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Abstract 
The early prediction of mortality is one of the unre-

solved tasks in intensive care medicine. This contribution 
models medical symptoms as observations cased by tran-
sitions between hidden markov states. Learning the un-
derlying state transition probabilities results in a predic-
tion probability success of about 91%.  

The results are discussed and put in relation to the 
model used. Finally, the rationales for using the model 
are reflected: Are there states in the septic shock data? 

 
 

1. Introduction 

Medical care in intensive care units (ICU) has to deal 
with all consequences of operations and infection after 
operations. In 1992 a consensus conference [1] defined 
states of septic patient like the systemic inflammatory 
response syndrome (SIRS), sepsis, severe sepsis and 
septic shock. Although a dynamic modeling of septic 
patient states based on these definitions is very rare, it is 
very important. Approximately 60% of the patients aquire 
SIRS. Combined with an infection this leads to a sepsis in 
half of the cases. A septic shock is only developed in 7% 
of the cases, but 50% of the septic shock patients die. 

Up to now, there are neither a successful clinical ther-
apy to deal with this problem nor reliable early warning 
criteria to avoid such a situation. The event of sepsis and 
septic shock is rare and therefore statistically not well 
represented. Due to this fact, neither physicians can de-
velop well grounded experience in this subject nor a sta-
tistical basis for this does exist. The diagnosis of septic 
shock is still made too late, because at present there are 
no adequate tools to predict the progression of sepsis to 
septic shock. No diagnosis of septic shock can be made 
before organ dysfunction is manifest.  
The criteria for SIRS are both non-specific and potentially 
restrictive. Experience with the consensus conference 
definitions in clinical trials has highlighted the fact that 
they are unable to accurately identify patients with septic 
shock who might respond to interventions targeted to 
bacterial infections and its consequences, identify patients 
at risk for septic shock and to improve the early diagnosis 

of septic shock. 
Some years ago, Rangel-Fraustro et al.[5] treated the 

transition between septic states in the ICU by a Markov 
model, i.e. by a process where each transition is subject 
only to inherent transition probabilities, not determined 
by any further history. The transition probability matrix 
containing a strong diagonal was obtained using data of 
2527 patients. The rational behind is the idea that any 
therapy of sepsis have to be compared to the traditional 
therapy situation by its attached transition probabilities 
from a septic state to a non-septic one.  
This idea might work well for groups of patients, but it 
allows no prediction and conclusion for a concrete case 
which can be seen as a probabilistic instance of the group. 
Our goal is the probability-based diagnosis of the individ-
ual case history. Therefore, we take the approach of mo d-
eling the septic state transition chain by hidden markov 
model (HMM) chains [4]. This approach has several 
advantages: 

♦ The observed symptoms will be only regarded as 
probabilistic expressions of hidden, not known states. 
Therefore, the same symp tom might serve either as 
indication for a good or a bad prognosis depending 
on the symptom history. 

♦ The number of states themselves can be learned. This 
allows us to decide whether the states defined by the 
consensus conference are well chosen or not. 

♦ All probabilities in the model will be obtained only 
by training with examples. This omits subjective 
definitions based on non-representative experience. 

Now, let us introduce our model in the next section. 

2. The model 

The septic shock is assumed to occur after some prior 
states of the patient. In Fig. 1 a popular state transition 
model is shown, adapted from the model of [5]. 
The arcs are drawn according to an estimated transition 
probability. Since the transitions may occur rapidly, not 
all states are observed in all cases. 
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Fig. 1 States and transitions in ICU care 

 
In our HMM, each patient class (surviving or lethal) de-
fines its own transition probabilities between the states, 
especially to the death and dismissal state. Therefore, we 
distinguish between at least two hidden markov models: 
one for the surviving patients and one for lethal exit. Our 
diagnostic approach consists of presenting the patient data 
to a system which computes the probability for the data of 
a patient to be either part of the surviving or the mortal 
HMM. 
This approach imitates the classic application of HMM in 
speech recognition where we have one HMM for each 
word, composed of the sequence of several phonems. For 
each observed speech section and each particular HMM 
the probability is computed that the speech section has 
been produced by the HMM. The HMM with the highest 
probability is classified to represent the word which was 
spoken. This speech classification process can be adapted 
to our problem of patient classification. In our case, each 
phoneme sequence correspond to a patient record of 
symptoms. In principle, we only have two words i.e. two 
classes: survived and deceased.   

3. Diagnosing the data 

The performance of the system depends on the number of 
states, transition and symptom output probabilities for the 
two HMM models. Therefore, in order to fit clinical real-
ity, we used an adaptive approach to extract the necessary 
knowledge for adjusting the corresponding parameters. In 
speech analysis, the well known Viterbi algorithm is used 
to adapt HMM of phoneme chains to speech reality [4]. 
By mapping the problem of septic shock state transition 
identification to phoneme transition we could use the 
adaption algorithms and were even able to partially use 
standard HMM speech recognition software [8] for pa-
tient data diagnosis.  

Standard data analysis [2] showed that for septic 
shock data the symptoms for both patient groups are diffi-
cult to distinguish. In Fig. 2 two histograms of observa-
tions are shown. 
Clearly, the high overlap of the Gaussian distributions  of 
the observed variables makes a reliable diagnosis very 
difficult. 
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Fig. 2 Histograms for a) systolic blood pres-
sure and b) pH value for survived (white 

boxes) and deceased patients (black boxes).  

The question arises: How sensitive to such problems is 
the HMM approach? 

3.1 Testing the diagnostic tool 

 Now, for our purpose we define a simplified version of 
the scenario presented in Fig. 1, because for the small 
number of septic shock patients the number of states and 
transitions should be as small as possible in order to avoid 
the “curse of dimensionality”[3]. In Fig. 3 the simplified 
HMM for testing is shown. 
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Fig. 3 The simplified HMM for testing  

The model consists of three states: normal (S1), critical 
(S2) and very critical (S3). For ICU admission we as-
sumed the patient to be in an critical state, leaving the 
ICU either on dismissal or after death.  
For the test data, we generated random sequences by 
accessing the state transition model shown in Fig. 3. The 
transition probabilities were assumed to be P1=0.1, 
P2=0.4, P3=P4=0.5, P5=0.3, P6=0.2, P7=0.4, P8=0.5, 
P9=0.1. First, for each synthetic patient record we gener-
ated a random walk through the state graph until it exits 
and stored the resulting class, survived or deceased, in the 
record.  
For each transition we assumed a symptom produced out 
of three possible Gaussian distributions of normal, critical 
and very critical symptoms Nn(µn,σ), Nc(µc,σ) and 
Nv (µv ,σ). Since we can not observe the states directly, the 
symptoms are not equivalent to the states.  
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If the two patient classes {survived, deceased} would 
have equal probabilities for producing normal, critical or 
very critical symptoms we had no possibility for diagnos-
ing them. Therefore, differences in the parameters for 
symptom producing were assumed for the classes. For 
instance, lethal patients produce in state S3 a symptom 
from Nv  with probability one whereas dismissed patients 
produce in this state only symptoms of  Nc. In S2, we 
assumed P(Nn | survived) = 0.1, P(Nc | survived) = 0.7, 
P(Nv  | survived) = 0.2, P(Nn | deceased) = 0.1, P(Nc | de-
ceased) = 0.45 = P(Nv  | deceased). In state S1 all classes 
produce symptoms of Nn with probability one. 
In the general case we have to assume different means 
and variances of the three probability density functions 
(pdfs) individually for each transition. This results in too 
many parameters which can not be learned by our few 
medical training data. Thus, we reduced the complexity of 
the model by assuming only three fixed pdfs but state-
dependent conditional probabilities. 

Now, how does the overlap of the symptom producing 
probabilities influences the recognition probability? The 
overlap of the pdfs can be characterized by the common 
area of pdf intersection devided by the full pdf area under 
the pdf curves. This gives an overlap degree between 0 
and 1 of the symptom pdfs, reaching 1 for full overlap 
and 0 in the limit of complete disparity. In Fig. 4 the dis-
tance between the centers of the Gaussian pdfs as function 
of the  overlap degree is shown. 

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100
 

Fig. 4 The distance between the symptom dis-
tribution expectation values µ  as function of 
the pdf  overlap (in %). All variances σ are 

equal to 5. 

The number of variables per symptom varied: we pro-
duced data sets with n=2, 5 and 10 variables.  

The diagnosis was made on the basis of a training by 
the synthetic patient data. In order to learn the proper 
model, we did not assume a fixed number of states for the 
HMM but trained 4 models with 2,3,4 and 5 states and 
1,2,3 and 4 symptom pdfs each, i.e. 16 different models in 
parallel. We repeated the process 20 times. For each train-
ing we chose 50% of the data for training and 50% for 
testing. In each data set we have 32.5 % deceased patients 
i.e. 65 of 200 and 130 of 400 patients.  

For each test (diagnostic) sample the one HMM was 
chosen which obtained its diagnose with the highest prob-
ability. The classification probability of this best HMM as 
function of the symptom pdf overlap for the two classes 
using 400 patient records is shown in Fig. 5. We see that 
the diagnose of the HMMs is very good unless the symp-
toms become very similar. 
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Fig. 5 The classification probability for the 
two classes as function of the pdf  overlap 
(in %) for 400 patient records and 10 vari-

ables.  

If we reduce the number of patient records, the perform-
ance drops slightly down in all overlap regions. Interes t-
ingly, reducing the number of variables per sample de-
creases also the classification performance. For illustra-
tion, in Fig. 6 the classification probability for the two 
classes is shown for the case of 100 different patient re-
cords and 2 variables. 
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Fig. 6 The classification probability for the two 
classes as function of the pdf  overlap (in %) 
for 100 different patient records and 2 vari-

ables  

We observe also that the smaller number of training data 
is reflected in a higher variance of the classification prob-
ability.   



 
Proc. of the 14th IEEE International Conference of Tools with Artificial Intelligence ICTAI 02, 
Washington DC, IEEE press, Los Alamitos, CA 2002, pp. 3-8 

6 

3.2 Diagnosing patient data 

We used the data of 32 survived and 38 deceased pa-
tients with septic shock collected in the multi-center study 
MEDAN [9]. Prior to diagnosis, the data were decorre-
lated. Thus, the HMM learning algorithm avoids learning 
all correlation matrix entries and concentrates on the main 
means and variances.  

For a high number of dimensions the number of sam-
ples is too low and we run into the “curse of dimensional-
ity”, see [3]. Therefore, we have to drop a number of 
variables. For the 108 recorded variables those with more 
than 16% missing values were dropped. This resulted in a 
set H1 of 10 frequent variables not counting five depend-
ent score variables. The three most frequent variables 
compose the set H2 ⊂ H1. Another criterion is quality: 
There is another subset H3 consisting of 13 “medically 
important” variables. The intersection of the two sets is 
H4 = H1 ∩ H3 which contains only 5 variables. 

Since we had only a small sample size, we used the 
leave-one-out method for training and testing: We used 
all records for training except one which was used for 
testing. This was repeated for all samples; the final test 
result is the average of all particular test results. The main 
test results after training are listed in Table 1, ordered by 
the number of variables used. 
 

set #var dismissed % deceased % 
H2 3 83.1 91.1 
H4 5 70.5 75.8 
H1 10 61.6 80.0 
H3 13 83.1 89.0 

Table 1 The probabilities of a correct diag-
nosis 

The training sets are very different and the results can 
hardly be compared. The increased test performance with 
the number of data, i.e. samples and variables, can not be 
observed generally since our results are influenced by 
both the curse of dimensionality and the training facility. 
In contrast to this, we note that the diagnostic perform-
ance for the real patient data depends also on the choice 
of variables. The best performance is given for the most 
frequent 3 variables.  

4. Discussion 

Using the hidden markov modeling we obtain a satisfying 
performance in diagnosing septic shock patients.  There-
fore, we might conclude that using hidden markov mo dels 
is a good tool for extracting knowledge from patient 
symptom time series. In a limited sense, this is the case, 
but there is much more work to be done. 

• The classification was based on the whole patient 

record, i.e. the whole time sequence of symptoms. In 
clinical use, this is not available: Our task consists of 
giving early alarm in critical cases. This is only possi-
ble if the diagnostic system can also diagnose a part of 
the patient record, the beginning. Here, additional 
work for selecting appropriate sequence lengths are 
necessary. 

• The results are based only on a small amount of data 
since we concentrated on the rare cases of abdominal 
septic shock. Nevertheless, for reliable statistical re-
sults this is not sufficient: A greater number of cases 
have to be included which will be eventually the case 
after the MEDAN study had terminated. 

There are also more fundamental flaws of this approach 
which should be discussed here. Let us start with the 
model itself. 

4.1 What is the best hidden markov model?  

 The knowledge extraction process used 16 HMMs with 5 
states maximally for t raining and diagnosis. Unfortu-
nately, none of the HMMs can be qualified as “best 
model”, e.g. by classification of more than 50% of the 
samples neither for synthetic data nor for septic shock 
patient data. Why? The reason is very simple: each state 
transition occurs with a certain probability. To stay in one 
state (for instance in S2) for t time ticks, the probability is 
(P5)t decreasing exponentially with increasing time. This 
situation does not reflect reality properly. For instance,  if 
there is an average time for staying in a state the probabil-
ity to stay either shorter or longer becomes small. The 
associated probability distribution may be a Gaussian or 
Bernouille one, but not a decreasing exp onential. Thus, in 
order to approximate this behavior, additional states have 
to be used in the training process. In order to get only one 
model for all data we have to change the fundamental 
properties of our model resulting an a non - hidden 
markov one. 

This is not the only critic in our approach. More fun-
damental, our model is based on the assumption that the 
patients stay in different states. Is this assumption justi-
fied by reality? 

4.2 Are there states in the septic disease? 

One of the most interesting questions is whether there are 
really septic disease states. Certainly, in the western cul-
ture symptoms like raised body temperature are treated as 
indications of a human state called ”disease” whereas 
other cultures do not distinguish between healthy and ill 
people but only between less or more healthy ones. Here, 
the western concept of health states is contrasted by a 
continuous view of heath not as a qualitative state but as a 
quantitative variable. What is reality? 
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In the study of Rangel-Fraustro [5] the transition prob-
abilities between the states are much smaller than the 
probabilities to remain in the states, e.g. prob(severe sep-
sis → septic shock) = 0.2,  prob(severe sepsis → severe 
sepsis ) = 0.7. Does this prove that there are septic states? 
Certainly not. To see this, let us consider an example. 
Imagine that there is one variable which is observed, for 
instance the temperature. This might behave either con-
tinuous (here: linear) or in sudden jumps between certain 
state values, see Fig. 7. 
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Fig. 7 The variable “temperature” and its 
sampled values 

The temperature is sampled at certain time events, say t0, 
t1 and t2, and classified into three states 1, 2 and 3. Now, 
if we count the number of transitions to the same state and 
to the next one, we have different states at different time 
points, i.e. a probability of one for the transition from 
state i to i+1. If we add more samples by subsampling 
(the hollow circles on the time line in Fig. 7) we have 
more samples for one state, in our example 5 samples 
instead of one. This gives a probability of 4/5 for remain-
ing in one state and 1/5 for passing to the next one. 

This example shows us two insights: 

♦ The probability of a remaining in a state depends on 
the sampling rate, not on the fact whether there are 
states or not. The linear line without steps in Fig. 7 
has the same probability of remaining in a state as the 
step function of real states. Therefore, the absolute 
values in the main diagonal of the probability transi-
tion matrix is no argument for the existence of states. 

♦ The main difference between ”states” and ”non-
states” is the nonlinearity in the probability distribu-
tion of the variables. The intuitive understanding of 
”state” implies a certain time of stay at the same 
value (or in a neigbourhood) of the variable. This 
means a sharp peak in the distribution density func-
tion, see the graphs at the left hand of Fig. 7. 

Therefore, the conditional probability density functions 
p(x|state i) should be examined: does they have peaks? 
Unfortunately, in our septic shock data we can only ob-
serve the overall probability density function p(x) which 

has often a shape similar to a normal distribution. How do 
we know that it is composed by several normal distribu-
tions? 

4.3 States and clusters  

One of the main ideas for the construction of ”states” is 
the observation that some observed variable values are 
more likely than the others. Typically, this is verified by a 
cluster analysis of the data. In a retrospective study Rixen 
et al. [6] observed that the k-means clustering of 17 car-
diopulmonary and metabolic normalized variables of 
1120 patient data sets (338 patients) resulted in 7 distin-
guishable states : (R) trauma recovery, (A) normal stress 
response, (B) metabolic insufficience, (C1) early respira-
tory insufficiency, (C2) late respiratory insufficiency, (D) 
cardiogenetic decompensation, (H) hypovolemia without 
shock. 
In difference to this, using the data of 656 intensive care 
unit patients (47 with a septic shock, 25 of them de-
ceased) elaborated in a study made between November 
1995 and December 1997 at the clinic of the J.W.Goethe-
University, Frankfurt am Main [7], another study made in 
the same clinic between November 1993 and November 
1995 and the data of the MEDAN [9] study were checked 
by a clustering analysis. The results were deceiving: no 
clusters were found except one huge cluster.  
What can be concluded by this  observation? 
If several clusters exist, the existence of states would be 
supported, but since only one cluster is found, this does 
not tell anything about the existence of states. Why? If we 
cluster the set of all observations, we neglect the time 
structure of the observations. This might lead to an over-
lap of peak distributions giving rise to only one convex 
pdf hull of all variables. 

If we include the time structure into the cluster analy-
sis by using time as just another variable we do not solve 
the problem either. To see this, let us consider a system of 
three states. If we observe the time course of two patients, 
e.g. one going from state 1 to 3 and the other from 3 to 1, 
all pdfs are superseding, see the dotted line as hull of all 
pdfs in Fig. 8.  
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Fig. 8 Clustering the observations of a three-
state-system 
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Although all observations are just random versions of an 
average state sign, the average of all state observations 
are not obliged to cluster at a given point of time. Thus, a 
broad interval of observations does not necessarily indi-
cate the absence of states. Instead, we have to find other 
criteria to decide about the existence of states. This is up 
to future research. 
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