. Particular attention is devoted to the special case of logit
Markov QRE. Section 2.4 describes the logit Markov QRE homotopy. We show
that the set of logit Markov QRE consists of well-behaved, smooth paths and in
particular contains a principal branch that can be followed numerically from an
easy-to-compute starting point to a limiting stationary equilibrium of the game.
This makes the homotopy both a computational tool and a potential selection
criterion. Section 2.5 establishes that logit Markov QRE is always an ε-equilibrium
with a bound for ε that, interestingly, is independent of the payoffs of the game and
decreases. Finally, Section 2.6 relates logit Markov QRE to reinforcement learning,
by showing that it coincides with the stationary points of a dynamic that is derived
from the well-established reinforcement learning algorithm expected SARSA.

2.2 Prerequisites

In this section, we briefly review the fundamentals of stochastic games, stationary
equilibrium, and homotopy continuation.

2.2.1 Stochastic Games

Stochastic games (Shapley, 1953) are essentially the generalization of Markov
decision processes to multiple players. They are played as follows. An initial state
is determined, possibly according to a random distribution. All players learn
about the state and choose one of the actions available to them in that state. The
state and their choices together determine instantaneous payoffs and a distribution
from which a state for the next period is drawn, which is then played in the same
way. The game may have terminal states and end when one of these is reached;
otherwise, it will continue indefinitely.

Definition 1. Stochastic game.
A stochastic game G is a tuple

(
S, I, A, U , Φ, Φ0, δ

)
with
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S : set of states.

I: set of players.

Asi: action set of player i in state s. As =×i∈I
Asi is the set of action profiles

in state s. A = ⋃
s∈S,i∈I Asi denotes the set of all actions of any player in

any state (understood as a disjoint union). Thus, |A| represents the total
number of actions of the game. We often use the index sia to refer to an
action a that belongs to player i in state s.

u =
(
usi(as)

)
as∈As,s∈S,i∈I

: instantaneous payoff functions usi : As → R.

Φ =
(
ϕs✮s′(as)

)
as∈As,s,s′∈S

: state transition probabilities, where ϕs✮s′(as) denotes
the probability of transitioning from state s to s′, if action profile as is played.
Note that it may be that ∑s′∈S ϕs✮s′(as) < 1; the remaining probability mass
then represents the chance of the game to terminate.

Φ0 ∈ ∆(S): a probability distribution over the initial state.

δ =
(
δi

)
i∈I

: discount factors for all players.

We restrict our attention to finite discounted stochastic games in discrete time,
where the sets of states, players, and actions are all finite, time runs in discrete
periods with an infinite horizon, and either future payoffs are discounted expo-
nentially with δi < 1, or δ = 1 but Φ guarantees eventual termination with
probability one. As usual, payoffs and state transitions extend to mixed strategy
profiles.

2.2.2 Stationary Equilibrium

The most common solution concept for stochastic games is stationary equilibrium.
Stationary equilibrium is a refinement of subgame perfect Nash equilibrium, in
which all players are limited to the use of stationary strategies. Stationary strate-
gies, in turn, restrict players to condition their responses exclusively on the current
state of the game, but not on the history of play nor on time.

Definition 2. Stationary strategy.
A stationary strategy profile σ assigns to each (s, i) ∈ S × I, called the agent of
player i in state s, a mixture σsi ∈ ∆(Asi) over her available actions.
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We will write σsia for the probability that a specific action a ∈ Asi is chosen,
σi for a stationary strategy of i, σ−i for a strategy profile of all players except i,
σs for a strategy profile in state s, and so on.

Definition 3. Stationary equilibrium.
A stationary equilibrium σ is a subgame perfect equilibrium in stationary strate-
gies.

Remark 1. Markov perfect equilibrium.
Another solution concept found in the literature is Markov perfect equilibrium
(MPE), which is a stationary equilibrium which requires that agents facing sym-
metric situations (in terms of payoffs and continuations) play symmetric strategies
(Maskin and Tirole, 2001). In what follows, we will focus on the more general con-
cept of stationary equilibrium, as this frees us from having to consider properties
relating to symmetry. However, all results essentially apply to MPE as well. Also
note that this distinction is not always made sharply in the literature: The term
MPE is sometimes used in place of stationary equilibrium.

The existence of stationary equilibria in stochastic games has long been estab-
lished in the literature.

Theorem 1. Existence of stationary equilibrium.
Every finite and discounted stochastic game has a stationary equilibrium.

Proof. See Fink (1964), Takahashi (1964), or Sobel (1971). ■

By a straightforward application of Bellman’s 1954 principle of optimality,
stationary equilibria admit the following recursive representation.

Theorem 2. Recursive representation of stationary equilibrium.
A stationary strategy profile σ constitutes a stationary equilibrium if and only if

1. for all players i ∈ I, there exist state-player values Vi ∈ R|S| such that

Vsi = max
a∈Asi

usi(a,σs,−i) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i) Vs′i

holds for all states s ∈ S and
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2. for all states s ∈ S, strategy profile σs constitutes a Nash equilibrium of the
normal-form game with action spaces Asi for all i and payoffs

Usi(as) = usi(as) + δi

∑
s′∈S

ϕs✮s′(as) Vs′i (as ∈ As, i ∈ I).

Proof. See for example Doraszelski and Escobar (2010, p. 374). ■

Theorem 2 reflects that stochastic games can be seen as a set of normal-
form games that are linked by state transitions and thus continuation values.
Specifically, decision making in stochastic games is based on the present value of
payoffs including the subsequent course of play:

Usi(σs, Vi) := usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs)Vs′i.

However, subsequent play and thus state values of course depend on the strategy
profile of all players. Thus, it is necessary to determine equilibrium strategies and
values in all states simultaneously, which is exactly what makes stochastic games
so hard to solve.

Corollary 1. Characterization of stationary equilibrium.
A Markov strategy profile σ with associated state values V constitute a stationary
equilibrium if and only if for all s ∈ S and i ∈ I:

σsi ∈ arg max
σ′

si∈∆(Asi)
Usi(σ′

si, σs,−i, Vi),

Vsi = Usi(σsi, σs,−i, Vi).

Proof. Reformulation of Theorem 2. ■

Due to the maximization operators, the system of equations in Corollary 1 is
generally very difficult to solve.2 We will solve it by first rewriting the equations
in terms of quantal response analysis and then applying homotopy continuation.

2Pakes and McGuire (1994, 2001) approach the system by means of value function iteration,
i.e. by repeatedly solving for equilibrium strategies and updating the resulting state values.
However, the procedure is not guaranteed to converge and, at best, pure-strategy equilibria can
be found. Herings and Peeters (2004) transform the system by replacing each optimization with
the corresponding Karush-Kuhn-Tucker conditions and performing a substitution of variables to
ensure differentiability. However, the method is only guaranteed to succeed for generic games.
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2.2.3 Homotopy Continuation

Homotopy continuation methods constitute a numerical solution method suited
for high-dimensional, nonlinear systems of equations. Compared to most other
numerical methods, they have the major advantage of working globally. Iterative
Newton-methods for example are only locally convergent, meaning they require a
good initial approximation to arrive at a solution at all. In contrast, homotopy
methods arrive at solutions without such a priori knowledge, rendering them an
exceptionally powerful tool. In this section, we will briefly sketch the procedure,
as a basic understanding is necessary for the following parts of this paper.

The method generally proceeds in two steps: First the formulation of a suitable
homotopy function, which implicitly defines a curve from an easily computed
starting point to the desired solution; and then the numerical traversal of this curve
until the solution is obtained. Intuitively, this resembles continuously transforming
the problem until it is easy to obtain a solution, then reverting it back to the
original form, while holding on to the solution.

More concretely, suppose one wants to find a solution x∗ to F (x) = 0, where
F : Rn → Rn is a high-dimensional, nonlinear mapping. One constructs a function
G : Rn → Rn, such that a solution x0 ∈ G−1(0) is known or trivially obtained.
Then, a homotopy parameter λ ∈ [0, λ̄] with λ̄ ∈ (0,∞] is introduced to construct
a homotopy function H(x, λ), with H : Rn+1 → Rn, satisfying H(x, 0) = G(x)
and H(x, λ̄) = F (x). If H is constructed properly, it thus offers a continuous
transformation of the hard problem F (x) = 0 into the trivial one G(x) = 0 and
vice versa. The set of solutions H−1(0) = {(x, λ)|H(x, λ) = 0} then contains a
curve connecting the known solution (x0, 0) to the desired solution (x∗, λ̄). Tracing
this curve numerically to actually compute the solution is the second part of the
method. This is done numerically, which is described in detail in Chapter 4.

The homotopy path might have turning points in the sense that the homo-
topy parameter λ is not monotonously increasing along the path, as illustrated
in Figure 2.1. It is therefore generally not possible to follow the path by naively
increasing λ. Instead, it is convenient to parameterize the homotopy path in terms
of a path length parameter τ ∈ R+

0 such that H
(
x(0), λ(0)

)
= 0. Then, the path

is defined by the following system of ordinary differential equations:

∂(x, λ)k

∂τ
= η · (−1)k · det

(
J−k(x, λ)

)
(k = 1, . . . , n + 1) (2.1)



58 CHAPTER 2. MARKOV QUANTAL RESPONSE EQUILIBRIUM

λ

x

λ̄

x0

x∗

H−1(0)

Figure 2.1: Turning Points of Homotopy Path

where J(x, λ) = ∂H(x,λ)
∂(x,λ) denotes the Jacobian matrix J : Rn+1 → Rn × Rn+1 of

the homotopy function, J−k(x, λ) denotes the Jacobian without its k-th column
and η ∈ R+ is a normalization factor. For details, see Zangwill and Garcia (1981,
ch. 2).

In general, the solution set H−1(0) is not guaranteed to be as well-behaved
as suggested by Figure 2.1. It might feature multidimensional segments, bifurca-
tions, dead ends or spirals. For path tracking to be well-defined, the solution set
H−1(0) must include a smooth branch H0 through (x0, 0) that is almost every-
where one-dimensional, with only isolated crossings of secondary path segments.
A corresponding illustration is provided in Figure 2.2.

Having covered the basics of stochastic games, stationary equilibrium and ho-
motopy continuation, we are now in a position to formulate the results of this
paper. We start by introducing stationary quantal response equilibrium.

2.3 Markov Quantal Response Equilibrium

In the quantal response framework, players are assumed to perceive payoffs only
with some noise. In the resulting quantal response equilibrium (QRE) (McK-
elvey and Palfrey, 1995), players’ actions appear stochastic and the probability
of playing a particular action is increasing in its true payoff. This idea can be
generalized to dynamic games by treating players at different decision nodes as
independent agents. The corresponding equilibrium concept is called agent quan-
tal response equilibrium (McKelvey and Palfrey, 1998). Finally, in the context
of stochastic games with states as decision nodes, the corresponding equilibrium
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λ
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λ̄

H−1(0)

Path tracking infeasible.

λ

x

λ̄

H−1(0)

H0
x0

Path tracking feasible along
smooth branch H0 (grey).

Figure 2.2: Possible shapes of the zero set of H.

concept is called Markov quantal response equilibrium (Breitmoser et al., 2010;
Goeree et al., 2016).3

In this section, we formally define Markov quantal response equilibrium and
establish existence. Then we characterize the set of logit Markov quantal response
equilibria and show that its limit points are stationary equilibria.

2.3.1 Definition

In the context of stochastic games, players decide on optimal actions based on
effective payoffs including continuation values. Specifically, let

Usi(a, σs,−i, Vi) = usi(a, σs,−i) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i) Vs′i

denote the expected payoff from playing action a for player i in state s, given state
values and strategies of the other players. In the quantal response framework,
agent (s, i) ∈ S × I is assumed to perceive payoffs Usi(a, σs,−i, Vi) as

Ûsi(a, σs,−i, Vi) = Usi(a, σs,−i, Vi) + εsia

3Since we will make no requirements regarding symmetry, perhaps the more fitting term
would be stationary QRE (see Remark 1). However, the term Markov QRE is already estab-
lished, even where symmetry is not assumed.
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with noise εsia. The error vector εsi = (εsia)a∈Asi
is assumed to be distributed

according to a joint distribution with zero mean and density function fsi(εsi). Let

Rsia =
{

εsi ∈ R|Asi|
∣∣∣∣∣ Ûsia(σs,−i, Vi) ≥ Ûsia′(σs,−i, Vi) ∀ a′ ∈ Asi

}

denote agent (s, i)’s response set of action a ∈ Asi, specifying the realizations of
εsi such that agent (s, i) perceives action a as the one with the highest payoff.
Then, the probability that agent (s, i) plays action a is given by the probability
mass of the corresponding response set.

Definition 4. Markov quantal response equilibrium.
A Markov quantal response equilibrium (Markov QRE) is a strategy profile σ such
that

σsia =
∫

Rsia

fsi(ε) dε (a ∈ Asi, s ∈ S, i ∈ I).

Proving the existence of Markov QRE in stochastic games is a straightforward
application of Brouwer’s fixed-point theorem.

Theorem 3. Existence of Markov quantal response equilibrium.
Every stochastic game G has a Markov quantal response equilibrium.

Proof. Similar to McKelvey and Palfrey (1995, theorem 1), with minor modifica-
tions. A Markov quantal response equilibrium σ is part of a fixed-point (σ, V ) of
the function g(σ, V ) =

(
gσ(σ, V ), gV (σ, V )

)
with

gσ
sia(σ, V ) =

∫
Rsia

fsi(ε) dε
!= σsia,

gV
si(σ, V ) = Usi(σs, Vi) != Vsi,

for all states s ∈ S, players i ∈ I, and actions a ∈ Asi. Since strategies and state
values are bounded as follows,

σsia ∈ [0, 1],

Vsi ≤
∞∑

t=0
δt

i max
s′∈S

as′ ∈As′

{us′i(as′)} = 1
1− δi

· max
s′∈S

as′ ∈As′

{us′i(as′)} < ∞,

Vsi ≥
1

1− δi

· min
s′∈S

as′ ∈As′

{us′i(as′)} > −∞,
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for all s ∈ S, i ∈ I and a ∈ Asi, one can define g on a domain that is compact,
convex, and nonempty. Furthermore, since the distribution of noise ε has a density,
g is continuous. By Brouwer’s fixed-point theorem, g has a fixed point. ■

For the remainder of this paper, we focus on logit Markov QRE, a special case
arising from a specific distribution for ε.

2.3.2 Logit Markov QRE

The most popular special case of quantal response is logit choice (Luce, 1959)
where the probability σa of playing action a is given by the generalized logistic
function

σa = ω(ua)∑
a′ ω(ua′)

with weighting function ω for the payoffs ua′ associated with each action a′. Lo-
gistic rules of choice in the quantal response context arise from noise that is in-
dependently and identically distributed according to a Gumbel distribution with
parameter λ ∈ R+

0 (extreme value distribution of type I).4 The corresponding
equilibrium can be expressed in closed form.

Definition 5. Logit Markov quantal response equilibrium.
A stationary strategy profile σ with associated state values V constitute a logit
Markov quantal response equilibrium with parameter λ ∈ R+

0 if and only if for all
s ∈ S, i ∈ I, and a ∈ Asi:

σsia = exp (λUsi(a, σs,−i, Vi))∑
a′∈Asi

exp (λUsi(a′, σs,−i, Vi))
(2.2a)

Vsi = usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs) Vs′,i = Usi(σs, Vi) (2.2b)

where

Usi(a, σs,−i, Vi) = usi(a, σs,−i) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i)Vs′,i. (2.2c)

4The Gumbel distribution has cumulative distribution function F (ε) = e−e−λε and density
function f(ε) = e−λε · e−e−λε . The parameter λ ∈ R+

0 controls the variance of the distribution.
For λ = 0, the variance is infinite, and for λ→∞, the variance tends to zero.
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Note that this resembles the definition of stationary equilibria in Corollary 1,
except that maximization is replaced with logit choice. The logit formula for
these equilibrium strategies can be derived from the Gumbel distribution as in
McFadden (1973).

Theorem 4. Existence of logit Markov quantal response equilibrium.
Logit Markov QRE exists for all λ ∈ R+

0 .

Proof. Follows directly from Theorem 3. ■

2.3.3 Limiting Stationary Equilibria

Logit Markov QRE is parameterized by λ ∈ R+
0 , which can be interpreted as the

precision with which agents respond to payoffs. When λ = 0, the equilibrium
is completely noisy and consists in uniform mixing over all over actions, i.e. the
centroid strategies σsia = 1

|Asi| for all s, i, and a ∈ Asi. On the other hand, logit
responses approach best responses as λ → ∞. In particular, consider a sequence
of logit Markov QRE, σ(λ), with precision parameter λ. If the sequence converges
as λ→∞, then the limit point is a stationary equilibrium.

Theorem 5. Limiting stationary equilibria.
Consider the set of logit Markov QRE for a given game G, i.e. the set of solutions
(σ, V , λ) to equation (2.2) for all λ ∈ R+

0 . If (σ∗, V ∗,∞) is a limit point of this
set, then σ∗ is a stationary equilibrium of G.

Proof. By contradiction, similar to McKelvey and Palfrey (1995, theorem 2), with
minor modifications. Suppose (σn, V n, λn) → (σ∗, V ∗,∞) is a sequence of logit
Markov QRE, but σ∗ is not a stationary equilibrium. Then, according to Theo-
rem 2, there exists at least one state s where σ∗

s is not a Nash equilibrium of the
normal-form game with payoffs Usi( · , V ∗

i ). For this to be true, there must be an
agent (s, i) ∈ S × I with actions a, a′ ∈ Asi, where

Usi(a, σ∗
s,−i, V ∗

i ) > Usi(a′, σ∗
s,−i, V ∗

i ), (2.3)

but σ∗
sia = 0 and σ∗

sia′ > 0. Note that the latter means limn σn
sia < limn σn

sia′ , and
therefore, by equation (2.2a) and for n sufficiently large,

exp
(
λnUsi(a, σn

s,−i, V n
i )
)

∑
a′′∈Asi

exp
(
λnUsi(a′′, σn

s,−i, V n
i )
) <

exp
(
λnUsi(a′, σn

s,−i, V n
i )
)

∑
a′′∈Asi

exp
(
λnUsi(a′′, σn

s,−i, V n
i )
)
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Because denominator and λn are positive, this implies

Usi(a, σn
s,−i, V n

i ) < Usi(a′, σn
s,−i, V n

i )

Since U is continuous, this contradicts equation (2.3). ■

Theorem 5 suggests to find stationary equilibria by starting at any logit Markov
QRE and then following a sequence of them while letting λ → ∞. Provided a
limit point exists, it is guaranteed to be a stationary equilibrium. The next section
will show that such limit points indeed exist, and that the described procedure
is computationally feasible, giving a homotopy interpretation to the logit Markov
QRE correspondence.

2.4 Logit Markov QRE Homotopy

We now give a homotopy interpretation to logit Markov QRE: The system of
equations characterizing them (Definition 5) can be used to compute stationary
equilibria via homotopy continuation. The underlying intuition is as follows. The
goal is to solve the complicated problem of finding stationary equilibria. To do
so, we solve the simple problem of finding a logit Markov QRE and then distort
the solution into a solution of the complicated problem, i.e. into a stationary
equilibrium. Specifically, we propose a homotopy method that takes as starting
point the unique logit Markov QRE at λ = 0 and follows a smooth path, called
the principal branch of the homotopy, to a limiting stationary equilibrium.

In this section, we define a suitable homotopy function. Based on the homotopy
function, we show that the number of logit Markov QRE is finite for all parameter
values λ ∈ R+

0 . Furthermore, we establish useful properties of the corresponding
homotopy path, namely that it is almost everywhere one-dimensional and that
all of its branches stabilize as λ → ∞. Together with Theorem 5, this proves
convergence of all branches of the graph of the logit Markov QRE correspondence
to stationary equilibria.
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2.4.1 Homotopy Function

One can obtain a homotopy function suitable for the computation of stationary
equilibria directly from equation (2.2). H : Rn+1 → Rn can be defined as follows:

Hσ
sia(σ, V , λ) = σsia −

exp (λUsi(a, σs,−i, Vi))∑
a′∈Asi

exp (λUsi(a′, σs,−i, Vi))
∀s, i, a ∈ Asi (2.4a)

HV
si (σ, V , λ) = Vsi − usi(σs)− δi

∑
s′∈S

ϕs✮s′(σs) Vs′,i ∀s, i (2.4b)

The number of components is given by n = |A|+|S×I|. Note that by construction,
the zero set H −1(0) corresponds to the set of logit Markov QRE (compare equations
2.2 and 2.4). As shown by Turocy (2005, 2010) in the context of normal form and
dynamic games, for strictly computational purposes it is helpful to apply some
transformations to the system given by H(σ, V , λ) = 0 to obtain an alternative
homotopy function H̃, with

H̃σ
si0(σ, V , λ) = 1−

∑
a∈Asi

σsia (2.5a)

H̃σ
sia>0(σ, V , λ) = λ

(
Usi(a, σs,−i, Vi)− Usi(a0, σs,−i, Vi)

)
(2.5b)

−
(
log(σsia)− log(σsi0)

)
H̃V

si (σ, V , λ) = −Vsi +
∑

a∈Asi

σsiaUsi(a, σs,−i, Vi) (2.5c)

Note that the components referring to each agent’s actions are asymmetric;
the first line is a sum-to-one condition that determines σsi0, referring to the first
action a0 of each agent. An equation of the form given by the second line then
refers to every other action of the agent. A derivation of H̃ from H is given in
Appendix 2.A.1. For computational purposes, it is helpful to apply a transforma-
tion of variables and use logarithmized strategies βsia := log(σsia) as variables; in
particular, this prevents numerical blow-up of the Jacobian (Turocy, 2005). The
according Jacobian, which is useful for computations, is listed in Appendix 2.A.2.

2.4.2 Existence of a Principal Branch

We now show that the zero set of H always contains a unique, smooth branch
connecting the trivial logit Markov QRE at λ = 0 to a stationary equilibrium of
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the game at λ = ∞. Following this path allows to solve the game numerically.
We begin with some prerequisites.

Theorem 6. Markov logit QRE are isolated.
For fixed λ, the logit Markov QRE of a game are always isolated. Moreover, their
number is always finite.

Proof. We will use the shorthand x := (σ, V ). Suppose x ∈ H|−1λ (0), i.e. x is
a logit Markov QRE for the given λ. If x is not isolated in H|−1λ (0), it must be
part of a component that has locally at least dimension 1; by the real analytic im-
plicit function theorem, this component must contain a real analytic path passing
through x. Parameterize this path with path length parameter s ∈ (−ϵ, ϵ) as x(s)
with x(0) = x. x(s), and by extension H(x(s)), are real analytic in s. Because
the path is in the zero set, we must have H(x(s)) = 0 for all s ∈ (−ϵ, ϵ), so that
H(s), is the zero function, and for all components Hk of H we must have ∂iHk

∂si

for all i ∈ N. Now consider equations (2.5); these consist of a polynomial and a
logarithmic expression. After finitely many derivations, the partial derivatives of
the polynomial must vanish, and only the derivatives of the logarithms remain.
However, these can only vanish if σsia = σsia′ for all s, i and a, a′ ∈ Asi. Thus,
the only point that could potentially not be isolated is the centroid; however, this
immediately implies that the centroid is also isolated. Thus, all points in H|−1λ (0)
are isolated.

Once isolation is established, finiteness follows by the following argument.
Logit Markov QRE correspond to the zero set of H as given in equation (2.4),
which consists of exponential polynomials.5 By Khovanski’s theorem (Marker,
1996, p. 757), the zero set of any set of exponential polynomials consists of finitely
many connected components. ■

This has direct implications for the graph of the QRE correspondence: Because
its points are isolated in all dimensions except λ, the graph must be 1-dimensional
almost everywhere. The only exception are bifurcation points where multiple path
segments cross. A necessary condition for such a point is that the Jacobian J of
H is rank deficient; because wherever it has full rank n, the implicit function
theorem guarantees that the zero set of H is locally a 1-dimensional manifold.

5Exponential polynomials in a set of variables may be defined recursively as follows: (i)
All polynomials in these variables are exponential polynomials. (ii) Furthermore, if x, y are
exponential polynomials, then xy, x + y, and ex are also exponential polynomials. (iii) Only
expressions obtainable from (i) and (ii) are exponential polynomials. Note that the set of
exponential polynomials is closed under derivation.
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H0

rank
(
J(y)

)
< n

Figure 2.3: Example for a bifurcation point of the graph of the logit Markov
QRE correspondence.

Thus, in these points all minor determinants of J must vanish. Because these
determinants are polynomials in the derivatives of H, points for which H(y) = 0
and rank (J(y)) < n are again the zero set of a set of exponential polynomials, so
that Khovanski’s theorem implies that only a finite number of bifurcations exist.

By Lyapunov-Schmidt reduction one can decompose H−1(0) into the differ-
ent segments and formally show that the tangents on both sides of these simple
bifurcation points point in same or exactly opposite directions, i.e.

lim
τ→τ̃+

t
(
y(τ)

)
= ± lim

τ→τ̃−
t
(
y(τ)

)
(Allgower and Georg, 1990, theorem 8.1.14). This establishes that it is always
possible to find a unique smooth continuation of a current path segment across
such bifurcation points. We will refer to collections of such segments that continue
each other as paths. Note that the paths are real analytic, as they are implicitly
defined by a system of real analytic equations.

Theorem 7. Finite number of turning points.
Each path has at most a finite number of turning points in any of the dimensions
σsia, Vsi, or λ.

Proof. Turning points are characterized by one sub-determinant of J crossing 0
(compare equation 2.1). Together with H = 0, turning points are thus charac-
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terized by a set of exponential polynomials. Khovanski’s theorem (Marker, 1996,
p. 757) then again implies that their number is finite. ■

Theorem 8. Unique and transversal solution at λ = 0.
The system H(σ, V , 0) = 0 has a unique solution. There, a unique path in H −1(0)
crosses the hyperplane characterized by λ = 0 transversally.

Proof. For λ = 0, equation (2.4a) implies σsia = 1
|Asi| for all s, i and a ∈ Asi. Since

any σ induces a unique V , the solution must be unique.
Regarding transversality, it is sufficient to show that the sub-determinant of

the matrix J−λ does not vanish at that point.6 To that end, consider the Jacobian
of H, where H is given by (2.4). J−λ has the following structure:

J−λ(σ, V , λ) =


∂Hσ

sia(σ,V ,λ)
∂σs′i′a′

∂Hσ
sia(σ,V ,λ)
∂Vs′,i′

∂HV
si(σ,V ,λ)

∂σs′,i′,a′

∂HV
si(σ,V ,λ)
∂Vs′i′

 =


I|A| 0

∂HV
si(σ,V ,λ)

∂σs′,i′,a′
(I − δΦ̄)


The blocks in the second expression are derived as follows. First, when setting
λ = 0 in (2.4a), ∂Hσ

sia(σ,V ,λ)
∂σs′i′a′

is equal to 1 if s = s′, i = i′ and a = a′, and 0
else. The top left block is thus the identity matrix I|A|. Similarly, ∂Hσ

sia(σ,V ,λ)
∂Vs′,i′

= 0
for λ = 0, so that the top right block consists of zeros only. The bottom left
block can be ignored for the present purpose. Finally, in the bottom right block,
∂HV

si(σ,V ,λ)
∂Vs′i′

= 0 if i ̸= i′. The block is thus itself block-diagonal, with one block
per player. For i = i′, ∂HV

si(σ,V ,λ)
∂Vs′i′

= δiϕs✮s′(σs), unless s = s′, in which case
∂HV

si(σ,V ,λ)
∂Vs′i′

= 1−δiϕs✮s′(σs). Thus, the sub-blocks are of the form I|S|−δiΦ, where
Φ is a transition matrix. Because δi < 1, each of these sub-blocks is invertible. In
extension, the complete lower right block is invertible; together with the top two
blocks this ensures that the complete matrix has full rank. ■

We will call this solution at λ = 0 the starting point, and can now state the
main result of this section.

Theorem 9. Existence of the principal branch.
There exists a unique path that begins at the starting point and converges to a
stationary equilibrium of the game as λ → ∞. This path is called the principal
branch and can serve as homotopy path.

6J−λ is the square matrix obtained by deleting the λ-column from J . If the determinant
is non-zero, the Jacobian must have full rank, so that the implicit function theorem implies
that H −1(0) is locally one-dimensional, i.e. a path. The determinant of J−λ then determines the
λ-component of the tangent at that point (see equation 2.9). If it is non-zero, the path can not
be parallel to the hyperplane λ = 0.
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λ = 0

σ,V

λ

∞

Stationary equilibria

Figure 2.4: Structure of the graph of the logit Markov QRE correspondence. The
graph consists of 1-dimensional segments, with at most finitely many transversal
bifurcation points. A unique solution exists at λ = 0, where the principal branch
begins. For λ→∞, the branches converge to stationary equilibria.

Proof. As just shown, a unique path starts there transversally to the hyperplane
λ = 0. Next, remember that H−1(0) is bounded in all dimensions except λ (see
proof of Theorem 3). This implies that no path can go off to infinity in any of
the other directions. Any path stretching to λ = ∞ must converge; this follows
because paths are bounded and have a finite number of turning points, i.e. are
eventually monotonic. Any path in H −1(0) must therefore either be a closed loop
or have two limit points at λ =∞. The only exception is the path emanating from
the starting point, which must have as other endpoint a limit point at λ = ∞.
Finally, Theorem 5 already showed that the limit points of logit Markov QRE, i.e.
of the set H−1(0), at λ =∞ are stationary equilibria. ■

The structure of the graph of the logit Markov QRE correspondence is sum-
marized in Figure 2.4. The existence of the principal branch allows to compute
a stationary equilibrium of any finite discounted stochastic game in the following
way. First compute the starting point; this is trivial, as σ is just the centroid
and the corresponding values easily obtained. Next, follow the path numerically
(see Chapter 4 for a detailed description of an algorithm to do so). The possible
existence of branching points is no impediment, as one can simply continue across
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them; in principle, they even allow to compute further equilibria by following
the secondary branches (Allgower and Georg, 1990, ch. 8). Once the path has
converged with the desired accuracy, one has obtained a stationary equilibrium.
An implementation of this procedure is publicly available as part of the python
package sgamesolver, which is introduced in Chapter 4.

In addition to computation, this procedure of course entails a selection from
the set of all stationary equilibria. Whether this represents a convincing criterion
will certainly depend on whether logit Markov QRE in itself is a reasonable ap-
proximate solution concept and whether traversing the principal branch can be
given a convincing interpretation. The following two sections establish properties
of logit Markov QRE in that regard. First, we show that logit Markov QRE are
ε-equilibria, and derive a bound for ε. Consequently, while players do incur some
loss relative to perfect play by adopting the logit choice rule, this loss is bounded
and decreasing in λ. Then, Section 2.6 shows that logit Markov QRE can arise
from a very reasonable learning algorithm, and that the traversal of the principal
branch in a sense resembles all players using that algorithm with continuously
increasing precision.

2.5 Logit Markov QRE as ε-equilibrium

In this section, we will show that every logit Markov QRE is an ε-equilibrium.
We derive a bound for ε that, interestingly, does not depend on the payoffs of the
game, but is given by ε ≤ J−1

(1−δ)λe
, where J = maxs,i |Asi| represents the maximum

number of actions held by any player in any state, and δ = maxi δi. ε-equilibrium
is defined as follows.

Definition 6. ε-equilibrium.
In a normal-form game with payoff functions ui, a strategy profile σ is an ε-
equilibrium if and only if, for all i ∈ I,

max
σ′

i

ui(σ′
i, σ−i)− ui(σi, σ−i) ≤ ε

Likewise, in a stochastic game where total discounted payoffs for player i in state
s are given by Usi(σ), a stationary strategy profile σ is an ε-equilibrium if and
only if, for all s and i,

max
σ′

i

Usi(σ′
i, σ−i)− Usi(σi, σ−i) ≤ ε



70 CHAPTER 2. MARKOV QUANTAL RESPONSE EQUILIBRIUM

We begin with a simple, one-shot decision situation where we derive a bound
for the maximum loss a decision maker can incur when choosing according to logit
probabilities, rather than maximizing. While the derivation is rather straightfor-
ward, we have not found this bound in the literature. Consider an agent who
has to choose from a finite set of J options, with utilities u = (u1, ..., uJ) ∈ RJ .
Denote umax = max u. For a given precision parameter λ > 0, the logit choice
rule consists of choosing option i with probability

σi(λ) := exp(λui)∑
j exp(λuj)

Unless all options have the same utility, this is obviously worse than simply choos-
ing a maximizing option. However, the loss can be bounded as follows. Define the
loss incurred from following logit choice rather than maximizing as

loss(λ) := umax −
∑

j

σjuj

Theorem 10. Bound for the loss incurred from logit choice.
For any (u1, ..., uJ) ∈ RJ and any λ ≥ 0, loss(λ) ≤ J−1

λe
.

Proof. We begin by rewriting the loss function as

loss(λ) = umax −
∑

j

σjuj

=
∑

j

exp(λuj)∑
k exp(λuk)(umax − uj)

=
∑

j

exp
[
λuj − log

(∑
k

exp (λuk)
)]

(umax − uj)

Note the term log (∑k exp (λuk)), which can be bounded as follows:

λumax = log
(

exp (λumax)
)
≤ log

(∑
k

exp(λuk)
)

≤ log
(
J exp(λumax)

)
= λumax + log J
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Using the lower bound in loss(λ):

loss(λ) =
∑

j

exp
[
λuj − log

(∑
k

exp (λuk)
)]

(umax − uj)

≤
∑

j

exp [λuj − λumax] (umax − uj)

=
∑

j

(umax − uj)
exp (λumax − λuj)

This sum comprises of terms of the form t = ze−λz, with z, λ ≥ 0. First and
second derivatives of these terms are

∂t

∂z
= e−λz − λze−λz

∂2t

∂z2 = λ(λz − 2)e−λz

so that their global maximum is attained at z = λ−1, where tmax = 1
λe

. Finally, at
least one of these summands is zero, so that

loss(λ) ≤
∑

j

(umax − uj)
exp (λumax − λuj)

≤ J − 1
λe

as claimed. ■

An interesting feature of this bound is that it does not depend on u, which
might be counter-intuitive at first glance. The reason for this is that the logit
choice rule itself is sensitive to u: If the utility difference between good and bad
options increases, the rule shifts probability mass to the former. For example,
doubling the stakes by doubling all utilities in u has the same effect on choices as
doubling the precision parameter λ; thus, while the cost of choosing a bad option
increases, this is offset by a decrease in probability. Also note that the bound
depends on the number of actions, J . The reason is that adding additional copies
of the worst action to the decision problem increases the total probability with
which this class of actions is played – a general property of the logit choice rule.

Before moving to intertemporal decision problems, we can already use this to
state a result regarding one-shot games.

Theorem 11. Logit QRE as ε-equilibrium.
Consider a finite normal form game G, and suppose σ is a logit QRE with precision
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parameter λ. Then σ is an ε-equilibrium of G with ε ≤ J−1
λe

, where J is the
maximum number of actions held by any player.

Proof. This follows almost directly from Theorem 10. In a logit QRE, player i

with action set Ai randomizes between actions according to the logit rule, with
u = (u(a, σ−i))a∈Ai

. Thus, the maximum loss incurred is bounded by |Ai|−1
λe

. The
theorem then results from taking the maximum over all players. ■

We now extend Theorem 10 to finite Markov decision processes (MDPs). We
take as given an MDP with a finite set of states S, finite action sets As, instan-
taneous utilities us, transition probabilities ϕs→s′ and discount factor δ < 1. Note
that this conforms to Definition 1 for stochastic games, just with a singleton player
set. We will consider stationary policies, which assign to each state a probability
distribution over the available actions. A logit policy with precision parameter λ

is defined by choosing action a ∈ As in state s with probability

σsa(λ) := exp (λU(a, V ))∑
a′∈As

exp (λU(a′, V ))

where we again use a shorthand for total discounted utility

Us(a, V ) := us(a) + δ
∑
s′∈S

ϕs✮s′(a)Vs′

and it is assumed that the continuation values V are implicitly defined by the
recursive relation

Vs = us(σ) + δ
∑
s′∈S

ϕs✮s′(σ)Vs′

Essentially, a logit policy consists in applying logit choice to total discounted
utility, where continuation values are consistent with the policy itself. Note that
this simply corresponds to logit Markov QRE applied to a single-player stochastic
game.

Theorem 12. Bound for the loss incurred from a logit policy.
Consider a given finite MDP. If σ is a logit policy with precision parameter λ,
then in any state, the loss in total discounted utility relative to an optimal policy
is bounded from above by J−1

(1−δ)λe
, where J = maxs |As| is the maximum number of

actions in any state.

Proof. The relation to Theorem 10 is probably not surprising, as here, losses are
just compounded. However, a bit of careful work is necessary, because Theorem 10



2.5. LOGIT MARKOV QRE AS ε-EQUILIBRIUM 73

essentially concerns one-shot decisions. But changing the policy in period t affects
the decision situation in t − 1 via continuation values, so that it is not obvious
that the bound from Theorem 10 then keeps holding in t− 1.

We begin introducing some notation. Let σ∗ be an optimal policy for the
MDP, with associated values V ∗. Denote by u∗ =

(
u1(σ∗

1), u2(σ∗
2), ..., u|S|(σ∗

|S|)
)T

the vector of instantaneous utilities and Φ∗ be the transition matrix induced by
it, so that Φ∗

m,n = ϕm✮n(σ∗
m). Likewise, denote by V , u, Φ the same quantities

associated with the logit policy σ. Finally, let ε = J−1
λe

and let ε be a vector of
length |S| with all entries ε.

Applying the bound from Theorem 10 to the definition of a logit policy yields

Us(σ∗
s , V )− Us(σs, V ) = u∗

s + δ
∑
s′

ϕs✮s′(σ∗
s)Vs′ − us − δ

∑
s′

ϕs✮s′(σs)Vs′ ≤ ε

in every state, or, in the more parsimonious vector notation

u∗ + δΦ∗V − u− δΦV ≤ ε

The above essentially states that, starting from the logit policy σ, the gain from
a one-shot deviation – changing the policy today, but returning to σ tomorrow –
is at most ε. This is also why V appears twice as continuation value, and V ∗ not
at all. However, the goal is to bound a total, rather than a one-shot deviation,
that is, bound V ∗ − V . To get there, we use the recursive definitions of V ∗ and
V , namely

u∗ = V ∗ − δΦ∗V ∗ and u = V − δΦV

After plugging both into the above inequality, the δΦV cancel and one obtains

V ∗ − δΦ∗V ∗ − V + δΦ∗V = (I − δΦ∗)(V ∗ − V ) ≤ ε

Then, using the fact that Φ∗ is a transition matrix and δ < 1,

V ∗ − V ≤ (I − δΦ∗)−1ε =
∞∑

t=0
(δΦ∗)tε

As a transition matrix, Φ∗ has row sums less or equal to one, and thus Φ∗ε ≤ ε:

V ∗ − V ≤
∞∑

t=0
(δΦ∗)tε ≤

∞∑
t=0

δtε = 1
1− δ

ε
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which completes the proof. ■

We can now turn to stochastic games and state the main result of this section.

Theorem 13. Logit Markov QRE as ε-equilibrium.
Consider a stochastic game G, and suppose σ is a logit Markov QRE with precision
parameter λ. Then σ is also an ε-equilibrium of G with ε ≤ J−1

(1−δ)λe
, where J =

maxs,i |Asi| is the maximum number of actions held by any player in any state and
δ = maxi δi is the maximum discount factor among players.

Proof. This now follows quickly from Theorem 12. In a Markov QRE given by
σ, the strategy σi of each player i is a logit policy, given σ−i. Thus, i can gain at
most Ji−1

(1−δi)λe
in any state, where Ji = maxs |Asi|. Taking the maximum over all

players then yields the claim. ■

2.6 Logit Markov QRE and Reinforcement
Learning

In this section, we establish a connection between logit Markov QRE and rein-
forcement learning. Specifically, we will show that the set of logit Markov QRE
corresponds to the stationary points of a game dynamic that arises if all players
follow the well-established reinforcement learning algorithm SARSA. Before we
turn to that, the following subsection establishes some background on reinforce-
ment learning.

2.6.1 Background: Reinforcement Learning

To give unfamiliar readers some context, we will briefly discuss reinforcement
learning in general before then introducing the specific algorithm SARSA, which
has a close connection to logit Markov QRE. Everything in this introduction owes
to the excellent textbook by Sutton and Barto (2018), who characterize the topic
as follows (p. 2):

Reinforcement learning, like many topics whose names end with “ing,”
such as machine learning and mountaineering, is simultaneously a
problem, a class of solution methods that work well on the problem,
and the field that studies this problem and its solution methods.
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The solution methods or algorithms under this label deal with the problem of
optimal control in Markov decision processes – meaning any decision problem that
is defined by a set of states (S), a set of actions per state (As), each of which is
associated with a distribution over a set of rewards (R) and a distribution over the
subsequent state (ϕ).7 Dynamic programming methods are also geared towards
this problem class; but unlike these, reinforcement learning generally does not re-
quire the decision maker to have complete knowledge of the MDP. Instead, agents
are assumed to have no initial knowledge, but can learn from direct, ongoing expe-
rience with the environment – by making decisions and facing their consequences.
Thus, one of the central issues of interest is the trade-off between exploration of the
ex ante unknown environment, and exploitation of the information collected thus
far. Furthermore, reinforcement learning methods are commonly designed with
limitations in computing power and memory in mind, a consideration again absent
in dynamic programming. Similar to dynamic programming, reinforcement learn-
ing algorithms typically involve (iterative) approximation of value and/or optimal
policy functions.

We consider here the class of finite MDPs (S, A, R finite); for these, the value
function approximation is typically a mapping from states (or state-action pairs,
see later) to the reals, meaning so-called tabular methods are feasible (or even
necessary, if the environment has no further structure). The agent is assumed to
undergo episodes of experience as follows: An initial state is drawn according to
some distribution. The agent learns the state; he can choose an available action; a
reward is drawn from the associated distribution and revealed, as is the subsequent
state. This repeats until a terminal state is reached and a new episode starts. The
presence of terminal states may be replaced with exponential discounting. The
agent is assumed to have no further knowledge of the environment, including prior
beliefs on the relevant distributions. Learning is typically “online”, meaning the
rewards collected during this process matter, and episodes are either limited in
number or themselves discounted.

Commonly in reinforcement learning, the quantities estimated are not state
values, but state-action values: the (possibly discounted) expected total reward
following a specific action in a given state. These are often called q- or qsa-values.
In the notation of this paper, qsa corresponds to Us(a) = us(a) + δ

∑
s′ ϕs✮s′(a)Vs

7The reader will immediately recognize the similarity to Defintion 1 of stochastic games; the
only difference to a one-player-version of the latter is that rewards are allowed to be randomly
distributed. In contexts where only the expected reward matters, one can simply use us(a) =
E(R|s, a).
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(where the player-index i is omitted for now). The importance of q-values over
simple state values V is due to the fact that many methods are model free, i.e.
stay agnostic with regards to the transitions ϕ throughout the learning process.
Without knowledge or an estimate of ϕ, q-values cannot be calculated from V ,
and V in itself is actually quite useless for guiding behavior.

The conceptually simplest tabular methods are so-called Monte Carlo methods,
dating back at least as far as dynamic programming. Essentially, these methods
store a running average value for each state-action a ∈ As. After each completed
episode, the value estimate of each state that was visited (or each state-action
in model-free algorithms) is updated using the total reward collected following
the visit. Variants differ in how a policy is derived from current estimates, how
exactly the update is weighted, and so on.

Probably the most important breakthrough in reinforcement learning were the
so-called temporal difference (TD) methods. Unlike Monte Carlo methods, they do
not delay updating the value function until after the episode. Rather, whenever
an action is taken, its q-estimate is updated right away, using the sum of the
immediate reward and a (discounted) current estimate of the resulting states’
value. Basing an estimate upon a previous estimate is called bootstrapping and a
feature TD methods share with dynamic programming, in contrast with e.g. Monte
Carlo methods or solving a known MDP with linear programming. TD methods
have proven to be very effective in a wide range of settings; moreover, there is
ample evidence for neurological correlates of the prediction error and subsequent
correction of value estimates in humans and other organisms.

TD methods are defined by an action selection rule that guides exploration,
and an update rule that prescribes how exactly experience is incorporated into
value estimates. Their choice is rather free; under the mild restriction that each
state-action pair is revisited an unlimited number of times, most actions selection
rules typically ensure convergence in the limit. The exact choice of course affects
speed of convergence and, in online learning, the degree of loss due to exploration
along the way. Logit choice (often called softmax in this context) and ϵ-greedy are
the most widely studied (both of course with respect to the current q-estimates)8.

8The greedy policy always picks the current best estimate, and thus focuses on exploitation
only. ϵ-greedy balances exploration and exploitation by choosing the current best estimate with
probability 1 − ϵ and a completely random action with ϵ. Logit choice also balances both, but
takes into account the estimated value differences – actions estimated to be very bad are still
picked, but with probability decreasing in the utility gap. The advantage in online learning
should be obvious.
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Update rules on the other hand give rise to further conceptual distinctions
within the TD class. Generally, after taking action a in state s, the update is
performed as follows

q′
sa = qsa − α(us(a) + δqs′a′ − qsa) (2.6a)

= (1− α)qsa + α(us(a) + δqs′a′) (2.6b)

where s′ is the observed subsequent state, and a′ the prescribed action in that
state – how exactly a′ is chosen in updating is the main distinguishing feature be-
tween TD methods and will be discussed below. Equation (2.6a) illustrates that
these methods work by continuously correcting the estimates by an experienced
prediction error: The bracketed term represents realized minus expected reward.
TD methods thus fall under the more general mathematical concept of stochastic
approximation processes (Borkar, 2008). Equation (2.6b) represents the new esti-
mate as a convex combination of the previous estimate and realized reward. α is a
gain parameter; typically, it is chosen to be decreasing over time: ∑t αt =∞ and∑

t α2
t < ∞ together ensure convergence for most algorithms, an obvious choice

being αt = 1/t.
As mentioned, the choice of a′ in the update gives rise to further sub-categoriza-

tion within TD methods. Perhaps the most widely known algorithm q-learning
is a so-called off-policy method, meaning the policy used for updating does not
correspond to the action selection rule. Rather, updates are always performed
using qs′a′ = arg maxa′′ qs′a′′ , i.e. updating is done with respect to the greedy
policy. This implies that q-values may converge to the true, underlying value
function without current, explorative behavior necessarily becoming optimal over
time (e.g. trivially when using a static action selection rule such as the centroid).
This illustrates that one should distinguish different notions of convergence in the
setting of TD methods:

1. Convergence of q-values to the optimal values.

2. Convergence of q-values to those in accordance with current behavior.

3. Convergence of current policy to optimal policy.

While exploration is still going on, q-learning always achieves the first, and never
the second. Thus, to meet the third – arguably the behavioral goal – exploration
has to be decreased towards zero over time. In an ϵ-greedy policy, the ϵ has to
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be shrunk towards zero, or the λ used in logit choice increased towards infinity.9

Proofs for 1. and 3. exist for suitably parametrized q-learning.

The contrast are on-policy methods that perform the update with respect to
the same rule that is used for action selection. The main exemplar is SARSA
(“state-action-reward-state-action”): Here, a′ in updating simply corresponds to
the action that is actually selected due to the current policy, i.e. which is in fact
chosen next period by the agent. A refinement is expected SARSA, which removes
the randomness that is under the agent’s control from the updating step: Updating
is performed using qs′a′ = ∑

a′′ σa′′qs′a′′ , where σa′′ is the probability given to a′′ in
the resulting state under current policy and value estimates. In expectation and in
the limit, both variants behave equivalently, but using the expected continuation
demonstrably speeds up convergence in applications (van Seijen et al., 2009). For
suitable αt and a static action selection rule (e.g. logit with a fixed λ), SARSA
meets 2., but not 1. in terms of convergence. However, if action selection is shifted
towards a greedy policy over time (e.g. λ increased without bound), 3. and thus
also 1. occur as well.

Arguably, reinforcement learning models are well-suited for an application in
stochastic games, which already share the basic structure of an MDP. The litera-
ture so far however has focused predominantly on one-shot games. Between on-
and off-policy algorithms, the former seem to us the more natural choice when
studying dynamics in games; the reason is that off-policy algorithms such as q-
learning incur the problem that players’ behavior does not necessarily reveal in
real time what they have learned so far.

The upcoming section will establish a close connection of logit Markov QRE
to expected SARSA. SARSA and expected SARSA are tried and tested methods,
and are often used in actual applications to solve problems of the given class (van
Seijen et al., 2009; Zhang et al., 2011; Jiang et al., 2019; Kosana et al., 2022).
Thus, the close connection of logit Markov QRE to reinforcement learning is not
with regard to some obscure algorithm, perhaps even hand-picked to match, but
rather to one of the main methods the field suggests for problems that are the
single-player equivalent of finite stochastic games.

9Of course, this is assuming the environment is known to be static; in a changing environ-
ment, maintaining a degree of exploration will be desirable.
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2.6.2 Logit Markov QRE and expected SARSA

We now establish a connection of logit Markov QRE and a specific form of expected
SARSA. First, we establish that it is possible to reformulate logit Markov QRE
in terms of q-values rather than σ and V . This will make it straightforward to
relate the two concepts later on.

Denote as q ∈ R|A| a vector of reals, with one entry qsia for each action a ∈ Asi

of any player i in any state s. Furthermore, we will need a way to map these
into strategies; for a given precision parameter λ, define the logit choice function
σ : R|A| → R|A| with components

σsia(q) = exp(λqsia)∑
a′∈Asi

exp(λqsia′)

As before with mixed strategies, we denote collections of the components of σ by
expressions like σsi, σ−i, and so on. We can now obtain the following result.

Theorem 14. q-value-representation of logit Markov equilibrium.
(i) Suppose for given λ ∈ R+

0 , q ∈ R|A| is a solution to

qsia = usi(a, σs,−i(q)) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i(q))
∑

a′∈As′i

σs′ia′(q) qs′ia′ (2.7)

for all s, i, and a ∈ Asi. Then σ(q) is a logit Markov QRE with the same precision
parameter λ.
(ii) Conversely, if σ is a logit Markov QRE, then there exists a vector q ∈ R|A|

which satisfies σ(q) = σ and equations (2.7).

Proof. (i) Set Vsi = ∑
a∈Asi

σsia(q) qsia and plug into (2.7) to obtain

qsia = usi(a, σs,−i(q)) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i(q)) Vs′i (2.8)

By equation (2.2c), this identifies qsia with Usi(a, σs,−i(q)). From the definition of
σ(q), equation (2.2a) then follows immediately. (2.2b) is obtained by multiplying
each equation (2.8) with the corresponding σsia(q) and then summing over all
a ∈ Asi.
(ii) Let V be the state-values associated with σ. Set qsia = Usi(a, σs,−i, Vi). Then,
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σ = σ(q) follows from the definition of logit Markov QRE (equation 2.2a). Plug-
ging into (2.7) yields

Usi(a, σs,−i, Vi) = usi(a, σs,−i) + δi

∑
s′

ϕs✮s′(a, σs,−i)
∑

a′∈As′i

σs′ia′ Us′i(a′, σs,−i, Vi)

= usi(a, σs,−i) + δi

∑
s′

ϕs✮s′(a, σs,−i)Us′i(σsi, σs,−i, Vi)

= usi(a, σs,−i) + δi

∑
s′

ϕs✮s′(a, σs,−i)Vs′i

which holds by equation (2.2c). ■

We now turn to derive a form of game dynamics from expected SARSA. We
will assume that all players of the game play and learn according to expected
SARSA, using a logit choice rule with a fixed and identical precision parameter
λ, which we will denote by σ(q) as introduced above. Thus, every player tracks a
set of q-values, (qsia)s∈S,a∈Asi

. Players do this separately, possibly without being
aware that other players even exist. As mentioned earlier, SARSA is model-free,
and learning does not involve forming a representation or estimate of u or ϕ. In
particular, players do not track the strategies nor the learning process of the others
in any way.

This induces the following updating process. Suppose that the current state is
s, and players happen to choose action profile as. A subsequent state s′ is drawn
(with probabilities ϕs✮s′(as)) and observed by all players. Each player then updates
the q-value of the chosen action asi according to the update rule of expected
SARSA:

qt+1
sia = (1− αt)qt

sia + αt

usi(as) + δi

∑
a′∈As′i

σs′ia′(q) qt
s′ia′


All other entries of q are unchanged, i.e. qt+1 = qt. The process then repeats, this
time in state s′. If the game has terminal states, we assume play to be organized
into episodes, meaning the game restarts from an initial state after termination.
Otherwise, players will just follow this process indefinitely.

The above process induces a Markov chain in discrete time, with state variables
given by qt ∈ R|A|, st ∈ S, and αt (if this update parameter is chosen to be time-
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varying; we will comment on α later). The expectation of qt+1
sia , conditional on

action a being chosen by i, is

E(qt+1
sia |a chosen) = (1−αt)qt

sia+αt

usi(a, σs,−i) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i)
∑

a′∈As′i

σs′ia′(q) qt
s′ia′


One can obtain the unconditional expectation by simply weighting the above
update with σsia:

E(qt+1
sia ) = σsia

(
qt
)
E
(
qt+1

sia |a chosen
)

+
(
1− σsia(qt)

)
qt

sia

One can quickly see that E(qt+1
sia ) = qt

sia for all s, i, a ∈ Asi if and only if σ(q) is a
logit Markov QRE. After setting E(qt+1

sia ) = qt
sia in the equation above, it simplifies

to equation (2.7), and the claim follows directly from Theorem 14.
Thus, logit Markov QRE figures as those points of the Markov chain that

are stationary in expectation. However, it is often inconvenient to deal with
continuous-state, discrete time chains such as the one considered here. To circum-
vent this, it is standard practice in the study of reinforcement learning algorithms
to rely on the so-called ODE method (Borkar, 2008). The underlying idea is to
establish that the discrete process can be approximated by a continuous one in the
limit, and then study the latter, which often allows much stronger results. There
are generally two prerequisites. The first concerns the update weights αt, which
must obey ∑t α2

t < ∞ and ∑
t αt = ∞. Intuitively, these conditions ensure that

the update steps get continuously smaller, but not at a pace that would allow the
process to converge simply due to the decrease in step size, rather than reaching
an actual stationary point. A typical choice is αt = 1/t. It is also possible to
use a separate α for every individual state or even action. The other prerequisite
is that every state is visited infinitely often and every action is used an infinite
number of times. The latter is directly implied by the logit choice rule. For the
former, some mild restrictions must be placed on ϕ, in particular on the transi-
tion matrix that arises from completely mixed strategy profiles (which logit choice
always produces): Either, the game does not involve termination, and all states
are connected. Or, the game terminates with probability one in finite time (which
then starts a new episode), and every state is reachable from the possible initial
states.
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If the prerequisites are met, discrete stochastic updating processes can be
represented by a system of ordinary differential equations. In our case, the system
is given by

q̇sia = qsia −

u
(
a, σs,−i(q)

)
+ δ

∑
s′∈S

ϕs✮s′

(
a, σs,−i(q)

)∑
a′∈As′i

σs′ia′(q) qs′ia′

 (2.9)

for every s, i, and a ∈ Asi. Note that for normal-form games, this dynamic reduces
to the well-known logit dynamics (Alós-Ferrer and Netzer, 2010).

Theorem 15. Logit Markov QRE as stationary points.
The set of logit Markov QRE exactly coincides with the set of stationary points of
the dynamic given by (2.9).

Proof. For q̇sia = 0, equation (2.9) reduces to equation (2.7), which are necessary
and sufficient for logit Markov QRE by Theorem 14. ■

This is the main result in the current section. A natural next step is to consider
the stability of logit Markov QRE as stationary points. Unfortunately, we cannot
offer such results yet.10

Still, the dynamic perspective in our view already gives additional credence
to logit Markov QRE as a solution concept. In the usual interpretation of QRE,
players still act strategically, i.e. form (accurate) beliefs about others’ actions and
react to expected payoffs, even if noisily. However, as shown here, logit Markov
QRE remains a reasonable solution concept even under much weaker assumptions:
The updating process that gives rise to the dynamic in (2.9) is purely mechanical,
and players are required to track own actions and realized instantaneous utilities
only, without modeling the game or other players at all.

Theorem 15 is also interesting for the homotopy interpretation of logit Markov
QRE. In this section, we assumed λ to be a given and fixed parameter. However,
one could imaging a meta-process, by which all players start at λ = 0 and then
increase it continuously, while correcting the q-estimates according to (2.9) along
the way.11 If the former happens on a much slower time scale, the resulting

10As a minor exception, it is straightforward to show that the starting point at λ = 0 is always
stable: Since the logit response consists uniform mixing independent of q, there is essentially no
interaction between the players, so that the convergence proofs from the single-agent case apply
(van Seijen et al., 2009). By continuity this result then extends also to all logit Markov QRE
with sufficiently small λ.

11Note that increasing λ is also generally the recommendation when using SARSA in practical
applications, as only then the optimal policy is actually reached in the limit (Sutton and Barto,
2018).
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trajectory should resemble following the principal branch of the homotopy, as
described in Section 2.4 for computational purposes. An important complication
is the existence of path segments along which λ has to be decreased to follow
it (see Figure 2.1). It seems promising to us to study in detail what happens
along these segments in terms of the dynamics. We suspect that generically,
stability of the stationary points switches at the turning points in λ (so that
the increasing segments are stable, the decreasing ones unstable). Continuously
increasing λ would then lead to a mostly continuous evolution of strategies, but
involve discontinuous, rapid changes whenever such a turning point is reached.

Finally, if the existence of stable equilibria can be established at least generi-
cally, the dynamic interpretation could also be used for computational purposes.
An alternative to homotopy continuation from the starting point would then be
to start at some higher λ and arbitrary q, and either perform iterated discrete
updates or integrate the system of ordinary differential equations from (2.9) until
a logit Markov QRE is approximated with the desired precision. Once there, one
can follow the homotopy branch from that point on in both directions to compute
stationary equilibria. This might be more efficient computationally than pure
homotopy continuation. Moreover, it would allow to reach branches of the QRE
graph that are not connected to the starting point.

2.7 Conclusion

In this paper we have defined Markov quantal response equilibria and shown exis-
tence for all finite discounted stochastic games. We then studied the specific vari-
ant based on logit response, whose correspondence can be given a homotopy inter-
pretation. As we demonstrate, the set of logit Markov QRE includes a uniquely
defined principal branch, connecting the unique solution at λ = 0 to a specific
limiting stationary equilibrium.

This result opens two avenues. First, the uniqueness of the principal branch
suggests that it can be used as an equilibrium selection criterion. Second, numer-
ical traversal of the principal branch can be used to efficiently compute at least
one stationary equilibrium of any stochastic game. A ready-to-use implementa-
tion is available as part of the python package sgamesolver (Chapter 4). Subject
to the usual limitations of numerical computation, it can solve any finite game
falling under the broad class of finite stochastic games, with no requirements to
its specific structure.
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We further established two interesting properties of logit Markov QRE. The
first is a bound for the maximum loss incurred by any player, compared to an
optimal strategy, establishing it as ε-equilibrium. The bound is independent of u

and decreasing in λ. Second, we demonstrated a close connection of logit Markov
QRE to reinforcement learning, which is readily applicable to the structure of
stochastic games. In particular, logit Markov QRE coincide with the stationary
points of a dynamic we derived from the tried-and-tested learning algorithm ex-
pected SARSA. QRE is in general seen as a behavioral solution concept, where
players are assumed to act boundedly rational, but still model their surroundings
as rational agents would. The results suggests that it remains interesting under
much weaker assumptions, as the outcome of a learning process that has extremely
minimal demands in terms of information processing. Studying this dynamic in
more detail, in particular with respect to asymptotic stability, seems like a very
promising avenue to us.
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Appendix

2.A Homotopy Function for Computation

2.A.1 Homotopy Function

The original system of equations according to (2.4) reads

Hσ
sia(σ, V , λ) = σsia −

exp (λUsi(a, σs,−i, Vi))∑
a′∈Asi

exp (λUsi(a′, σs,−i, Vi))
= 0 ∀s, i, a ∈ Asi

HV
si (σ, V , λ) = Vsi − usi(σs)− δi

∑
s′∈S

ϕs✮s′(σs) Vs′,i = 0 ∀s, i,

It contains two types of equations: strategy equations and state value equations.
The strategy equations are transformed as follows, analogously to Turocy (2005,
2010). We will denote the first action of each agent as a0 and the according
probability by σsi0. First, for each agent (s, i), the strategy equations for actions
a ̸= a0 are divided by the corresponding equation of action a = 0 so that the
denominators cancel:

σsia>0

σsi0
= exp (λUsi(a, σs,−i, Vi)− λUsi(a0, σs,−i, Vi)) .

Secondly, logarithmizing removes the remaining exponential :

log(σsia>0)− log(σsi0) = λ
(
Usi(a, σs,−i, Vi)− Usi(a0, σs,−i, Vi)

)
Finally, instead of the by now trivial strategy equations for actions a = 0, nor-
malization equations are introduced, ensuring that probabilities sum up to one:

∑
a∈Asi

σ∗
sia = 1.

The state value equations are rewritten using the shorthand

Usi(σs) = usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs) Vs′,i

Finally, for numerical purposes, it is preferable to work with logarithmized strate-
gies to avoid blow-up in the Jacobian (Turocy, 2005, 2010). Applying the sub-
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stitution βsia := log(σsia), but still writing σsia = eβsia for better readability, the
transformed system of strategy and state value equations is given by

H̃σ
si0(β, V , λ) = 1−

∑
a∈Asi

σsia = 0

H̃σ
sia>0(β, V , λ) = λ

(
Usi(a, σs,−i, Vi)− Usi(a0, σs,−i, Vi)

)
−
(
βsia − βsi0

)
= 0

H̃V
si (β, V , λ) = −Vsi +

∑
a∈Asi

σsia Usi(a, σs,−i, Vi) = 0

2.A.2 Jacobian Matrix

The components of the Jacobian matrix

J(β, V , λ) =

∂Hσ
sia(β,V ,λ)

∂βs′,i′,a′
,

∂Hσ
sia(β,V ,λ)
∂Vs′,i′

,
∂Hσ

sia(β,V ,λ)
∂λ

∂HV
si(β,V ,λ)

∂βs′,i′,a′
,

∂HV
si(β,V ,λ)
∂Vs′,i′

,
∂HV

si(β,V ,λ)
∂λ


are given as follows.

Partial derivatives of Hσ:

∂Hσ
si0(β, V , λ)
∂βs′i′a′

=

−σsia′ if s′ = s and i′ = i,

0 else,

∂Hσ
si0(β, V , λ)

∂Vs′i′
= 0,

∂Hσ
si0(β, V , λ)

∂λ
= 0,

∂Hσ
sia>0(β, V , λ)

∂βs′,i′,a′
=



1 if s′ = s, i′ = i, a′ = 0,

−1 if s′ = s, i′ = i, a′ > 0,

λ
[

∂Usi(a,σs,−i,Vi)
∂βs′i′a′

− ∂Usi(a0,σs,−i,Vi)
∂βs′,i′,a′

]
if i′ ̸= i,

0 else,

∂Hσ
sia>0(β, V , λ)

∂Vs′i′
= λ

[
∂Usi(a, σs,−i, Vi)

∂Vs′i′
− ∂Usi(a0, σs,−i, Vi)

∂Vs′i′

]
,
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∂Hσ
sia>0(β, V , λ)

∂λ
= Usi(a, σs,−i, Vi)− Usi(a0, σs,−i, Vi).

Partial derivatives of HV :

∂HV
si (β, V , λ)
∂βs′i′a′

=


σsia′ · Usi(a′, σs,−i, Vi) if s′ = s, i′ = i,∑
a′′∈Asi

σsia′′ · ∂Usi(a′′,σs,−i,Vi)
∂βsi′a′

if s′ = s, i′ ̸= i,

0 else,

∂HV
si (β, V , λ)
∂Vs′,i′

=



−1 + ∑
a′′∈Asi

σsia′′ · ∂Usi(a′′,σs,−i,Vi)
∂Vsi

if s′ = s, i′ = i,∑
a′′∈Asi

σsia′′ · ∂Usi(a′′,σs,−i,Vi)
∂Vs′,i

if s′ ̸= s, i′ = i,

0 else,

∂HV
si (β, V , λ)

∂λ
= 0.

Underlying partial derivatives of expected payoffs:

∂Usia′′(a′′, σs,−i, Vi)
∂βs′i′a′

=


∑

as,−i∈As,−i

asi′ =a′

∏
i′′∈I
i′′ ̸=i

σsi′′,as,i′′ · Usi(a′′, as,−i, Vi) if s′ = s, i′ ̸= i,

0 else,

∂Usi(a′′, σs,−i, Vi)
∂Vs′,i′

=


∑

as,−i∈As,−i

∏
i′′∈I
i′′ ̸=i

σs,i′′,as,i′′ · δi · ϕs→s′(a′′, as,−i) for i′ = i,

0 else.
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Chapter 3
The Logarithmic Stochastic Tracing

Procedure

This chapter is based on joint work with Steffen Eibelshäuser, Victor Klockmann,
and Alicia von Schenk. It has been published in the Informs Journal on Computing
(online August 2023, print in preparation).

Abstract: We introduce the logarithmic stochastic tracing procedure, a homo-
topy method to compute stationary equilibria for finite and discounted stochastic
games. We build on the linear stochastic tracing procedure (Herings and Peeters
2004), but introduce logarithmic penalty terms as a regularization device, which
brings two major improvements. First, the scope of the method is extended: it
now has a convergence guarantee for all games of this class, rather than just
generic ones. Second, by ensuring a smooth and interior solution path, compu-
tational performance is increased significantly. A ready-to-use implementation is
publicly available. As demonstrated here, its speed compares quite favorable to
other available algorithms, and it allows to solve games of considerable size in rea-
sonable times. Because the method involves the gradual transformation of a prior
into equilibrium strategies, it is possible to search the prior space and uncover
potentially multiple equilibria and their respective basins of attraction. This also
connects the method to established theory of equilibrium selection.
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3.1 Introduction

Many economic decisions are both strategic and dynamic: Agents interact repeat-
edly, and their present decisions not only jointly determine immediate payoffs,
but also shape the strategic situation in future periods. Examples include dy-
namic pricing, the accumulation and depletion of resources, savings or capacities,
entering of legal contracts, and the development of new technologies.

The interplay of strategic and dynamic considerations is adequately captured
in the class of stochastic games, first introduced by Shapley (1953). Stochastic
games generalize both Markov decision processes (by introducing multiple players)
and repeated games (by introducing different states of the world), and thus pro-
vide a rich framework for the analysis of dynamic interaction. Following Shapley,
the most prominent solution concept for discounted stochastic games is station-
ary equilibrium, which is a subgame-perfect equilibrium in history- and time-
independent (but state-dependent) strategies. It is well-known that every finite
discounted stochastic game admits a stationary equilibrium (Shapley, 1953; Fink,
1964; Takahashi, 1964).

Solan and Vieille (2015) recently appraised Shapley’s contribution and the sub-
sequent theoretical developments. In closing, the authors remark: “Although our
understanding of dynamic situations has improved, the questions that we can an-
swer are still limited, and the models that are analyzed are still very stylistic. New
tools must be developed so that we can treat models that are closer to real-life
situations and provide better predictions.” We agree, and argue in particular that
stochastic games hold great potential for applied economics. Situations involving
dynamic-strategic interplay are ubiquitous, in diverse areas such as pricing and
contracting in industrial organization, competition in research and development,
or the market microstructure of institutions such as limit order books. Yet, so
far stochastic games have found only limited use as a modeling device.1 A likely
reason is that they come with two major difficulties, even when focusing on station-
ary strategies. First, equilibria are generally hard to compute (Gilboa and Zemel,
1989). Finding Nash equilibria even in normal-form games has been shown to be
PPAD-complete (Daskalakis et al., 2009). In stochastic games in particular, even
a moderate number of states quickly lead to a large system of nonlinear equations
which characterize equilibria. Markov decision problems, which exhibit a similar

1Some notable exceptions include Cournot competition with renewable resources (Levhari
and Mirman, 1980), dynamic price competition (Maskin and Tirole, 1988a,b), industry dynamics
(Ericson and Pakes, 1995), financial limit order markets (Goettler et al., 2005), and learning by
doing (Besanko et al., 2010).
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curse of dimensionality, are typically solved using iterative methods. Unfortu-
nately, these are generally not applicable to stochastic games: In the presence
of strategic interaction their convergence is not guaranteed. Second, equilibria
are typically not unique. In this paper, we address both issues by proposing a
solution method which, first, allows to compute a stationary equilibrium of any
finite discounted stochastic game and, second, has ties to established equilibrium
selection theory.

Our method has its roots in the linear tracing procedure for finite normal-
form games by Harsanyi and Selten (1988), which is the basis of their theory of
equilibrium selection. The linear tracing procedure augments the game in question
with a set of prior beliefs as additional primitive, a strategy profile which can
be understood as a first expectation of players’ likely actions. The procedure
then performs a gradual transformation of these priors into equilibrium beliefs.
Specifically, a set of auxiliary games is defined using a homotopy parameter t ∈
[0, 1]. For t = 0, players maximize solely against their prior. For t ∈ (0, 1), players
maximize against a convex combination of priors and the best responses of other
players. At t = 1, players maximize solely against others’ best responses: Beliefs
are consistent and an equilibrium of the original game is reached. Harsanyi and
Selten (1988) interpret the linear tracing procedure as a form of Bayesian strategic
reasoning, in which all players start from a shared first expectation regarding
others’ behavior and then gradually feed in second order information on others’
rational response, until beliefs are in equilibrium.

Mathematically, the linear tracing procedure falls into the general class of
homotopy methods, in which a complex problem, here finding an equilibrium, is
continuously transformed into a related, but much simpler problem, here finding
solutions to a set of decision problems at t = 0.2 This transformation is then
gradually reversed, while tracing a so-called homotopy path of solutions until
a solution for the original problem at t = 1 is reached. In the linear tracing
procedure and its descendants, this path is constructed from equilibria of the
auxiliary games.

The linear tracing procedure was generalized to finite discounted stochastic
games by Herings and Peeters (2003, 2004), on which our method is directly
based. Both the original and the stochastic linear tracing procedures share an
important limitation: They are guaranteed to be well-defined only for generic

2A general, thorough, and accessible introduction to homotopy methods is given by Zangwill
and Garcia (1981). Eaves and Schmedders (1999) offer a concise introduction specifically geared
towards economists.
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games. This is a considerable restriction since most, if not virtually all games
studied in economics are non-generic.3 For these games, the solution set of the
linear methods may include multiple starting points, branching points, or man-
ifolds of dimension higher than one. The method then fails to define a unique,
isolated, one-dimensional path, which poses a problem both for numerical compu-
tations and interpretation as a selection criterion. In light of this, Harsanyi (1975)
and Harsanyi and Selten (1988) also discuss a logarithmic variant for normal-form
games that addresses these issues, but agrees with the linear method in a limiting
sense whenever the latter is well-defined. Moreover, the path used by the loga-
rithmic procedure is smooth and interior, which eases numerical path following.

The present paper develops the logarithmic stochastic tracing procedure, which
similarly extends the linear tracing procedure for stochastic games by Herings
and Peeters (2004). We show that our logarithmic variant, in contrast to the
linear procedure, is guaranteed to induce an isolated path for any finite discounted
stochastic game, placing it in the class of probability-one homotopies (Watson,
2002) and overcoming the limitation to generic games. Nevertheless, it retains
a close connection to the original, linear method. Whenever the linear method
is well-behaved, both select the same equilibrium. When the solution set of the
linear procedure fails to define a unique, one-dimensional path without branching
points, the path induced by the logarithmic procedure is still contained in that
set, and can thus be considered a selection from the multiple paths suggested by
the linear procedure.

In principle, our approach of regularization via logarithmic costs which are
then faded out resembles that of Harsanyi and Selten (1988) for normal form
games. However, the resulting mathematical system for stochastic games differs in
important respects, making the extension non-trivial and our proofs of convergence
rely on quite different mathematical instruments.4 At the same time, the proofs

3Almost all games are generic, in the sense that the set of generic games has full Lebesgue
measure in the space of games. If payoff and transition matrices of a finite stochastic game were
to be chosen at random from a continuous distribution, the resulting game would be generic with
probability one. Nonetheless, restriction to generic games is a serious limitation, since games
studied by economists are usually not picked at random, but constructed in some regular fashion.
Consequently, games of interest almost always have properties that make them non-generic,
for example symmetries between players, states or certain actions, payoffs that are regularly
spaced, or transition matrices that contain zeros. If these properties are deemed important,
having methods for non-generic games are essential: While adding a small perturbation makes
a non-generic game generic, it also results in the loss of such symmetries and regularities.

4Notably, Harsanyi and Selten themselves were in many respects not rigorous in their treat-
ment of the logarithmic procedure for normal-form games. Schanuel et al. (1991) address this,
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turn out to be quite general, and depend only on very general properties of the
resulting equations.5 In consequence, they should be easily adaptable to economic
systems other than stochastic games (e.g. games of incomplete information or
general equilibrium) or other forms of regularization penalties besides logarithmic
ones.

The path traced by our method can be understood as the continuous transfor-
mation of prior beliefs into a specific equilibrium, as Harsanyi and Selten (1988)
already discussed in the context of their theory of equilibrium selection in normal
form games. While we cannot offer an analogous, complete theory of selection for
stochastic games, the method could likewise be used as a building block of one
(see also the discussion by Herings and Peeters (2004) regarding the linear stochas-
tic procedure, whose properties concerning selection are preserved by ours). For
example, it allows to compute the equilibrium arising from a specific prior, e.g.
uniform mixing, or some other prior that is particularly salient for the game in
question.6 Alternatively, by applying the method repeatedly over points sampled
from the prior space, one can potentially uncover multiple equilibria and map out
their basins of attraction.

The logarithmic regularization does not only guarantee regularity, but also
has direct computational advantages: It ensures that the path is smooth and in-
terior, so that it can easily be traced numerically, allowing to compute stationary
equilibria in finite stochastic games even of considerable size. An implementation
is publicly available as part of the python package sgamesolver by Eibelshäuser
and Poensgen (2019, code at github.com/davidpoensgen/sgamesolver). Bench-
mark timings are reported in Section 3.6 and compare quite favorably to available
alternatives. The fastest algorithm with comparable scope which we could identify
is Dang et al. (2022, Table 4), who in turn report to outperform the linear tracing
procedure. The largest games solved by them contain 5 states, 5 players, and 8
using theory of semi-algebraic sets. This approach is not feasible here: For stochastic games, the
logarithmic penalty terms do not drop out in the first order conditions, due to their presence
in the continuation values. Thus, the solution curve is not algebraic (see equation 3b). Our
approach is therefore quite different: A set of weights is used to guarantee a one-dimensional,
isolated path, making the method a probability one homotopy in the sense of Watson (2002).

5Our proofs of convergence predominantly require that the resulting system of equations
allows a representation in exponential polynomials, enabling repeated use of Khovanski’s theorem
(see Propositions 5 and 8). This will hold for virtually all objective functions typically used in
economic modeling, and a wide range of possible penalty functions.

6Understood in this way, the method shares some similarity with the level-k framework
(Nagel, 1995; Stahl and Wilson, 1995), with the prior playing the same role as the level-0
strategy. A notable difference is of course that the present method is guaranteed to converge to
an equilibrium, which is not the case for level-k reasoning.

github.com/davidpoensgen/sgamesolver
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actions per state and player, with average running times of over 27 000 seconds, or
7.5 hours. In contrast, our implementation of the logarithmic procedure requires
only 49 seconds for this size – making it over 500 times faster – and also allows to
solve much larger games in still reasonable time.7

As mentioned, computing stationary equilibria involves solving a high-dimen-
sional, nonlinear system of equations. It is therefore not surprising that all
currently available, practically suitable algorithms for arbitrary finite stochas-
tic games are homotopy-based, to the best of our knowledge.8 Apart from the
linear tracing procedure by Herings and Peeters (2004), we are aware of three fur-
ther such methods. First, Govindan and Wilson (2009) propose a global Newton
method based on the structure theorem by Kohlberg and Mertens (1986). Second,
Eibelshäuser and Poensgen (2020) propose a homotopy method based on quantal
response equilibrium (McKelvey and Palfrey, 1995). Finally, Dang et al. (2022)
propose an interior-point method from an arbitrary starting point. The latter two
methods also work for all games. As mentioned earlier, two advantages of the
logarithmic tracing procedure developed in this paper are its roots in equilibrium
selection theory and its computational performance.

3.2 Stochastic Games, Stationary Strategies,
and Equilibria

A stochastic game is played as follows. The initial state is determined, possibly
according to a random distribution. At the beginning of each stage, all players
learn the current state of the world and then choose one of their available actions
in that state. (If a player has no decision to make in a certain state, the respec-
tive action set is a singleton.) Action profile and current state jointly determine
instantaneous utilities for each player and a probability distribution from which
a state for the next period is drawn. The next stage begins accordingly. A game

7Of course, this is a joint comparison of both algorithm and implementation. Unfortunately,
it is not straightforward to compare the computational burden of different homotopy methods:
The running times are mainly determined by how long, winded, and well-conditioned the solution
paths are – properties for which it is hard to establish any general results.

8There also exist iteration-based algorithms following Pakes and McGuire (1994), but they
come with no guarantee of convergence (which will thus depend on the specific game) and are in
principle only suited to find pure-strategy equilibria (but see e.g. Doraszelski and Satterthwaite
(2010) who use a purification technique to find equilibrium mixtures for certain decisions). On
the other hand, these algorithms are able to handle quite large state spaces (Doraszelski and
Judd, 2012). An extensive literature on industry dynamics has made use of these algorithms
(see e.g. Ericson and Pakes, 1995; Doraszelski and Pakes, 2007; Abbring et al., 2018).
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may involve terminal states, meaning it will end once such a state is reached; oth-
erwise, the game will continue indefinitely. Players discount exponentially from
period to period.

This class of games is quite general and nests for example normal form games,
dynamic games with finite time horizon, repeated games (where the state space
is a singleton), and Markov decision processes (which are one-player stochastic
games). Formally, a stochastic game G is defined as a tuple

(
S, I, A, u, Φ, Φ0, δ

)
with

S : set of states.

I: set of players.

Asi: action set of player i in state s. As =×i∈I
Asi is the set of action profiles

in state s. A = ⋃
s∈S,i∈I Asi denotes the set of all actions of any player in

any state (understood as a disjoint union). Thus, |A| represents the total
number of actions of the game. We often use the index sia to refer to an
action a that belongs to player i in state s.

u =
(
usi(as)

)
as∈As,s∈S,i∈I

: instantaneous payoff functions usi : As → R.

Φ =
(
ϕs✮s′(as)

)
as∈As,s,s′∈S

: state transition probabilities, where ϕs✮s′(as) de-
notes the probability of transitioning from state s to s′, if action profile
as is played.

Φ0 ∈ ∆(S): probability distribution over the initial state s0.

δ =
(
δi

)
i∈I

: discount factors for all players.

Our method applies to all finite discounted stochastic games. A stochastic
game is finite if S, I, and A are finite (while the time horizon is generally still
infinite), and discounted if δi < 1 for all i.

Throughout, we will limit all discussion to stationary behavior strategies. Such
a strategy assigns to each pair (s, i), called the agent of player i in state s, a mix-
ture σsi over the available actions.9 This means that strategies may condition on
the current state, but neither on history of play beyond what is reflected in the

9We will denote by σsi ∈ ∆(Asi) the mixture of an agent, by σsia the probability placed on
a specific action a ∈ Asi, by σi the complete behavior strategy of player i, by σs the mixture
of all agents in state s, and by σ the strategy profile of all players. As usual, index −i denotes a
profile for all players but i.
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current state, nor on time.10 Limiting attention to stationary equilibria is quite
conventional in the study of stochastic games, as the set of all equilibria is gener-
ally vast. Importantly, there always exist stationary best responses to stationary
strategies. Placing a stationarity constraint on players’ strategies therefore does
not induce additional equilibria, but simply acts as a selection criterion. In addi-
tion, it is well-known that every finite discounted stochastic game has at least one
stationary equilibrium. Herings and Peeters (2004) offer a more detailed exposi-
tion of behavior strategies, stationarity, and related matters in stochastic games.
Note that by the conventional definition, stationary equilibria (e.g. Shapley, 1953;
Takahashi, 1964; Fink, 1964) require optimality in all states (even those not ac-
tually reached in equilibrium), making them subgame-perfect. The well-known
one-shot deviation principle applies to stochastic games, allowing the following
characterization of stationary equilibria. A stationary strategy profile σ and an
associated vector of state-player-values V ∈R|S×I| form an equilibrium if and only
if, for all (s, i) ∈ S×I:11

Vsi = usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs) Vs′i (1a)
∑

a∈Asi

σsia = 1 (1b)

σsia ≥ 0 ∀a ∈ Asi (1c)

usi(a, σs,−i) + δi

∑
s′∈S

ϕs✮s′(a, σs,−i) Vs′i ≥ (1d)

usi(a′, σs,−i) + δi

∑
s′∈S

ϕs✮s′(a′, σs,−i) Vs′i ∨ σsia = 0 ∀a, a′ ∈ Asi

Condition (a) simply requires that the values are consistent with σ.12 Conditions
(b) and (c) are the usual constraints on mixed strategies. Finally, (d) rules out

10Of course it is always possible to model history-dependent strategies as stationary by in-
troducing additional states. For example, augmenting the repeated prisoner’s dilemma with the
states “no defection yet” and “defection has occurred” with according transitions makes trigger
a stationary strategy.

11Equilibrium is more commonly defined in terms of σ alone. However, including V is
innocuous, as any σ uniquely determines V (see footnote 12), so that one could simply write
V (σ) in place of V . We use σ and V throughout because it greatly simplifies first-order
conditions and also keeps the resulting equations closer to a numerical implementation of the
algorithm.

12An expression for V as a function of σ can be recovered from conditions (1a) in
vector notation. Enumerate states as 1, 2, ..., |S|. Let Vi = (V1i, V2i, ..., V|S|i)⊤, ui =
(u1i(σ), u2i(σ), ...u|S|i(σ))⊤, and let Φ be the matrix of state transition probabilities under
σ, so that [Φ]s,s′ = ϕs✮s′(σ). Now, equations (1a) for all agents of player i together read

Vi = ui + δiΦVi
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profitable one-shot deviations: It allows positive probability only on such actions
which maximize total utility, given continuation values V for the next period. It
can be expressed more succinctly by introducing the following notation

Usi(σs, Vi) := usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs) Vs′i

so that U reflects total expected discounted utility when σs is played in the current
period, and continuation values are given by V . The condition then reads

Usi(a, σs,−i, Vi) ≥ Usi(a′, σs,−i, Vi) ∨ σsia = 0 ∀a, a′ ∈ Asi (1d’)

As mentioned before, this definition requires optimal play in all states, even those
never reached in equilibrium. Stationary equilibria are therefore subgame-perfect
and independent of the distribution over the initial state.

3.3 The Homotopy Function

3.3.1 Auxiliary Games

We take as given a finite stochastic game G and a prior vector ρ ∈×(s,i)∈S×I
∆(Asi),

a mixed strategy profile that can be chosen freely.13A homotopy parameter t ∈
[0, 1] is introduced to define a family Gt of auxiliary stochastic games, each of
same dimensions as G. In these games, all players i choose their strategy σi to
maximize against a belief that others play according to ρ−i with probability (1− t)
and according to σ−i with probability t. The correlation structure of this belief is
as follows. First, we assume correlation across opponents, so that the belief entails
that either all or none of the other players follow ρ−i. (The alternative would have
each individual opponent follow ρ−i with probability (1− t). Assuming correlation
is in line with Harsanyi and Selten (1988), but nothing rests on it.) In stochas-
tic games, one also needs to specify correlation across periods: One possibility
is that opponents either follow or do not follow ρ−i in all future stages, another
which is equivalent to

Vi = (I − δiΦ)−1ui =
∞∑

t=0
(δiΦ)tui

The inverse (I − δiΦ)−1 always exists, since Φ is a transition matrix and δi < 1.
13The assumption that priors ρ are shared by all players is in line with Harsanyi and Selten

(1988); it also eases exposition. However, none of our results rely on it, and all could be obtained
with one set of priors per player.



100 CHAPTER 3. THE LOGARITHMIC TRACING PROCEDURE

that this is resolved independently, period by period, making beliefs uncorrelated
across time. We will assume the latter, as otherwise best responses in stationary
strategies generally do not exist, as Herings and Peeters (2003) already argued
convincingly.

According to these beliefs, one obtains from G and ρ transition probabilities

ϕ̄t
s✮s′(σs) := tϕs✮s′(σsi, σs,−i) + (1− t)ϕs✮s′(σsi, ρs,−i)

and instantaneous payoff functions

ūt
si(σs) := tusi(σsi, σs,−i) + (1− t)usi(σsi, ρs,−i)

which so far correspond exactly to the auxiliary games used in the linear stochastic
tracing procedure by Herings and Peeters (2004). Our logarithmic variant then
further adds a logarithmic penalty term to instantaneous utilities:

ût
si(σs) := ūt

si(σs) + (1− t)η
∑

a∈Asi

νsia log(σsia)

The penalties are weighted by (1− t), and also by the scalar η and vector (νsia);
the significance of these additional parameters is discussed below. To ensure the
logarithmic terms are well-defined, players will be restricted to completely mixed
strategies (with σsia > 0 for all s, i, a) as long as t ∈ [0, 1) and η > 0. Note that
for t = 1, penalties and terms depending on the prior drop out, so that û1 = u

and ϕ̄1 = ϕ, which corresponds to the original game. For η = 0, only the penalties
drop out, so that ût|η=0 = ūt, which again corresponds to the linear stochastic
procedure. In both limiting cases, utilities are well-defined for pure strategies,
and the restriction is not necessary.

One may interpret the logarithmic penalties as a form of control cost, which is
minimized when mixing all actions and increases as a pure strategy is approached.
Their main purpose however is to ensure that the system defines a homotopy path
that is smooth and interior, and that all agents always have a unique best response.

Each penalty term is weighted by νsia, where (νsia) = ν ∈ R|A|
>0 is a vector of

parameters with one entry for each action of G. The purpose behind these weights
is to guarantee that the path is indeed regular, which is the case for any generic ν

as shown later on.14 Multiplication by (1− t) ensures that the penalty smoothly
14In the logarithmic procedure of Harsanyi and Selten (1988) for normal form games, the

corresponding terms are given by νia = νi = max ui−min ui and simply serve to normalize the
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fades out as t approaches 1, just as the influence of ρ does: It is easily seen that
limt→1(ϕ̄t, ût) = (ϕ, u) pointwise (on the domain of completely mixed strategies,
where û is well-defined).15 The penalties are further weighted by η, a positive real
number; once we have discussed properties for any given η > 0, we will consider
behavior of the system as η goes to zero. Note that limη→0(ϕ̄t, ût) = (ϕ̄t, ūt)
pointwise. This already suggests that the method of Herings and Peeters (2004)
arises as a limiting case of the logarithmic procedure, a relationship that will be
established formally in Section 3.5.

These auxiliary games Gt with t < 1 are not strictly speaking finite stochastic
games as defined in the preceding section, because different players face different
transition probabilities. Moreover, instantaneous utilities of the auxiliary games
are not defined for pure strategies and are not linear in σsi. Nevertheless, one can
just as well consider equilibria in stationary strategies.

3.3.2 Auxiliary Equilibria and the Homotopy Function H

In a stationary equilibrium of the auxiliary game Gt, each player chooses σi such
that in each state, total discounted utility is maximized given beliefs constructed
from (σ−i, ρ−i, t). Put formally, a set of strategies σ and an associated vector of
state-player values V are an equilibrium of Gt if and only if they solve, for each
agent (s, i) ∈ S×I:

maximize
σsi

Vsi (2a)

s.t. Vsi = ūt
si(σs) + δi

∑
s′∈S

ϕ̄t
s✮s′(σs) Vs′i + (1−t)η

∑
a∈Asi

νsia log(σsia) (2b)
∑

a∈Asi

σsia = 1 (2c)

σsia > 0 ∀a ∈ Asi (2d)

penalty. However, with such a specification the path is not necessarily well-defined for all games
and priors (contrary to the claims of the authors).

15 As a technical side note, û is not jointly continuous at points with at least one σsia = 0 and
(1− t)η = 0: When approaching these points, there is no guarantee that (1− t)η log(σsia)→ 0.
However, for the algorithm this is unproblematic; in particular, it is perfectly capable to compute
equilibria involving some σsia = 0. First, on the equilibrium sets used by the method, σsia are
bounded below by a function of (1 − t)η which ensures convergence; see Appendix 3.A in the
Online Supplement for details. In addition, the logarithmic terms actually cancel out in all
expressions in the proofs of Propositions 7 and 10, which concern the behavior at t = 1 and
η = 0 respectively.
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Equilibrium exists for all t. As this will follow naturally as corollary of Propo-
sition 6 later on, we omit direct proof here.16

The logarithmic stochastic tracing procedure consists of tracing a curve of
equilibria starting at t = 0 until an equilibrium of the original game is reached at
t = 1. This is done using the homotopy function H(σ, V , t), which is derived from
equation (2); see Appendix 3.B in the Online Supplement. Its domain reflects the
restrictions σsia > 0 for t < 1 and σsia ≥ 0 at t = 1:

H :
(

(0, 1]|A| × R|S×I| × [0, 1)
)
∪
(

[0, 1]|A| × R|S×I| × {1}
)
→ R|A|+|S×I|

H has one component representing a sum-to-one-condition for each agent (s, i) ∈
S×I:

Hσ
si(σ, V , t) :=

∑
a∈Asi

σsia − 1 (3a)

For each agent (s, i) ∈ S×I, H further has one component for each action a ∈ Asi:

HV
sia(σ, V , t) := σsia

−Vsi + ūt
si(a, σs,−i) + δi

∑
s′∈S

ϕ̄t
s✮s′(a, σs,−i) Vs′i

 (3b)

+ (1− t)η
(

νsia + σsia

∑
a′∈Asi

νsia′

[
log(σsia′)− 1

])

= σsia

(
− Vsi + Ū t

si(a, σs,−i, Vi)
)

+ (1− t)η
(

νsia + σsia

∑
a′∈Asi

νsia′

[
log(σsia′)− 1

])

The last equality above simply introduces the following shorthand notation:

Ū t
si(σs, Vi) := ūt

si(σs) + δi

∑
s′∈S

ϕ̄t
s✮s′(σs) Vs′i

H is chosen so that its zero set exactly coincides with the set of equilibria of all
auxiliary games:

Proposition 1. For t ∈ [0, 1), (σ, V ) is a stationary equilibrium of Gt if and only
if H(σ, V , t) = 0.

16Such proof could proceed as follows: (i) show that for some ϵ > 0, any strategy with any
σsia < ϵ is dominated, as the logarithmic penalty outweighs any direct utility from a. (ii) Apply
Brouwer’s fixed point theorem to the now compact strategy space [ϵ, 1]|A|.
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Proof. Detailed proof is found in Appendix 3.B. There, H is derived from the
maximization problems given by equation (2), so that H = 0 represents their
first order conditions. The logarithmic penalty terms make the problems strictly
concave. Thus, H = 0 is both necessary and sufficient for equilibrium. ■

At t = 1, H = 0 is still necessary but no longer sufficient for an equilibrium.
As the logarithmic penalty terms vanish, the resulting equations (3b) require that
all actions a played by an agent (s, i) with strictly positive probability (σsia > 0)
yield the same total discounted payoff, namely Vsi. This is clearly necessary for
equilibrium, but not sufficient, as it allows strictly better actions to be played
with zero probability. In fact, H|t=1 = 0 characterizes stationary points under
replicator dynamics for the game G. In addition to the actual equilibria, these
include for example all pure strategy profiles. The existence of additional solutions
at t = 1 is unproblematic for the method: The endpoint of the homotopy path
will always be an equilibrium, as will be shown in Proposition 7.

Before discussing the homotopy path induced by H in the next section, we will
briefly show that the equilibria of all Gt are bounded.

Proposition 2. The set of equilibria of the games Gt for all t ∈ [0, 1] is bounded.
Equivalently, the zero set H−1(0) is bounded.

Proof. Because σ is bounded, it suffices to establish a bound for V . From a vector
representation of (2b) one obtains (compare footnote 12):

Vi = ût
i(σ) + δiΦt(σ)Vi =

(
I − δiΦt(σ)

)−1
ût

i(σ)

Recall that û includes both linear and logarithmic parts of instantaneous utility.
Clearly, Vi must be bounded from above since ût

i(σ) is bounded from above and
δi < 1. An upper bound for all entries of Vi is then

Vsi ≤
1

1− δi

max
s,σs

ût
si(σs)

While ût
i does not have a lower bound due to the logarithmic penalty terms, in

equilibrium Vi will nevertheless be bounded from below. Intuitively, the players
can always guarantee some finite utility for themselves. To see this, pick an
arbitrary interior strategy ci for player i, e.g. the centroid strategy with csia = 1

|Asi| .
Any solution to (2) must then have as lower bound
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Vi = max
σi

(
I − δiΦt(σi, σ−i)

)−1
ût

i(σi, σ−i)

≥
(
I − δiΦt(ci, σ−i)

)−1
ût

i(ci, σ−i) > −∞

To obtain uniform bounds for Vi in any stationary equilibrium of all auxiliary
games Gt, simply take the maximum of the upper bound over t ∈ [0, 1], and
likewise take the minimum of the lower bound over t ∈ [0, 1] and σ−i ∈ [0, 1]|A−i|.
Continuity and compactness ensure that both exist. ■

3.4 The Solution Path for Given η > 0

We will now show that the set of stationary equilibria of Gt always contains a
unique, smooth, and isolated path connecting the unique equilibrium of G0 to an
equilibrium of the original game G.

It will be helpful to define the sets

Y := (0, 1]|A| × R|S×I| × [0, 1) and Y 1 := [0, 1]|A| × R|S×I| × {1}

The solution set discussed in this section is then

Z :=
{
(σ, V , t) ∈ Y | H(σ, V , t) = 0

}
We will show that if ν is suitably chosen, 0 is a regular value of H on Y , so that Z

consists of isolated, smooth arcs only. Moreover, there is always a unique solution
at t = 0, which is connected by one such path to an equilibrium of G, which
we will call distinguished. Tracing this path allows to compute the distinguished
equilibrium numerically. Because the path depends on the priors, repeating the
process with different priors usually allows to compute additional equilibria.

Proposition 3. H|t=0 = 0 has a unique solution.

Proof. Detailed proof is found in Online Appendix 3.C.1. Its idea is as follows: In
G0, there is no strategic interaction, and each player faces a discounted Markov
decision problem. It is straightforward to show that a unique vector V 0

i ∈ R|S|

of state values exists for each of these problems. Due to the logarithmic penalty
terms, utility in each state is strictly concave in σsi, so that optimal policies of all
players must also be unique. ■
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This solution will be called the starting point, (σ0, V 0). Appendix 3.C.2 in
the Online Supplement details how it can be computed efficiently.

Proposition 4. For generic ν, 0 is a regular value of H|Y .

Proof. Detailed proof is found in Online Appendix 3.E. It proceeds as follows: The
Jacobian of H(σ, V , t, ν) has full rank everywhere in Y . This allows application of
a parametrized version of Sard’s theorem (Chow et al., 1978, Theorem 2.1, p. 891).
Consequently, the set of ν for which H|Y = 0 is regular has full Lebesgue measure
in R|A|

>0. ■

In all that follows we will assume that ν is generic.

Corollary 4.1. Due to the regularity of H = 0, the implicit function theorem
is applicable at any point contained in Z, so that Z must consist of a collection
of isolated paths and loops. In effect, each path or loop can be represented as
a function in a single variable; and since H is real analytic, so are these func-
tions. Regularity further allows application of the route-loop-theorem (Eaves and
Schmedders, 1999, Theorem 1, p. 1264), which implies that these paths can not
form spirals or have endpoints in the interior of Y .

Because Z is bounded (Proposition 2), no path can go off to infinity. The
following proposition establishes that the paths cannot oscillate indefinitely either,
but must eventually reach the boundary of Y at one of its two endpoints when
followed in either direction.

Proposition 5. For generic ν, all paths and loops contained in Z are of finite
arc length.

Proof. If H = 0 is regular on Y ∪Y 1, this follows immediately from Watson (2002,
Theorem 2.3 (4), p. 788). However, if the game is not generic, it is well possible
that H is not regular on Y 1. Nevertheless, arc lengths will still be finite by the
following argument.

We proceed by showing that any path in Z has a finite number of turning points
in any dimension. Let k represent any σsia, any Vsi, or t; a turning point in variable
k is a point in which a path changes direction in that dimension. A necessary
condition for a turning point is det(J−k) = 0, where J−k is the square matrix
obtained from the Jacobian J(σ, V , t) by deleting the column which contains the
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partial derivatives with respect to k.17 Remember that σ, V , and t along any
path can be represented as a real analytic function of a single variable, namely
path length (see Corollary 4.1). As compositions of real analytic functions, all
sub-determinants are also real analytic in path length, so that the real analytic
identity theorem applies: Each sub-determinant is either zero along the complete
path (in which case the respective variable is constant on that path, and no turning
points exist), or its zero set along the path consists of isolated points.

Applying a change of variables, it can be shown that in the latter case, the
zero set must be finite. Namely, replace σsia =: exp(βsia) in H and J . Because
σsia > 0, this transformation is a homeomorphism, and the zero sets we are in-
terested in are topologically unchanged. It is readily seen that all components of
H and all sub-determinants of J after this substitution are exponential polyno-
mials in (β, V , t).18 Khovanski’s theorem (Marker, 1996, p. 757) states that the
zero set of any set of exponential polynomials consists of finitely many connected
components. This applies to the systems given by H = 0 and det(J−k) = 0 for
any k. Since turning points are elements of these zero sets, and they are isolated
as shown above, Z contains at most a finite number of turning points in any
direction k. Thus, any path in Z must have two endpoints on the boundary of
Y . Furthermore, each path can be partitioned into a finite number of segments
joining one of these endpoints, a finite sequence of turning points (possibly none),
and the other endpoint. Likewise, all closed loops consist of a finite number of
segments joining its turning points. Each of these segments is bounded in length,
because Z is bounded (Proposition 2) and the segments themselves contain no
turning points. It follows that total arc length of each path or loop is finite. ■

Proposition 6. For generic ν, Z contains exactly one path that starts transver-
sally at (σ0, V 0) and ends in a point in Y 1, called the distinguished path. Any
other path contained in Z either connects two points in Y 1, or is a closed loop.

Proof. By the previous proposition, any component of Z that is not a loop must
be a path with two endpoints on the boundary of Y . Since H is in particular
also regular at the starting point (σ0, V 0, 0), the route-loop theorem (Eaves and

17Online Appendix 3.F offers a brief sketch of the significance of these sub-determinants to
readers less familiar with homotopy methods.

18Exponential polynomials in a set of variables may be defined recursively as follows: (i)
All polynomials in these variables are exponential polynomials. (ii) Furthermore, if x, y are
exponential polynomials, then xy, x + y, and ex are also exponential polynomials. (iii) Only
expressions obtainable from (i) and (ii) are exponential polynomials.
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Schmedders, 1999, Theorem 1, p. 1264) ensures that a single path reaches the
boundary at t = 0 transversally: This path cannot be a loop. Since that point is
unique, the path cannot return to t = 0 and no other path can hit the boundary
at t = 0. All σsia are either bound to (0, 1) or constant and equal to 1 (if the
respective action set is a singleton). Thus, no path can have an endpoint on these
boundaries. Furthermore, all Vsi are bounded in equilibrium, which was shown in
Proposition 2. The path starting at (σ0, V 0) must therefore eventually reach Y 1.
Any other path must be a closed loop, or eventually reach Y 1 when followed in
either direction. ■

Corollary 6.1. Equilibrium exists for all Gt. By Proposition 1, (σ, V ) is an
equilibrium if and only if H(σ, V , t) = 0, and the existence of the distinguished
path implies that H has at least one zero for any t ∈ [0, 1).

Corollary 6.2. Together, Propositions 5 and 6 imply that the number of paths
and loops contained in Z is finite, by the following argument. Each path or
loop must contain at least one turning point in t (the only exception may be the
distinguished path), and it was shown using Khovanski’s theorem that all paths
together contain a finite number of turning points in t.

Finally, we establish that the distinguished path indeed leads to an equilibrium
of G. For t < 1, H = 0 is both necessary and sufficient for an equilibrium of Gt.
At t = 1, it is no longer sufficient (see the discussion following Proposition 1).
However, the following proposition shows that all the endpoints at t = 1 of paths
in Z are in fact equilibria.

Proposition 7. If (σn, V n, tn) is a sequence in Z with limit (σN , V N , 1), then
(σN , V N) is an equilibrium of G. Therefore, any path in Z that reaches the bound-
ary at t = 1 must do so at an equilibrium of G.

Proof. Conditions for stationary equilibria of G were stated in equation (1) and
are repeated here for better readability: σN , V N are an equilibrium if, for each
(s, i) ∈ S×I,

V N
si = usi(σN

s ) + δi

∑
s′∈S

ϕs✮s′(σN
s ) V N

s′i = Usi(σN
s , V N

i ) (4a)
∑

a∈Asi

σN
sia = 1 (4b)

σN
sia ≥ 0 ∀a ∈ Asi (4c)

Usi(a, σN
s,−i, V N

i ) ≥ Usi(a′, σN
s,−i, V N

i ) ∨ σN
sia = 0 ∀a, a′ ∈ Asi (4d)
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(4a) follows from each (σn, V n, tn) satisfying constraint (2b), which is continuous,
with limt→1 Ū t = U pointwise on Y . Likewise, (4b) holds for all σn

si by (2c).
σn > 0 ensures (4c). Regarding (4d), for any pair of actions a, a′ of any agent
(s, i), consider the equation

σn
sia′HV

sia(σn, V n, tn)− σn
siaHV

sia′(σn, V n, tn) = 0

which must hold for all n because (σn, V n, tn) ∈ Z implies H(σn, V n, tn) = 0.
Spelling out this equation gives:

σn
siaσn

sia′

(
Ū tn

si (a, σn
s,−i, Vi)− Ū tn

si (a′, σn
s,−i, Vi)

)
+ (1− tn)η(νsiaσn

sia′ − νsia′σn
sia) = 0

(5)
tn → 1 then implies

lim
n→∞

σn
siaσn

sia′

(
Ū tn

si (a, σn
s,−i, V n

i )− Ū tn

si (a′, σn
s,−i, V n

i )
)

= 0

and at least one factor must go to zero. If

lim
n→∞

(
Ū tn

si (a, σn
s,−i, V n

i )− Ū tn

si (a′, σn
s,−i, V n

i )
)

= 0,

then (4d) holds immediately. If conversely and without loss of generality

lim
n→∞

(
Ū tn

si (a, σn
s,−i, V n

i )− Ū tn

si (a′, σn
s,−i, V n

i )
)

> 0, (6)

(4d) is still satisfied unless

lim
n→∞

σn
sia′ > 0 = lim

n→∞
σn

sia (7)

However, if (6) and (7) both hold, the first and the second summand in (5) must
be strictly positive for n sufficiently large. This is a contradiction. ■

Summary of the first main result. For any given game G, any prior ρ, param-
eter η > 0, and generic ν ∈ R|A|

>0, the solution set Z = H−1(0)∩Y is well-structured
in the sense that it consists solely of smooth, isolated paths of finite length. In
particular, it always contains a specific curve L which connects the unique solu-
tion at t = 0, (σ0, V 0, 0), to a point (σ∗, V ∗, 1) ∈ Y 1, called the distinguished
equilibrium of G. L is a real analytic curve, as it is implicitly defined by H = 0,
which is real analytic and regular. Appendix 3.F in the Online Supplement gives
an explicit construction of L.
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Notably, following this path allows to efficiently compute at least one sta-
tionary equilibrium of any finite stochastic game. Since the path and thereby the
distinguished equilibrium depend on the choice of ρ, which is free, additional equi-
libria can potentially be found by searching the prior space. (However, there is no
guarantee that all equilibria of a game can be found in this manner.) Computa-
tionally, the path can be traced using standard numerical continuation methods.
Timings are reported in Section 3.6.

3.5 The Limiting Solution Curve as η → 0

We now discuss the behavior of the solution curve as the logarithmic penalty terms
in the auxiliary games are faded out. As before, a game G, an arbitrary prior ρ,
and a generic vector of weights ν are taken as given. In the previous section we
have shown that fixing some η > 0 gives rise to a well-defined curve Lη. We will
now study their limit19

L0 := lim
η→0

Lη

As outlined in the introduction, the present method has a close relation to the
linear stochastic tracing procedure (Herings and Peeters, 2004), which resembles
the relation of the logarithmic to the linear tracing procedure for normal form
games (Harsanyi and Selten, 1988). This will now be established formally.

The linear stochastic procedure constructs auxiliary games from a prior just
as described in Section 3.3.1, however without the logarithmic penalties (corre-
sponding to η = 0). For generic G and ρ, it also guarantees existence of a unique
starting point for t = 0, and of a piecewise algebraic path connecting this point
to a stationary equilibrium of G. However, if game or prior are not generic, the
solution set of its defining equations may not be well-behaved: It may contain mul-
tiple starting points or uncountable sets thereof; its paths may contain branching
points; and the solution set may contain manifolds of dimension higher than one.
In these cases, the linear procedure is not well-defined: It will fail to select a
unique equilibrium, and in particular the application of numerical continuation
methods is generally not feasible.

In the preceding section it was shown that the present method removes these
problems and is always well-defined. Nevertheless, our method retains a close

19To be technically precise, Proposition 8 will show convergence of the curves Lη up to
parametrization (i.e. convergence of their images in Hausdorff distance). From a practical per-
spective, this subtlety is without importance.
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connection to the linear procedure. In particular, the limiting curve of the loga-
rithmic procedure, L0, will always be contained in the solution set of the linear
procedure. If the linear method is well-defined, meaning it contains a unique solu-
tion path, L0 will be identical to this path. If on the other hand the linear solution
set includes multiple starting points, branching points, or higher-dimensional sets,
there will be a multitude of paths connecting t = 0 and t = 1. In this case L0 can
be considered a unique selection from these.

To proceed, we first establish existence and some properties of L0.

Proposition 8. For generic ν, L0 = limη→0 Lη exists.

Proof. Because this proof is somewhat lengthy, it is presented in steps 8.1–8.5.
We will consider H again, but this time taking η as an argument rather than a
fixed parameter. Because an open domain will be needed, Y × (0,∞) is padded
by some ϵ > 0 in the relevant directions to obtain

D := (0, 1 + ϵ)|A| × R|S×I| × (−ϵ, 1)× (0,∞)

Now consider the zero set of the homotopy function H on D,

Z̃ := {(σ, V , t, η) ∈ D | H(σ, V , t, η) = 0}

which again is well-structured in the following sense:

Lemma 8.1. For generic ν, Z̃ is a smooth, 2-dimensional manifold.

Detailed proof for this lemma is given in Online Appendix 3.E. It is based once
more on parametrized Sard’s theorem (Chow et al., 1978, Theorem 2.1, p. 891),
which is applicable since the Jacobian of H(σ, V , ν, t, η) is of full rank on D.
(This follows almost immediately from Proposition 4, insofar adding a column for
η cannot reduce the rank of the Jacobian.)

Lemma 8.2. For any η > 0, H|t=0(σ, V ) = 0 defines a unique starting point
(σ0(η), V 0(η)). All starting points lie on a single connected component of Z̃.

Existence and uniqueness were shown in Proposition 3. Connectedness follows
from continuity in η, which can be shown as follows. Recall that for t = 0, each
player simply solves a Markov decision problem with total discounted utilities
Ui(σi, ρ−i) continuous in η. Because the optimal policies σ0 are always unique,
they must also depend continuously on η. The same then holds for V 0, which is
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t = 0
σ, V

t = 1

t

η < η̂

σ, V

Stationary
equilibria of G

η = η̂

Singularity

σ, V

η > η̂

Figure 3.1: Example of a Pitchfork Bifurcation at a Critical Value of η. A
singular point exists at η̂, so that for this value, the curve Lη is not well-defined;
for η smaller or larger, the singularity disappears. Note that the point in question
is not a singularity of the 2-dimensional manifold Z̃, which by Lemma 8.1 is
regular for generic ν.

a continuous function of σ0. (Note that this specific result does not require ν to
be generic.)

Lemma 8.3. For all but finitely many η ∈ (0,∞), a well-defined curve Lη exists,
with all properties discussed in Section 3.4. Hence, there exists η̄ > 0 so that Lη

is well-defined for all η ∈ (0, η̄).

Before proving Lemma 8.3., we should briefly point out why it is necessary
at all. In Section 3.4, it was shown that when fixing any η and generic ν, the
curve Lη is always well-defined. However, if one then were to vary η continuously,
while keeping ν fixed – as this section intends – one may encounter some values
for which the restricted zero set

Zη :=
{
(σ, V , t) | (σ, V , t, η) ∈ Z̃

}
is not regular (i.e. not a 1-dimensional manifold). For these, Lη need not be well-
defined. The singular points generally have the character of pitchfork bifurcations,
as sketched in Figure 3.1. However, the current lemma implies that this poses no
problem to the question of convergence for η → 0, as Lη is well-defined for all η

sufficiently small.

We now turn to proving Lemma 8.3. Denote by J−η,−k the square matrix ob-
tained from the Jacobian of H by removing those two columns corresponding to
η and k, where k represents any σsia, any Vsi, or t. Points in whose neighborhood
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Zη is not necessarily a 1-dimensional manifold are characterized by H = 0 and
det(J−η,−k) = 0 for all k. The set of all such points will be denoted S ⊂ Z̃.

We will first show that the manifold Z̃ must be orthogonal to the η-axis in
any point (x̂, η̂) := (σ̂, V̂ , t̂, η̂) ∈ S, or equivalently, the tangent space of Z̃ at
that point is entirely contained in the hyperplane characterized by η = η̂, which
we will denote E. The tangent space is simply the kernel of the Jacobian J of H,
so that the statement translates to ker (J(x̂, η̂)) ⊆ E. Note that the restriction of
the kernel to E must have dimension at least 2, i.e. dim (ker (J(x̂, η̂) ∩ E)) ≥ 2
(if it had dimension 1, x̂ could not be a singular point of Z η̂). At the same
time, Z̃ is a smooth 2-dimensional manifold everywhere on D (Lemma 8.1), so
that dim (ker(J(x̂, η̂))) = 2. Together, these dimensional requirements imply
ker (J(x̂, η̂)) ⊂ E, proving orthogonality.

Since Z̃ is a manifold, there exists a neighborhood of (x̂, η̂) on Z̃ which is
path-connected. By the preceding argument, the tangent space at any point in S

is orthogonal to the η-axis; thus, any path on Z̃ joining (x̂, η̂) to another point
in S must either remain in the hyperplane characterized by η = η̂, or leave S.
In consequence, each connected component of S must be confined to one such
hyperplane. Since S is the zero set of the exponential polynomials H and the sub-
determinants of J , the number of connected components is finite by Khovanski’s
theorem (Marker, 1996, p. 757), so that Lη must be well-defined for all but a finite
number of values of η. This completes proof of Lemma 8.3.

Lemma 8.4. The curves Lη are uniformly bounded for η ∈ (0, η̄). Furthermore,
a uniform bound ℓ̄ exists for the arc lengths ℓη of these curves.

The curves consist of equilibria of the respective auxiliary games. At the end
of Section 3.3.2, we showed that values are bounded in equilibrium for given η.
Continuity allows to obtain a uniform bound by simply taking the minimum of
the lower and the maximum of the upper bound over [0, η̄].

We will denote by ℓη the arc length of each curve Lη. Proposition 5 showed
that ℓη is always finite; a similar argument establishes a uniform bound ℓ̄ for
η ∈ (0, η̄). Recall that turning points of Lη are characterized by H = 0 and one
sub-determinant of J crossing 0; both conditions can be expressed as exponential
polynomials (see proof of Proposition 5 for details). By Khovanski’s theorem, the
number of connected components of these zero sets is bounded from above by a
function of the complexity of the system (Hovanskii, 1980, Theorem 4; Marker,
1996, p. 757). Because the complexity does not vary with η, the number of turning
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points is uniformly bounded from above. Together with all Lη being uniformly
bounded, this implies that total arc length of the curves has an upper bound ℓ̄.

Bounding total arc length allows to parametrize the curves Lη, η ∈ (0, η̄), as a
family of functions on the real interval [0, ℓ̄] in the following way. For s ∈ [0, ℓη],
let Lη(s) be the point with distance s from the starting point, measured along the
curve, so that Lη(0) is its starting point and Lη(ℓη) its distinguished equilibrium
(see Online Appendix 3.F for a more explicit definition). For s ∈ [ℓη, ℓ̄], simply
set Lη(s) := Lη(ℓη). Convergence can now be shown as follows.

Lemma 8.5. Let (η1, η2, ...) be a decreasing sequence in (0, η̄) with limit 0. Then
the sequence (Lη1 , Lη2 , ...) converges uniformly to some continuous function L0.

By Lemma 7.4, the family of functions Lη(s) is uniformly bounded. Being
parametrized in arc length, each Lη is Lipschitz continuous with constant 1; thus,
the the family is uniformly equicontinuous. By Arzelà–Ascoli (Rudin, 1976, The-
orem 7.25), each sequence from Lη must have a subsequence converging uniformly
to some continuous function.

It remains to be shown that the subsequential limit is in fact unique as η → 0.
Consider a sequence (Lη1 , Lη2 , ...) with η1 > η2 > ..., and suppose without loss
of generality that the odd terms converge to some path L0

odd, while the even
terms converge to L0

even. The following shows that these paths must have identical
images, i.e. parametrize the same curve. Assume to the contrary that there exists
a point x = (σ, V , t) ∈ Im L0

even which is not in Im L0
odd. Then there exists an

open neighborhood of x which does not intersect Im L0
odd (the latter is closed

due to continuity). Any such neighborhood intersects only finitely many odd
members of the sequence, but an infinite number of even members; this allows to
find a hypersphere Sx centered at x for which the same holds. We now consider
(σ, V , t, η)-space, where the curves Lη × {η} are contained in Z̃. The set Z̃ ∩
(Sx × (0, η̄)) must have an infinite number of connected components, because for
i sufficiently large, the intersection is empty at all odd ηi, and nonempty at all
even ηi. Since both Z̃ and Sx are the zero set of exponential polynomials, this is
a contradiction by Khovanski’s theorem (Marker, 1996, p. 757). This completes
the proof of Proposition 8. ■

Now that existence of the limiting curve is established, we turn to its properties.
By the following proposition, its endpoint is an equilibrium of the original game.

Proposition 9. L0(ℓ̄) is a stationary equilibrium of G.
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Proof. L0(ℓ̄) is the limit of a sequence
(
Lη(ℓ̄)

)
. Since each Lη(ℓ̄) is an equilibrium

of G and the set of equilibria is closed, L0(ℓ̄) must also be an equilibrium of G. ■

Finally, we show that the curve L0 is contained in the solution set of the linear
procedure. This set is simply the set of stationary equilibria for the auxiliary
games Gt for t ∈ [0, 1] as defined in Section 3.3.1, but with η = 0. Call these
games Gt

0.

Proposition 10. For any t, let (σn, V n, t, ηn) → (σN , V N , t, 0) be a sequence
with (σn, V n, t) ∈ Lηn. Then (σN , V N) is an equilibrium of Gt

0.

Proof. Similar to Proposition 7. The pair (σN , V N) is an equilibrium of Gt
0 if and

only if for all (s, i) ∈ S×I:

V N
si = ūt

si(σN
s ) + δi

∑
s′∈S

ϕ̄t
s✮s′(σN

s ) V N
s′i = Ū t

si(σN
s , V N

i ) (8a)
∑

a∈Asi

σN
sia = 1 (8b)

σN
sia ≥ 0 ∀a ∈ Asi (8c)

Ū t
si(a, σN

s,−i, V N
i ) ≥ Ū t

si(a′, σN
s,−i, V N

i ) ∨ σN
sia = 0 ∀a, a′ ∈ Asi (8d)

Since (σn, V n, t) ∈ Lηn , each such point satisfies the constraints (2b–d), which
correspond to (8a–c) as η → 0. Finally, (8d) can be established similarly as in
Proposition 7. For any pair of actions a, a′ ∈ Asi, we must have

σn
sia′HV

sia(σn, V n, tn)− σn
siaHV

sia′(σn, V n, tn) = 0

for all n and therefore

σn
siaσn

sia′

(
Ū t

si(a, σn
s,−i, V n

i )− Ū t
si(a′, σn

s,−i, V n
i )
)

+ (1− t)ηn(νsiaσn
sia′ − νsia′σn

sia) = 0
(9)

ηn → 0 then implies

lim
n→∞

σn
siaσn

sia′

(
Ū t

si(a, σn
s,−i, V n

i )− Ū t
si(a′, σn

s,−i, V n
i )
)

= 0

and at least one factor must go to zero. If

lim
n→∞

(
Ū t

si(a, σn
s,−i, V n

i )− Ū t
si(a′, σn

s,−i, V n
i )
)

= 0,
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then (8d) holds immediately. If conversely and without loss of generality

lim
n→∞

(
Ū t

si(a, σn
s,−i, V n

i )− Ū t
si(a′, σn

s,−i, V n
i )
)

> 0,

(8d) is still satisfied unless

lim
n→∞

σn
sia′ > 0 = lim

n→∞
σn

sia

However, if both limits are positive, both summands in equation (9) must even-
tually be positive. This is a contradiction. ■

Corollary 10.1. The limit curve L0 is contained in the solution set of the linear
stochastic tracing procedure. In particular, whenever the latter defines a unique,
isolated path connecting t = 0 and t = 1, then L0 must be identical to that path.
Otherwise, it will be a selection from among the multitude of paths connecting
t = 0 and t = 1 in the linear solution set. Note that this selection may depend on
ν.

Summary of the second main result. As this section has shown, the solu-
tion curve of the stochastic logarithmic tracing procedure smoothly approaches a
limiting curve L0 as η ↘ 0. This curve exists for any game and any prior, and its
endpoint is a stationary equilibrium of G. In this manner, the procedure always
selects a specific equilibrium for any given G and ρ. In case of non-generic games,
selection may also depend on ν.

L0 is always contained in the solution set used by the linear tracing procedure
for stochastic games. In consequence, both methods agree in their selection when-
ever the linear variant is well-defined. On the other hand, for games and priors
where the linear procedure does not induce a unique, isolated solution curve and
thus also fails to provide a unique selection, the logarithmic procedure circumvents
these issues. Still, it stays as close in spirit as possible: Its limiting path is then
one of the many paths suggested by the linear variant.

3.6 Timings

This section demonstrates the performance of the logarithmic tracing procedure
in the computation of stationary equilibria. A numerical implementation of the
procedure is publicly available as part of the python package sgamesolver (see
Chapter 4, code at github.com/davidpoensgen/sgamesolver), alongside other

github.com/davidpoensgen/sgamesolver
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homotopy methods for finite discounted stochastic games. Required inputs are
simply u, ϕ, and ρ, which can be passed as arrays or as a table. (If desired
also a vector ν, although in our experience, simply setting ν = 1 works well.)
The software includes routines that evaluate H and J , as well as a path tracking
algorithm.

For the timings reported here, games were drawn randomly according to the
following specifications. Discount factors are fixed to δ = 0.95 for all players.
Payoffs are independently and identically drawn from a uniform distribution over
[0, 1]. In order sample transition probabilities uniformly from the unit simplex,
probabilities are drawn independently and identically from an exponential distri-
bution and then normalized such that transition probabilities sum up to one for
each state and action profile (Rubinstein and Melamed, 1998, algorithm 2.7.1).
As priors ρ, we take the centroid strategy profile, i.e. uniform mixing over avail-
able actions. The remaining parameters are η = 0.1 and ν = 1. Game sizes and
timings are listed in Table 3.1.

The way games are randomized here is comparable to e.g. Dang et al. (2022);
note that the resulting games are generic. We repeated the timings with a slightly
different specification yielding similar, but non-generic games. Timings for those
are largely comparable, but about 11% slower on average. Details and a table are
given in Online Appendix 3.G, alongside instructions on how to repeat both sets
of computations.

All computations were done on a typical desktop computer with an Intel i5
3.0 GHz processor and 16 GB working memory. The runs reported here were
unattended, using the same default parameters for all game sizes. Less than 1%
of all games were not solved successfully with these defaults. However, in these
cases, the same game could be solved by re-running the solver with just slightly
changed path tracking settings. We expect that the algorithm can tackle still
larger games, but this should ideally be done under attendance and while tuning
the parameters to the specific game – which was not economical for this timing
exercise.

Regarding the dependency of computation time on game size, three factors are
at play. The first is the linear algebra involved in the algorithm: Each step requires
computing a QR-decomposition and a pseudo-inverse of J . Both operations scale
at O(n3) in the size of the system H = 0, which generally is ∑(s,i)∈S×I(|Asi|+ 1),
as each agent contributes an equation for each action and a sum-to-one condition.
In the games reported here, it equals |S| |I| (|Asi| + 1), since all agents have the
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|S| |Asi|
|I|

2 3 4 5

1 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
8 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:01

2 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
8 0:00 0:00 0:00 0:00 0:01 0:00 0:05 0:02

5 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:01
8 0:00 0:00 0:01 0:00 0:04 0:02 0:49 0:26

10 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:01 0:00 0:02 0:01 0:05 0:03
8 0:01 0:00 0:04 0:04 0:23 0:20 4:08 3:00

20 2 0:00 0:00 0:00 0:00 0:01 0:00 0:01 0:01
4 0:01 0:00 0:03 0:02 0:13 0:08 0:56 0:45
8 0:03 0:02 0:42 0:32 5:03 2:46 1:08:10 46:59

50 2 0:01 0:00 0:03 0:01 0:09 0:05 0:37 0:28
4 0:07 0:05 1:16 1:16 11:19 9:24 48:45 26:57
8 1:58 1:54 37:17 17:56

100 2 0:04 0:03 0:23 0:14 2:03 2:05 9:42 9:19
4 1:09 0:50 24:16 27:03
8 1:00:40 1:07:46

200 2 0:25 0:07 3:55 2:28 41:31 33:19 4:17:00 1:46:05
4 24:20 23:02

400 2 3:20 1:07

800 2 30:12 19:12

Table 3.1: Computation times to solve random (generic) games with |S| states,
|I| players and |Asi| actions for each player in each state. Listed are average times
as well as standard deviations (in small print) in m:ss or h:mm:ss. All timings
under 15:00 are based on 100 independently drawn games of the respective size;
all others on 10 games per size.
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same number of actions |Asi|. The costs related to linear algebra dominate in
games with large state space, but few players and actions per player, i.e. towards
the lower left of the table.

The second factor is the evaluation of u and ϕ and their derivatives with respect
to strategies σsia, which appear in H and J (compare Online Appendix 3.D). For
example, to compute usi(σs) for each player and each state, one has to evaluate a
product sum over the outer product of σs and all entries of usi (i.e. over all action
profiles). This scales only linearly in the number of states (or rather quadratically,
if one considers the need to multiply in continuation values). But it scales quite
unfavorably if the game contains a high number of action profiles per state. In
the evenly shaped games reported here, there are |Asi||I| action profiles per state,
which explains why computation times go up dramatically if both |Asi| and |I|
are high. On the other hand, this cost is rather negligible if either number is low;
and it is essentially absent in games with a sequential structure.

Finally, increasing the size of the game generally leads to a longer and poten-
tially more winded path, so that more predictor-corrector steps are necessary to
trace it.

It is important to note that the randomized games used for a benchmark here
do not involve any symmetries between states or players. However, whenever a
game involves symmetrical agents, the rows of all but one of them can be removed
from H, resulting in a far smaller system and significant decreases in computation
time.

3.7 Conclusion

This paper introduces the logarithmic tracing procedure for stochastic games, a
homotopy method for the computation of at least one stationary equilibrium of
any finite discounted stochastic game. Because the solution path is guaranteed to
be isolated and smooth, the method is well-suited for numerical application.

The homotopy function is constructed from the equilibrium conditions of aux-
iliary games, in which players maximize against a convex combination of a prior ρ

and other players’ best responses. Payoffs in the auxiliary games additionally in-
clude logarithmic regularization penalties, which ensure that the path is isolated,
interior, and smooth. By varying the homotopy parameter t from 0 to 1, the
methods proceeds by tracing a path of auxiliary equilibria, until finally an equi-
librium of the original game is reached. Harsanyi and Selten (1988), who proposed
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a similar procedure for normal form games, interpret the traversal of this path as
a form of Bayesian strategic reasoning in which priors are gradually transformed
into equilibrium beliefs. Consequently, they suggest to use their tracing procedure
as a tool for equilibrium selection. This interpretation of course carries over to
our procedure for stochastic games, as does the possibility to use it as part of a
selection criterion. The prior ρ used in the construction of auxiliary games can
be chosen freely. The method can therefore be used to find the equilibrium that
results from a particularly focal prior. To obtain an actual selection criterion, one
of course needs in addition a rule on which prior to use, as suggested by Harsanyi
and Selten (1988). By performing a grid search on the prior space, the method
alternatively allows to approximate the basins of attraction of different equilibria
in size and shape, which could be used as another potential basis for a selection
criterion, if desired.

The present method is a generalization of the linear procedure for stochastic
games by Herings and Peeters (2004), which is guaranteed to be well-defined only
for generic games and priors. Our method makes the same use of priors, but the
addition of logarithmic penalties ensures regularity, so that it is applicable to any
finite discounted stochastic game.

The close relation between these methods can be shown formally when con-
sidering the limiting curve L0, which is obtained by letting the weight on the
penalty terms go to zero. As we have shown, this curve is identical to the curve of
the linear method whenever the latter is well-defined. Consequently, the selected
equilibria of both methods then also coincide. In cases where the linear variant
is not well-defined, L0 is always contained in its solution graph, so that it can be
understood as a unique selection from all paths and equilibria consistent with the
linear method.

Beyond these theoretical considerations, the present method allows the effi-
cient numerical computation of stationary equilibria for stochastic games even
of considerable size. A ready-to-use implementation of the algorithm is publicly
available as part of the python package sgamesolver (Eibelshäuser and Poens-
gen, 2019). Section 3.6 reports timings, which compare quite favorably to available
alternatives.
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Appendix

3.A Continuity of û and H

This section expands on the discussion of footnote 15 regarding the continuity of
û (Section 3.3.1) and H (equation 3). Generally, these functions are not jointly
continuous at points where one or more σsia = 0 and (1− t)η = 0, because it is
not ensured that

lim
(1−t)η↘0

(1− t)η log(σsia) = 0

As an example, consider the sequence
(
(1 − t)η, σsia

)
n

=
(

1
n
, 1

en

)
, for which the

above expression is constant and does not approach 0 as would be required for
continuity. Intuitively, the example requires σ to decrease much faster than (1−
t)η. However, the following will show this can not occur in the equilibrium sets
(i.e. the zero set of H) used by the algorithm. The reason is that in equilibrium,
σsia is bounded from below by a function of (1 − t)η which ensures convergence
to 0. Thus, one could construct a domain that includes all equilibria while also
ensuring joint continuity of û and H .

The following argument establishes existence of said bound. Clearly, only
sequences where σsia → 0 are potentially problematic. For each such action a,
there must be another action a′ ∈ Asi of the same agent (s, i) that converges to a
number strictly greater than 0. Consider then the equation

HV
sia′(σ, V , t)

σsia′
− HV

sia(σ, V , t)
σsia

=

Ū t
si(a′, σs,−i, Vi)− Ū t

si(a, σs,−i, Vi) + (1− t)η
(

νsia′

σsia′
− νsia

σsia

)
= 0

derived from equation (3b) which must hold for all points in H−1(0). Rearranging
terms yields

σsia = νsia

Ū t
si(a′,σs,−i,Vi)−Ū t

si(a,σs,−i,Vi)
(1−t)η + νsia′

σsia′

Here, νsia and νsia′ are positive constants. By assumption, σsia′ ̸→ 0 so that νsia′
σsia′

is bounded. Because Vsi are bounded in equilibrium (see Proposition 2), Ū t
si are

also bounded for all σ, V , t in equilibrium. In addition, the fact that σsia goes to
0, while σsia′ does not, implies Ū t

si(a′, σs,−i, Vi) − Ū t
si(a, σs,−i, Vi) ≥ 0 for (1 − t)η

sufficiently small (action a′ must be at least as good as action a in equilibrium;
compare proofs of Propositions 7 and 10). Therefore, for small (1 − t)η it holds
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that M ≥ Ū t
si(a′, σs,−i, Vi) − Ū t

si(a, σs,−i, Vi) ≥ 0 for some M > 0. Using all of
the preceding, one can bound σsia by two expressions of the form 1

q
(1−t)η

+r
with

q ≥ 0, r > 0. Because

lim
(1−t)η↘0

(1− t)η log
 1

q
(1−t)η + r

 = 0

for all q ≥ 0, r > 0, the sandwich theorem then gives

lim
(1−t)η↘0

(1− t)η log(σsia) = 0

as claimed.

3.B Derivation of the Homotopy Function H

This section provides the proof of Proposition 1, which states that the zero set of
H(σ, V , t) coincides with the set of equilibria of the auxiliary stochastic games
Gt. To this end, we derive the homotopy function H from the maximization
problems stated in equation (2). H = 0 corresponds to the problems’ first order
conditions, which are not only necessary, but due to concavity also sufficient for
an equilibrium.

The Lagrangeans corresponding to the maximization problems stated in equa-
tion (2) are given by

Lt
si = V t

si + αsi

[
− V t

si + ūt
si(σs) + δi

∑
s′∈S

ϕ̄t
s✮s′(σs) V t

s′i

+ (1− t)η
∑

a∈Asi

νsia log(σsia)
]

+ βsi

[ ∑
a∈Asi

σsia − 1
]

where αsi, βsi ̸= 0 are the Lagrange multipliers of the two constraints (2b) and
(2c). Since the logarithmic penalty terms are strictly concave in σsi and all other
terms are linear in σsi, the Karush-Kuhn-Tucker conditions are both necessary
and sufficient. For each agent (s, i) ∈ S×I, they consist of the two constraints, as
well as one equation for each action a ∈ Asi:

∂Lt
si

∂σsia

= αsi

[
ūt

si(a, σsi) + δi

∑
s′∈S

ϕ̄t
s✮s′(a, σs,−i) V t

s′i + (1− t)ηνsia

σsia

]
+ βsi = 0
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Multiplying each of these equations by the corresponding σsia and summing up
over a ∈ Asi yields

αsi

[
ūt

si(σsi, σs,−i) + δi

∑
s′∈S

ϕ̄t
s✮s′(σsi, σs,−i) V t

s′i + (1− t)η
∑

a∈Asi

νsia

]
︸ ︷︷ ︸

=V t
si−(1−t)η

∑
a∈Asi

νsia

[
log(σsia)−1

]
+ βsi

∑
a∈Asi

σsia︸ ︷︷ ︸
=1

= 0

and thus

βsi

αsi

= −V t
si + (1− t)η

∑
a∈Asi

νsia

[
log(σsia)− 1

]

Replacing βsi

αsi
in the first order conditions ∂Lt

si

∂σsia
= 0 gives the following necessary

and sufficient conditions for all agents (s, i) ∈ S×I:

0 = −V t
si + ūt

si(a, σs,−i) + δi

∑
s′∈S

ϕ̄t
s✮s′(a, σs,−i) V t

s′i

+ (1− t)η
(

νsia

σsia

+
∑

a′∈Asi

νsia′

[
log(σsia′)− 1

])
∀ a ∈ Asi

0 =
∑

a∈Asi

σsia − 1

which characterize the set of stationary equilibria of the game Gt.
The homotopy function H is obtained by multiplying the right hand sides

of the former set of equations by the corresponding σsia, and then collecting all
conditions for all agents.

3.C The Starting Point (σ0, V 0)

3.C.1 Existence and Uniqueness

This section provides the proof of Proposition 3, which states that the auxiliary
stochastic game G0 always has a unique equilibrium (σ0, V 0). At t = 0, play-
ers maximize solely against their prior ρ−i, so that strategic interaction is com-
pletely absent. Formally, each player faces a discounted Markov decision problem
with finite state space S, action spaces ∆(Asi), and state transition functions
ϕ̄0

s✮s′(σsi) = ϕs✮s′(σsi, ρs,−i). Instantaneous utilities are given by:



3.C. THE STARTING POINT (σ0, V 0) 123

û0
si : ∆(Asi) → {−∞} ∪ R

σsi 7→ usi(σsi, ρs,−i) + η
∑

a∈Asi

νsia log(σsia)

For the purpose of proving existence, it is helpful to set log(0) :=−∞ and take the
extended real line {−∞} ∪ R as range for û, as indicated above. Note that still
û <∞, so that total expected discounted utilities are always well-defined. Denote
as Û0

si(σi) total utility under σi and beginning in state s, so that one obtains in
vector notation:

Û 0
i (σi) =

(
Û0

1i(σi), Û0
2i(σi), . . .

)⊤
=
(
I − δiΦ(σi)

)−1
û0

i (σi)

Any solution to the Markov decision problem of player i must then satisfy

Vsi = max
σi∈×s∈S ∆(Asi)

Û0
si(σi) ∀s ∈ S

Because Û0
si :×s∈S

∆(Asi)→ {−∞}∪R is upper semi-continuous over a compact
domain, the respective version of the extreme value theorem guarantees that this
maximum exists (Bourbaki, 1966, Ch. IV, § 6, Theorem 3, p. 361). Moreover
it must be that Vsi > −∞, because an arbitrary interior strategy guarantees
some finite total discounted utility in every state, giving a lower bound for the
maximized values. Thus there exists a unique vector V 0

i ∈ R|S| of state values for
each player. Given this vector, optimal strategies σ0 are the solutions to

σ0
si = arg max

σsi∈∆(Asi)

usi(σsi, ρs,−i) + δi

∑
s′∈S

ϕs✮s′(σsi, ρs,−i) V 0
s′i + η

∑
a∈Asi

νsia log(σsia)


Because the first two terms are linear in σsi, while the logarithmic term is strictly
concave, optimal strategies are also unique.

3.C.2 Computation

To compute initial values V 0 and strategies σ0, one can use standard value func-
tion iteration on the Bellman equation

V
(k+1)

si = max
σsi

[
usi(σsi, ρs,−i) + δi

∑
s′∈S

ϕs✮s′(σsi, ρs,−i) V
(k)

s′i + η
∑

a∈Asi

νsia log(σsia)
]

=: max
σsi

[
Uk

si (σsi) + η
∑

a∈Asi

νsia log(σsia)
]
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where k counts iterations and Uk is simply a shorthand for the first two terms:
The linear part of instantaneous utility plus expected discounted future value
under the current estimate V (k). Introducing a multiplier γsi for the constraint∑

a σsia = 1, necessary and sufficient first order conditions for each (s, i) are then

∂Uk
si (σsi)
∂σsia

+ ηνsia

σsia

= Uk
sia + ηνsia

σsia

= γsi ∀a ∈ Asi

∑
a∈Asi

σsia = 1

Dropping indices s, i, and k, and labeling the strategies σ1, ..., σN with N = |Asi|,
the above implies

U1 + ην1

σ1
= Un + ηνn

σn

for n = 1, . . . , N

and thus

σn = νn

U1−Un

η
+ ν1

σ1

Plugging into the constraint gives an equation only in σ1:

f(σ1) :=
N∑

n=1

νn

U1−Un

η
+ ν1

σ1

− 1 = 0

If N = 1, then σ1 = 1. If N > 1, order strategies such that U1 − Un ≥ 0 for all n,
without loss of generality. The following shows that the equation then always has
a unique solution σ1 ∈ (0, 1). First, f is continuous and monotonously increasing
on the open unit interval:

f ′(σ1) =
N∑

n=1

η2ν1νn[
(U1 − Un)σ1 + ην1

]2 > 0

Secondly, behavior at the boundaries of (0, 1) is given by

lim
σ1→0

f(σ1) = −1

lim
σ1→1

f(σ1) =
N∑

n=1

νn

U1−Un

η
+ ν1

− 1 =
N∑

n=2

νn

U1−Un

η
+ ν1

> 0

By application of the intermediate value theorem, there exists a unique solution
for σ1 in the unit interval (0, 1), which can be found by standard root-finding
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algorithms. All other σn are then also uniquely determined by the first order
conditions. Plugging the optimal policy into the Bellman equation yields the next
value iterate V (k+1). Starting from an arbitrary V (0), e.g. the zero vector, this
process can be repeated until V has converged.

3.D Jacobian of H

The Jacobian matrix of H(σ, V , ν, η, t) is

J : [0, 1]|A| × R|S×I| × R|A|
+ × [0,∞)× [0, 1]→ R|A|+|S×I| × R|A|+|S×I|+|A|+2,

J(σ, V , ν, η, t) =


∂HV

sia

∂σs′i′a′

∂HV
sia

∂Vs′i′

∂HV
sia

∂νs′i′a′

∂HV
sia

∂η

∂HV
sia

∂t

∂Hσ
si

∂σs′i′a′

∂Hσ
si

∂Vs′i′

∂Hσ
si

∂νs′i′a′

∂Hσ
si

∂η

∂Hσ
si

∂t



with

∂HV
sia(σ, V , ν, η, t)

∂σs′i′a′
=



− Vsi + ūt
si(a, σs,−i) + δi

∑
s′′∈S

ϕ̄t
s✮s′′(a, σs,−i) Vs′′i

+ (1− t)η
(

νsia +
∑

a′′∈Asi

νsia′′

[
log(σsia′′)− 1

]) if s′ = s, i′ = i

and a′ = a

(1− t)ηνsia′
σsia

σsia′

if s′ = s, i′ = i

and a′ ̸= a

tσsia

[
usi(asi, as,i′ , σs,−{i,i′})

+ δi

∑
s′′∈S

ϕ̄t
s✮s′′(asi, as,i′ , σs,−{i,i′}) Vs′′,i

] if s′ = s

and i′ ̸= i

0 else

∂HV
sia(σ, V , ν, η, t)

∂Vs′i′
=


σsia

(
δiϕ̄

t
s✮s′(a, σs,−i)− 1

)
if i′ = i and s′ = s

σsia δiϕ̄
t
s✮s′(a, σs,−i) if i′ = i and s′ ̸= s

0 if i′ ̸= i
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∂HV
sia(σ, V , ν, η, t)

∂νs′i′a′
=


(1− t)η

(
1 + σsia

[
log(σsia)− 1

])
if s′ = s, i′ = i and a′ = a

(1− t)ησsia

[
log(σsia)− 1

]
if s′ = s, i′ = i and a′ ̸= a

0 if s′ ̸= s or i′ ̸= i

∂HV
sia(σ, V , ν, η, t)

∂η
= (1− t)

(
νsia + σsia

∑
a′∈Asi

νsia′

[
log(σsia′)− 1

])

∂HV
sia(σ, V , ν, η, t)

∂t
= σsia

(
usi(a, σs,−i)− usi(a, ρs,−i)

+ δi

∑
s′∈S

[
ϕs✮s′(a, σs,−i)− ϕs✮s′(a, ρs,−i)

]
Vs′i

)

− η

(
νsia + σsia

∑
a′∈Asi

νsia′

[
log(σsia′)− 1

])

∂Hσ
si(σ, V , ν, η, t)

∂σs′i′a′
=

1 if s′ = s and i′ = i

0 else

∂Hσ
si(σ, V , ν, η, t)

∂Vs′i′
= ∂Hσ

si(σ, V , ν, η, t)
∂νs′i′a′

= ∂Hσ
si(σ, V , ν, η, t)

∂η
= ∂Hσ

si(σ, V , ν, η, t)
∂t

= 0

3.E Regularity: Parametrized Sard’s Theorem,
Full Rank of Jacobian

This section provides the proofs for Proposition 4 and Lemma 8.1. To that end, we
will show that a generalization of Sard’s theorem, known as parametrized Sard’s
theorem, applies to H. This proves that for generic ν, 0 is a regular value of H.

To give an intuitive idea of this result, suppose one picked ν such that the
solution set to H|ν = 0 contained singularities; then these singularities must be
unstable and disappear with probability 1 when using a slightly perturbed vector
ν + ϵ instead. In consequence, it is sufficient to pick an appropriately randomized
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ν to ensure regularity. (For the purpose of numerical computation of equilibria,
this may not even be necessary. In our experience, simply setting all νsia to
1 poses no problem for numerical continuation. The only singularities that we
then encountered in extensive testing were transversal bifurcations. These are
unproblematic from a numerical perspective, as the path can simply be continued
across such points. We failed to create genuinely problematic singularities such as
higher-dimensional subsets contained in the solution set.)

We now turn to proving regularity. Parametrized Sard’s theorem (Chow et al.,
1978, Theorem 2.1, p. 891) reads:

Let Y ⊂ Rm, V ⊂ Rq be open and let H : Y × V → Rp be Cr,
r > max{0, m − p}. If 0 ∈ Rp is a regular value of H, i.e. if the
Jacobian J satisfies rank (J(y, ν)) = p for all (y, ν) ∈ H−1(0), then
for almost every ν ∈ V , 0 is a regular value of Hν(·) = H(ν, ·).

The theorem applies to H on Y . First, H is smooth (C∞), so that the differentia-
bility requirement is met. Second, take ν ∈ V := R|A|

>0 (or an arbitrary open subset
thereof). Third, while Y is itself not open as required, one can easily extend it to
an open domain Y for H(σ, V , t), for example by setting

Y := (0, 1+ε)|A| × R|S×I| × (−ε, 1)

for some ε > 0. Finally, the following will show that the Jacobian J has full rank
on (Y × V) ∩H−1(0).

The Jacobian J of H is written out in Appendix 3.D. It has the following block
structure:

J(σ, V , ν, t) =


∂HV

sia

∂σs′i′a′

∂HV
sia

∂Vs′i′

∂HV
sia

∂νs′i′a′

∂HV
sia

∂t

∂Hσ
si

∂σs′i′a′
0 0 0


For detailed contents of the blocks, again refer to Appendix 3.D. To establish full
row rank, first consider the block

∂Hσ
si(σ, V , ν, t)

∂σs′i′a′
=


1 . . . 1 0

. . .
0 1 . . . 1

 ∈ R|S×I|×|A|

whose rows clearly are independent. Next, consider the block
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∂HV
sia(σ, V , ν, t)

∂νs′i′a′
=


B1,1 0

. . .
0 B|S|,|I|

 ∈ R|A|×|A|

which is itself comprised of quadratic blocks Bsi. If an agent (s, i) has only a single
action, then Bsi =

(
0
)
: These cases will be covered later. If otherwise |Asi| ≥ 2,

then

Bsi = (1− t)η


1 + σsi1(log σsi1 − 1) σsi2(log σsi2 − 1) . . . σsi|Asi|(log σsi|Asi| − 1)

σsi1(log σsi1 − 1) 1 + σsi2(log σsi2 − 1) . . . σsi|Asi|(log σsi|Asi| − 1)
... . . . ...

σsi1(log σsi1 − 1) σsi2(log σsi2 − 1) . . . 1 + σsi|Asi|(log σsi|Asi| − 1)


After subtracting the first row from each other row, one obtains the following
arrowhead matrix:

Bsi = (1− t)η
 D E

F G



= (1− t)η



1 + σsi1(log σsi1 − 1) σsi2(log σsi2 − 1) . . . σsi|Asi|(log σsi|Asi| − 1)

−1 1 0

. . .
. . .

−1 0 1


Because G is invertible, the determinant of each such block can be computed using
the Schur complement:

det(Bsi) = (1− t)η det
(
G
)

det
(
D − EG−1F

)
= (1− t)η

1 + σsi1(log σsi1 − 1)−
|Asi|∑
k=2
−σsik (log σsik − 1)


= (1− t)η

|Asi|∑
k=1

σsik log σsik < 0

The inequality follows from t ∈ [0, 1), η > 0, and σsia ∈ (0, 1). The blocks Bsi

taken together thus provide a basis for all rows that do not correspond to singleton
actions.

To complete the proof for these, we use ∂HV
sia(σ,V ,ν,t)

∂Vs′i′
. Note that all entries are

zero for i ̸= i′, so that one can treat players separately. Fix any i and consider
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only those rows and columns corresponding to a state in which i has only a single
action, enumerated as s1, s2, . . . , sn. In these cases, σsia = 1, so that the resulting
submatrix is

δiϕ̄i − In =



δiϕ̄s1✮s1 − 1 δiϕ̄s1✮s2 . . . δiϕ̄s1✮sn

δiϕ̄s2✮s1 δiϕ̄s2✮s2 − 1 . . .

. . .
. . .

δiϕ̄sn✮s1 . . . δiϕ̄sn✮sn − 1


We have δi < 1, and because ϕ̄i is part of a transition matrix, all entries are

between 0 and 1, with row sums less or equal to 1. This implies ||δiϕ̄i||∞ < 1 in
maximum absolute row sum norm. Therefore, the above matrix is invertible, with

(
δiϕ̄i − In

)−1
= −

∞∑
m=0

(
δiϕ̄i

)m

For each player, this gives a basis for the rows corresponding to singleton action
sets. Since all rows of J are covered now, the proof is complete.

Note that all preceding arguments apply just as well if one considers η as an
argument of H, rather than a fixed parameter, provided η > 0. The Jacobian
J(σ, V , ν, η, t) likewise has full row rank for all (σ, V , t, η) ∈ Y × (0,∞). Appli-
cation of parametrized Sard’s theorem implies that for generic ν, the zero set of
H(σ, V , η, t) is a smooth, 2-dimensional manifold in the interior of Y × (0,∞).
This proves Lemma 8.2, which in turn is part of the proof of Proposition 8.

3.F ODE Representation of Lη

Here we give an explicit representation of the curve Lη, parametrized in arc length.
This is done in the form of an ordinary differential equation (ODE); for a general
discussion of the results used here, see e.g. Zangwill and Garcia (1981).

To simplify notation for this purpose, we collect all the variables σsia, Vsi, and
t in a vector x ∈ RN+1, where N = |A| + |S × I|. Similarly, enumerate the
components of H as H1, ..., HN . The Jacobian of H with respect to x is then a
matrix J of dimensions N × (N + 1). We denote by J−n the square submatrix
obtained by dropping the nth column from J .

By a well known application of the implicit function theorem, one can traverse
any solution path contained in H−1(0) by means of a system of ordinary differential
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equations constructed from J , provided that J is of full rank N along this path.
This system is given by N + 1 equations

ẋn = (−1)n det
(

J−n(x)
)

Note that ẋ is simply a tangent vector of the path in point x. For a detailed
exposition and deductions, see Zangwill and Garcia (1981, equation 2.1.2, p. 26).

Since 0 is a regular value of H|Y , this applies to all paths contained in Z, and
in particular to the distinguished path starting at (σ0, V 0, 0) =: x0. All points
on this path can be represented as the solution x(S) to an initial value problem,
given by x(0) := x0, and

xn(S) = x0
n ±

∫ S

0

ẋn(s)
∥ẋ(s)∥ds

where the sign before the integral is chosen such that t initially increases. The
vector field is normalized, so that the curve is parametrized in arc length, and S

simply represents distance traveled along the curve.

This ODE can be used to compute the distinguished equilibrium numerically.
Finding a stationary equilibrium of some game G is generally a hard task, as
it involves solving a high-dimensional system of nonlinear equations. Standard
methods to do so require a good initial guess, which will usually not be avail-
able. Homotopy methods such as the present one circumvent this problem: By
construction, the starting point is easy to compute. All that is left to do then
is to calculate a sequence of points along the distinguished path, a task that is
much easier, because each such step can start from a solution that is very close
by. In effect, the global task of finding an equilibrium of G is transformed into a
sequence of local tasks.

Note that the prior vector can be chosen freely, for example as the centroid
or some other focal strategy. Alternatively, one can perform the procedure on a
collection of priors, e.g. by constructing a grid over the prior space. The procedure
will potentially find different equilibria for different priors, which allows to assess
the respective sizes of the basins of attraction of different equilibria.
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3.G Timings

3.G.1 Timings for Non-Generic Randomized Games

Here, we report timings for randomized non-generic games, to complement the
timings of similar, but generic games in Section 3.6. General procedures and the
computer used where as described there, except for the following changes. Values
of u were drawn from a discrete uniform distribution with support {0, 0.1, . . . , 1}.
For each action profile as in any state, the vector of probabilities for the resulting
states,

(
ϕs✮s1(as), ϕs✮s2(as), ..., ϕs✮s|S|(as)

)
, was created using a uniform multinomial

distribution with 2|S| trials; this vector was then normalized so that the result
sums to 1. To obtain generic (νsia), values were drawn from a uniform distribution
over the interval [0.75, 1.25].

Results are listed in Table 3.2. In comparison to the timings for generic games
in Table 3.1, computation times are 11% slower on average (the difference is
statistically significant with p < 0.001, in a regression of logarithmized running
time on game type, using fixed effects for the respective game sizes). As for the
generic games, less than 1% of all runs are initially not successful when using a
set of default path tracking parameters.

3.G.2 Instructions for Replication

Both sets of timings can be replicated by following these steps:

1. Install the anaconda python distribution (anaconda.com), if you haven’t
yet. Then set up a virtual environment and install the required packages by
running in a system terminal:

conda create –name logtracing-env python=3.9
conda activate logtracing-env
conda install scipy numpy cython openpyxl matplotlib pandas
pip install sgamesolver==1.0.2

2. From the online supplement to this article, download the files LogTracing_-
Generic.xlsx and LogTracing_NonGeneric.xslx. These files contain all
the raw data from the runs performed by us, for generic and non-generic
games respectively. To repeat all runs from either file, open it in Microsoft
Excel or a compatible program and delete all rows but the first from the
sheet named Runs. (Each set of timings took about 2 weeks on the computer

anaconda.com
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|S| |Asi|
|I|

2 3 4 5

1 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
8 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:00

2 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
8 0:00 0:00 0:00 0:00 0:01 0:00 0:05 0:02

5 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:01
8 0:00 0:00 0:01 0:01 0:04 0:02 0:53 0:29

10 2 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
4 0:00 0:00 0:01 0:00 0:02 0:01 0:06 0:07
8 0:01 0:00 0:04 0:02 0:21 0:11 4:04 2:45

20 2 0:00 0:00 0:00 0:00 0:01 0:01 0:02 0:01
4 0:00 0:00 0:03 0:03 0:15 0:11 0:59 0:48
8 0:04 0:03 0:47 0:43 5:53 2:54 51:24 35:21

50 2 0:01 0:00 0:04 0:02 0:11 0:04 0:39 0:24
4 0:10 0:07 1:45 1:35 12:30 9:57 57:50 29:02
8 2:42 2:28 1:03:38 33:57

100 2 0:05 0:01 0:29 0:19 3:00 4:09 11:53 8:42
4 1:57 1:42 33:17 26:03
8 55:40 48:32

200 2 0:34 0:11 6:47 6:21 52:59 41:24 6:40:27 4:01:59
4 50:39 35:59

400 2 5:06 1:59

800 2 49:14 22:34

Table 3.2: Computation times to solve random non-generic games with |S| states,
|I| players and |Asi| actions for each player in each state. Listed are average times
as well as standard deviations (in small print) in m:ss or h:mm:ss. All timings
under 15:00 are based on 100 independently drawn games of the respective size;
all others on 10 runs per size.
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used by us.) To repeat computation only for specific games, delete only the
according rows from the sheet. Save the file and close Excel.

3. To start computation, open a system terminal and navigate to the location
of the files. Then run

conda activate logtracing-env
sgamesolver-timings FILENAME.xlsx

replacing the filename accordingly. The program will begin solving the
games and keep you updated about its progress. Every 5 minutes, all fin-
ished runs will be saved to the Excel file; make sure that it is not opened
in Excel while computation is in progress, as this will lock writing access.
Computations can be canceled by pressing CTRL+C at any time. Restarting
from the last save is possible by running the commands again.

4. You can check the new results in the Summary sheet, which is updated
whenever the file is saved. Note that the summary always includes all rows
that appear in the Runs sheet (e.g. those rows you left from our runs, or
from your own previous sessions). If you are interested in individual games
only, check the according rows in the Runs sheet directly. To obtain a latex
table as used in this article, run

conda activate logtracing-env
sgamesolver-timings -l FILENAME.xlsx

which will create or update a FILENAME.tex file in the current folder.



134 REFERENCES

References

Abbring, J. H., J. R. Campbell, J. Tilly, and N. Yang (2018): “Very
Simple Markov-Perfect Industry Dynamics: Theory,” Econometrica, 86, 721–
735.

Besanko, D., U. Doraszelski, Y. Kryukov, and M. Satterthwaite
(2010): “Learning-by-Doing, Organizational Forgetting, and Industry Dynam-
ics,” Econometrica, 78, 453–508.

Bourbaki, N. (1966): Elements of Mathematics. General Topology. Part 1, Paris
and Reading: Hermann and Addison-Wesley.

Chow, S.-N., J. Mallet-Paret, and J. A. Yorke (1978): “Finding Zeroes
of Maps: Homotopy Methods That Are Constructive With Probability One,”
Mathematics of Computation, 32, 887–899.

Dang, C., P. J.-J. Herings, and P. Li (2022): “An Interior-Point Differen-
tiable Path-Following Method to Compute Stationary Equilibria in Stochastic
Games,” INFORMS Journal on Computing, 34, 1403–1418.

Daskalakis, C., P. W. Goldberg, and C. H. Papadimitriou (2009): “The
Complexity of Computing a Nash Equilibrium,” SIAM Journal of Computing,
39, 195–259.

Doraszelski, U. and K. L. Judd (2012): “Avoiding the Curse of Dimension-
ality in Dynamic Stochastic Games,” Quantitative Economics, 3, 53–93.

Doraszelski, U. and A. Pakes (2007): “A Framework for Applied Dynamic
Analysis in IO,” in Handbook of industrial organization, Vol. 3, ed. by M. Arm-
strong and R. H. Porter, Amsterdam: Elsevier, 1887–1966.

Doraszelski, U. and M. Satterthwaite (2010): “Computable Markov-
Perfect Industry Dynamics,” The RAND Journal of Economics, 41, 215–243.

Eaves, B. C. and K. Schmedders (1999): “General Equilibrium Models and
Homotopy Methods,” Journal of Economic Dynamics and Control, 23, 1249–
1279.

Eibelshäuser, S. and D. Poensgen (2019): “dsGameSolver: A Python Pro-
gram for Computing Markov Perfect Equilibria of Dynamic Stochastic Games,”
Working paper.



REFERENCES 135

——— (2020): “Markov Quantal Response Equilibrium and a Homotopy Method
for Computing and Selecting Stationary Equilibria of Stochastic Games,” Work-
ing paper.

Ericson, R. and A. Pakes (1995): “Markov-Perfect Industry Dynamics: A
Framework for Empirical Work,” Review of Economic Studies, 62, 53–82.

Fink, A. M. (1964): “Equilibrium in a Stochastic n-Person Game,” Journal of
Science of the Hiroshima University, Series A-I (Mathematics), 28, 89–93.

Gilboa, I. and E. Zemel (1989): “Nash and correlated equilibria: Some com-
plexity considerations,” Games and Economic Behavior, 1, 80–93.

Goettler, R. L., C. A. Parlour, and U. Rajan (2005): “Equilibrium in a
Dynamic Limit Order Market,” The Journal of Finance, 60, 2149–2192.

Govindan, S. and R. Wilson (2009): “A Global Newton Method for Stochastic
Games,” Journal of Economic Theory, 144, 414–421.

Harsanyi, J. C. (1975): “The Tracing Procedure: A Bayesian Approach to
Defining a Solution for n-Person Noncooperative Games,” International Journal
of Game Theory, 4, 61–94.

Harsanyi, J. C. and R. Selten (1988): A General Theory of Equilibrium
Selection in Games, Cambridge, Massachusetts: MIT Press.

Herings, P. J.-J. and R. J. Peeters (2003): “Equilibrium Selection in
Stochastic Games,” International Game Theory Review, 5, 307–326.

——— (2004): “Stationary Equilibria in Stochastic Games: Structure, Selection,
and Computation,” Journal of Economic Theory, 118, 32–60.

Hovanskii, A. G. (1980): “On a Class of Systems of transcendental Equations,”
Soviet mathematics - Doklady, 22, 762–765.

Kohlberg, E. and J.-F. Mertens (1986): “On the Strategic Stability of Equi-
libria,” Econometrica, 54, 1003–1037.

Levhari, D. and L. J. Mirman (1980): “The Great Fish War: An Example
Using a Dynamic Cournot-Nash Solution,” The Bell Journal of Economics, 11,
322–334.



136 REFERENCES

Marker, D. (1996): “Model Theory and Exponentiation,” Notices of the AMS,
43, 753–759.

Maskin, E. and J. Tirole (1988a): “A Theory of Dynamic Oligopoly I:
Overview and Quantity Competition with Large Fixed Costs,” Econometrica,
56, 549–569.

——— (1988b): “A Theory of Dynamic Oligopoly II: Price Competition, Kinked
Demand Curves, and Edgeworth Cycles,” Econometrica, 56, 571–599.

McKelvey, R. D. and T. R. Palfrey (1995): “Quantal Response Equilibria
for Normal Form Games,” Games and Economic Behavior, 10, 6–38.

Nagel, R. (1995): “Unraveling in Guessing Games: An Experimental Study,”
The American Economic Review, 85, 1313–1326.

Pakes, A. and P. McGuire (1994): “Computing Markov Perfect Nash Equi-
libria: Numerical Implications of a Dynamic Differentiated Product Model,”
RAND Journal of Economics, 25, 555–589.

Rubinstein, R. Y. and B. Melamed (1998): Modern Simulation and Model-
ing, New York: Wiley.

Rudin, W. (1976): Principles of Mathematical Analysis. Third Edition, New
York: McGraw-Hill.

Schanuel, S. H., L. K. Simon, and W. R. Zane (1991): “The Algebraic
geometry of Games and the Tracing Procedure,” in Game Equilibrium Models
II: Methods, Morals, and Markets, ed. by R. Selten, Heidelberg: Springer, 9–43.

Shapley, L. S. (1953): “Stochastic Games,” Proceedings of the National
Academy of Sciences, 39, 1095–1100.

Solan, E. and N. Vieille (2015): “Stochastic games,” Proceedings of the Na-
tional Academy of Sciences, 112, 13743–13746.

Stahl, D. O. and P. W. Wilson (1995): “On Players’ Models of Other Players:
Theory and Experimental Evidence,” Games and Economic Behavior, 10, 218–
254.

Takahashi, M. (1964): “Equilibrium Points of Stochastic, Noncooperative n-
Person Games,” Journal of Science of the Hiroshima University, Series A-I
(Mathematics), 28, 95–99.



REFERENCES 137

Watson, L. T. (2002): “Probability-one homotopies in computational science,”
Journal of Computational and Applied Mathematics, 140, 785–807.

Zangwill, W. I. and C. B. Garcia (1981): Pathways to Solutions, Fixed
Points, and Equilibria, Upper Saddle River, New Jersey: Prentice-Hall.





Chapter 4
sgamesolver: A Python Package to

Solve Stochastic Games

This chapter is based on joint work with Steffen Eibelshäuser.

Abstract: We introduce sgamesolver, a python package that uses the homotopy
method to compute stationary equilibria of finite discounted stochastic games. A
short user guide is complemented with discussion of the homotopy method, the two
implemented homotopy functions logit Markov QRE and logarithmic tracing, and
the predictor-corrector procedure and its implementation in sgamesolver. Basic
and advanced use cases are demonstrated using several example games. Finally,
we discuss the topic of symmetries in stochastic games.
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4.1 Introduction

Stochastic games combine two core motifs of modern economic analysis: intertem-
poral optimization and strategic interaction, and thereby capture the essence of
many situations studied in applied economics. They have been used to model,
for example, dynamic pricing (Maskin and Tirole, 1988), industry dynamics (Er-
icson and Pakes, 1995; Abbring et al., 2018), limit order markets (Goettler et al.,
2005), research and development (Breitmoser et al., 2010), organizational learning
(Besanko et al., 2010), and routing and queueing systems (Altman, 1996).

However, adoption remains slow and there is large, untapped potential (Her-
ings and Peeters, 2004; Solan and Vieille, 2015). The likely reason is that, as
easy as it is to find applications for stochastic games, as hard is it to solve the
resulting models. Even smaller stochastic games are generally complex enough to
defy analytical solution. Unfortunately, computing numerical solutions also comes
with difficulties, which we detail below. In particular, there has been a lack of
ready-to-use tools and programs that are widely applicable, accessible, and suffi-
ciently fast. In this paper, we introduce sgamesolver, a python package that aims
to address this gap.

It is the combination of size and strategic interaction that makes stochastic
games hard to solve. Even for games of moderate size, equilibrium conditions
quickly consist in hundreds, if not thousands, of nonlinear equations and inequal-
ities that have to be solved simultaneously. This issue is shared by Markov de-
cision problems, which are essentially one-player stochastic games with much of
the same structure. Yet, these can be solved using powerful iterative methods.
Unfortunately, these methods typically fail to converge once strategic interaction
is introduced. Even in games where they do converge, they are only able to find
pure, but not mixed strategy equilibria. Likewise, many solution methods classi-
cally used in game theory fall short when applied to stochastic games. Without a
final period, backward induction is impossible. Support enumeration fails due to
curse of dimensionality. For example, consider a game with 20 states, 5 players,
and 8 actions per state and player. This size is not unreasonable by any means,
but it implies almost 10190 potential supports for stationary equilibria. Thus, any
technique enumerating supports or complementary slackness conditions is not vi-
able – and would not be even if resolving the equilibrium conditions after guessing
a correct support was completely free, which is actually a very hard problem in
itself.
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In light of this, homotopy methods seem to be the most promising approach to
compute stationary equilibria in general stochastic games. This method solves a
mathematical problem by first continuously transforming it to a similar, but much
simpler problem. The transformation is then gradually reversed while tracking a
path of solutions, until the desired solution of the original problem is obtained.
Intuitively, this turns a very hard, global problem into a series of much easier,
local problems. This is also the method sgamesolver is based on.

The package improves on existing tools in various ways. The first is generality.
sgamesolver can in principle solve all games in this class, so that the only limiting
factor is size. Crucially, this allows to take modeling decisions without being con-
strained by the solution technique. The most important alternative to homotopy
methods are iteration based algorithms, which have been used with great success
in the literature on industry dynamics, going back to Pakes and McGuire (1994).
However, as mentioned before, iteration based methods come with no convergence
guarantee for stochastic games. Where they do work, they are rather fast and able
to handle quite large state spaces; but whether they are able to solve a partic-
ular game will depend on its specific structure. Moreover, they are able to find
pure strategy equilibria only – which often do not exist.1 Homotopy methods are
able to overcome these limitations; however, existing implementations came with
other important limitations. For example, the program provided by Herings and
Peeters (2004) requires games to be “rectangular” in that all players must have
the same number of actions in all states. Moreover, it may fail for games that are
not generic – e.g. games with symmetries or payoffs that are evenly spaced.

The next important improvement is speed: The fastest comparable algorithm
for which we could find reported timings is the interior point method by Dang
et al. (2022). The largest games solved there contain 5 states, 5 players, and 8
actions per state and player. For these, sgamesolver is faster by a factor of 500,
improving average time from 7.5 hours to less than a minute. And due to its
speed, it is able to solve much larger games still in reasonable time (see Chapter 3
for details).

Another essential aspect is usability. sgamesolver’s target audience are ap-
plied researchers; our intention has been to make the program usable without
background knowledge in scientific computation. sgamesolver is based on python,
a free and very accessible programming language. Furthermore, the most com-

1But see Doraszelski and Satterthwaite (2010), who use a purification technique to allow for
mixing of at least one class of players, thereby alleviating this restriction somewhat.
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plex step in using it is to define the stochastic game to be solved. To make this
as convenient as possible, sgamesolver allows to pass the game in form of a table,
which can be generated in another language or program of choice, such as Excel,
Stata, or R.

Finally, sgamesolver is modular in structure and designed to be easily extensi-
ble. For example, it currently includes two distinct homotopy functions – others
can easily be added at any time, both by the authors, but also by users. Simi-
larly, the part of the package that implements the actual numerical path tracking
is a separate, self-contained sub-module. This allows for easy adaptations and
improvements in the future. One could use the homotopy functions provided by
sgamesolver with a completely different path tracking algorithm. Or conversely,
one can use the path tracking algorithm to solve homotopies completely unrelated
to stochastic games.

4.1.1 First Steps and Overview

sgamesolver is written in python and cython. It is free and open source, published
under the permissive MIT license. The current version at the time of this writing is
1.0.2. Source code is found on github.com/davidpoensgen/sgamesolver, along-
side an issue tracker. Documentation is available at sgamesolver.readthedocs.
io. The package is hosted on the python repository PyPi, so installation is as
easy as running

pip install sgamesolver

in a system terminal (for details, see the online documentation). We recommend
to use sgamesolver with the anaconda python distribution (anaconda.com), which
is often considerably faster than the official distribution for numerical tasks.

The following minimal working example illustrates the core steps in using
sgamesolver:

1 import sgamesolver
2 game = sgamesolver.SGame.random_game(64, 2, 4, seed=42)
3 homotopy = sgamesolver.homotopy.QRE(game)
4 homotopy.solver_setup()
5 homotopy.solve()
6 print(homotopy.equilibrium)
7 homotopy.equilibrium.simulate()

github.com/davidpoensgen/sgamesolver
sgamesolver.readthedocs.io
sgamesolver.readthedocs.io
anaconda.com
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We will briefly go over these steps, along which also the rest of the paper is or-
ganized. The first is always to define a game [line 2]. To keep things simple, the
example uses a randomly generated game (here with 64 states, 2 players, and 4
actions per state and player). Of course, the goal will usually be to solve a spe-
cific game; Section 4.2 will cover this in detail, where we formally define stochastic
games, discuss examples, and show how they can be passed to sgamesolver. The
second step is to pick a homotopy function [3]. sgamesolver currently implements
two: logarithmic tracing and QRE. The homotopy principle, the role of the ho-
motopy function, and these two alternatives are discussed in Section 4.3. Further
examples then cover some advanced use cases. The third step is to set up and
start the solver [4–5], which computes the equilibrium by numerically tracking the
path defined by the homotopy function. sgamesolver uses a predictor-corrector-
algorithm to do so; the basic idea of this method and its implementation are laid
out in Section 4.4. Ideally, the solver is able to arrive at the desired equilibrium
with its default parameters and without further user interaction; however, Sec-
tion 4.4 also contains some guidance in case of failure. Once the equilibrium is
reached, one can output strategies and values [6] or use them for further com-
putations or plotting. sgamesolver also allows to simulate equilibrium play [7].
In Section 4.5, we discuss symmetries in stochastic games, which are not touched
upon in the above example, but are of twofold importance: Symmetry is a common
selection criterion for equilibria; and it may be used to speed up computations.
Section 4.6 concludes.

4.2 Stochastic Games

Stochastic games are a quite general class of games that can be seen to generalize
either Markov decision processes to multiple agents, or repeated games by the
addition of state transitions. A stochastic game is played as follows: First, an
initial state is determined, possibly according to a random distribution. At the
beginning of each stage, all players learn the current state of the world and then
choose one of their available actions. All actions and the current state jointly
determine instantaneous utilities for each player and a probability distribution
from which the next state is drawn. The next period begins accordingly. A game
may involve terminal states, meaning it will end once such a state is reached;
otherwise, the game will continue indefinitely. Players discount exponentially
from period to period.
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Definition: Stochastic Game. A stochastic game is given by a tuple G =(
S, I, A, u, Φ, Φ0, δ

)
, with

S : set of states.

I: set of players.

Asi: action set of player i in state s. As =×i∈I
Asi is the set of action profiles

in state s. A = ⋃
s∈S,i∈I Asi denotes the set of all actions of any player in

any state (understood as a disjoint union). Thus, |A| represents the total
number of actions of the game. We often use the index sia to refer to an
action a that belongs to player i in state s.

u =
(
usi(as)

)
as∈As,s∈S,i∈I

: instantaneous payoff functions usi : As → R.

Φ =
(
ϕs✮s′(as)

)
as∈As,s,s′∈S

: state transition probabilities, where ϕs✮s′(as) de-
notes the probability of transitioning from state s to s′, if action profile
as is played. Note that it may be that ∑s′∈S ϕs✮s′(as) < 1; the remaining
probability mass is then simply the chance of the game to terminate.

Φ0 ∈ ∆(S): a probability distribution over the initial state.

δ =
(
δi

)
i∈I

: discount factors for all players.

A stochastic game is called finite if S, I, and A are finite; the time horizon is
of course still infinite. A game is called discounted if all δi < 1 or state transi-
tions Φ are such that that the game eventually terminates with probability one.
sgamesolver can solve finite discounted games only. These restrictions reflect fun-
damental limitations of the homotopy method: First, with continuous action or
state spaces, strategies can generally not be represented as finite vectors of real
numbers, so that homotopy methods are not applicable.2 Second, while there exist
equilibrium concepts for undiscounted games, the equilibrium strategies are gen-
erally not stationary, but depend on history and/or time (Mertens et al., 2015),
so that representation by a finite vector is again not possible. At least in applied
economics, discounting is a common assumption, so that this limitation should
not be overly restrictive.

2One can of course use sgamesolver on a discretized version of the game, provided that the
size of the resulting state and action sets does not become too large. In special cases, it may
alternatively be possible to parameterize strategies by a finite vector of reals, and then solve for
these using the homotopy method.
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In Section 4.2.1, we will introduce two examples of stochastic games to flesh
out the concept, and also to illustrate how to represent games in sgamesolver.
Before that, we will introduce the important concepts of stationary strategies and
stationary equilibrium.

Definition: Stationary Strategy. A stationary strategy σ assigns to each
pair (s, i) ∈ S×I, called the agent of player i in state s, a probability distribution
σsi ∈ ∆(Asi) over the available actions Asi.

Thus, stationary strategies are conditional on the current state only, but not
on the history of play nor on time. Each stationary strategy profile σ induces a
unique vector of state-player-values Vsi, satisfying the recursive relation typical in
intertemporal optimization:

Vsi = usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs) Vs′i

One can obtain a vector equation for the values as follows. Suppose the states
are labeled S = {s0, s1, s2, ..., sN} For the vector of values of player i, write Vi =
(Vs0i, Vs1i, ..., )′, and for the vector of instantaneous utilities under σ write ui =
(us0i(σs0), us1i(σs1), ...). Let Φ be the transition matrix arising from σ, so that
Φm,n = ϕsm→sn(σsm). Then one obtains the vector equation

Vi = (I − δiΦ)−1ui =
∞∑

t=0
(δiΦ)tui

For some purposes, it is helpful to introduce the following notation

Usi(σs, Vi) := usi(σs) + δi

∑
s′∈S

ϕs✮s′(σs) Vs′i

where U corresponds to total expected utility when σs is played in the current
period, and continuation values are given by V .

The most important solution concept for discounted stochastic games is sta-
tionary equilibrium.

Definition: Stationary Equilibrium. A stationary strategy profile σ is a
stationary equilibrium if and only if for each player i, σi maximizes Vi given the
strategies σ−i of the other players.

We make a few comments. First, stationary equilibrium exists for all finite
discounted stochastic games (Shapley, 1953; Fink, 1964; Takahashi, 1964). Sec-
ond, stationary strategies always admit a stationary best response (Herings and
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Peeters, 2004). Therefore, imposing a stationarity restriction on strategies does
not introduce additional equilibria, but simply acts as a selection criterion from
the set of all subgame perfect equilibria. Third, stationary equilibria obey the
one-shot deviation principle, meaning that it is actually sufficient that no single
agent (s, i) has a profitable deviation. Fourth, because the definition encompasses
all states, including any that might never be reached in equilibrium, they are
always subgame perfect.

Fifth, note that history-dependent strategies can always be made stationary
by introducing additional states. The set of stationary equilibria may therefore
depend on the exact formalization of a situation as a game. For example, consider
the classical repeated prisoner’s dilemma. Here, the unique stationary equilibrium
is “always defect”. Now, suppose one models the situation with two states instead,
s0 and s1. The payoffs in each are exactly as before, and transitions as follows:
From s0, stay in s0 if both players cooperate, and otherwise transition to s1. From
s1, always stay in s1. Here, a stationary equilibrium with cooperation exists,
because the strategy “cooperate in s0 and defect in s1” – commonly known as
trigger – is stationary under this formulation.

In light of this, there exists the refinement Markov perfect equilibrium, which
tries to better capture the spirit of history-independence (Maskin and Tirole,
2001). It allows to condition strategies on states only insofar these differ in payoff-
relevant terms.

Definition: Markov perfect equilibrium. Markov perfect equilibrium is
a stationary equilibrium in which symmetric agents play the same strategy.

For the time being, we will leave the notion of symmetry somewhat vague:
Essentially, two agents are symmetric if they face the same situation, in terms
of payoffs and transitions. In the example above, there is nothing inherently
different between s0 and s1, so that the unique Markov perfect equilibrium again
is “always defect”. A formal treatment of symmetry in stochastic games follows in
Section 4.5; in the terminology introduced there, Markov perfect equilibrium is a
stationary equilibrium that conforms to the game’s maximal symmetry structure.

4.2.1 Defining Games in sgamesolver

In sgamesolver, stochastic games are represented by objects of the class SGame. To
create a game, the relevant quantities u, Φ, and δ can be passed to sgamesolver
either in form of a table or as NumPy arrays. In terms of functionality, both
formats are equivalent: Anything that can be done in one can also be done in the
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other. However, they differ a bit in usability. The tabular format is more human-
readable and likely more intuitive for many users. It also has the advantage that
languages or programs other than python can easily be used to define a game,
for example Excel, Stata, R – anything that allows to create data tables. This
also makes sgamesolver accessible to users with little experience in python. The
array format on the other hand is closer to the internal (and mathematical) rep-
resentation of stochastic games. It is also more parsimonious and therefore better
suited to handle very large games, where the tabular format may quickly result
in file sizes in the order of gigabytes. We will focus here on a brief introduction
of the tabular format; a more complete description, as well as documentation of
the array format can be found online. We begin by introducing an example of a
rather simple stochastic game.

Example 1: Rock, Paper, Laser Scissors. This game resembles the clas-
sic Rock, Paper, Scissors, with one added rule. Whenever a player uses scissors,
they become “loaded”: If used again in the very next period, they are able to beat
the other player’s scissors – unless those are loaded too, in which case the usual
tie occurs. Performance against rock and paper is unchanged. A win pays 1, a
tie 0, and a loss −1. The game runs an infinite number of rounds, and players
discount future payoffs with δ = 0.95.

The game can be modeled with three states: Neutral, where neither or both
scissors are loaded, Player 0 loaded, and Player 1 loaded.3 In this game, the
number of actions and their labels in all states coincide; this is of course not
a general property of stochastic games. The following table summarizes payoff
information, with X = 0 in state Neutral, X = 1 in P0 loaded, and X = −1 in P1

loaded.

Player 0

Player 1
Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1

Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 X,−X

3Being python-based, sgamesolver uses 0-indexing; we will also adapt this convention
throughout the paper.
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State transitions Φ can be summarized as:

Player 0

Player 1
Rock Paper Scissors

Rock Neutral Neutral P1 loaded

Paper Neutral Neutral P1 loaded

Scissors P0 loaded P0 loaded Neutral

Table 4.1 illustrates the representation of this game in sgamesolver’s tabular
format. With the exception of the first row, which specifies δi for all players,
each row represents exactly one strategy profile in a specific state. Because each
of the three states allows 9 action profiles, a complete table for this game would
comprise of 27 rows, plus one for the discount factors. One column contains the
state label and a set of a_{player}-columns the actions of the respective agents.
Then, a set of u_{player}-columns specifies the instantaneous utilities arising
from this action profile. Finally, a single to_state-column contains the resulting
next state. The case of non-deterministic transitions is discussed below. The table
to represent the game can be in a variety of formats, e.g. Excel- or csv-files, or
a Pandas dataframe; it can be created by hand or programmatically. Once a file
is in place, a single line turns it into a game-object that can then be solved as
before:

1 import sgamesolver
2 rps_game = sgamesolver.SGame.from_table(" RPS_table.xlsx " )
3 homotopy = sgamesolver.homotopy.LogTracing(rps_game)
4 homotopy.solver_setup()
5 homotopy.solve()
6 print(homotopy.equilibrium)

The solver then quickly computes the stationary equilibrium. The output for
this game is:

An equilibrium was found via homotopy continuation.
++++++++++ neutral ++++++++++

rock paper sciss
p0 : v=0.00, σ=[0.369 0.298 0.333]
p1 : v=0.00, σ=[0.369 0.298 0.333]
+++++++++ p0_loaded +++++++++

rock paper sciss
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p0 : v= 0.11, σ=[0.257 0.409 0.333]
p1 : v=-0.11, σ=[0.480 0.187 0.333]
+++++++++ p1_loaded +++++++++

rock paper sciss
p0 : v=-0.11, σ=[0.480 0.187 0.333]
p1 : v= 0.11, σ=[0.257 0.409 0.333]

Note that in Rock, Paper, Laser Scissors, the transition function Φ has two
properties which are not general to stochastic games: First, the resulting state
depends on the action profile alone, but not on the current state (formally, ϕs✮s′(·)
is identical for all s). Second, state transitions are deterministic: Every action
profile implies a single state to follow, rather than a random distribution (formally,
ϕs✮s′(·) takes values 0 and 1 only). Again, this may differ for other games. One
could imagine a variant of the game where Scissors become loaded only with 50%
probability after playing them. Transitions for this variant would be characterized
as follows:

Player 0

Player 1
Rock Paper Scissors

Rock Neutral Neutral Neutral: 0.5
P1 loaded: 0.5

Paper Neutral Neutral Neutral: 0.5
P1 loaded: 0.5

Scissors Neutral: 0.5
P0 loaded: 0.5

Neutral: 0.5
P0 loaded: 0.5

Neutral: 0.5
P0 loaded: 0.25
P1 loaded: 0.25

It is straightforward to represent such stochastic transitions in the tabular
format, by simply listing state: probability-pairs in the to_state-column.4

Table 4.2 demonstrates this. This concludes discussion of our first example – we
turn to the second, a simple economic model.

Example 2: Sequential Price Competition. This model by Maskin and
Tirole (1988) is a well-known economic application. Two firms produce a homoge-
neous good and compete by setting prices on the discrete grid {0, 0.1, 0.2, ..., 1.1}.
Prices are somewhat sticky: Firm 0 gets to adjust its price only in even periods
(and has to keep this price in the subsequent odd period). Conversely, Firm 1
gets to adjust its price only in odd periods. All consumers buy from the cheapest

4An alternative format for random transitions exists; there, the to_state-column is replaced
by a set of phi_{state}-columns, one for each state, which then simply contain the probabilities
of the respective state to follow.
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state a_p0 a_p1 u_p0 u_p1 to_state
delta 0.95 0.95
neutral rock rock 0 0 neutral
neutral rock paper -1 1 neutral
neutral rock scissors 1 -1 p1_loaded
neutral paper rock 1 -1 neutral
neutral paper paper 0 0 neutral
neutral paper scissors -1 1 p1_loaded
neutral scissors rock -1 1 p0_loaded
neutral scissors paper 1 -1 p0_loaded
neutral scissors scissors 0 0 neutral
p0_loaded rock rock 0 0 neutral
p0_loaded rock paper -1 1 neutral
p0_loaded rock scissors 1 -1 p1_loaded

...
p1_loaded rock rock 0 0 neutral
p1_loaded rock paper -1 1 neutral
p1_loaded rock scissors 1 -1 p1_loaded

...
p1_loaded scissors scissors -1 1 neutral

Table 4.1: The game Rock, Paper, Laser Scissors in tabular format.

state a_p0 a_p1 u_p0 u_p1 to_state
delta 0.95 0.95
neutral rock rock 0 0 neutral
neutral rock paper -1 1 neutral
neutral rock scissors 1 -1 neutral: 0.5, p1_loaded: 0.5
neutral paper rock 1 -1 neutral
neutral paper paper 0 0 neutral
neutral paper scissors -1 1 neutral: 0.5, p1_loaded: 0.5
neutral scissors rock -1 1 neutral: 0.5, p0_loaded: 0.5
neutral scissors paper 1 -1 neutral: 0.5, p0_loaded: 0.5
neutral scissors scissors 0 0 neutral: 0.5, p0_loaded: 0.25, p1_loaded: 0.25
p0_loaded rock rock 0 0 neutral
p0_loaded rock paper -1 1 neutral
p0_loaded rock scissors 1 -1 neutral: 0.5, p1_loaded: 0.5

...

Table 4.2: Variant of Rock, Paper, Laser Scissors with modified, non-
deterministic transitions.
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firm; in case of a tie, demand is split evenly. Total demand in each period is
q(p) = 2 − min(p0, p1). For simplicity, marginal costs are assumed to be zero.
Firms maximize total discounted profit, and share a discount factor δ = 0.95. In
this model, the monopoly price is 1. It is however important to include an addi-
tional, higher grid point, namely 1.1, because firms will sometimes use that price
to invite the other to set the monopoly price in the next period.

Again, the easiest way to pass this game to sgamesolver is to create a tabular
representation. Two properties characterize the state: Which firm is active, and
which of the 12 possible prices was previously chosen by the other firm. This
results in a total of 24 states. The passive firm has no choice to make; this is
reflected by assigning a singleton action to it. The actions of the active firm
correspond to the 12 possible prices, so that there are 12 action profiles per state,
thus 288 in total. Table 4.3 shows the game in tabular format. The exact choice of
labels for actions and states is largely up to the user; they only serve readability.
With a total of 289 lines, it is certainly wise to let a computer generate the table;
in Appendix 4.A, we list exemplary code to do this.

As it turns out, the game has a rather large set of equilibria. We will postpone
discussion to Section 4.3.2.1, where we demonstrate how to compute multiple
equilibria with sgamesolver and discuss some selective properties of the homotopy
method.

4.3 Homotopy Methods

Homotopy methods are a general mathematical tool to solve high-dimensional
systems of equations; Zangwill and Garcia (1981) offer an excellent introduction.
Suppose one wants to find a solution to F (x) = 0, where F : Rn → Rn is highly
non-linear. Most solution methods, such as Newton’s, are local in nature, and will
converge only if one already has a good approximation of the solution to begin
with (Miranda and Fackler, 2004). The core advantage of homotopy methods
is that they are globally convergent. Intuitively speaking, they approach the
problem by first continuously transforming it to a similar, but much easier one.
This transformation is then reversed while keeping track of the solution, until a
solution of the original problem is recovered.

More formally, the system is relaxed by introducing a homotopy parameter t

and a homotopy function H(x, t), H : Rn+1 → Rn. H is a suitable function if it
has the following three properties. First, H(x, 1) = F (x), so that a solution at
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state a_firm0 a_firm1 u_firm0 u_firm1 to_state
delta 0.95 0.95
firm0 active; p1=0.0 0.0 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.0
firm0 active; p1=0.0 0.1 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.1
firm0 active; p1=0.0 0.2 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.2
firm0 active; p1=0.0 0.3 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.3
firm0 active; p1=0.0 0.4 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.4
firm0 active; p1=0.0 0.5 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.5
firm0 active; p1=0.0 0.6 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.6
firm0 active; p1=0.0 0.7 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.7
firm0 active; p1=0.0 0.8 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.8
firm0 active; p1=0.0 0.9 0.0 (inactive) 0.0 0.0 firm1 active; p0=0.9
firm0 active; p1=0.0 1.0 0.0 (inactive) 0.0 0.0 firm1 active; p0=1.0
firm0 active; p1=0.0 1.1 0.0 (inactive) 0.0 0.0 firm1 active; p0=1.1
firm0 active; p1=0.1 0.0 0.1 (inactive) 0.0 0.0 firm1 active; p0=0.0
firm0 active; p1=0.1 0.1 0.1 (inactive) 0.095 0.095 firm1 active; p0=0.1
firm0 active; p1=0.1 0.2 0.1 (inactive) 0.0 0.19 firm1 active; p0=0.2
firm0 active; p1=0.1 0.3 0.1 (inactive) 0.0 0.19 firm1 active; p0=0.3

...
firm0 active; p1=1.1 0.6 1.1 (inactive) 0.84 0.0 firm1 active; p0=0.6
firm0 active; p1=1.1 0.7 1.1 (inactive) 0.91 0.0 firm1 active; p0=0.7
firm0 active; p1=1.1 0.8 1.1 (inactive) 0.96 0.0 firm1 active; p0=0.8
firm0 active; p1=1.1 0.9 1.1 (inactive) 0.99 0.0 firm1 active; p0=0.9
firm0 active; p1=1.1 1.0 1.1 (inactive) 1.0 0.0 firm1 active; p0=1.0
firm0 active; p1=1.1 1.1 1.1 (inactive) 0.495 0.495 firm1 active; p0=1.1
firm1 active; p0=0.0 0.0 (inactive) 0.0 0.0 0.0 firm0 active; p1=0.0
firm1 active; p0=0.0 0.0 (inactive) 0.1 0.0 0.0 firm0 active; p1=0.1
firm1 active; p0=0.0 0.0 (inactive) 0.2 0.0 0.0 firm0 active; p1=0.2
firm1 active; p0=0.0 0.0 (inactive) 0.3 0.0 0.0 firm0 active; p1=0.3
firm1 active; p0=0.0 0.0 (inactive) 0.4 0.0 0.0 firm0 active; p1=0.4
firm1 active; p0=0.0 0.0 (inactive) 0.5 0.0 0.0 firm0 active; p1=0.5

...
firm1 active; p0=1.1 1.1 (inactive) 0.7 0.0 0.91 firm0 active; p1=0.7
firm1 active; p0=1.1 1.1 (inactive) 0.8 0.0 0.96 firm0 active; p1=0.8
firm1 active; p0=1.1 1.1 (inactive) 0.9 0.0 0.99 firm0 active; p1=0.9
firm1 active; p0=1.1 1.1 (inactive) 1.0 0.0 1.0 firm0 active; p1=1.0
firm1 active; p0=1.1 1.1 (inactive) 1.1 0.495 0.495 firm0 active; p1=1.1

Table 4.3: Excerpt from the tabular representation of the game Sequential Price
Competition.



4.3. HOMOTOPY METHODS 153

t = 0
x

t

t = 1

desired solution of
F (x) = H(x, 1) = 0

starting point:
easy-to-compute solution

of H(x, 0) = 0

solution path
in H -1(0)

Figure 4.1: The homotopy principle: Starting at an easily computed solution
of H(x, 0) = 0, a path contained in H−1(0) is followed to the desired solution of
H(x, 1) = 0.

t = 1 solves the original problem. Second, a solution to H(x, 0) = 0 is known
or easy to compute. Finally, the solution set of H(x, t) = 0 contains a path that
can be followed from the easy solution at t = 0 to the desired one at t = 1. For
this purpose, the path can be either continuously differentiable or piecewise-linear;
we will focus on the differential case, which is what sgamesolver uses exclusively.
Figure 4.1 illustrates the homotopy principle.

It should be noted that a homotopy method consists of two distinct com-
ponents: First, a function H that defines the homotopy path; and second, an
algorithm that implements the actual numerical tracking of the path. Thus, the
path is a mathematical object whose existence and properties can be established
with according certainty. On the other hand, the tracking will usually be done in
finite precision; therefore, even if one can guarantee existence of a path, this does
not exclude potential numerical difficulty in tracking it. In this section, we will
cover the homotopy functions implemented in sgamesolver; the tracking algorithm
will then be discussed in Section 4.4.

The standard way to ensure existence of the solution path is via three proper-
ties of the homotopy function H: Regularity, uniqueness of the solution at t = 0,
and boundedness of H−1(0). First, regularity makes it sensible to speak of paths
in the first place. It means that the Jacobian of H has full rank everywhere on
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H−1(0) and thus allows application of the implicit function theorem, which en-
sures that H−1(0) is indeed a 1-dimensional manifold and consists of paths and
loops only. Regularity thereby rules out potential pathologies such as higher-
dimensional subsets, splitting of paths, spirals or sudden endpoints. Next, if the
solution at t = 0 is unique, it must be that a single path crosses there, that this
path is not a loop, and that it can not return to t = 0: this component of H−1(0)
is the homotopy path. Other, disjoint components of H−1(0) may exist, but do
not impede tracking the path. Finally, by virtue of boundedness, the path cannot
go off to infinity in any of the dimensions of x. The path is boxed in, must reach
t = 1 eventually, and thus lead to the desired solution of the original problem.

4.3.1 Homotopy Functions for Stochastic Games

Currently, sgamesolver implements two different homotopy functions that allow
the computation of stationary equilibria in stochastic games: Logit QRE and log-
arithmic tracing. Both receive a detailed exposition in the respective Chapters 2
and 3. Their treatment here will therefore be rather cursory, and focus on a
few features relevant for their usage with sgamesolver. Others have introduced
further homotopy functions for stochastic games, including the linear tracing pro-
cedure by Herings and Peeters (2003, 2004), on which the logarithmic version is
directly based, the interior point method by Dang et al. (2022), and the global
Newton method by Govindan and Wilson (2009). While these are not currently
implemented in sgamesolver, the package is structured to make such extensions
straightforward and easy. Borkovsky et al. (2010) and Herings and Peeters (2010)
offer more general discussions of homotopy methods for (stochastic) games.

Implementation of the homotopy functions in sgamesolver primarily consists
in routines to evaluate H(σ, V , t) and its Jacobian J(σ, V , t), where σ are sta-
tionary strategy profiles, V state-player-values, and t the homotopy parameter.
Because the speed of these evaluations is critical, they are implemented in cython,
a language that is easy to interface from python, but compiles to C, resulting in
good performance.5 In addition, the implementations also provide functionality
to compute the starting point, to set parameters, and similar tasks.

5As a fallback option, sgamesolver also has implementations based only on NumPy, which
are however noticeably slower.
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4.3.2 The Logarithmic Stochastic Tracing Procedure

The Logarithmic Stochastic Tracing Procedure (short: LogTracing, introduced in
Chapter 3) is an extension of Herings and Peeters (2004), who in turn adapt the
linear tracing procedure of Harsanyi and Selten (1988) to stochastic games. The
core idea of the tracing methods is to introduce a prior ρ, representing a first
belief by the players on others’ likely strategies. A family of auxiliary games Gt,
with t ∈ [0, 1], is then constructed as follows: For t = 0, players play only against
their priors. For t ∈ (0, 1), each player maximizes against a belief that is a convex
mixture of their priors and the responses of all other players. At t = 1 finally,
players play only against others’ responses, so that the original game is restored.
Formally, the auxiliary games simply use convex combinations for u and ϕ:

ūt
si(σs) := tusi(σsi, σs,−i) + (1− t)usi(σsi, ρs,−i)

ϕ̄t
s✮s′(σs) := tϕs✮s′(σsi, σs,−i) + (1− t)ϕs✮s′(σsi, ρs,−i)

LogTracing further adds a logarithmic penalty term to instantaneous utilities:

ût
si(σs) := tusi(σsi, σs,−i) + (1− t)usi(σsi, ρs,−i) + (1− t)η

∑
a∈Asi

νsia log(σsia)

Essentially, the logarithmic terms have a regularizing function: They ensure that
the path is well-defined for all games, and make it smooth and interior, thereby
improving computational performance. Note that the penalties are weighted by
the parameter vector ν = (νsia), whose main role is to ensure specific formal
properties. For computational purposes, leaving the weights at the default of 1
generally works well in our experience.

Because no strategic interaction is present at t = 0, G0 corresponds to a set
of independent Markov decision processes, which are easily solved. Starting from
their solution, a path of equilibria of the auxiliary games is followed until reaching
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an equilibrium of the original game at t = 1. The set of these equilibria can be
characterized as the zero set of the homotopy function H,

Hsia(σ, V , t) :=

replicator dynamics︷ ︸︸ ︷
σsia

(
Ū t

si(a, σs,−i, Vi)− Vsi

)
(4.1)

+ (1− t)η
(

νsia + σsia

∑
a′∈Asi

νsia′

[
log(σsia′)− 1

])
︸ ︷︷ ︸

logarithmic perturbation

for each (s, i) and a ∈ Asi. In addition, there is a standard sum-to-one condition
for the mixed strategies σsia not shown here. As indicated in equation (4.1), H

can be understood to combine a form of replicator dynamics with a logarithmic
perturbation, which is then faded out as t→ 1. The zero set of H, which includes
the homotopy path, consists of the stationary points of this dynamic.

4.3.2.1 Dependence of the Path on the Prior

One of the inputs for the logarithmic tracing procedure is the prior ρ, a strategy
profile that can be chosen freely. Because the path varies with this choice, different
priors may lead to different equilibria. Harsanyi and Selten (1988) base their
theory of equilibrium selection for normal form games on this property of the
tracing procedure. They interpret the traversal along the homotopy path as a form
of Bayesian strategic reasoning, in which all players gradually transform priors into
equilibrium beliefs. Much of their theory then concerns the choice of priors for
that interpretation. An analogous, axiomatic theory of selection for stochastic
games is likely out of reach.6 However, one can of course use the connection to a
particularly salient prior (either specific to the game, or e.g. the centroid strategy)
or the size the basins of attraction as part of a selection criterion.

From a more practical perspective, that the computed equilibrium depends on
the prior allows to uncover potentially multiple equilibria by searching the prior
space, either systematically or using random draws.

Example 2 (cont.): Searching the prior space. Earlier, we introduced
the game Dynamic Price Competition; with its high number of equilibria, it is an
excellent example to illustrate the idea of searching the prior space and discuss

6The reason for that is simple: Starting with size 3 × 3, even normal-form games defy
attempts at useful categorization of games and equilibria. For example, the concept of risk-
dominance prominent in Harsanyi and Selten’s work does not generalize beyond 2× 2. Clearly,
adding states and transitions only potentiates that problem.
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t = 0
σ, V

t = 1

Stationary equilibria:

A B C

t = 0
σ, V

t = 1

Stationary equilibria:

A B C

Figure 4.2: Variation of the homotopy path with different priors.

the selective properties of LogTracing. Because this is somewhat tangential, it
is relegated to Appendix 4.A.2, where we exemplify in code how to perform the
search over priors, comment on the equilibria we find, and show that the equilib-
rium with the largest basin of attraction in this game does seem to have properties
resembling risk-dominance, in line with the formal results of Harsanyi and Selten
(1988) for one-shot games.

It is natural to ask whether all equilibria of a given game can be found this
way, provided the search is sufficiently dense. The answer depends on the specific
game; we will first consider the generic case, and then briefly discuss exceptions.
Generically, stochastic games have an odd number of isolated equilibria (Herings
and Peeters, 2004). This situation is illustrated in Figure 4.2. For any chosen
prior, one equilibrium will be connected to the starting point by the homotopy
path, while the others will be connected pairwise by additional paths contained
in H−1(0). Generically, half of all equilibria, rounded up are reachable via the
homotopy (in Figure 4.2: A and C). For any prior, those equilibria not connected
to the starting point are always connected in pairs of one reachable and one
unreachable equilibrium. This could be shown formally using degree theory and
the fact that 0 is a regular value of H (Herings and Peeters, 2004; Zangwill and
Garcia, 1981, ch. 3; Chapter 3). For reasons of brevity, we will not spell this out
here. As discussed before, it is possible to interpret the homotopy function H as
a game dynamic (equation 4.1) – in which case it resembles replicator dynamics
with an additional logarithmic perturbation, and the solutions to H = 0 are its
stationary points. Generically, the equilibria in the reachable set (A and C in the
example) will be stable under this dynamic, and the others (B) unstable, so that
the method will tend to select from the subset of equilibria that is more plausible
to begin with.
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With a small trick, one can still use the homotopy method to find equilibria
that can not be reached directly. Suppose that one has found equilibrium A using
prior ρA, and equilibrium C with prior ρC . Then set the prior to ρA (as in the left
panel of Figure 4.2), but now follow the additional path starting at equilibrium
C, rather than the usual starting point at t = 0. This will lead to equilibrium B.
The following example demonstrates how to do this in sgamesolver.

Example 3: Finding additional equilibria. To illustrate all the preced-
ing discussion, consider well-known one-shot game Stag Hunt, with the following
payoff matrix:

stag hare

stag 10, 10 1, 8

hare 8, 1 5, 5

The game has three equilibria: (stag, stag), (hare, hare), and a mixed equilib-
rium where both play (2/3, 1/3). Only the former two have a basin of attraction with
positive measure and can be reached by varying the prior. The mixed equilibrium
is unstable, and one could arrive at it only if priors ρ and weights ν are chosen
such that the starting point already exactly coincides with it; if the choice is ran-
domized, this is a probability zero event. To still compute it using the homotopy
method, one can use a prior known to lead to (hare, hare), but start to follow the
path at (stag, stag) rather than the starting point, or vice versa. Appendix 4.B
contains code that demonstrates how to do this in sgamesolver.

Returning to the discussion on the effect of a varying prior, we will briefly
mention what can happen in non-generic edge cases. First, the equilibrium set
of a game may not be finite and discrete, but contain higher-dimensional subsets
(trivial examples can be constructed by duplicating equilibrium strategies). In
that case, finite sampling can of course never reach all equilibria; but it is of
course possible to compute some points in these subsets and then proceed from
there. Second, non-generic games may have a finite, potentially even number of
equilibria, some of which are not reachable at all. The most simple example of
this is the game
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L R

T 0, 0 0, 0

B 0, 0 1, 1

which has only two equilibria: (T, L) and (B, R). Here, the homotopy path will
always lead to the stable equilibrium (B, R). The degenerate equilibrium (T, L) is
always isolated in H−1(0), so that it can not be computed via the homotopy, not
even starting at another equilibrium as discussed above. Because such equilibria
are always highly unstable and thus rather implausible outcomes of the game, this
is arguably not a serious limitation.

To finish discussion of the role of the prior, we should mention that varying
the penalty weights ν similarly affects the path and thus the selected equilibrium.
It seems to us that there is no good reason to vary both at the same time, which
also is much harder to interpret. We therefore suggest to generally use the default
ν = 1 and vary the prior ρ as desired. Alternatively, set ρ to zero and vary ν –
this removes all utility components stemming from the prior, so that the auxiliary
games are convex combinations of the original game and the log-penalties only.
Harsanyi (1973) suggested a similar transformation for normal form games.

4.3.3 Logit Markov QRE

This homotopy is an extension of quantal response equilibrium (QRE) to stochas-
tic games, a prominent solution concept in behavioral game theory (McKelvey and
Palfrey, 1995; Goeree et al., 2016). A detailed exposition is found in Chapter 2.
The core idea of QRE is that players do not play perfect best responses, but rather
noisy version: They make mistakes, but the more costly a mistake, the less likely
it is. Thus, each action is chosen with a probability that is increasing in its utility.
Many mappings from utilities to probabilities are possible; sgamesolver uses logit
response, where choice probabilities are proportional to exponentiated utilities:

σsia = exp (λU(a, σ−i, V ))∑
a′∈Asi

exp (λU(a′, σ−i, V ))

Stationary logit QRE are then the fixed points of this function. Note that
here, λ plays the role of the homotopy parameter t and, somewhat atypically,
takes values in [0,∞). It measures the precision with which agents respond to
utility differences. At λ = 0, responses are completely driven by noise: The
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fraction simplifies to 1
|Asi| , so that the starting point is trivial to determine. As λ

increases, responses get closer and closer to best replies. As shown in Chapter 2,
for λ →∞, the limiting points of the stationary QRE correspondence are always
actual stationary equilibria. Thus, while the method uses an approximate solution
concept to define the homotopy path, it does compute an exact equilibrium (save
for the numerical limitations of any finite precision method).

Example 4: Computing a sequence of QREs. Nevertheless, sgamesolver
can of course be used to compute QRE for finite values of λ. For example, one
might want to fit QRE to some empirical data or graph the QRE correspondence.
sgamesolver can aide this by computing QRE strategies for a fine grid of λ. The
following code snippet returns to the example game Rock, Paper, Laser Scissors
and computes stationary QRE for λ = 0.01, 0.02, ..., 10.

1 import sgamesolver, numpy as np
2 rps_game = sgamesolver.SGame.from_table("RPS_table.xlsx" )
3 homotopy = sgamesolver.homotopy.QRE(rps_game)
4 homotopy.solver_setup()
5

6 strategies = np.zeros((1000, 3, 2, 3))
7 for n in range(1000):
8 homotopy.solver.set_parameters(t_target=(n+1)/100)
9 homotopy.solve()

10 strategies[n] = homotopy.equilibrium.strategies

4.4 The Path Tracking Algorithm

In this section, we discuss the algorithm that is responsible for numerically track-
ing the path defined by H = 0 to the desired solution at t = 1. sgamesolver
includes a solver module that, ideally, does this without further user interaction,
so that detailed knowledge of its workings is not necessary. However, a basic un-
derstanding is helpful if one wants to tune the parameters used by the solver, or
if the solver encounters unexpected problems. For example, rarely but depending
on the specific game, the solver may encounter numerically unstable regions; these
can generally be navigated through by slowing the solver down with parameter ad-
justments. In the following, we therefore sketch how predictor-corrector methods
work in general, the concrete implementation in sgamesolver, and the parameters
that govern its behavior.
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In homotopy functions for stochastic games, the vector of unknowns generally
consists of a strategy profile σ = (σsia) and state-player-values V = (Vsi).7 We
will sometimes use the shorthands y := (x, t) := (σ, V , t). sgamesolver uses
differentiable homotopies, where the path in H is smooth (the alternative are
piece-wise linear homotopies, which are not covered here). A naïve approach to
follow the path would be to start at t0 = 0, then repeatedly increase ti slightly and
compute a solution to H(x, ti) = 0, until the desired t = 1 is reached. However,
this is usually not feasible, because the path is not always monotonic in t: As
Figure 4.1 illustrates, one may have to decrease t while following some sections of
the path. The commonly used tool are therefore predictor-corrector procedures,
which alternate between predictor and corrector steps until the target is reached.8

Figure 4.3 illustrates this principle. For the predictor step, the direction of the
curve is extrapolated from the current point yk, yielding a point y0

k further down
the curve, but only approximately on it. sgamesolver uses a simple Euler step
as predictor, i.e. just follows the tangent direction at the current point of the
curve. Starting from the predictor point y0

k, a sequence of corrector iterations yi
k

is computed using Newton’s method, which brings the current point back onto
the curve; this step of course makes use of the fact that the curve is defined by
H = 0. Once that has been accomplished with the desired precision, the next
predictor point y0

k+1 is computed, and so on.
Importantly, the presence of the corrector steps means that there is no ac-

cumulation of numerical error along the path, in contrast to e.g. the numerical
integration of ODEs. Because of this, the precision during tracking only needs to
be sufficient to not lose the path completely; once one has reached a solution at
t = 1, one can then refine it to the desired accuracy.9

An essential aspect if the procedure is choosing the step length ds, which de-
termines how far along the tangent the next predictor point is set (see Figure 4.3).
The choice involves a clear trade-off: The smaller ds, the higher the number of
steps needed to traverse the path. On the other hand, the larger ds relative to the
path’s curvature, the larger the prediction error and thus the number of corrector

7To be precise, our implementations operate on log(σsia) in place of σsia for numerical
reasons, as suggested by Turocy (2005, 2010). However, this should be irrelevant to users.

8Allgower and Georg (1990) offer a great introduction to the computational aspects of ho-
motopy methods.

9In principle, the homotopy path can be characterized as the trajectory of a system of ODEs,
which would allow to use the more complex, higher-order methods common in solving those (e.g.
Runge-Kutta). However, since the corrector steps prevent the accumulation of error, this is not
necessary – the simple, but computationally inexpensive Euler variant is faster and ultimately
no less accurate in this context.
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Figure 4.3: The predictor-corrector principle. Starting at yk, a predictor point
y0

k is computed; a sequence of corrector steps y1
0, y2

0, ... then (most of) the predic-
tion error, so that yk+1 again lies on the curve. This is repeated until reaching
the target of t = 1.

iterations needed for each step. If the error is too large, the predictor point may
even land outside the region of convergence of the corrector, which will then fail
completely – in which case one has to repeat the predictor step with a smaller step
size. Therefore, ds should ideally adapt to the local curvature of the path and the
local speed and stability of Newton’s method. To this end, sgamesolver uses an
adaptive procedure to control ds: It is increased following sequences of successful
steps with sufficiently fast convergence, and decreased whenever a corrector failure
occurs. Section 4.4.1 discusses this in detail, and describes the parameters that
govern this adaptation.

A potential problem to be aware of is path jumping, illustrated in Figure 4.4.
It occurs when the corrector converges, but to a point that does not lie ahead on
the curve as desired, but either on a completely different component of H−1(0)
or even behind the previous point on the same curve. In the former case, path
tracing will generally resume normally on the new component and will still even-
tually reach an equilibrium, albeit not the one connected to the starting point. In
the latter case, it is possible that the solver passes the critical region safely when
reaching it again. But path tracking may also get stuck in a loop if path-jumping
re-occurs when passing the problematic point again. Similarly, repeated occur-
rences of jumping back and forth between components in a badly conditioned
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H(y) = 0

yk

y0
k

yk+1

Figure 4.4: The issue of path jumping, which occurs if the predictor point lands
in the region of convergence of another path segment.

region could also lead to a loop. Unfortunately, both path jumping in general
and looping in particular are hard to detect heuristically, especially without in-
curring considerable computational overhead; luckily, it seems to be a rather rare
occurrence. Based on our experience, we therefore recommend to oversee the path
tracking process, and if problems are encountered, to limit ds and place tighter
restrictions on the acceptance of corrector steps until the critical regions have been
passed. The next section should help in this regard, by giving details on the ex-
act implementation of the predictor-corrector procedure in sgamesolver. Further
instructions for trouble-shooting are found in the online documentation.

The tangent used for the predictors is by itself of course ambiguous, as it de-
termines direction only up to the sign. This is handled by using the orientation
of the path (Zangwill and Garcia, 1981, ch. 2.2). Because the orientation may
change when crossing a bifurcation point, it is necessary to detect such events and
change the sign of the tangent accordingly. This is illustrated in Figure 4.5. Pro-
vided that the sign is changed as needed (which sgamesolver does automatically),
such bifurcations do not impede path tracking, which can continue right across
them. In principle, it is even possible to trace all paths emanating from such
a bifurcation point to uncover additional equilibria (Allgower and Georg, 1990,
ch. 8).
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Figure 4.5: A pitchfork bifurcation with a reversal of orientation.

4.4.1 Implementation in sgamesolver

The implementation of the predictor-corrector-method in sgamesolver is presented
in Algorithm 1 in pseudo-code. Of course, this bird’s eye view omits many aspects,
e.g. the actual computation of the tangent (using a QR-decomposition), caching
of function evaluations and other performance-related details, some additional
options described in the text below, or functionality allowing to store the path
and return to previous points manually. All variables listed in monospace are
parameters of the solver. sgamesolver comes with a set of defaults, adapted to
the specific homotopy functions.10 Each of these parameters can be changed
by the user, either before starting the solver, or by pausing and then resuming
computation at any time. The following shows a minimal example; please refer to
the online manual for details.

1 homotopy = sgamesolver.homotopy.QRE(game)
2 homotopy.solver_setup()
3 homotopy.solver.set_parameters(ds_inflation_factor=1.5,
4 ds_min=1e-8,
5 max_steps=100)
6 homotopy.solve()
7 homotopy.solver.set_parameters(corrector_tol=0.0001,

10For our tests and tuning of parameters, we mainly used games where u ranges from 0 to 1,
and with δ around 0.95. Because the solver also operates on V -space, which scales in u and δ,
parameter adjustments might be helpful if a game differs greatly. An alternative is to re-scale u
to obtain similar ranges for V .
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8 max_steps=200)
9 homotopy.solve()

As Algorithm 1 reveals, the solver mainly operates through two nested loops:
An outer predictor loop [lines 5–26], where each iteration performs an Euler update
[6] and then enters the inner corrector loop [8–17], which runs corrector updates
until a zero of H is reached with sufficiently small error.

The actual corrector updates [9] use the Moore-Penrose pseudo-inverse of the
Jacobian, J+. By default, sgamesolver uses Quasi-Newton updates, meaning that
J+ is computed once at the predictor point, and then reused for each corrector
iteration, rather than re-computing it each time. While this decreases the rate of
convergence and thus necessitates a higher number of corrector iterations, avoiding
additional evaluations and inversions of J usually more than makes up for it
(Allgower and Georg, 1990). However, it is possible to switch to full Newton
updates by setting parameter quasi_newton to false; line 9 then becomes

ycorr ← ycorr − J+(ycorr)H(ycorr).

There are three failure criteria for the corrector loop [11]. The first limits the
combined length of all corrector updates; failure will occur if ypred is too far off the
path. The second places an upper bound on the ratio the current and previous
corrector update distances, thereby enforcing a specific rate of convergence. Fi-
nally, the total number of corrector iterations is limited. If the corrector loop fails,
ds is decreased and the predictor step repeated [12–14]. Setting strict thresholds
for the criteria will increase stability, mainly by preventing path jumping, but also
reduce the speed, because more steps will be discarded and ds will be lower on
average.

If the corrector loops exits successfully, step size ds is increased if the following
additional criteria are met [18–20]. First, the number of corrector steps must not
exceed a set threshold, which may be lower than the one for corrector success
(for example, one might allow up to 10 corrector iterations, but increase ds only if
convergence occurred in 5 or less). Second, one can allow increases of ds only after
a certain number of consecutive successful steps (as recommended by Bates et al.,
2008). Both conditions help to slow down in regions where the path is winded or
the Jacobian badly conditioned.

Before proceeding to the next predictor iteration, the algorithm checks heuris-
tically whether a bifurcation was crossed and a sign swap is necessary [21–23], as
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Algorithm 1 The predictor-corrector-procedure in sgamesolver
1: ds← ds_initial ▷ Initial step length
2: y ← y0 ▷ Starting point
3: sign← setSign() ▷ Set initial direction towards t_target
4: consecutive← 0 ▷ Counts consecutive successful steps
5: repeat for step = 1, 2, ... ▷ Predictor loop
6: ypred ← y + sign · ds · tangent(y) ▷ Euler predictor
7: ycorr ← ypred

8: repeat for iteration = 1, 2, ... ▷ Corrector loop
9: ycorr ← ycorr − J+(ypred)H(ycorr) ▷ Quasi-Newton update

10: dist← ||J+(ypred)H(ycorr)||2 ▷ Distance of update
11: if ||ycorr − ypred||2 ≥ c_dist_max or ▷ Failure criteria: total distance,

dist
distold

≥ c_ratio_max or ▷ ratio (skipped on 1st iteration),
iteration > c_max_iter then ▷ number of iterations

12: ds← ds · ds_deflation_factor ▷ Reduce ds ...
13: consecutive← 0
14: go to line 6 ▷ ... and repeat predictor
15: end if
16: distold ← dist

17: until ||H(ycorr)||max < corrector_tol
18: if iteration ≤ ds_inflation_max_corrector_steps and

consecutive ≥ ds_inflation_min_consecutive_successes then
19: ds← max(ds · ds_inflation_factor, ds_max) ▷ Increase ds

20: end if
21: if angle(tangent(y), tangent(ycorr)) > bifurc_angle_min then
22: sign← −sign ▷ Bifurcation detected: swap sign
23: end if
24: y ← ycorr

25: consecutive← consecutive + 1
26: until |t− t_target| < convergence_tol or ▷ Success

ds < ds_min or step ≥ max_steps ▷ Failure
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illustrated in Figure 4.5. If the angle between the tangents at the previous and at
the new point is too close to 180°, orientation is reversed before the next step.

Choi et al. (1996) suggest an additional heuristic to detect path jumping,
not included in Algorithm 1. It monitors the change in the determinant of the
augmented Jacobian (J with the tangent added as additional row) between the
previous and the new point. If the ratio exceeds a threshold, this is interpreted
as a sign of potential path jumping, the step discarded, and repeated with a
reduced step size. In our experience, the criterion leads to a very high number
of false positives when used with the homotopies implemented in sgamesolver,
thereby increasing computation times by an order of magnitude or more. Thus,
we suggest to consider this an experimental feature, and if at all use it in regions
where one has already observed that path jumping seems to be a problem. The
test can be activated by setting parameter test_segment_jumping to true and
det_ratio to the desired ratio threshold.

The algorithm terminates successfully if t reaches t_target (e.g. t = 1) with
the desired precision [26]. The refined end-game step size control, which prevents
overshooting, is not featured in Algorithm 1. It is possible to define other conver-
gence criteria. For example, the actual stationary equilibria in the QRE homotopy
are the limit points of σ, V as t→∞. To account for this, the algorithm by de-
fault runs until σ has converged with the desired precision. Of course, one can
also just set a finite value for t_target to compute the QRE that corresponds to
this t.

Failure occurs when at some point, the predictor-corrector-step keeps failing,
although step size ds is already at its defined minimum ds_min. This should rarely
occur (in our experience, if the algorithm fails, it manifests more often in the form
of looping, see the discussion above) and is often a sign of a problem in the game’s
definition, e.g. ill-defined transition probabilities. Another failure criterion is a
maximum number of predictor-corrector-steps; however, this never means hard
failure, because it is always possible to simply increase max_steps and continue
where the solver halted. The main use case for this criterion is to prevent endless
running if the solver is stuck in a loop, which is hard to detect programmatically.
It can also be used to pause and restart computations in a pre-defined frequency,
e.g. to save progress regular intervals.

Note that the solver also has functionality to store an array of all visited
points for diagnostic reasons, for plotting, and also to return to previous points
if problems are encountered. Similarly, it is possible to save the current state of
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the solver (mainly y, and some additional state variables like ds and consecutive)
to disk and load it later, for example to continue after a reboot or to be able to
return to previous points. The online documentation contains details.

4.5 Symmetries in Stochastic Games

In this section, we discuss the notion of symmetry in stochastic games, which is
an important selection criterion, but also a property that can be used to speed
up computations. While other treatments exist (e.g. Zinkevich, 2006), we found
them hard to operationalize for our computational purposes. We begin with a
basic definition.

Definition: Symmetry structure. A symmetry structure of a stochastic
game G is an equivalence relation ∼ that partitions the set of agents, S × I,
into classes T0, T1, ..., called types. Informally speaking, two agents of the same
type face the same situation provided all agents of each other type act the same;
and because all agents of a type face the same situation, acting the same is then
actually justified. The following formalizes this notion.

1. The type compositions (with multiplicity) of any two states either coincide
or are disjoint.

2. Agents of the same type have the same number of actions: If (s, i) ∼ (s′, i′),
then |Asi| = |As′i′ |. Actions are assumed to be ordered such that the first
action of one corresponds to the first action of the other, and so on.11 “Acting
the same” then simply means σsi = σs′i′ .

3. We call a vector of state-player-values V = (Vsi) or a strategy profile σ

symmetric under ∼ if (s, i) ∼ (s′, i′) implies Vsi = Vs′i′ or σsi = σs′i′ ,
respectively.

4. Note that equivalence can hold between two agents of the same player in
different states, between agents of different players in different states, and
between different players in the same state.

11Rather than presupposing this ordering, one could make the existence of according permu-
tations part of the definition of a symmetry structure. We choose the former route, as there is
no technical difference, and it eases notation.
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5. The former two cases, (s, i) ∼ (s′, i′) with s ̸= s′, are formalized as follows.
Let V = (Vsi) be symmetric under ∼ and σ symmetric under ∼, then
(s, i) ∼ (s′, i′) requires

Usi(σsi, σs,−i, V ) = Us′i′(σs′i′ , σs′,−i′ , V )

for all σsi = σs′i′ .

6. The remaining case from 4. is (s, i) ∼ (s, i′). We will first treat the case
of exactly two such agents in a state, and then generalize to more. Let V

be symmetric under ∼, and let σs,−i be an arbitrary strategy profile for all
other agents in s that is symmetric under ∼. Then symmetry requires

Usi(σsi, σs,i′ , σs,−i, V ) = Usi′(σsi′ , σs,i, σs,−i, V ),

where the first argument of U indicates the strategy of i, the second that of
i′. Now suppose more than two agents from the same state s are symmetric,
say i0, i1, ..., iN . Denote by π(·) a permutation of (i0, i1, ..., iN). Symmetry
then requires

Usi0(σsi0 , σs,i1 , ..., σs,iN
, σs,−i, V ) =

Usπ(i0)(σsπ(i0), σs,π(i1), ..., σs,π(iN ), σs,−i, V )

for all permutations and all pairs of agents. This notion of symmetry
within states corresponds to the standard notion of symmetry in normal
form games, after factoring in V .

To illustrate this concept, reconsider the example game Rock, Paper, Laser
Scissors. Here, a symmetry structure is given by (Neutral, P0) ∼ (Neutral, P1),
(P0Loaded, P0) ∼ (P1Loaded, P1), and (P0Loaded, P1) ∼ (P1Loaded, P0). Note
that this example nicely illustrates that to identify symmetries, one has to con-
sider the complete partition, rather than just individual pairs of agents. This
is because whether two agents are symmetrical often hinges on whether specific
other pairs of agents are also symmetrical. Consider e.g. the two agents with
loaded scissors. They are symmetrical, but only because their “un-loaded” direct
opponents are also symmetrical – if the latter were not to act the same, the in-
centives for the loaded agents would not be identical either. Likewise, symmetry
between the Neutral agents is required for the loaded agents to be symmetric,
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because the expected utilities from the neutral state enter as continuation values.
The other example game Dynamic Price Competition also has an obvious sym-
metry structure. Specifically, Firm 0 (Firm 1) after Firm 1 has just set p1 = p is
symmetric to Firm 1 (Firm 0) after Firm 0 has just set p0 = p.

Note that the symmetry structure of a game is generally not unique. As a
simple example, consider a game with a single state and three players and suppose
full symmetry between them. Then, all partitions into a pair and a singleton must
also be symmetry structures (because if 6. holds for all permutations of the three
agents, it must also hold when exchanging just two). Moreover, it is easily seen
that the trivial partition of agents into singleton sets always fulfills the conditions
for any game.12

The preceding example illustrates that between symmetry structures that are
refinements of each other, it is clearly the coarsest one that is most restrictive
and thus most interesting. This raises the question whether a game always has a
coarsest symmetry structure. This is at least not immediately obvious, because
the ordering imposed by refinement is only partial. However, in the following we
will show that the answer is affirmative.

Proposition: Maximal symmetry structure. Every game G has a max-
imally coarse symmetry structure (so that every other symmetry structure is a
refinement of it).

To prove this, we will first introduce a bit of notation. Given two equivalence
relations ∼a and ∼b, denote by ∼a∪b the equivalence relation defined as follows:

x ∼a∪b y ⇔ x ∼a y ∨ x ∼b y ∨ ∃z : (x ∼a z ∧ z ∼b y ∨ x ∼b z ∧ z ∼a y)

In words, two elements are equivalent under ∼a∪b if they are either directly equiva-
lent under either ∼a or ∼b, or indirectly linked by a third element that is equivalent
to both. In effect, ∼a∪b is the smallest possible equivalence relation that retains
equivalence under either ∼a or ∼b. Next, we will show that this preserves the
properties that define a symmetry structure.

Lemma: Combining symmetry structures. If ∼a and ∼b are symmetry
structures of a game, then ∼a∪b is also a symmetry structure.

12While the example may suggest that refinements of symmetry structures are again sym-
metry structures, this is not generally true. An example is again Rock, Paper, Laser Scissors,
where the only symmetry structure besides the one stated above is the trivial one of singletons.
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To show this, we just need to establish that for all pairs of agents with x ∼a∪b y,
properties 5. and 6. also hold with respect to ∼a∪b. First consider the cases where
x ∼a y or x ∼b y, so that 5. and 6. hold under at least one of these. Next, observe
that the sets of V and σ that are symmetric under x ∼a∪b y are a subset of those
symmetric under x ∼a y and a subset of those under x ∼b y. If 5. and 6. hold
when quantifying over either superset, they must also hold when quantifying over
the smaller set, thus hold with respect to x ∼a∪b y. This covers agents for which
either x ∼a y or x ∼b y. We now turn to those only indirectly linked. Without loss
of generality, suppose that x ∼a z and z ∼b y. This implies that properties 5. and
6. hold between x and z and between z and y with respect to σ and V symmetric
under ∼a∪b, as just shown. Since properties 5. and 6. are clearly transitive, they
must then also hold between x and y.

Returning to the proposition, observe that if ∼a is a refinement of ∼b, then
∼a∪b=∼b and vice versa. If neither is a refinement of the other, then both are
refinements of ∼a∪b. Every game has at least one symmetry structure, because
the trivial partition is always one. Finally, we can now rule out that a game can
have multiple maximal elements in terms of coarseness. Because if ∼a ̸=∼b were
both maximal, then ∼a∪b would also be a symmetry structure and coarser than
both – a contradiction.

Proposition: Existence of a symmetric equilibrium. For every sym-
metry structure of a game, there exists a stationary equilibrium that is symmetric
under that structure.

As mentioned earlier, a strategy profile that is symmetric under the maximally
coarse symmetry structure is also symmetric under all other symmetry structures,
which are refinements of the former. Thus, it will suffice to show existence of an
equilibrium that is symmetric under the maximal symmetry structure. Note that
this equilibrium is Markov perfect, as defined in Section 4.2.

While other proofs of existence have been put forward (Maskin and Tirole,
2001), we want to take a slightly different route here and demonstrate the ability
to use homotopy functions for constructive proofs. The idea is to establish the
existence of a path that is itself symmetric, and leads to an equilibrium – which
must then also be symmetric. We will use the QRE homotopy (Section 4.3.3 and
Chapter 2) to that end.

First, note that symmetry of a game implies symmetry of u; to see this, simply
set V = 0 in properties 5. and 6. The strategy σ0 at the starting point of
the QRE homotopy is given by σ0

sia = 1
|Asi| for all s, i and a ∈ Asi. Since all
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symmetric agents must have the same number of actions (property 1.), σ0 clearly
is symmetric. If u and σ are symmetric, values V 0 at the starting point must also
be symmetric. Thus, the path begins at the symmetric point (σ0, V 0, 0). Since u

is symmetric, so are its derivatives (the derivative of u(σsi) with respect to σsia is
simply u(a, σs,−i)). The derivatives determine the direction of the path. Thus, as
long as the current point is symmetric, the direction of the path is symmetric, and
because the direction is symmetric, the points on the curve remain symmetric. In
consequence, σ along the principal branch of the QRE homotopy is symmetric. In
Chapter 2, we show that the limiting point of any branch of the QRE homotopy
is a stationary equilibrium. Since the complete branch is symmetric, so must be
its limit point. The existence of a symmetric equilibrium follows as claimed.

Note that the preceding argument also establishes that sgamesolver will always
compute an equilibrium that is symmetric under the maximal symmetry structure
of the given game when using the QRE homotopy. The same holds for LogTracing
only if one ensures that the prior ρ and the vector of weights ν are symmetric.
One way to do so is to use the centroid strategy as prior, and a vector of ones as
weights – which is actually the default in sgamesolver. sgamesolver also imple-
ments functionality to test symmetry structures, and make vectors like ρ and ν

symmetric. In general, symmetry may not only serve as a selection criterion, but
can also be used to speed up computations. For each type of agents, it is possible
to drop the rows and columns from H and its Jacobian J for all agents but the
first from each symmetry class. For example, in the Dynamic Price Competition
game, each agent has a symmetric agent of the other player in a corresponding
state; thus, using symmetries would allow to half the time required for each eval-
uation of H. In addition, the algorithm involves the repeated computation of
QR-decomposition and pseudo-inverse of J . Both operations scale cubically in
the size of the system, so that halving the number of components of H should
speed up these parts of the algorithm by a factor of 8. Some features regarding
symmetries are currently in development and subject to change; thus, please refer
to the online manual for up-to-date instructions.

4.6 Conclusion

This paper has introduced the package sgamesolver, a toolbox to compute sta-
tionary equilibria of finite discounted stochastic games via the homotopy method.
The goal behind the package is to provide applied researchers with a tool that
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allows to solve models efficiently and without large investment into knowledge
related to computational methods. In that regard, an important feature is the
ability to solve games independently of their specific structure.

This paper has covered the basic usage, in particular how games can be defined
and passed to the software. Some more advanced use cases were also discussed,
e.g. the possibility to approximate the graph of a QRE correspondence. We also
discussed the dependence of the LogTracing homotopy path on the prior in more
depth than was possible in the original paper (Chapter 3), showed practically how
to use prior search to uncover additional equilibria, and discussed the selective
properties of this homotopy in an example. We presented the predictor-corrector-
principle underlying the solver module of the package, and pointed out some
potential pitfalls that can occur when using it. Finally, we discussed symmetries in
stochastic games, again with a focus on their significance for users of sgamesolver.

We hope to extend the package in the future, by incorporating additional
homotopies, but also wider functionality. One additional feature that is under
development is to incorporate game dynamics. These are potentially interesting
both as an object of study themselves, but also as a potential alternative tool to
solve games. Inclusion in the current package will hopefully prove synergistic, as
in terms of computation, there is considerable overlap between the evaluation of
homotopy functions and dynamics. The close relation is particularly apparent in
a dynamic derived from QRE, covered in Chapter 2. Another area for potential
development concerns the steps after an equilibrium has been found, for example
its graphical representation or its use in further computations. We always welcome
feedback, suggestions, and contributions, and are always happy to learn how how
the software is being used.
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Appendix

4.A Game Dynamic Price Competition

4.A.1 Creating a Tabular Representation

The following code listing exemplifies how the Dynamic Price Competition game
can be defined and then solved in sgamesolver. We use python here, and are
creating and passing the table as a Pandas dataframe; however, other programs
or languages can be used, and the table passed as a file. The structure of the code
itself is rather simple. Three loops generate all the combinations of active firm,
other firm’s old price, and the active firm’s new price. For each combination, a
line is appended with state- and action labels as well as calculated profits.

1 import sgamesolver, pandas as pd
2
3 # set up price grid and a profit function
4 price_grid = [round(0.1*n, 1) for n in range(12)]
5 def profit(own_price, other_price):
6 if own_price > other_price:
7 return 0
8 elif own_price == other_price:
9 return (2 - own_price) * own_price/2

10 elif own_price < other_price:
11 return (2 - own_price) * own_price
12
13 # prepare a table for the game, and append a single row for the deltas
14 table = pd.DataFrame(
15 columns=[" state " , " a_firm0" , " a_firm1" , " u_firm0" , " u_firm1" , " to_state " ])
16 table.loc[len(table)] = {" state " : " delta " , " u_firm0" : 0.95, " u_firm1" : 0.95}
17
18 # loop over active firm, other firm's price, own price
19 for active_firm in [0, 1]:
20 inactive_firm = 1 - active_firm
21 for inactive_firm_price in price_grid:
22 for active_firm_price in price_grid:
23 # append a row with: state, action labels, payoffs, transitions
24 # python f-strings are used to piece together the labels
25 table.loc[len(table)] = {
26 f " state " : f " firm {active_firm} active; p {inactive_firm}= {inactive_firm_price}" ,
27 f " a_firm {active_firm}" : active_firm_price,
28 f " a_firm {inactive_firm}" : f " {inactive_firm_price} (inactive) " ,
29 f " u_firm {active_firm}" : profit(active_firm_price, inactive_firm_price),
30 f " u_firm {inactive_firm}" : profit(inactive_firm_price, active_firm_price),
31 " to_state " : f " firm {inactive_firm} active; p {active_firm}= {active_firm_price}"
32 }
33
34 game = sgamesolver.SGame.from_table(table)
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4.A.2 Searching the Prior Space and Equilibrium
Selection

We now return to the example game Dynamic Price Competition. Maskin and Ti-
role (1988) already showed that this game, independently of the exact parametriza-
tion, has two types of (symmetric) stationary equilibria: A cycling type, in which
the firms generally repeatedly undercut each other; once the price reaches marginal
costs, both firms mix between staying there and returning to a much higher price,
from which the undercutting then repeats. The resulting saw-tooth price pattern
is known as an Edgeworth cycle. The other type of equilibrium consists in both
firms setting some fixed price pi = p̄, and retaliate only if the other undercuts.
Such equilibria generally exist for many values of p̄.

The following code snippet demonstrates how to perform a search of the prior
space using the LogTracing homotopy with just a few lines of code. In the example,
10 000 priors are drawn at random, and the associated equilibrium is computed. A
list stores all distinct equilibria and counts how often they occurred. It is assumed
that the code from Appendix 4.A.1 has been run prior to create the game itself.
As mentioned in Section 4.3.2.1, an alternative approach would be to set the prior
to 0 and vary ν randomly from trial to trial.

1 game = sgamesolver.SGame.from_table(table)
2 equilibria = []
3 n_runs = 10000
4 for run in range(n_runs):
5 print(f " Run: {run}" )
6 # generate a random prior, using a seed for reproducibility
7 rho = game.random_strategy(seed=run, zeros=True)
8 # set up the LogTracing-homotopy, prepare and start the solver
9 logtracing = sgamesolver.homotopy.LogTracing(game, rho=rho)

10 logtracing.solver_setup()
11 logtracing.solver.set_parameters(bifurcation_angle_min=177.5,
12 max_steps=1000, verbose=0)
13 logtracing.solve()
14
15 if logtracing.equilibrium:
16 for old_eq in equilibria:
17 if np.allclose(logtracing.equilibrium.strategies,
18 old_eq.strategies, atol=0.001,
19 equal_nan=True):
20 old_eq.count += 1
21 break
22 else:
23 logtracing.equilibrium.count = 1
24 equilibria.append(logtracing.equilibrium)
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Figure 4.6: The nine symmetric equilibria of the game Dynamic Price Competi-
tion found by searching the (symmetric) prior space and their relative frequency.
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When searching the prior space with 10 000 random, symmetric priors, we
found 9 symmetric equilibria, which are shown in Figure 4.6. Each panel shows
the equilibrium strategy of Firm 0; Firm 1’s strategy is symmetric, but not shown.
On the x-axis is the price set by Firm 1 previously; the y-axis then shows Firm 0’s
response; if a response is mixed, this is indicated by multiple markers, with darker
shades indicating higher probability mass for the respective price. The title of
each panel lists the type of the equilibrium and the relative frequency with which
it was reached. The cycling equilibrium is by far the most common, arising from
78% of priors. Fixed price equilibria with p̄ ranging from 0.5 to 1 occur, with a
frequency decreasing in p̄. Fixed price equilibria with prices lower than 0.5 are
absent; presumably, these are in the set of equilibria that could only be reached
via secondary branches. Finally, there are also the two somewhat mixed types
mixed1 and mixed2, which feature both undercutting, but also ranges of fixed
price responses.

We now briefly touch on the question of what seems to determine the rela-
tive sizes of the basins of attraction, in particular the prevalence of the cycling
equilibrium. Harsanyi and Selten (1988) have shown that for 2 × 2 games, the
risk-dominant equilibrium always has the largest basin of attraction under the
tracing procedure, and that this equilibrium is always selected when starting from
the centroid prior. Risk dominance is is tightly connected to the idea of strategic
uncertainty; if the latter is high, the risk dominant equilibrium is arguably a plau-
sible outcome, even if Pareto-dominated by another. A well-known example is the
game stag hunt (Section 4.3.2.1), where the hare-equilibrium is risk-dominant, but
payoff dominated. Unfortunately, the concept of risk dominance does not readily
generalize. Even for larger one-shot-games there is no guarantee that a transitive
relation of this sort between different equilibria; the situation in stochastic games
clearly is no better.

Still, in the game Dynamic Price Competition, the selection by LogTracing does
seem to resemble something similar to risk dominance. To asses how exposed to
to strategic uncertainty of the different equilibrium strategies are, we simulated
mis-coordinated equilibrium play in a tournament-like manner. For each pair of
equilibrium strategies, we simulated the game 1000 times with 200 periods each.
Table 4.4 lists the resulting average total discounted utility for the row-strategy
when facing the column-strategy. As the diagonal shows, the p̄-equilibria clearly
Pareto-dominate the others, with value increasing in p̄. However, if one considers
what happens in case of mis-coordination, i.e. off the diagonal, it is apparent
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cycle p̄=0.5 p̄=0.6 p̄=0.7 p̄=0.8 p̄=0.9 mix1 mix2 p̄=1.0
78.0% 12.2% 5.7% 2.4% 1.0 % 0.3% 0.3% 0.1% 0.01%

cycle 6.59 3.70 5.64 6.09 6.43 6.64 5.32 5.28 6.76
p̄=0.5 0.12 7.45 5.46 5.46 5.46 5.46 3.10 2.90 5.45
p̄=0.6 1.79 1.80 8.35 2.36 2.42 2.48 4.98 1.80 2.43
p̄=0.7 1.78 1.78 5.56 9.03 1.99 2.02 1.78 2.70 2.03
p̄=0.8 1.77 1.77 5.53 5.93 9.52 1.78 1.76 1.77 1.72
p̄=0.9 1.75 1.75 5.56 5.96 6.22 9.79 1.75 1.75 1.56
mix1 4.98 3.69 6.65 5.91 5.91 5.91 5.73 4.78 5.93
mix2 5.09 3.70 5.03 6.47 6.25 6.24 5.58 5.34 6.28
p̄=1.0 1.74 1.74 5.56 5.94 6.27 6.44 1.74 1.74 9.89

Table 4.4: Total discounted utility for the row-strategy when facing column.

that cycle generally still does well, while the p̄-equilibria often fare pretty badly,
in particular against cycle. Performance of the mix-types against the p̄-types is
mostly similar to that of cycle; but cycle Pareto-dominates these, and also does
better when paired against either.

Altogether, equilibrium cycle, by far the most prevalent, has properties that
resemble risk-dominance, so that at least in this case and only in an informal sense,
selection is in line with the results of Harsanyi and Selten (1988). At the same
time, one should ask to what extent risk dominance constitutes a sensible criterion
for selection among stationary equilibria. In situations in which mis-coordination
is an important concern, the restriction to stationary strategies is perhaps harder
to defend than usually, and players would be better off choosing a non-stationary
strategy that allows to adapt after observing what the other players are doing.
While we think that this is a topic worthy of discussion and study, it transcends
the scope of this chapter.

To conclude discussion of the current example, we briefly mention what type
of equilibria arise if one repeats the above process with asymmetric priors. Our
results from solving the game 1 000 times in this manner are depicted in Fig-
ure 4.7. Markers in form of a cross signify Firm 0’s equilibrium strategy, while
circles show Firm 1’s strategy with accordingly inverted axes. We found 12 equi-
libria, but include only 6, as the others are minor variations of those shown. We
expect that still more will be found with a higher number of runs. Some of the
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Figure 4.7: 6 of the 12 equilibria of the game Dynamic Price Competition we
found by searching the asymmetric prior space and their relative frequency.

equilibria are symmetric, namely 2 and 6, but most are not. eq1, by far the most
prevalent, essentially results in a cycle as well, even if both firms’ strategies look
quite different from the symmetric cycle equilibrium. Interestingly, the strategies
also differ significantly from one another; in particular, it is always Firm 0 that
initiates the resets. eq6 on the other hand seems to resemble cycle perfectly – but
is very rare in the asymmetric setting. The other equilibria are all variants of the
p̄-type equilibria; in particular, they all involve a fixed point on the main diagonal
where p0(p1) = p1(p0); once this price has been reached, neither firm will deviate.
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4.B Finding Additional Equilibria in Stag Hunt
In this example, we demonstrate how to use the homotopy method to compute
equilibria that are not directly reachable by varying the prior (Section 4.3.2.1).
We will use the simple and well-known game Stag Hunt:

stag hare

stag 10, 10 1, 8

hare 8, 1 5, 5

The plan is to first identify two priors that lead to different equilibria; then
use one prior, but start at the other equilibrium. In the given game, a prior
of (stag, stag) (or close to it) will lead to the equilibrium (stag, stag). The same
holds for hare. In other, more complex games, it might be necessary to experiment
to identify the directly reachable equilibria first.

Turning to the code, we first define the game and the priors. Because the game
is one-shot, we can use the method .one_shot_game() to create it from a single
array containing the payoffs. We then define two homotopies, with the respective
priors, and let them solve for the two pure equilibria. Then we create another
homotopy, with the stag prior; but instead of the usual starting point, we start
at the final point of the hare homotopy path. Here, we need some trickery: If we
just started the solver, it would rightfully note that it already is at t = 1, i.e. at a
solution – and do nothing. Thus, we tell it that we want a solution at a smaller
value, e.g. t = .99, and then start it. Once we are at t = .99, we can set the
target value back to 1 and let the solver walk the rest of the path. It then finds
the mixed equilibrium.
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1 import sgamesolver
2 import numpy as np
3
4 payoff_matrix = np.array([[[10, 1],
5 [8, 5]],
6 [[10, 8],
7 [1, 5]]])
8 game = sgamesolver.SGame.one_shot_game(payoff_matrix)
9 game.action_labels = [' stag ' , ' hare ' ]

10
11 stag_prior = np.array([[[1, 0],
12 [1, 0]]])
13 hare_prior = np.array([[[0, 1],
14 [0, 1]]])
15
16 # Find the first pure equilibrium, using 'stag' as prior:
17 homotopy_stag = sgamesolver.homotopy.LogTracing(game, rho=stag_prior)
18 homotopy_stag.solver_setup()
19 homotopy_stag.solve()
20 print(homotopy_stag.equilibrium)
21
22 # Find the second pure equilibrium, using 'hare' as prior:
23 homotopy_hare = sgamesolver.homotopy.LogTracing(game, rho=hare_prior)
24 homotopy_hare.solver_setup()
25 homotopy_hare.solve()
26 print(homotopy_hare.equilibrium)
27
28 # Create a homotopy to find the mixed equilibrium, using the stag prior:
29 homotopy_mixed = sgamesolver.homotopy.LogTracing(game, rho=stag_prior)
30 homotopy_mixed.solver_setup()
31 # But, set the final point (y) of the hare homotopy as current point:
32 homotopy_mixed.solver.y = homotopy_hare.solver.y.copy()
33 # If we just started now, the solver would (rightfully)
34 # think it is already at a solution.
35 # We therefore tell it to walk away from t=1 a bit:
36 homotopy_mixed.solver.t_target = 0.99
37 # Make sure the orientation points towards t_target, i.e. decreasing t:
38 homotopy_mixed.solver.set_greedy_sign()
39 # Now, we can start
40 homotopy_mixed.solve()
41 # The solver now reports it has found a point with t=.99
42 # We can set the target to t=1 again and keep going:
43 homotopy_mixed.solver.t_target = 1
44 homotopy_mixed.solve()
45 print(homotopy_mixed.equilibrium)
46 # This results in the final, mixed equilibrium

When run, the code outputs all three equilibria, as expected:

An equilibrium was found via homotopy continuation.
stag hare

player0 : v=10.00, σ=[1.000 0.000]
player1 : v=10.00, σ=[1.000 0.000]
[...]
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An equilibrium was found via homotopy continuation.
stag hare

player0 : v=5.00, σ=[0.000 1.000]
player1 : v=5.00, σ=[0.000 1.000]
[...]
An equilibrium was found via homotopy continuation.

stag hare
player0 : v=7.00, σ=[0.667 0.333]
player1 : v=7.00, σ=[0.667 0.333]
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