
Adaptive Content Mapping for Internet Navigation 1

Adaptive Content Mapping for Internet Navigation

Rüdiger W. Brause, Markus Ueberall

J.W.G.-University, Frankfurt a.M., Germany,
{Brause,Markus}@Informatik.Uni-Frankfurt.de

1 Introduction

The Internet as the biggest human library ever assembled keeps on growing. Al-
though all kinds of information carriers (e.g. audio/video/hybrid file formats) are
available, text based documents dominate. It is estimated that about 80% of all in-
formation worldwide stored electronically exists in (or can be converted into) text
form. More and more, all kinds of documents are generated by means of a text
processing system and are therefore available electronically. Nowadays, many
printed journals are also published online and may even discontinue to appear in
print form tomorrow.
This development has many convincing advantages: the documents are both avail-
able faster (cf. prepress services) and cheaper, they can be searched more easily,
the physical storage only needs a fraction of the space previously necessary and
the medium will not age.
For most people, fast and easy access is the most interesting feature of the new
age; computer-aided search for specific documents or Web pages becomes the ba-
sic tool for information-oriented work. But this tool has problems. The current
keyword based search machines available on the Internet are not really appropriate
for such a task; either there are (way) too many documents matching the specified
keywords are presented or none at all. The problem lies in the fact that it is often
very difficult to choose appropriate terms describing the desired topic in the first
place.

This contribution discusses the current state-of-the-art techniques in content-
based searching (along with common visualization/browsing approaches) and pro-
poses a particular adaptive solution for intuitive Internet document navigation,
which not only enables the user to provide full texts instead of manually selected
keywords (if available), but also allows him/her to explore the whole database.

2 Standard information retrieval methods

The content based search within text documents has been established under the
term text retrieval, which historically represents the first and most important
branch within the information retrieval discipline, and is still subject to intensive
research. Although we explicitly focus on text retrieval here, please note that al-

appeared in: R.J.Howlett, N.S.Ichalkaranje, L.C.Jain,G.Tonfoni (Eds):
Internet-Based Intelligent Information Processing Systems, World Sci-
entific, Singapore, pp.25-65, 2003

2 Standard information retrieval methods

 2

most all underlying concepts reviewed in this chapter can be applied to other in-
formation retrieval branches as well: just substitute “terms” and “words” by “fea-
tures”.

In practice, the most obvious approach to characterize text documents by syn-
tactic and semantic analysis quickly turns out to be intractable at least now. There-
fore, almost all of the information retrieval mechanisms are based on condensed
representations of the original documents like terms (i.e. keywords or catch-
words) or meta information, if available.

2.1 Keyword search

The most simple approach to a content based search consists in scanning for one
or several keywords. Although this is a straight and simple approach, a full text
search takes too long for large databases. Therefore, all traditional Internet search
engines like Alta Vista or Fireball parse the visited documents and only search
within distilled term lists, which can also be accessed much faster [23].
This plain keyword search has the disadvantage of hit lists often being either too
short or too long, because the user chose either wrong or inadequate keywords or
very common terms. Limiting the result set to a reasonable size becomes an art
per se.

2.2 Recall enhancers

The first improvement over plain keyword search (known as “aliasing”) consists
in enlarging the user-provided list of keywords by similar words which can be re-
stricted to cases where the original set of words resulted in too few hits. Common
related techniques include:

♦ word stemming
Here, all suffixes of words (e.g. in English [45] or German [14]) are dis-
carded. Errors occur, if the same word stem is obtained for words of different
semantics (overstemming) or if different stems are obtained for the same se-
mantics (understemming). Note that all stemmers (unless they are dictionary-
based) are language-dependent: an inappropriate use, e.g. in mixed language
documents, leads to a drastic reduction in stemming quality.

♦ dictionary-based identification of synonyms
A thesaurus is very useful if you want to cope with the problem of existing
words having the same meaning (synonymy) or the same word having differ-
ent meanings (polysemy), e.g. the word bank which has about a dozen differ-
ent meanings in English.

♦ synonym sets
Another idea consists in the construction of a set of all nouns, verbs, adjec-
tives and adverbs, associated with a single semantic meaning (which can be

 3

seen as some sort of super-thesaurus). A freely available realization of this
concept is the WordNet lexical reference system [23]. It requires a much
higher degree of manual input than a thesaurus and therefore cannot be gener-
ated semi-automatically as it is possible with the latter.

Additionally, all keywords (either user-provided or derived by aliasing) can be
weighted or modified by means of a concept known as relevance feedback
[29][38], whereby the user iteratively rates some documents in the list of results as
being relevant or non-relevant. The system then tries to modify the keyword list
accordingly, e.g. by discarding those query terms which only occur within non-
relevant documents.

2.3 Using Meta information

A lot of meta information is contained in texts which contain semantic markup in-
formation, e.g. HTML/XML based Web pages with title or paragraph headers in
subsequent order. The HTML standard also defines a “meta” tag which can (and
should) be used to provide special information, e.g. the author´s name, manually
identified keywords, or even an entire abstract.

Of course, these entries are of use only when they obey to a common standard
(e.g. the Dublin Core Metadata Standard [20]), and cannot easily be maintained
for an exponentially increasing number of documents which nowadays are often
— at least partially — automatically generated by querying Web-based databases.
Here, automatically derived meta information is needed.

One of the traditionally used sources of meta information are citations which
can easily be used to build an automated ranking system, see e.g. CiteSeer [28].
Another feature of XML/HTML based documents, which distinguishes them from
those in plain text format, is the existence of (true bi-directional) hyperlinks which
can be taken into account for this task, too. Examples are the PageRank measure
introduced by Google [6] or the more flexible HITS concept [33].

As of today, an automatic ranking of documents solely based on user-provided
meta data greatly suffers from the overall imprecision and sponginess of the latter.

2.4 Classification trees

One important alternative for searching an unstructured set of documents is the
manual classification of the document and the arrangement of the classes in a tree-
like manner. These classification trees are very common in traditional library
work and provide some advantages. They facilitate the search for new, unknown
sources just by browsing through an appropriate subcategory of the classification
tree. Even if the unknown document does not contain the critical keywords or
terms, it can easily be found provided that the right paths to topics of interest are
identifiable by the user.

The disadvantages are also well known:

4 Standard information retrieval methods

 4

♦ Since the classification is fixed, it is difficult to introduce changes in the clas-
sification system for evolving subjects, e.g. technology. It might become nec-
essary to reorder whole subtrees which requires a reclassification of all the
documents in the subtree.

♦ Documents often cannot be assigned to one single category. The common
remedy for this problem is the duplication of the document reference which
produces a multi-class membership. This implies other problems, see [32].

♦ The exploring and browsing is impeded by the fixed subclass boundaries and
cannot automatically be redirected across the branches of the classification
tree to another relevant branch.

♦ If many documents are located below one single subcategory, there is no fea-
sibility to discriminate between them; in this case, the corresponding node can
only be referred as a whole.

♦ The classification has to be performed manually by humans which is not af-
fordable for huge collections. This is the crucial problem of Internet based
documents: For the exponentially growing Internet resources, manual proc-
essing is prohibitive. Although there are initiatives like the Open Directory
Project [43] which involves thousands of librarians, an automatic classifica-
tion is necessary. Today, most of the automatic classification efforts rely on
the automatic extraction of document features. This is done by a process
called indexing.

2.5 Indexing

Standard information retrieval approaches use keywords, stemmers and thesauri
only as preprocessing filters. They try to represent a document solely by all dis-
tinct terms which might characterize it. For this purpose, you have to preprocess
and condense a document by several steps [4]:

(1) choice of appropriate terms
From the document choose appropriate terms and include them in a term col-
lection. The meaning of “appropriate” depends on the chosen concept. For in-
stance, the most simple strategy is to drop frequently occurring, uninteresting
words (stop terms) like “and”, “to”, “in” [49]. This commonly used technique
has the disadvantage that combinations of these simple words (phrases), e.g.
“to be or not to be”, might be important, and could not be found if the isolated
words were discarded as stop terms. There are frequently used words which
also should not be dropped like “time”, “war”, “home” [25]. Certainly, this
makes the selection more subjective, or, at least, domain -dependent.
 A more evolved strategy [52][53] only selects those terms that have a high
discrimination value within a given set of documents. Here, as objective func-
tion to be minimized, the average document similarity based on the chosen sub-
set of terms is used. Unfortunately, the computation of all interactions (similari-
ties) between all documents is computationally expensive. This can be reduced
by replacing the average similarity between all documents by the average simi-

 5

larity between the documents and the term prototype, the average weight of all
document terms. For each step of selecting the most discriminative terms, the
value of the objective function is computed before and after dropping (or in-
cluding) a term. If the objective function is increased by dropping a term, its
discrimination value is positive and the term should be retained. Otherwise, it
can be dropped.
 Alternatively, instead of trying to identify (good) index words in the first
place, simple substrings of fixed size N (so called N-grams [18]) can be ex-
tracted from a given text. If hash tables are used to store the counters needed to
calculate the relative frequency of these substrings within the document after
parsing, this approach is very fast [16]. Aside from this, the concept of N-grams
is clearly language-independent, but, on the other hand, also not very descrip-
tive for humans.

(2) weighting of the terms
Long documents naturally contain the same terms mo re frequently than short
ones. In order to get rid of this peculiarity, the term frequencies have to be
normalized [61]. Also, long documents contain a higher number of distinct
terms which might better match a given request. Therefore, the length of a
document has to be taken into account when weighting the terms.

(3) choice of appropriate indexing data structures
There are two popular data structures for index management: signature files
and inverted index files. For each document, a signature file is created which
consists of hash-encoded bit patterns of text parts within the corresponding
document. This drastically reduces the search time, because instead of the
document itself, only the much shorter signature file is searched for the hash-
encoded search terms [21].
Alternatively, we might invert our term lists, one for each document, by build-
ing global lists, one for each term of the “global vocabulary”, i.e. all distinct
terms within the collection. Each list (posting list) contains the pointers to
documents that include the specific term. This method has a lot of advantages
over the use of signature files (e.g. false matches cannot occur) and should be
preferred, see [66].

How many different terms do we have occurring f1 times? To evaluate this, let
us order all terms according to their occurrence frequency and assign them an in-
dex. The index one is for the most frequent term, the index two to the next fre-
quent one and so on. Then we will notice an interesting fact: the product of index r
and frequency f is approximately constant: r⋅f =const=K. This observation is
known as “Zipf’s law” [65]. The number of different terms with frequency f1 is re-
flected by the number of indices which have the same number f1 of terms, the dif-
ference ∆r = r2–r1 =K(1

1
1 +f –

1

1
f) = K)1(

1
11 +ff . The constant K can be observed for

the rank rm with frequency f=1: K= rm⋅f = rm.

6 Standard information retrieval methods

 6

In conclusion, Zipf’s law says that the number of different terms increases non-
linearly with decreasing term occurrence and importance. Therefore, an important
fraction of terms can be dropped if we introduce an occurrence threshold for the
list of terms.

2.6 Vector space models

One of the classical methods of encoding the information space of a given set of
documents is the approach of applying the well-known mathematical tool of linear
algebra. Regarding the entries dij as the components of a document vector relative
to “term vectors”, the vector space model (VSM) [51] describes the documents as
a linear comb ination of orthogonal base vectors, representing the basic terms.
Given a static vocabulary consisting of n distinct terms, each document can be
represented as a vector of length n. Therefore, the documents as rows of terms
form a document-term matrix D with the terms as columns. Each entry dij in the
matrix represents the number of occurrences of term j within document i.

The “formally unclean” assumption of orthogonal base vectors was remedied
by the later-proposed generalized vector space model (GVSM) [60]. Here, the or-
thogonality of boolean minimal conjunctive expressions (the dual space) is ex-
ploited to generate orthogonal base vectors.

Later on, the GVSM approach was modified to only represent the most relevant
linear combinations of document features by Latent Semantic Indexing (LSI) [19]
and to drop “unimportant” correlations. The term correlations between documents
are treated by their statistical properties: the document-term matrix D is analyzed
by a singular value decomposition in order to reduce the number of descriptive
dimensions and to get the principal directions as intrinsic latent semantic struc-
tures.

2.7 Similarity measures

Within the mentioned vector space models, a query can be regarded as the prob-
lem of finding the most similar document to a given pseudo-document (e.g. con-
sisting of a user-provided list of keywords or a real document). The similarity
measures employed here are often derived from standard linear algebra measures,
for instance the scalar product or the cosine between the vector representations of
the documents to be compared [50][66].

Here, for our purpose a less-known (but not less-compelling) measure, the
cover coefficient concept (CCC) [9][10][11], shall be sketched. Defining the im-
portance of the j-th term relative to all terms of document di, the i-th row of D, by

sij = ∑
k

ik

ij

d

d
 (1)

 7

and the importance of the j-th term in document di relative to all documents in the
collection containing the term (j-th column of D) by

ijs~ = ∑
k

kj

ij

d

d
 (2)

we get the degree cij of document coverage (the cover coefficient matrix C) from
the cross-correlation between two documents

cij = ∑
k

jkik ss ~ (3)

 One major problem of all similarity measures discussed in this section is the
situation where new documents with unknown terms have to be inserted in and
compared with an existing collection of documents. Here, for huge collections the
length of the vectors (list of terms) usually become very long and both the com-
parison and the weighting process becomes intractable. One approach to deal with
this problem consists in passing over from a global document description into a
local one which is only valid within a certain context or cluster of documents dis-
cussed in the next section.

3 Adaptive content mapping

The most interesting alternative to the manual classification task is the automatic,
content based classification which maps the documents into different classes. In
general, the topic oriented associative relationship maps have been standardized
by the international norm ISO 13250, see e.g. [54], but there is no standard adap-
tive approach. Although the actual adaptive methods still have problems, the rapid
growing Internet content produced by non-librarians allows no other approach in
the near future. Based on the methods introduced in the previous sections, we will
briefly review current adaptive content mapping methods.

3.1 Automatic classification by clustering

The similarity measures defined so far can be used to group documents into
clusters. These semantic clusters represent a natural classification. In contrast to
the static classification performed according to fixed criteria in section 2.4, the
adaptive classification reflects the statistical properties of the document collection
and will change according to the specific document collection.

There are two kinds of clustering algorithms: the non-hierarchical ones which,
given a neighborhood criterion and a distance metric, divide the document space
into a set of clusters, and the hierarchical ones which find clusters composed of
smaller clusters on several levels. An overview can be found in [47] and [59].

8 Adaptive content mapping

 8

Here, we take a closer look at the non-hierarchical cluster algorithms using the
cover coefficient concept. With the expected number nc of clusters

nc =

∑
i

iic (4)

and the “cluster seed power” measure, which basically tries to capture the extend
with which terms are distributed within a set of documents [12] and can be used to
derive the term discrimination value of individual terms as well as to identify
documents which contain a high number of “good” terms. The algorithm can be
summarized as follows:

1. Nc:=0; WHILE Nc<nc DO

Choose (nc–Nc) the next documents of maximum cluster seed power as new
cluster seeds

Let Nc be the number of equivalence classes within this (sub)set of docu-
ments (two documents i and j belong to the same class if they have
nearly identical cii, ciij cji and cii)

ENDWHILE

2. With the Nc cluster documents obtained, assign each document i of the collec-
tion not being a cluster seed to the cluster document k of maximal coverage cik.

3. Documents which were not assigned to any cluster during the last step form a
cluster by themselves.

This cluster algorithm has several advantages:

• It is stable; small variations in the term-document representation only lead to
small changes in clustering

• If there is no similarity between documents, they will not share the same clus-
ter as opposed to standard algorithms

• Given m documents and n terms, n>>m, this algorithm will cluster the docu-
ments by a computation complexity of O(m⋅n)

• The input sequence of the documents does not influence the clustering results

3.2 Adaptive hierarchical classification

The non-hierarchical cluster methods produce a set of clusters without any struc-
ture. For huge sets, the navigation is greatly facilitated if the set can be structured
in a hierarchical manner. An automatic hierarchical classification, adapted to a
document collection, can be performed by two different approaches, either bottom
up or top down:

 9

• Agglomerative approach
The agglomerative strategy tries to fuse small entities in order to get bigger
ones on the next higher level. The clustering fuses the m documents by m-1
operations into a tree structured cluster set. A common used algorithm for this
is the nearest neighbor approach [47] [59].

• Divisive approach
The division of each cluster into smaller clusters is based on the similarity
measure between the documents.
One of the algorithms for successively dividing clusters and grouping them in
a tree is the Principal Direction Divisive Partitioning algorithm (PDDP) intro-
duced by Boley [7]. Like the LSI algorithm of section 2.6, it uses the domi-
nant eigenvectors of the appropriate cross-correlation matrix. It transforms the
document descriptions of the most scattered cluster in the eigenspace, and,
based on the principal eigenvector, then decides for each document of the
cluster whether to shift it in either the left or the right leafs of a binary tree.

The algorithm was developed in the context of the WebACE project [8],
where an user agent automatically retrieved potentially relevant documents
from the web, based on a single user profile (namely, bookmarks and visited
pages).

One of the newer search engines using hierarchical clustering is the Vivísimo pro-
ject [56]. It uses conventional search engines for keyword search and then clusters
the results dynamically, notably without parsing the referenced documents in its
entirety by itself.

3.3 Local adaptation

Once the document collection has been transferred into a hierarchical classifica-
tion, it becomes very expensive to add new documents. In the extreme, by statisti-
cal deviations, the whole adaptive classification tree becomes unstable and has to
be reorganized. How do we handle such a situation?

In principle, this cannot be avoided if we want the classification to properly re-
flect the data-induced configuration. Nevertheless, we can try to make unstability
less probable by several means:

• During initial adaptive clustering and classification, the documents with the
“broadest” set of features should be chosen in order to build up a very general
framework.

• For subsequent insertions of new documents, the structure should be kept sta-
ble as it is in the case of manual classification of section 2.4.

• The whole process of adaptive classification might be resumed if the number
of new documents exceeds a predefined threshold.

10 Intuitive navigation

 10

This approach has one major drawback: the high computational costs of reorganiz-
ing the whole document collection, even if it occurs only periodically. As a com-
promise between stability and plasticity, only local adaptations can be made. This
kind of continuous re-adaptation avoids the complexity of adapting the whole col-
lection and supports the correct local document relations. Nevertheless, in the case
of huge local changes in document statistics also changes in the global class hier-
archy have to be considered.

4 Intuitive navigation

User interfaces for smart (“intelligent”) systems have to face many demands. One
of the most popular is described by the term “intuitive” which is not well defined.
Raskin [46] references it as “familiar” which means that the guessing in bad user
interfaces is replaced by knowledge. In this sense, we want to implement a user in-
terface wh ich is based on already existing knowledge.

4.1 Hierarchical navigation and the zoomable user interface

The search in huge databases is often facilitated by the approach of successively
splitting the search space into smaller parts. This divide-and-conquer approach
only needs logarithmic time, in contrast to an exhaustive scan of the entire data-
base. It can be backed up and exploited by the user interface design. For browsing
through a huge database, you might structure the data in a hierarchical manner and
use the hierarchy in the user interface. Each hierarchy level might be presented
visually, in a way appropriate to its content. On each hierarchy level, the user de-
cides where to go next and selects the next level until he/she reaches the underly-
ing document(s).

This idea of a level oriented top-down (and vice versa also bottom up) user in-
terface can be extended to a continuous version: the zoomable interface [1][2][46].
This interface propagates the idea that the metaphor of flying, approaching a place
by zooming in and leaving a place by zooming out, is sufficient to navigate within
huge databases.

The zooming interface only has two modes: shifting and zooming. When you
shift within an hierarchical level you only see abstract quantities mapped into a 2D
plane. You move within these entities and select an interesting region. Then, you
switch to zooming and approach the spot (a document) while the context (the
other documents) becomes clearer, and you might even deviate to a more appro-
priate document.

The zoomable interface can also be used for other purposes than database navi-
gation. Raskin [46] claims that it is even capable of replacing the traditional user
interface completely, thereby rendering mouse devices and windows superfluous.

 11

4.2 Similarity based visualization

There are already systems for intuitive navigation in documents by means of
graphical user interfaces. One of the most straightforward implementations of con-
tent based navigation consists of placing all documents as symbols (small rectan-
gles or circles) on a 2-D plane. The location on the plane is chosen according to
their similarity value based on index terms, see section 2.7. There are several ap-
proaches for determining the position of a document (or document cluster) within
the plane.

The first approach is given by the vector space model: each document is de-
scribed by an index term vector of length n which gives the absolute coordinates
or, alternatively, the difference i.e. the relative position between the documents to
set up the 2-D display. This approach also needs a mapping stage where the n-dim.
document space is mapped on the 2-D display.

One of the classical algorithms for doing this mapping is the nonmetric algo-
rithm for multidimensional scaling (MDS) [35][36], which is computational ex-
pensive. A fast heuristic can be found in [22]. Here, the objective function “stress”
(this term really represents a family of functions, cf. [16]), a measure of difference
between the original distance matrix and the 2-D distance matrix, is minimized.
One of the most compelling definitions for stress within this family is the so-
called “proportional stress” which punishes deviations at long distances propor-
tionally more than those at small distances. This can be interpreted as proportional
to the energy of a system of particles joined by springs whose equilibrium con-
figuration corresponds to a local energy minimum. Therefore, a system of “force-
directed placements” like this used for visualizing a graph is often called a spring
embedder and very popular in graph visualization. As application example, the
Lighthouse system display of 50 documents matching the query “Samuel Adams”
is shown in Fig. 1. The 50 matching documents are visualized as pseudo 3-D balls,
the best matching ones marked by thick circles. Since the original text references
are included, the whole window quickly becomes overloaded. Since these algo-
rithms do not consider absolute coordinates, the resulting picture has no preferred
orientation; it can arbitrarily be rotated.

This interface suffers from the several drawbacks:
• Only documents are displayed which match a certain search criterion, all

other documents are ignored
• The configuration of displayed documents change after each modification of

the search criterion, making it impossible to remember a certain area of the
document space.

• The number of documents in the display is limited to approximately 100

12 Intuitive navigation

 12

Fig. 1. A query display of the Lighthouse system [37]

Therefore, huge document collections can hardly be explored. As a remedy, hier-
archical maps may be defined. One of the most famous examples is the WEBSOM
approach [31] where an adaptive Kohonen map is used for mapping the document
space onto a regular 2-D grid. The contents of the nodes in the fixed display has to
be evaluated afterwards. In Fig. 2, a couple of windows representing several hier-
archical levels are shown.

This absolute coordinate approach has several disadvantages:
• If you introduce new documents and / or new terms, the whole system has to

be retrained which takes a long time in huge databases – often prohibitively
long.

• Another disadvantage is that the layout will change afterwards. Since the
cluster display changes, the user has to habituate to the new scene even when
he/she already knows the majority of documents.

 13

Fig. 2 The WEBSOM adaptive map and its hierarchical windows [31]

Here, too, some properties hinder an intuitive navigation:
• The high number of windows of several search process “levels” makes it dif-

ficult to maintain an overview of the search process
• The document content distance between the regular spaced clusters in the map

display are expressed by different color shades. However, this makes a quick
orientation rather difficult.

An interesting alternative visualization is demonstrated by the WebMap system
[58], which allows for the (manual) assignment of icons to clusters and single
documents.

5 The HADES System

In this section we will present a new adaptive system for intuitive navigation
called HADES (Hierarchical Adaptive Document Exploration System). Its under-

14 The HADES System

 14

lying concepts are based on the review results presented in the previous sections,
integrating the most advanced and our new concepts into one concise design and
adding often neglected but important features like portability and intelligent load
balancing [55].

5.1 Specifications

The system has to meet the following criteria:

• Adaptive classification
The classification structure must not be constant but always should reflect
the characteristics of the growing document collection.

• Intuitive navigation
The user interface should reflect the underlying hierarchical structure. It
should be possible to explore the classification tree intuitively (i.e. without
special training).

• Modularity
The system has to be designed such that it contains functionally distinctive
modules which enables local updates of functions or even the complete re-
placement of them by similar functional software.

• Portability
The program code should not depend on a specific machine type or operating
system but should be easily portable to new architectures.

• Load balancing
For large document collections, the interaction speed and therefore the user
acceptance of the system depends on the ability to automatically distribute
the workload within a cluster of servers. This feature can hardly be imple-
mented afterwards – it has to be taken into account at specification time.

5.2 The adaptation mechanisms

There are several mechanisms which are designed to reflect the specification of
adaptive classification.

• Adaptive clustering
When a new document is processed by the system, at first all terms are ex-
tracted by the parser. This reduced representation is then merged into a cen-
tral data structure, consisting of a number of inverse index tables [4][42][66],
see section 2.5. This enables the inclusion of new distinct terms of new
documents. Then, the document is routed, starting with the root node of the
classification tree, until the lowest hierarchy level (leaf) is reached and in-
serted in the last node visited. The similarity measure for routing is the so-

 15

called cosine coefficient [51][42], combined with the cover coefficient con-
cept [11].
If the node cluster size limit is reached, the cluster must be split into several
parts. During this operation, the involved node has to be locked and the reor-
ganization takes place.
The more interesting case, which involves the fusing of nodes, is computa-
tionally much more expensive: If the node contains references to other
nodes, instead of fusing the whole collection and completely reorganizing it,
we use the following heuristic: We do not lock all document representations
but use copies of a subset of them when re-clustering. Afterwards, the result-
ing clusters are split. If the new clusters contain too many representatives of
different clusters, a shifting and reorganization is not favorable. Instead, the
same algorithm is recursively tried on lower levels until it either reaches a
smaller diversity in a cluster or the lowest node of the tree. This kind of heu-
ristic assists the demand for structure conservation and recognition support
for the user [25].
Note that the original representatives (and subtrees) of the hierarchy are not
touched until the re-clustering was successful in which case a quick node
substitution takes place. Otherwise, large parts of the hierarchy would per-
manently be inaccessible to the users while updating the database.

The dynamic, adaptive hierarchy depends on the sequence ordering of the
incoming documents. This might result in the paradox that the same docu-
ment is assigned to two different leafs of the classification tree, depending on
the time when it has been classified. Reclassifying the whole collection after
classification changes may be prohibitive for large collections and will ne-
cessitate unwanted reorientation efforts of the user.
Here, a compromise between stability and plasticity has to be designed. The
kind and degree of adaptation has to reflect the users’ needs for stable,
known classification regions. This is done by the introduction of a cohesion
and an adhesion parameter which depend on the position and depth of the
nodes within the hierarchy tree. An additional affinity parameter controls the
local readapting in regular intervals depending on the workload. All three pa-
rameters are controlled by the user habits and adapt to the users’ needs.

• Recognition of structures
The goal of intuitive navigation in the context of adaptive clustering de-
mands stable document cluster structures which can be recognized by the
user. This avoids confusion at the user interface level and supports the feel-
ing of familiarity with the system.
Since we have different words which have the same meaning a thesaurus can
help to cluster similar documents with different terms into a content based
neighborhood. The small document specific thesaurus is automatically gen-
erated on the base of a general thesaurus and is treated like an abstract of the
document.

16 The HADES System

 16

• Meta information
Meta information (references of all kind) is preserved during the indexing
process and flows into the affinity values for document pairs and clusters.
There are still some questions open: What should we do with documents
which are referenced by other documents? Should the information be propa-
gated to other levels and if so, how should it be considered there? Should we
allow the user to jump back-and-forth between hierarchy nodes?

5.3 Intuitive Navigation

For the exploration of the document database we chose the content based, zoom-
able user interface as interaction paradigm. It consists of the following elements:

• content based similarity mapping

The documents are represented on a 2D screen window by symbols: sheets
for real documents and directory symbols for cluster representatives. The dis-
play of the symbols uses the computational feasible FastMap [21] algorithm.
The distances between the symbols reflect the similarity in document content.
As similarity measure we use the well-known cosine coefficient [11] in (indi-
rect) combination with the cover coefficient concept cf. section 2.7).
Additionally, in the extended view the document file information is also
shown in a list, ordered by the search request similarity criterion. Fig. 3 shows
a sample window.

• zoomable content
The zoomable interface permits the display of details if you zoom into a
document. In order to implement this, we chose not to present the document
text directly in physically different resolutions to the user, but to successively
show the document details in several stages: In the first stage only a main
term, then a term list, then an abstract and afterwards the whole text are
shown. The abstracts or relevant text fragments (gists) are generated auto-
matically, see [15][39].

 17

affects drawing order; used to
bring obscured icons to front

recompute and redraw the
similarity mapping

projection method
(here: MDS heuristic)

get current node
content from server

Fig. 3. Visualization of single documents (sheets) and clusters (directories)

• zoomable hierarchy
For the representative documents, we have to distinguish between the docu-
ment itself and its representation function. In the latter case we switch to the
next level of hierarchy and its associated similarity mapping. In Fig. 4 this is
shown for the example of Fig. 3 where the cluster representative “2-A” has
been selected. Please note that the node description has adaptively changed
due to the new context showing the new discrimination terms.

18 The HADES System

 18

Fig. 4. The next hierarchy level

• context display
For navigation, it is often very helpful to orient oneself along the context map
in order to plan the next moves. Here, we chose the classification tree as con-
text. A sample display is shown in Fig. 5.

Contacted server context specific node description (cf. title bar in previous figure)

Fig. 5. The hierarchy display window for the example

Letter in label denotes cluster
membership (cover coeff. based)

random 2-D projection,
for testing purposes only

representative marked
as relevant by the user

 19

• search history display
An additional help is the display of the search history. It shows all documents
marked as relevant in a compact form, see Fig. 6. Only three levels of hierar-
chy are displayed: The initial search document, all visited (visualized) nodes
and all documents marked as “relevant” within these nodes.

search with new
document

hierachy node
visited

marked as relevant
in the cluster node

Fig. 6. The search history display window

Additional navigation possibilities evolve if hyperlinks can be exploited to jump
back-and-forth between documents. It is not clear if this feature is helpful or con-
fusing and has therefore to be evaluated.

5.4 Implementation issues

There are several practical implementation features of our system which should be
mentioned here also.

5.4.1 Modularity
The code of the system is based on a client-server structure, each one divided into
several, independent parts, see Fig. 7. Each part can be replaced by an equivalent
functional entity implementing another algorithm. Therefore, changes in the data-
base or user interface are easily tolerated.
The communication between the following listed modules is based entirely on
message passing.
• UserInterface: This module implements the graphic user interface on the

client side.
• MainControl: The main module initializes all services on the server side.

The server may be part of a cluster.
• ClusterControl: This module is responsible for the generation and adap-

tive modification of the hierarchy of the local computer.

20 The HADES System

 20

• Parser: The parser (on server side) scans documents, transforms them into
the internal representation and generates the index terms. This might also be
migrated to client side.

• Gatherer: This module is responsible for the setup of the internal data
structures and preprocesses all document input (scanning for further refe r-
ences).

• Repository: this module is responsible for the persistent storage of the in-
ternal data structures (documents, meta data and so on.).

 Server Client

MainControl

User
Interface

Gatherer Reposi-
tory

Cluster
Control

Parser

cascadable additional modules for function extension
(LoadBalancer, Profiler, AccessControl etc.)

ServiceManager „well-known Services“

Gatherer
-Service

Reposi-
tory-
Service

Parser-
Service

Cluster-
Control-
Service

Parser-
Service

Parser

 service demand additional module
 feed back migratable module
 service point

Fig. 7. Schematic overview of the system architecture

The advantages of such a modular concept are obvious:

• The user interface can be coupled with a diversity of search engines. It pro-
vides an uniform interface based on a 2-D similarity display if possible, or a
(conventional) list representation otherwise.

• The replacement of the cluster component of the ClusterControl-module
allows the use of statistical classifiers.

• The parser can be extended for other data formats independently of the rest of
the system.

• The encapsulation of the communication within an abstract message passing-
based subsystem favors a restructuring or redistribution of the software within
the client-server model. Single JAVA classes can even be substituted at run
time.

 21

5.4.2 Portability and Integration ability
The implementation of the system in the programming language JAVA basically
enables us to use our software on a diversity of computer systems. This makes
load balancing possible even within a cluster of non-uniform machines.
Additionally, by implementing the client in the form of a signed applet, the user
interface can rely on the functionality of standard browsers.

The client-server architecture not only does support load balancing, but also
provides means for confidently (pre)processing the sample document provided by
the user without the necessity to transfer its contents to the unsecure/untrusted
server side.

Another important feature is the ability to integrate already existing search sys-
tems within our framework. Text based systems can easily use our user interface
for text output. Also, existing word stemmers, clustering and indexing mecha-
nisms can be used alternatively. This integration possibility facilitates the user ac-
ceptance and helps migrating from already existing older systems to the new one.

5.4.3 Load balancing
Aside from the already discussed possibilities of migrating some modules between
client and server there are a couple of other load distribution possibilities for the
modules:

• parser
Beside the possibility of shifting heavy workload of user input processing (e.g.
huge PostScript or PDF files) to the client also simple round robin schemes can
easily be implemented in a cluster.

• cluster control
The clustering of the index terms (fusion and division of clusters) is one of the
most critical workloads. Especially the root node of the classification tree is a
heavily frequented data structure which should be mirrored by other computers of
the cluster. Low level nodes, e.g. leafs, are not frequently visited and can there-
fore be moved to the machines with low workload. Between these extremes,
common strategies can be used to decide whether or not to move nodes.

• repository
The most simple load balancing strategy consists of the use of several independ-
ent repositories for partial hierarchies. Shifting the representatives from one level
to another or between nodes on the same hierarchy level might require additional
data transfer efforts between the computers who store the affected nodes, i.e. di-
rectory and context information/links have to be adjusted. Similar to the parser, a
round robin load balancing scheme can be implemented, but must be backed up
by corresponding data replication.

22 Discussion and outlook

 22

6 Discussion and outlook

After the review of state-of-the-art information retrieval concepts and related algo-
rithms we focused on the case of document search on the Internet. We introduced
a system architecture and the components of a new adaptive, intuitive Internet
document navigation system.

Although our system builds upon the experiences of existing systems, there are
many open questions left for our special design. Especially those related to the
user interface have to be evaluated in practice.

• adaptive classification
Usage of standard search engines has already been evaluated [34], even for
Web visualization [30], but truly searchable adaptive directory structures are
new. Are users willing to accept structural changes? What are the optimal
stability/plasticity parameters?

• user interface
The zoomable interface paradigm is quite new and has not yet been evalu-
ated within an adaptive setting. Does it help the user or does it rather hinder
the information retrieval process? This “intuitive” approach might be mis-
leading; perhaps zooming is the wrong metaphor for such a task.

In order to answer these questions, an evaluation stage is planned in cooperation
with the German National Library.

Beside these basic questions, there is still much work left:

• linguistic analysis
The “semantic” meaning of identified clusters might be greatly improved if
commercial (language-dependent) dictionaries/thesauri can be used to support
the classification of terms [39]. Aside from arising licensing problems (cli-
ent-side preprocessing of documents would certainly be hindered), it is not
clear how to match the dictionaries´ underlying static classifications with the
dynamic ones which are generated by our system.

• content management
A content management system deals with the task of management of data
formats, data conversion, version control, protocols for web publishing and so
on. Our system does not contain these features (yet) as our current focus
really is on content-oriented navigation . Nevertheless, as stated above, thanks
to the modular architecture, this kind of functionality could be added later.

• coupling of independent systems
If there are two (ore more) independent systems, each one using its own
document database, a combination of the hierarchy trees might result in better
search results and exploration possibilities compared with contacting each one
of them separately. On the other hand, each system administrator may want to

 23

maintain his/her own database and may not be willing to fuse the document
collections. What should we do? The answer is a time-limited coupling of the
systems. The obvious approach would consist in the usage of some sort of
meta crawler, but in order to enable the user to truly navigate within the re-
sulting classification forest even across system boundaries, additional infor-
mation needs to be exchanged on the server side.
The research topic is: Which (sub)modules within the different systems
should communicate with each other? The required coordination has to take
place at the same time ordinary search tasks are processed by the coupled sys-
tems – a difficult task.

In conclusion, adaptive internet navigation provides a lot of new and user friendly
topics for content oriented document search. However, the adaptive plasticity in
the data structures also implies new challenges for data consistency and user
orientation within the information retrieval process. Our approach will provide
new insights into balancing stability vs. plasticity of data structures and
visualization.

References
For all URL the date of a valid access is given in brackets [..]

[1] Bederson, B., Hollan, J.D. (1994) Pad++: A Zooming Graphical Interface for
Exploring Alternate Interface Physics, Proc. ACM UIST’94, ACM Press.

[2] Bederson, B., Meyer, J. (1998). Implementing a Zooming User Interface: Ex-
perience Building Pad++, Software: Practice and Experience 28(10): 1101-
1135, ISSN 1097-024X.
URL: http://www.cs.umd.edu/hcil/pad++/papers/spe-98-padimplementation/spe-
98-padimplementation.pdf [2001-08-18]

[3] Belkin, N. J. and Croft, W. B. (1992). Information Filtering and Information Re-
trieval: Two Sides of the Same Coin?, Communications of the ACM 35(12): 29–
38, ISSN 0001-0782.

[4] Blelloch, G. (1998).Algorithms in the Real World, Berkeley University. Class
notes 1997/98.
URL: http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/294/class-

notes/all/AlgsInRealWorld.ps.gz [2001-03-27]
[5] Boley, D. L. (1998). Hierarchical Taxonomies using Divisive Partitioning,

Technical Report TR-98-012, Department of Computer Science and Engineer-
ing, University of Minnesota, Minneapolis, MN 55455.
URL:ftp://ftp.cs.unm.edu/dept/users/boley/reports/taxonomy.ps.gz [2001-03-27]

[6] Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web
search engine, Proceedings of the 7th International World Wide Web Confer-
ence (WWW7), Brisbane, Australia.
URL: http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm [2001-
06-12]

[7] Boley, D. L. (1997). Principal Direction Divisive Partitioning, Technical Report
TR-97-056, Department of Computer Science and Engineering, University of
Minnesota, Minneapolis, MN 55455.

24 References

 24

URL: ftp://ftp.cs.umn.edu/dept/users/boley/reports/PDDP.ps.gz [2001-03-27]
[8] Boley, D., Gini, M., Gross, R., Han, E.-H., Hastings, K., Karypis, G., Kumar,V.,

Mobasher, B. and Moore, H. (1999). Document Categorization and Query Gen-
eration on the World Wide Web using WebACE, Artificial Intelligence Review
13(5-6): 365–391.
 URL: http://www-users.cs.umn.edu/˜gross/papers/aij.agent.ps [2001-03-27]

[9] Can, F. and Ozkarahan, E. A. (1983). A Clustering Scheme, in J. J. Kuehn
[Eds.], Proceedings of the 6th Annual Int. ACM/SIGIR Conf. on Research and
Development in Information Retrieval, Vol. 17, No. 4, ACM Press, Bethesda,
Maryland, USA, S. 115–121, ISBN 0-89791-107-5.

[10] Can, F. und Ozkarahan, E. A. (1984). Two Partitioning Type Clustering Algo-
rithms, Journal of the American Society for Information Science 35(5): 268–276,
John Wiley & Sons, Inc., ISSN 0002-8231.

[11] Can, F. and Ozkarahan, E. A. (1985).Similarity and Stability Analysis of the
Two Partitioning Type Clustering Algorithms, Journal of the American Society
for Information Science 36(1): 3–14, John Wiley & Sons, Inc., ISSN 0002-
8231.

[12] Can, F. and Ozkarahan, E. A. (1989). Dynamic Cluster Maintenance, Informa-
tion Processing & Management 25(3): 275–291, Pergamon Press Ltd., ISSN
0306-4573.

[13] CARMEN: Content Analysis, Retrieval and Metadata: Effective Networking
(1999).
URL: http://www.mathematik.uni-osnabrueck.de/projects/carmen/ [2001-08-17]

[14] Caumanns, J. (1998).A Fast and Simple Stemming Algorithm, Freie Universität
Berlin, CeDiS.
 URL: http://www.wiwiss.fu-berlin.de/˜caumanns/i4/ papers/se/ stemming.ps
[2001-02-01]

[15] Cohen, J. D. (1995). Highlights: Language- and Domain-Independent Automatic
Indexing Terms for Abstracting, Journal of the American Society for Informa-
tion Science 46(3): 162–174, John Wiley & Sons, Inc., ISSN 0002-8231. (Erra-
tum in JASIS 47(3): 260.)
URL: http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=10050162&PLA
CEBO=IE.pdf [2001-06-15]
URL: http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=57719&PLACEB
O=IE.pdf [2001-06-15]

[16] Cohen, J. D. (1997). Drawing Graphs to Convey Proximity: An Incremental Ar-
rangement Method, ACM Transactions On Computer-Human Interaction, Vol.
4, No. 3, ACM Press, pp. 197–229.
URL: http://www.acm.org/pubs/citations/journals/tochi/1997-4-3/p197-
cohen/ [2001-06-08]

[17] Cohen, J. D. (1997). Recursive Hashing Functions for N-Grams, ACM Transac-
tions On Information Systems, Vol. 15, No. 3, ACM Press, pp. 291–320.
URL: http://www.acm.org/pubs/citations/journals/tois/1997-15-3/p291-cohen/
[2001-06-08]

[18] Damashek, M. (1995). Gauging Similarity via N-Grams: Language-Independent
Sorting, Categorization, and Retrieval of Text, Science 267: 843–848, American
Association for the Advancement of Science.
URL: http://gnowledge.sourceforge.net/damashek-ngrams.pdf [2001-05-11]

 25

[19] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman, R.
(1990). Indexing by Latent Semantic Analysis, Journal of the American Society
for Information Science 41(6): 391–407, John Wiley & Sons, Inc., ISSN 0002-
8231. URL:http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=10049585&
PLACEBO=IE.pdf [2001-03-29]

[20] Dublin Core Metadata Initiative (1995).
 URL: http://www.dublincore.org [2001-08-21]

[21] Faloutsos, C. (1992). Signature Files, in [24], Chapter 4, pp. 44-65.
[22] Faloutsos, C. und Lin, K.-I. (1995). FastMap: A Fast Algorithm for Indexing,

Data-Mining and Visualization of Traditional and Multimedia Datasets, Pro-
ceedings of the 1995 Int. ACM/SIGMOD Conf. on Management of Data, Vol.
24, No. 2, ACM Press, pp. 163–174.
URL: http://www.acm.org/pubs/citations/ proceedings/mod/223784/p163-
faloutsos/ [2001-04-05

[23] Fellbaum, C. [Hrsg.] (1998). WordNet: An electronic lexical database, MIT
Press, Cambridge, Massachusetts [u.a.], ISBN 0-262-06197-X.
URL: http://www.cogsci.princeton.edu/~wn [2001-03-01]

[24] Frakes, W. B. and Baeza-Yates, R. S. [Eds.] (1992). Information Retrieval: Data
Structures and Algorithms, first Ed., PTR Prentice-Hall, Inc., Eaglewood Cliffs,
New Jersey 07632, ISBN 0-13-463837-9.

[25] Frakes, W. B. (1992b). Stemming Algorithms, in [24], Chapter 8, pp. 131-160.
[26] Jones, K. S. und Willett, P. [Hrsg.] (1997). Readings in Information Retrieval,

The Morgan Kaufmann Series in Multimedia Information and Systems, erste
Aufl., Morgan Kaufmann Publishers, San Francisco, CA 94104-3205, ISBN 1-
55860-454-5.

[27] Koenemann, J. und Belkin, N. J. (1996). A case for interaction: a study of inter-
active information retrieval behaviour and effectiveness, in R. Bilger, S. Guest
und M. J. Tauber [eds.], Proceedings of the ACM/SIGCHI Conference on Hu-
man Factors in Computing Systems, ACM Press, Vancouver, BC, Canada, pp.
205–212, ISBN 0-89791-777-4.
URL: http://www.acm.org/pubs/citations/ proceedings/chi/238386/p205-
koenemann/ [2001-03-29]

[28] Giles, C. L., Bollacker, K. D. and Lawrence, S. (1998). CiteSeer: An Automatic
Citation Indexing System, in I. Witten, R. Akscyn and F. M. Shipman III [Eds.],
Third ACM Conference on Digital Libraries, ACM Press, New York, pp. 89–98,
ISBN 0-8979-1965-3.
 URL: http://www.neci.nj.nec.com/homepages/lawrence/papers/cs-dl98/cs-dl98-
letter.pdf [2000-12-15]

[29] Harman, D. (1992). Relevance Feedback and Other Query Modification Tech-
niques, in [24], Chapter 11, pp. 241–263.

[30] Heo, M. and Hirtle, S. (2001). An Empirical Comparison of Visualization Tools
to Assist Information Retrieval on the Web, Journal of the American Society for
Information Science and Technology 52(8): 666–675, John Wiley & Sons, Inc.,
ISSN 1532-2882.
 URL: http://www3.interscience.wiley.com/cgi-
bin/fulltext?ID=80002501&PLACEBO=IE.pdf [2001-06-08]

[31] Honkela, T., Kaski, S., Lagus, K. and Kohonen, T. (1996). Newsgroup Explora-
tion with WEBSOM Method and Browsing Interface, Report A32, Helsinki Uni-

26 References

 26

versity of Technology, Faculty of Information Technology, Laboratory of Com-
puter and Information Science, Rakentajanaukio 2C, SF-02150 Espoo, Finland,
ISBN 951-22-2949-8.
URL: http://websom.hut.fi/websom/doc/ps/honkela96tr.ps.gz [2001-04-05]

[32] Kaszkiel, M. and Zobel, J. (2001). Effective Ranking with Arbitrary Passages,
Journal of the American Society for Information Science and Technology 52(4):
344–364, John Wiley & Sons, Inc., ISSN 1532-2882.
URL: http://www3.interscience.wiley.com/cgi-
bin/fulltext?ID=76508338&PLACEBO=IE.pdf [2001-04-30]

[33] Kleinberg, J. M. (1998). Authoritative Sources in a Hyperlinked Environment,
Proceedings of the 9th ACM/SIAM Symposium on Discrete Algorithms, ACM
Press, pp. 668–677. (Extended version appeared in Journal of the ACM 46(5):
604-632.) URL:http://www.acm.org/pubs/articles/journals/jacm/1999-46-5/p604-
kleinberg/p604-kleinberg.pdf [2001-06-16]

[34] Koenemann, J. and Belkin, N. J. (1996). A case for interaction: a study of inter-
active information retrieval behaviour and effectiveness, in R. Bilger, S. Guest
and M. J. Tauber [Eds.], Proceedings of the ACM/SIGCHI Conference on Hu-
man Factors in Computing Systems, ACM Press, Vancouver, BC, Canada, pp.
205–212, ISBN 0-89791-777-4.
URL: http://www.acm.org/pubs/citations/proceedings/chi/238386/p205-koenema
nn/ [2001-03-29]

[35] Kruskal J.B. (1964). Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, vol. 29, pp. 1-27

[36] Kruskal J.B. (1964). Nonmetric multidimensional scaling: A numerical method.
Psychometrika, vol. 29, pp. 115-129

[37] Leuski, A. (2000). Details of Lighthouse, Technical Report IR-212, Center for
Intelligent Information Retrieval, Department of Computer Science, University
of Massachusetts, Amherst, MA 01003. (Extended version of [38].)
URL: http://ciir.cs.umass.edu/pubfiles/ir-212.pdf [2001-03-26]

[38] Leuski, A. (2000). Relevance and Reinforcement in Interactive Browsing, Pro-
ceedings of the Ninth International Conference on Information and Knowledge
Management (CIKM), Washington, DC. (Also available as CIIR Technical Re-
port IR-208, Department of Computer Science, University of Massachusetts,
Amherst, MA 01003.)
URL: http://ciir.cs.umass.edu/pubfiles/ir-208.pdf [2001-03-26]

[39] Liddy, E. D. (1994). Text Categorization for Multiple Users Based on Semantic
Features from a Machine-Readable Dictionary, ACM Transactions on Informa-
tion Systems, 12(3):278-295, ACM Press.
URL: http://www.acm.org/pubs/citations/journals/tois/1994-12-3/p278-liddy/
[2001-03-26]

[40] Luhn, H. P. (1958). The Automatic Creation of Literature Abstracts, IBM Jour-
nal of Research and Development 2: 159–165, International Business Machines
Corporation, ISSN 0018-8646.

[41] Meghabghab, G. (2001). Google’s web page ranking applied to different topo-
logical web graph structures, Journal of the American Society for Information
Science and Technology 52, John Wiley & Sons, Inc., ISSN 1532-2882.
URL: http://www3.interscience.wiley.com/cgi-bin/fulltext?
ID=82002488&PLACEBO=IE.pdf [2001-06-15]

 27

[42] Moffat, A. und Zobel, J. (1996). Self-indexing Inverted Files for Fast Text Re-
trieval, ACM Transactions On Information Systems, Vol. 14, No. 4, ACM Press,
pp. 349–379.
URL: http://www.acm.org/pubs/citations/journals/tois/1996-14-4/p349-moffat/
[2001-04-05]

[43] Open Directory Project. URL: http://dmoz.org [2001-09-01]
[44] Perlin, K., Fox, D. (1993). Pad - An Alternative Approach to the Computer In-

terface, Proceedings of the ACM SIGGRAPH Conference, Vol. 28, ACM Press,
Anaheim, USA, pp. 57–64.
URL: http://www.cs.umd.edu/hcil/pad++/papers/siggraph-93-origpad/siggraph-
93-origpad.ps.gz [2001-08-18]

[45] Porter, M. F. (1980). An algorithm for suffix stripping, Program 14(3): 130–
137, reprinted in [25].
URL: http://www.tartarus.org/˜martin/PorterStemmer/ [2001-06-15]

[46] Raskin, J. (2000). The Humane Interface: New Directions for Designing Interac-
tive Systems, first Ed., Addison Welsley Longman, Inc., Reading, Massachusetts
01867, ISBN 0-2-1-37937-6.

[47] Rasmussen, E. (1992). Clustering Algorithms, in [24], Chapter 16, pp. 419–442.
[48] van Rijsbergen, C. J. (1979). Information Retrieval, second Ed., Butterworths,

London, ISBN 0-408-70929-4.
URL: http://www.dcs.gla.ac.uk/Keith/Preface.html [2001-07-12]

[49] Sahami, M. (1998). Using Machine Learning to improve Information Access,
PhD thesis, Stanford University, Department of Computer Science.
URL: http://robotics.stanford.edu/users/sahami/papers-dir/thesis.ps [2001-07-09]

[50] Salton, G. and Buckley, C. (1988).Term Weighting Approaches in Automatic
Text Retrieval, Information Processing & Management 24(5): 513–523, Perga-
mon Press Ltd., ISSN 0306-4573. (Also available as Technical Report 87-881,
Cornell University, Department of Computer Science, Ithaca, New York 14853.)
URL: http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR87-881/
[2001-04-05]

[51] Salton, G., Wong, A. and Yang, C. S. (1975). A Vector Space Model for Auto-
matic Indexing, Communications of the ACM 18(11): 613–620, ISSN 0001-
0782. (Also available as Technical Report 74-218, Cornell University, Depart-
ment of Computer Science, Ithaca, New York 14853.)
URL: http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR74-218/
[2001-04-05]

[52] Salton, G., Wong, A. and Yu, C. T. (1976). Automatic Indexing Using Term
Discrimination and Term Precision Measurements, Information Processing &
Management 12: 43–51, Pergamon Press Ltd., ISSN 0306-4573.

[53] Salton, G., Wu, H. and Yu, C. T. (1981). The Measurement of Term Importance
in Automatic Indexing, Journal of the American Society for Information Science
32(3): 175–186, John Wiley & Sons, Inc., ISSN 0002-8231.

[54] Topic Maps: XML schema of ISO 13250
URL: http://www.diffuse.org/TopicMaps/schema.html [2001-09-29]

[55] Ueberall, M. (2001). Ein adaptives, hierarchisch organisiertes, verteiltes Naviga-
tionssystem zur inhaltsbasierten Dokumentensuche, Diplomarbeit am Institut für
Informatik der Johann Wolfgang Goethe-Universität, Frankfurt/Main.

[56] Vivísimo. URL: http://www.vivisimo.com [2001-09-17]

28 References

 28

[57] Wätjen, H.-J., Diekmann, B., Möller, G. and Carstensen, K.-U.(1998). Bericht
zum DFG-Projekt GERHARD: German Harvest Automated Retrieval and Di-
rectory, Technical Report, Bibliotheks- und Informationssystem (BIS), Carl von
Ossietzky Universität Oldenburg.
URL:http://www.gerhard.de/info/dokumente/dokumentation/gerhard/bericht.pdf
 [2001-07-23]

[58] WebMap URL: http://www.webmap.com [2001-09-17]
[59] Willett, P. (1988). Recent Trends in Hierarchic Document Clustering: A critical

Review, Information Processing & Management 24(5): 577–597, Pergamon
Press Ltd., ISSN 0306-4573.

[60] Wong, S. K. M., Ziarko, W. and Wong, P. C. N. (1985). Generalized Vector
Space Model in Information Retrieval, Proceedings of the 8th Annual Int.
ACM/SIGIR Conf. on Research and Development in Information Retrieval,
ACM Press, Montreal, Canada, pp. 18–25.
URL: http://www.acm.org/pubs/citations/proceedings/ir/253495/p18-wong/
[2001-04-13]

[61] Wulfekuhler, M. R. and Punch, W. F. (1997). Finding Salient Features for Per-
sonal Web Page Categories, Proceedings of the Sixth International World Wide
Web Conference.
URL: http://www.cps.msu.edu/˜wulfekuh/research/ PAPER118.ps [2001-07-23]

[62] Xu, J. and Croft, W. B. (1998). Corpus-Based Stemming using Co-occurence of
Word Variants, ACM Transactions On Information Systems, Vol. 16, No. 1.
(Also available as CIIR Technical Report IR-95, Department of Computer Sci-
ence, University of Massachusetts, Amherst, MA 01003.)
URL: http://www.acm.org/pubs/citations/journals/tois/1998-16-1/p61-xu/ [2001-
06-08]

[63] Zhang, J. and Korfhage, R. R. (1999). A Distance and Angle Similarity Measure
Method, Journal of the American Society for Information Science 50(9): 772–
778, John Wiley & Sons, Inc., ISSN 0002-8231.
URL: http://www3.interscience.wiley.com/cgi-
bin/fulltext?ID=10050162&PLACEBO=IE.pdf [2001-06-12]

[64] Zhang, J. and Wolfram, D. (2001). Visualization of term discrimination analysis,
Journal of the American Society for Information Science and Technology 52(8):
615–627, John Wiley &Sons, Inc., ISSN 1532-2882.
URL: http://www3.interscience.wiley.com/cgi-bin/fulltext?
ID=79502836&PLACEBO=IE.pdf [2001-06-08]

[65] Zipf, G. K. (1949). Human behaviour and the principle of least effort – An in-
troduction to human ecology, Addison-Wesley, Cambridge, Massachusetts,
ISBN 0-012-78978-1. (Facsimile: Hafner Publishing Company, New York,
1965.)

[66] Zobel, J. and Moffat, A. (1998).Exploring the Similarity Space, ACM SIGIR Fo-
rum 32(1): 18–32, ACM Press.
URL: http://www.cs.mu.oz.au/˜alistair/abstracts/zm98:forum.html [2001-06-08]

