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Abstract: We study the µ-µ45-T phase diagram of the 2+ 1-dimensional Gross-Neveu model, where µ

denotes the ordinary chemical potential, µ45 the chiral chemical potential and T the temperature. We
use the mean-field approximation and two different lattice regularizations with naive chiral fermions.
An inhomogeneous phase at finite lattice spacing is found for one of the two regularizations. Our
results suggest that there is no inhomogeneous phase in the continuum limit. We show that a chiral
chemical potential is equivalent to an isospin chemical potential. Thus, all results presented in this
work can also be interpreted in the context of isospin imbalance.
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1. Introduction

The Gross-Neveu (GN) model describes a theory of N f fermion flavors with a quar-
tic interaction. It is a rather simple model commonly used to explore and to describe
the spontaneous breaking of chiral symmetry [1] in the µ-T plane, where µ denotes the
chemical potential and T the temperature. In the limit N f → ∞ (corresponding to the
mean-field approximation or, equivalently, the neglect of bosonic quantum fluctuations) the
1 + 1-dimensional GN model exhibits three phases: a symmetric phase (with a vanishing
chiral condensate), a homogeneous symmetry-broken phase (with a non-zero, but spatially
constant condensate) and an inhomogeneous phase, where the chiral condensate is an os-
cillating function of space [2–4]. The phase diagrams of the GN model and related theories
were also investigated at finite N f , i.e., with bosonic quantum fluctuations included, using
lattice Monte-Carlo simulations [5–10] and the functional renormalization group (FRG)
[11].

Inhomogeneous phases are not limited to the GN model, but were found in sev-
eral models in the mean-field approximation in 1 + 1 dimensions [12–15] and in 3 + 1
dimensions [16–19]. For a review we refer to Ref. [20]. In recent works [21–24] it has
been discussed that inhomogeneous phases might be related to so-called moat regimes,
where the bosonic wave function renormalization Z is negative. Such a regime has been
found in an FRG study of the phase diagram of quantum chromodynamics (QCD) [25].
A similar regime has been observed in the 1 + 1-dimensional GN model (see Fig. 9 of
Ref. [26], where the wave function renormalization Z is plotted in the µ-T plane). One
finds that a negative Z accompanies the instability of a homogeneous condensate with
respect to inhomogeneous perturbations as a necessary, but not a sufficient condition. The
possible existence of a moat regime in the QCD phase diagram encourages to improve our
understanding of inhomogeneous condensation and related phenomena in QCD-inspired
models.

Recently, the existence of inhomogeneous phases was also explored in the 2 + 1-
dimensional GN model in the mean-field approximation [27–29]. Such 2 + 1-dimensional
four-fermion theories are of interest both in high energy physics [30–34] and in condensed
matter physics [35–42], but also to study conceptual questions, e.g., renormalizability in
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the 1/N expansion or in a perturbative approach [43–46]. Hence, confirming the existence
of an inhomogeneous phase in such a model could have a significant impact. Early seminal
studies of the µ-T phase diagram of the 2 + 1-dimensional GN model [47,48] have reported
a second order phase transition between the symmetric and the homogeneous symmetry-
broken phase at finite T and µ and a first order phase transition at T = 0. However,
in these studies only a homogeneous order parameter was considered. In our recent
publication Ref. [29] we have studied the existence of an inhomogeneous phase in the
2 + 1-dimensional GN model within the mean-field approximation. Our main findings are
that an inhomogeneous phase is present at finite regulator and for certain regularization
schemes (a Pauli-Villars cutoff and a specific lattice discretization), but it disappears, when
the regulator is removed, as it was previously observed in Ref. [34].

In this work we continue our investigations from Ref. [29] by extending the 2 + 1-
dimensional GN model with a chiral chemical potential. We study its phase diagram, where
our main focus is on possibly existing inhomogeneous phases. While the GN model might
be too simple to realistically describe the effect of chiral imbalance on QCD, it might still
improve our conceptual understanding of inhomogeneous condensation in the presence of
chiral imbalance, which is an important problem. A difference in the densities of left and
right handed quarks is relevant in physical systems such as heavy-ion collisions [49,50] or
compact stars [51,52]. The impact of chiral imbalance on chiral symmetry breaking has been
studied, e.g., in 1 + 1-dimensional models [13], where it had no influence on the existence
of the inhomogeneous chiral spiral, and in 3 + 1-dimensional models [53–55], where only
homogeneous order parameters were considered. A chirally imbalanced 2 + 1-dimensional
GN model, extended by a quartic difermion interaction, was explored in Refs. [56,57] with
the aim to clarify the competition of homogeneous fermion-fermion condensation and
homogeneous chiral condensation. In recent two-color and three-color QCD studies [58,59]
a chiral chemical potential has been investigated, which has been found to increase the
chiral transition temperature. This result is supported by a Nambu-Jona-Lasinio (NJL)
model study [60].

This paper is structured as follows. We start in Section 2 by discussing the theoretical
basics of the GN model in 2 + 1 dimensions including details on the underlying chiral
symmetry. We also add a chiral chemical potential to the model and show the equivalence
of chiral imbalance and isospin imbalance. In Section 3 we discretize the effective action of
the model using lattice field theory. Section 4 is the main part of our paper, where numerical
results are presented and discussed. Finally, we conclude in Section 5. Preliminary results
from this project were presented at a recent conference [61].

2. Theoretical basics
2.1. Action and partition function

The action of the GN model in 2 + 1 dimensions with N f fermion flavors is

S[ψ̄, ψ] =
∫

d3x
( N f

∑
n=1

ψ̄n

(
γν∂ν + γ0µ

)
ψn −

g2

2

( N f

∑
n=1

ψ̄nψn

)2)
, (2.1)

where ψn represent N f massless fermion fields, µ is the chemical potential and g2 is the

coupling of the four-fermion interaction.
∫

d3x =
∫ 1/T

0 dx0
∫
R2 d2x with d2x = dx1 dx2 and

T denoting the temperature given by the inverse extent of the periodic temporal direction
of Euclidean space-time.

The action (2.1) is equivalent to

S[ψ̄, ψ, σ] =
∫

d3x
(N f

2λ
σ2 +

N f

∑
n=1

ψ̄nQ[µ, σ]ψn

)
, (2.2)
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where σ is a scalar boson field, λ = N f g2 is the rescaled coupling and

Q[µ, σ] = γν∂ν + γ0µ + σ (2.3)

is the Dirac operator. Integration over the fermion fields leads to the so-called effective
action and the corresponding partition function

Seff[σ] = N f

(
1

2λ

∫
d3x σ2 − ln Det Q[µ, σ]

)
, Z =

∫
Dσ e−Seff[σ]. (2.4)

One can show that 〈σ(x)〉 is related to the condensate 〈ψ̄n(x)ψn(x)〉 according to

〈σ(x)〉 = − λ

N f
〈ψ̄n(x)ψn(x)〉. (2.5)

In this work we restrict the dependence of σ to the spatial coordinates, i.e., σ = σ(x).
With this restriction Seff[σ] is real, which is shown in Appendix A.2 of Ref. [29].

Since Seff[σ] ∝ N f , the limit N f → ∞ reduces the relevant configurations in the
partition function (2.4) to the global minima of Seff[σ]. Thus, the computation of a path
integral is reduced to an optimization problem. In the case of degenerate global minima,
spontaneous symmetry breaking selects one of these minima. Consequently, an expectation
value 〈O(σ)〉 is identical to the value of O evaluated at the corresponding global minimum,
i.e., 〈O(σ)〉 → O(σ). In particular, 〈σ〉 → σ. For the remainder of this paper we consider
exclusively the limit N f → ∞.

2.2. Representation of the Dirac matrices and chiral symmetry

Typically one uses either an irreducible 2 × 2 representation or a reducible 4 × 4
representation of the Dirac algebra for the γ matrices appearing in the Dirac operator (2.3)
(for details see, e.g., Refs. [29,32,33,62]. In case of an irreducible 2× 2 representation there
is no symmetry, which can be interpreted as chiral symmetry, because it is impossible to
define a matrix γ5, which anticommutes with γ0, γ1 and γ2. Therefore, a reducible 4× 4
representation is more appropriate in our context, e.g.,

γ0 = τ3 ⊗ τ2 =

(
+τ2 0

0 −τ2

)
, γ1 = τ3 ⊗ τ3 =

(
+τ3 0

0 −τ3

)
,

γ2 = τ3 ⊗ τ1 =

(
+τ1 0

0 −τ1

)
, (2.6)

where τj denote the Pauli matrices. The three matrices +τ1, +τ2 and +τ3 as well as
the three matrices −τ1, −τ2 and −τ3 form irreducible 2× 2 representations, which are
inequivalent. The corresponding upper two and lower two entries of the fermion fields ψn
can be interpreted as left-handed and right-handed components, respectively.

The Dirac operator (2.3) is then block-diagonal,

Q[µ, σ] = Q(4)[µ, σ] =

(
Q(2)[µ, σ] 0

0 Q̃(2)[µ, σ]

)
, (2.7)

where

Q(2)[µ, σ] = +τ2(∂0 + µ) + τ3∂1 + τ2∂2 + σ, (2.8)

Q̃(2)[µ, σ] = −τ2(∂0 + µ)− τ3∂1 − τ2∂2 + σ (2.9)
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represent Dirac operators for left-handed and right-handed fermion fields ψL/R
n (see also

Eq. (14) and Eq. (15) in Ref. [29]). One can show that Det Q(2)[µ, σ] and Det Q̃(2)[µ, σ] are
invariant under both µ→ −µ and σ→ −σ. Using the latter one can show

Det Q(2)[µ, σ] = Det Q̃(2)[µ, σ]. (2.10)

The action with Q = Q(4)[µ, σ] is invariant under the discrete chiral transformations1

ψn → γ4ψn, ψ̄n → −ψ̄nγ4, (2.11)

ψn → γ5ψn, ψ̄n → −ψ̄nγ5 (2.12)

with

γ4 = τ1 ⊗ 12 =

(
0 +12

+12 0

)
, γ5 = −τ2 ⊗ 12 =

(
0 +i12

−i12 0

)
. (2.13)

Both γ4 and γ5 anticommute with γ0, γ1 and γ2 and, thus, fulfill the necessary properties
for generating an axial chiral transformation. The symmetries (2.11) and (2.12) are also
present for the action (2.2), where the corresponding transformation of σ is in both cases
σ→ −σ. Thus, σ is an order parameter for chiral symmetry breaking2.

In addition to the transformations (2.11) and (2.12) the action is also invariant under
the continuous vector chiral transformations

ψn → eiαaTa
ψn, ψ̄n → ψ̄ne−iαaTa

, (2.14)

ψn → eiβaTaγ45 ψn, ψ̄n → ψ̄ne−iβaTaγ45 , (2.15)

where Ta denote the generators of U(N f ) flavor rotations and

γ45 = iγ4γ5 = τ3 ⊗ 12 =

(
+12 0

0 −12

)
(2.16)

(see also Refs. [32,62]).
The transformations (2.11), (2.12) and (2.15) are not independent. For example, (2.11)

can be written as combination of (2.12) and (2.15) with βaTa = −π/2,

ψn → ei(−π/2)γ45 γ5ψn = γ4ψn, ψ̄n → −ψ̄nγ5e−i(−π/2)γ45 = −ψ̄nγ4. (2.17)

Thus, there is only one independent Z2 symmetry, i.e., the structure of chiral symmetry is
U1(N f )×Uγ45(N f )×Z2.

A chiral chemical potential µ45 can be introduced in a straightforward way by extend-
ing and replacing the Dirac operator in (2.3) or equivalently (2.7) according to

Q[µ, σ] = Q(4)[µ, σ]→ Q[µ, µ45, σ] = Q(4)[µ, µ45, σ] = γν∂ν + γ0µ + γ45γ0µ45 + σ =

=

(
Q(2)[µ + µ45, σ] 0

0 Q̃(2)[µ− µ45, σ]

)
. (2.18)

µ45 contributes to the chemical potentials of the left-handed (upper two) components and
the right-handed (lower two) components with opposite sign and, thus, causes chiral

1 For free fermions one can define continuous axial chiral symmetry transformations with both γ4 and γ5. The four-fermion interaction in Eq. (2.1)
breaks the corresponding symmetries explicitely (see, e.g., Ref. [29]).

2 When using an irreducible 2× 2 fermion representation, there is no chiral symmetry. σ, however, can still be interpreted as order parameter for
parity breaking.
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imbalance. We note that there are other possibilities to define chirality and chiral imbalance
(see, e.g., Refs. [56,57] and Section 5) differing from our definition, where left- and right-
handed fermion fields ψL/R

n are projected from the fermion fields as

ψL/R
n = PL/Rψn = 1

2 (14 ± γ45)ψn, (2.19)

with PL/R denoting the corresponding projectors.
As done for µ45 = 0 in appendix A of Ref. [29], one can show that Det Q(4)[µ, µ45, σ] is

invariant under both (µ, µ45)→ (−µ,−µ45) and σ→ −σ. Since

Det Q(4)[µ, µ45, σ] = Det Q(2)[µ + µ45, σ]Det Q̃(2)[µ− µ45, σ], (2.20)

Det Q(4)[µ, µ45, σ] is also invariant under the exchange of the ordinary and the chiral
chemical potential, µ ↔ µ45. Clearly, Seff[σ] as well as the phase diagram share this
invariance. In Section 4 we use this property to cross-check our numerical results.

We note that the effective action can be written as sum of a left-handed and a right-
handed part,

Seff[σ] = N f

(
1

2λ

∫
d3x σ2 − ln Det Q(4)[µ, µ45, σ]

)
= SL

eff[σ] + SR
eff[σ] =

= ∑
X=L,R

N f

(
1

2(2λ)

∫
d3x σ2 − ln Det Q(2)[µX , σ]

)
︸ ︷︷ ︸

=SX
eff[σ]

(2.21)

with µL = µ + µ45 and µL = µ− µ45. Of course, the two parts are not independent, but
coupled via σ. Moreover, both parts are equivalent to the chirally balanced effective action
(see Section 2.3 of Ref. [29]), i.e.

SL
eff[σ] =

1
2

Seff[σ]

∣∣∣∣
µ=µL ,µ45=0

, SR
eff[σ] =

1
2

Seff[σ]

∣∣∣∣
µ=µR ,µ45=0

. (2.22)

This property will be useful, when we discuss our numerical results in Section 4.

2.3. Equivalence of isospin and chiral imbalance

In this subsection we consider an even number of fermion flavors N f , again in the
4-component reducible representation, and assign half of them (the “u flavors”) a chemical
potential µ + µI, the other half (the “d flavors”) a chemical potential µ− µI. Clearly, µI
generates an imbalance between the u and the d flavors and, thus, can be interpreted as
isospin chemical potential.

The corresponding effective action is

Seff,I[σ] = N f

(
1

2λ

∫
d3x σ2 − 1

2
ln Det QI[µ, µI , σ]

)
, (2.23)

where the Dirac operator is an 8× 8 matrix in spin and isospin space,

QI[µ, µI , σ] = γν∂ν + γ0µ + γ0τ3µI + σ =

=

( Q(4)[µ + µI, 0, σ] 0

0 Q(4)[µ− µI, 0, σ]

)
. (2.24)

Using Eq. (2.20) one can show

ln Det QI[µ, µI , σ] = 2 ln Det Q(4)[µ, µI, σ]. (2.25)
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Consequently, the effective action for the GN model with isospin imbalance, Eq. (2.23),
is identical to the the effective action for the GN model with chiral imbalance, Eq. (2.21),
when identifying µI = µ45. Thus, all numerical results presented in Section 4 can either be
interpreted in the context of chiral imbalance or of isospin imbalance. We note that this
equivalence of isospin and chiral imbalance is specific to the GN model in 2+ 1 dimensions.

3. Lattice discretization

We use a lattice discretization of the effective action (2.21), which is similar to the
discretization discussed in Section 4 of our previous work [29]. The key difference is that we
use the naive fermion discretization also in temporal and not only in the spatial directions.

We consider a 3-dimensional space-time volume βV, where β = 1/T is the inverse
temperature and V = L2 the quadratic spatial volume. The boundary conditions are
periodic in the 2 spatial directions and periodic and antiperiodic in temporal direction for
the fields σ and ψn, ψ̄n, respectively. We use a cubic lattice with Nt × N2

s lattice sites and
lattice spacing a, i.e., β = aNt and L = aNs. In the following all dimensionful quantities
are expressed in units of the lattice spacing, e.g. a ≡ 1, β ≡ β/a, etc. Because of the finite
space-time volume, the 3-dimensional momenta are quantized,

p = (p0, p) = 2π

(
k0 + η

Nt
,

k
Ns

)
(3.1)

with

k0 ∈
{
− Nt

2
,−Nt

2
+ 1, . . . ,

Nt

2
− 1
}

and ki ∈
{
− Ns

2
,−Ns

2
+ 1, . . . ,

Ns

2
− 1
}

and η = 0, 1/2 corresponding to periodic and antiperiodic boundary conditions in temporal
direction.

In our numerical implementation the effective action and the fields are treated in
momentum space,

Seff[σ]

N f
=

NtN2
s

2λ ∑
p

σ̃2(p)− 1
8

ln Det Q̃(4)[µ, µ45, σ], (3.2)

where

σ̃(p) =
1

N2
s

∑
x

σ(x)eix·p (3.3)

are the Fourier coefficients of the field σ(x).

Q̃(4)
p,q [µ, µ45, σ] = NtN2

s

(
iδp,q

2

∑
ν=0

γν sin
(

pν − δν,0i(µ + γ45µ45)
)
+

+ δp0,q0W̃2(p− q)σ̃(p− q)
)

(3.4)

is the Dirac operator in momentum space. On the lattice this operator is a matrix with
columns and rows labeled by the momenta p and q, respectively. The sin for ν = 0 contains
the matrix γ45, but can be simplified according to

sin
(

p0 − i(µ + γ45µ45)
)
= sin(p0 − iµ) cos(iµ45)− γ45 cos(p0 − iµ) sin(iµ45). (3.5)
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An appropriately chosen weight function W̃2(p) is necessary to ensure the correct con-
tinuum limit (see Refs. [5,7,29] for details). We investigate and compare two possible
choices,

W̃2(p) = W̃ ′2(p) = ∏
ν=1,2

W̃ ′1(pν), W̃ ′1(pν) =
cos(pν) + 1

2
, (3.6)

W̃2(p) = W̃ ′′2 (p) = ∏
ν=1,2

W̃ ′′1 (pν), W̃ ′′1 (pν) = Θ(π/2− |pν|) (3.7)

with Θ denoting the Heaviside function.
Because of the restriction of σ to the spatial coordinates, i.e. σ = σ(x), the Dirac

operator (3.4) is block-diagonal with respect to p0 and q0. This simplifies the computation
of Det Q̃(4)[µ, µ45, σ] to the computation of Nt determinants of smaller matrices of size
4N2

s × 4N2
s .

4. Numerical results

Using lattice field theory the phase diagram of the 2 + 1-dimensional GN model with
µ45 = 0 was extensively explored in Refs. [27–29]. There is a symmetric phase with σ = 0
at large µ or large T and a homogeneous symmetry-broken phase with a constant σ = σ̄ at
small µ and small T. Moreover, at finite lattice spacing and for certain discretizations (e.g.,
W̃2 = W̃ ′′2 ) there is additionally an inhomogeneous phase, where σ(x) is a varying function
of the spatial coordinates. However, this inhomogeneous phase shrinks, when decreasing
the lattice spacing, and seems to vanish in the continuum limit.

The main focus of this paper is to investigate the phase structure for µ45 6= 0, in
particular to clarify, whether inhomogeneous phases exist. At first, we recall that the
effective action Seff[σ] can be written as sum of a left-handed part SL

eff[σ] and a right-handed
part SR

eff[σ] with chemical potentials µL and µR, respectively (see Eq. (2.21)). Moreover, each
of the two parts is equivalent to the action of the chirally balanced GN model, which was
investigated in detail in our previous work [29]. Thus, for |µL| > µc(T) and |µR| > µc(T)
both SL

eff[σ] and SR
eff[σ] have their respective minima at σ = 0 (µc(T) denotes the location of

the phase boundary of the symmetric phase at µ45 = 0 and temperature T)3. Consequently,
the minimum of Seff[σ] also corresponds to σ = 0. In other words, from numerical results
obtained in Ref. [29] at µ45 = 0 we can conclude that chiral symmetry is restored in the
chirally imbalanced GN model for |µL| > µc(T) and |µR| > µc(T). In the remaining
regions of (µ, µ45, T) space SL

eff[σ] and SR
eff[σ] compete and the behavior of the condensate

needs to be investigated numerically. We start doing that in Section 4.1 by restricting our
computations to a homogeneous condensate. After that, in Section 4.2, we carry out a
stability analysis of the favored value of the homogeneous condensate with respect to
inhomogeneous perturbations. Finally, in Section 4.3, we perform numerical minimizations
of the effective action allowing arbitrary inhomogeneous modulations.

The lattice spacing a is a function of the coupling λ. As explained in our previous work
[29] we tune λ such that the temporal extent Nt,ca corresponds to the inverse critical tem-
perature βc = 1/Tc, which separates at µ = µ45 = 0 the symmetric and the homogeneous
symmetry-broken phase. Then, at fixed λ, the temperature T = 1/Nta can be changed
in discrete steps by increasing or decreasing Nt. A summary of the lattice parameters,
which were used to generate all following numerical results, is given in Table 1. We note
that throughout this section dimensionful quantities are expressed in units of the vacuum
expectation value of σ,

σ0 = σ|µ=0,µ45=0,T=0. (4.1)

3 We ignore the existence of an “inhomogeneous island” or “inhomogeneous continent” at large chemical potential, where cutoff effects are particularly
strong [29].
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Nt,c λ/a aσ0 Ns

4 2.6040 0.3649 28, 40, 60, 80
6 2.3355 0.2327 60, 100, 120

Table 1: Lattice parameters (Nt,c: number of lattice sites in temporal direction corresponding
to the critical temperature Tc; λ: coupling; a: lattice spacing; Ns: number of lattice sites in
each of the two spatial directions).

4.1. Restriction to a homogeneous condensate

In the case of a homogeneous condensate, i.e., σ = σ̄ or equivalently σ̃(p) = σ̄δp,0, the
two lattice discretizations with W̃ ′2 and W̃ ′′2 (Eqs. (3.6) and (3.7)) are identical. The Dirac
operator corresponds to a block-diagonal matrix with NtN2

s blocks of size 4× 4. Thus,
the ln Det Q̃(4)[µ, µ45, σ] term in the effective action (3.2) can be computed quite efficiently
by summing over NtN2

s determinants of 4× 4 matrices. Moreover, the effective action at
given µ, µ45 and T is a function of just a single variable σ̄ and, hence, can be minimized
numerically in a straightforward and rather cheap way to obtain the physically preferred
value of the homogeneous condensate.

Fig. 1 shows the phase diagram in (µ, µ45, T) space for aσ0 = 0.2327 and
Lσ0 = 120 aσ0 = 27.92. For µ45 = 0.0 the phase boundary is quite similar to the analytically
obtained continuum result [47] with slight deviations due to discretization and finite vol-
ume effects. At large temperature T/σ0 >∼ 0.4 the phase boundary exhibits an approximate
rotational symmetry in the µ-µ45 plane, i.e. is crudely described by µ2 + µ2

45 ≈ (µc(T))2. In
contrast to that, at small temperature the phase boundary approaches a square-like shape
in the µ-µ45 plane.

The left plot of Fig. 2 shows sectional views of the phase diagram at fixed lattice
spacing aσ0 = 0.2327 for two different spatial extents, Lσ0 = 60 aσ0 = 13.95 and Lσ0 =
120 aσ0 = 27.92. At small temperature the phase boundary exhibits an oscillatory behavior,
which is more pronounced for the smaller lattice volume. We expect that the oscillations
disappear in the infinite volume limit. The right plot of Fig. 2 shows sectional views
of the phase diagram for two different lattice spacings, aσ0 = 0.3649 and aσ0 = 0.2327,
at fixed ratio Ns/Nt,c = 20 implying similar spatial extents Lσ0 = 80 aσ0 = 29.19 and
Lσ0 = 120 aσ0 = 27.92. There are visible discrepancies due to discretization effects, in
particular, when both T is small and µ ≈ µ45. Continuum results at µ45 = 0 from Ref. [47]
as well as our lattice results at various small temperatures, lattice spacings and spatial
volumes point towards T = 0 phase boundaries at µ/σ0 = 1 for 0 ≤ µ45/σ0 < 1 and at
µ45/σ0 = 1 for 0 ≤ µ/σ0 < 1 in the continuum limit.

We have also studied the behavior of σ̄ at small temperature T/σ0 = 0.0716,
aσ0 = 0.2327 and Lσ0 = 120 aσ0 = 27.92. σ̄ is shown as function of µ and µ45 in the
left plot of Fig. 3 and as function of µL = µ + µ45 and µR = µ− µ45 in the right plot of
Fig. 3. To explain these results, we note that the effective action (2.21) is the sum of a
left-handed part SL

eff[σ] and a right-handed part SR
eff[σ] with chemical potentials µL and µR,

respectively. At the beginning of Section 4 we already concluded that σ̄ = 0, if |µL| > µc(T)
and |µR| > µc(T). Similarly, we argue now that both parts favor σ̄ ≈ σ0, if |µL| < µc(T)
and |µR| < µc(T). The numerical results from Fig. 3 are consistent with that expectation. In
particular the yellow regions, where σ̄ ≈ σ0, correspond to |µL| < µc(T) and |µR| < µc(T).
In the remaining regions of the µ-µ45 plane, or equivalently the µL-µR plane, SL

eff[σ] and
SR

eff[σ] compete, leading to a continuous transition of the condensate from σ̄ ≈ σ0 to
σ̄ = 0. This continuous behavior is consistent with the fact that the lattice GN model with
the effective action SL

eff[σ]|µL=µ or equivalently SR
eff[σ]|µR=µ, restricted to a homogeneous

condensate, has a second order phase transition at T/σ0 = 0.0716, aσ0 = 0.2327 and
Lσ0 = 120 aσ0 = 27.92.

We note that the lattice data shown in this subsection also represents a non-trivial
cross-check of our implementation: all numerical results are consistent with the symmetry
µ↔ µ45 within machine precision.
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Figure 1. Phase diagram of the chirally imbalanced 2 + 1-dimensional GN model with the restriction
to a homogeneous condensate σ = σ̄ in (µ, µ45, T) space for aσ0 = 0.2327 and
Lσ0 = 120 aσ0 = 27.92.
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Figure 2. Phase diagram of the chirally imbalanced 2 + 1-dimensional GN model with the restriction
to a homogeneous condensate σ = σ̄ in the µ-µ45 plane for several temperatures. Since the phase
diagram is invariant with respect to µ ↔ µ45, each octant in the µ-µ45 plane contains the full
information and one can compare two lattice extents Lσ0 (left plot) or two lattice spacings aσ0 (right
plot) in a convenient way within the same plot. (left) aσ0 = 0.2327. (right) Ns/Nt,c = 20, i.e., similar
spatial lattice extents Lσ0 = 80 aσ0 = 29.19 and Lσ0 = 120 aσ0 = 27.92.
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Figure 3. σ̄/σ0 for the chirally imbalanced 2 + 1-dimensional GN model with the restriction to a
homogeneous condensate σ = σ̄ for T/σ0 = 0.0716, aσ0 = 0.2327 and Lσ0 = 120 aσ0 = 27.92. (left)
σ̄/σ0 as function of µ and µ45. (right) σ̄/σ0 as function of µL and µR.

4.2. Stability of a homogeneous condensate

Now we relax the constraint that σ is a homogeneous condensate. To determine the
preferred modulation of the condensate in a possibly existing inhomogeneous phase, one
has to allow arbitrary spatial modulations of σ, i.e., consider σ = σ(x), and minimize the
effective action with respect to these modulations. In lattice field theory this is possible,
but numerically very challenging. In a first step, we, therefore, explore, whether the
homogeneous minima σ = σ̄, which were determined in Section 4.1 for many different
(µ, µ45, T), are stable or unstable with respect to spatially inhomogeneous perturbations
δσ(x). Boundaries between stable and unstable regions in (µ, µ45, T) space are identical
to phase boundaries, if the amplitude of the inhomogeneity becomes infinitesimal, when
approaching the boundary. However, a stability analysis fails to detect inhomogeneous
condensates in regions of the phase diagram, where the homogeneous minimum (found,
e.g., as described in Section 4.1) corresponds to a local, but not to a global minimum of
Seff[σ(x)]/N f . This is, e.g., the case in the 1 + 1-dimensional GN model [26,63].

A detailed derivation of the formalism to probe the stability of a homogeneous con-
densate σ = σ̄ with respect to arbitrary spatial perturbations δσ(x) can be found in Ref. [29]
for a continuum approach. This formalism can be transferred to lattice discretizations in
a straightforward way, which is discussed in the same reference. A quantity of central
importance is

Γ−1(qk)

N f
=

1
λ
− W̃2(qk)W̃2(−qk)

8 ∑
p

tr
(

Q̄−1
p−q[µ, µ45, σ̄]Q̄−1

p [µ, µ45, σ̄]
)

, (4.2)

where ∑p runs over all 3-dimensional lattice momenta (3.1), q = (0, qk), the trace refers to

spinor space and Q̄p[µ, µ45, σ̄] is defined via Q̃(4)
p,q [µ, µ45, σ̄] = δp,qQ̄p[µ, µ45, σ̄] and Eq. (3.4),

i.e.,

Q̄p[µ, µ45, σ̄] = NtN2
s

(
i

2

∑
ν=0

γν sin
(

pν − δν,0i(µ + γ45µ45)
)
+ σ̄

)
. (4.3)

Negative values of Γ−1(qk)/N f with qk 6= 0 indicate instability of the condensate σ = σ̄
with respect to harmonic perturbations with momentum qk. Such perturbations decrease
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Figure 4. Boundaries of the region of instability in the chirally imbalanced 2 + 1-dimensional GN
model for the discretization W̃2 = W̃ ′′2 in (µ, µ45, T) space for aσ0 = 0.2327 and
Lσ0 = 100 aσ0 = 23.27. Both plots show the same data and differ only in the angle of view.

Seff[σ] and, consequently, an inhomogeneous condensate is preferred. By evaluating
Γ−1(qk)/N f for suitably chosen parameters (µ, µ45, T) one can identify regions, which are
part of an inhomogeneous phase.

We searched extensively for regions, where σ̄ is unstable, using both discretizations
(3.6) and (3.7). For W̃2 = W̃ ′2 such regions do not seem to exist. For W̃2 = W̃ ′′2 and finite
lattice spacing there is a region of instability at small T consistent with the findings at
µ45 = 0 reported in Ref. [29]. It is shown in Fig. 4 for the lattice with the finer lattice
spacing, aσ0 = 0.2327, and spatial extent Lσ0 = 100 aσ0 = 23.27. The region of instability is
located within the tetrahedral shape. At smaller temperature it has a larger extent in the
µ-µ45 plane. A somewhat unexpected result is the large extent of the region of instability
in µ45 direction, e.g., for T/σ0 = 0.076 and µ/σ0 ≈ 1.0 up to µ45/σ0 ≈ 0.5. Its boundary
is plotted in Fig. 5 in the µR-µL plane. The plot shows that the instability region extends
up to µL = µ + µ45 ≈ 1.5 and at the same time down to µR = µ− µ45 ≈ 0.5. A symmetric
phase is preferred by SL

eff[σ] with chemical potential µL ≈ 1.5, while SR
eff[σ] with chemical

potential µR ≈ 0.5 prefers a homogeneous symmetry-broken phase. Thus, neither of two
parts of the effective action (2.21) favors an inhomogeneous phase, but in combination they
do. This highlights the non-trivial interplay of SL

eff[σ] and SR
eff[σ] giving rise to a rather

large inhomogeneous phase at finite lattice spacing for certain discretizations. Note that
Fig. 5 also reveals that the homogeneous phase boundary is engulfed by the region of
instability, which is not the case in our previous study at µ45 = 0 [29], where a different
lattice regularization was used.

In Fig. 6 we show sectional views of the region of instability for the discretization
W̃2 = W̃ ′′2 and various temperatures. The upper row corresponds to the larger lattice
spacing, aσ0 = 0.3649, and the lower row to the smaller lattice spacing, aσ0 = 0.2327, the
left column to smaller and the the right column to larger spatial extent Lσ0. Comparing the
upper and the lower row it is obvious that the instability region shrinks, when decreasing
the lattice spacing, most prominently in µ direction. This is particularly evident from the
right column, where the boundaries are significantly less distorted by finite volume effects.
In the plots in the left column, however, one can see pronounced oscillations, which seem
to be caused by small spatial volume. These oscillations are reminiscent of those observed
in the µ-T plane in lattice studies of the chirally balanced GN model in 1 + 1 and 2 + 1
dimensions [27,29,63].

In summary, we found no region of instability for W̃2 = W̃ ′2 and a shrinking region of
instability for decreasing lattice spacing for W̃2 = W̃ ′′2 . This indicates that there is no region
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Figure 5. Region of instability and homogeneous phase boundary in the chirally imbalanced 2 + 1-
dimensional GN model for the discretization W̃2 = W̃ ′2 in the µR-µL plane for T/σ0 = 0.076,
aσ0 = 0.2327 and Lσ0 = 100 aσ0 = 23.27. The chiral chemical potential µ45 is constant along the
diagonal straight lines.
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of instability in the chirally imbalanced 2 + 1-dimensional GN model in the continuum
limit.

4.3. Arbitrary spatial modulations of the condensate

Now we discuss the minimization of the effective action (3.2) with respect to the
condensate allowing arbitrary spatial modulations, i.e. arbitrary Fourier coefficients σ̃(p).
We did this for selected parameters (µ, µ45, T) by carrying out several conjugate gradient
minimizations, which differ in the starting values for σ̃(p). For each (µ, µ45, T) we found
only a small number of local minima, although a significantly larger number of different
starting values for σ̃(p) were provided to the minimization algorithm. This might indicate
that for all considered (µ, µ45, T) the corresponding global minimum is among the found
local minima. We note that in our previous work [29] only 1-dimensional modulations
were studied, i.e., σ̃ = σ̃(p1). In this work we relax that constraint and allow arbitrary 2-
dimensional modulations, i.e., σ̃ = σ̃(p). Since this is a numerically difficult and computer
time intensive task, we use a rather small lattice with coarse lattice spacing aσ0 = 0.3649,
temperature T/σ0 = 0.114, Lσ0 = 28 aσ0 = 10.22 and the discretization corresponding to
W̃2 = W̃ ′′2 .

In a first step, we studied the chirally balanced model, i.e. µ45 = 0. As an example,
the upper left plot in Fig. 7 shows a configuration σ(x) corresponding to one of the global
minima of the effective action at µ/σ0 = 1.041. An inhomogeneous condensate is favored,
as we know from the stability analysis discussed in Section 4.2. Even though the minimiza-
tion algorithm allows arbitrary 2-dimensional modulations, the resulting global minimum
is just a plane wave with wave vector qk = 2π(1, 2)/L. Similarly, the upper right plot in
Fig. 7 shows a minimizing condensate at larger chemical potential µ/σ0 = 1.083. Again
we found a plane wave, this time with wave vector qk = 2π(2, 2)/L, i.e., with a smaller
wavelength. Even though the found plane waves are 1-dimensional structures, allowing
arbitrary 2-dimensional modulations reduces finite volume corrections. This is so, because,
in contrast to our previous work [29], the direction of the wave vector is not anymore
restricted to be parallel to one of the coordinate axes and, thus, its magnitude can now be
changed in finer steps.

The minimization algorithm also found 2-dimensional modulations. These, however,
correspond exclusively to local minima of the effective action (3.2). An example is shown
in the center of Fig. 7.

We also investigated, how chiral imbalance, i.e. µ45 6= 0, affects the preferred modu-
lation of the condensate. The plots in the lower row of Fig. 7 show global minima of the
effective action for (µ/σ0, µ45/σ0) = (1.041, 0.05) and (µ/σ0, µ45/σ0) = (1.041, 0.25). At
fixed µ/σ0 = 1.041 the frequency is almost independent of µ45 (cf. the upper left plot, the
lower left plot and the lower right plot of Fig. 7). The amplitude, however, decreases, when
increasing |µ45|, supporting a second order phase transition also at µ45 6= 0. We searched
extensively for inhomogeneous condensates outside the instability region explored and
discussed in Section 4.2, but did not find any. Thus, we conclude that the boundaries of
the instability region are identical to phase boundaries and that the corresponding phase
transitions are of second order.

5. Conclusions

In this work we have studied the phase diagram of the 2 + 1-dimensional GN model
with chiral imbalance introduced via a chiral chemical potential µ45. Our lattice field theory
results indicate that an inhomogeneous phase exists at finite lattice spacing a, when using
a specific lattice discretization (W̃2 = W̃ ′2). Non-vanishing µ45, however, seems to disfavor
inhomogeneous modulations. Moreover, the inhomogeneous phase shrinks for decreasing
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Figure 7. Modulations of the condensate σ corresponding to minima of the effective action (3.2) for
the discretization W̃2 = W̃ ′′2 , T/σ0 = 0.114, aσ0 = 0.3649 and Lσ0 = 28 aσ0 = 10.22.
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a and is expected to disappear in the continuum limit. These findings are consistent with
our previous work [29] restricted to µ45 = 0 4.

Moreover, we have shown for our chirally imbalanced 2 + 1-dimensional GN model
that an isospin chemical potential µI is equivalent to the chiral chemical potential µ45.
Thus, all results presented can either be interpreted in the context of chiral imbalance or of
isospin imbalance. In particular the µ-µ45-T phase diagram is identical to the µ-µI-T phase
diagram. Interestingly, a recent study of the 3 + 1-dimensional NJL model in the large-Nc
limit [53] conjectures a similar approximate duality of the phase diagram.

At finite isospin chemical potential color-superconductivity might play an important
role. In the considered 2 + 1-dimensional GN model this can, however, not be investigated,
because the necessary difermion interaction is not present. Thus, we are not yet in a position
to compare our results to up-to-date lattice QCD simulations at finite µI (see, e.g., Refs. [65–
69]), where a phase with Bose-Einstein condensation of charged pions was observed. In
a next step, it might, thus, be interesting to establish contact to Refs. [56,57], where a
color-superconducting channel was added to the chirally imbalanced 2 + 1-dimensional
GN model. It should, however, be noted that these references introduce the chiral chemical
potential in a conceptually different way using spin matrices γ0γ4 as well as γ0γ5, instead
of γ0γ45 appearing in Eq. (2.18).
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