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Abstract. We use recent results by Bainbridge–Chen–Gendron–Grushevsky–Möller on compacti-
fications of strata of abelian differentials to give a comprehensive solution to the realizability prob-
lem for effective tropical canonical divisors in equicharacteristic zero. Given a pair (0,D) consist-
ing of a stable tropical curve 0 and a divisorD in the canonical linear system on 0, we give a purely
combinatorial condition to decide whether there is a smooth curve X over a non-Archimedean field
whose stable reduction has 0 as its dual tropical curve together with an effective canonical divi-
sor KX that specializes to D.
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Introduction

The realizability problem in tropical geometry is a metaproblem that underlies many of
the successful applications of tropical geometry to other areas of mathematics. It asks
whether for a given synthetically defined tropical object, there exists an analogous alge-
braic geometric object whose tropicalization is precisely the given tropical object.

The realizability problem for divisors is, in general, notoriously difficult: see e.g.
[BJ16, Section 10]. In this article we solve it for effective canonical divisors using re-
cent results on the compactification of strata of abelian differentials in [BC+18b].

M. Möller, M. Ulirsch, A. Werner: Institut für Mathematik, Goethe-Universität Frankfurt,
Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main, Germany;
e-mail: moeller@math.uni-frankfurt.de, ulirsch@math.uni-frankfurt.de,
werner@math.uni-frankfurt.de

Mathematics Subject Classification (2020): 14H15, 14H10, 32G15

https://creativecommons.org/licenses/by/4.0/


186 Martin Möller et al.

Realizability of tropical canonical divisors

Let (0,D) be a tuple consisting of an (abstract) stable tropical curve 0 and a divisorD in
the canonical linear system |K0| on 0. Does there exist a smooth curve X together with
a stable degeneration X as well as an effective canonical divisor KX on X such that the
following two conditions hold:

• the tropical curve given by the metrized weighted dual graph of the irreducible compo-
nents in the special fiber of X is 0; and
• the specialization of KX, i.e. the multidegree of the special fiber of the closure of KX

in a suitably chosen semistable model of X , is equal to D?

If that is the case, we say the pair (0,D) is realizable.
Our main theorem gives an exhaustive answer to this question over an algebraically

closed field of characteristic 0. To state it, recall that an element in the tropical canonical
series differs from the distinguished element K0 by the divisor of a piecewise affine
function f on 0 with integral slopes. We declare the support of div(f ) to be vertices of 0
and add to the graph 0 legs at the support of div(f ), according to the local multiplicity.
Now we simply use the value of such a function f to define an order among the vertices
of 0 (making it into a level graph). Finally, we provide each half-edge of 0 with an
enhancement consisting of the (outgoing) slope of f . The resulting object is called the
enhanced level graph 0+(f ) associated with f .

Section 5 explains the algebro-geometric origin of this notion. The correspondence
between rational functions and decorations on 0 is explained in Section 6. In particular,
we introduce the notion of an inconvenient vertex v. A vertex v ∈ 0+(f ) of genus 0
is inconvenient if it has, roughly speaking, an edge with a ‘large’ positive decoration.
For example, trivalent vertices where two edges have decoration less than −1 are always
inconvenient.

Theorem 1. Given a tropical curve 0 and an element D = K0 + div(f ) in the tropical
canonical linear series in 0, the pair (0,D) is realizable if and only if the following two
conditions hold:

(i) For every inconvenient vertex v of 0+(f ) there is a simple cycle γ ⊂ 0 based at v
that does not pass through any node on a level lower than f (v).

(ii) For every horizontal edge e there is a simple cycle γ ⊂ 0 passing though e which
does not pass through any node on a level lower than f (e).

This theorem implies in particular that the canonical divisor K0 on 0 is in general not
realizable (see Example 6.4 below). Note that K0 is always the tropicalization of some
(non-effective) canonical divisor by [Bak08, Remark 4.21].

The realizability locus in the tropical Hodge bundle

In [LU17] Lin and the second author of this article synthetically constructed a tropical
analogue P�Mtrop

g of the projective Hodge bundle. Set-theoretically it parametrizes iso-
morphism classes of pairs (0,D) where 0 is a stable tropical curve of genus g and D is
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an element of the canonical linear system on 0. By [LU17, Theorem 1.2] it canonically
carries the structure of a generalized (rational polyhedral) cone complex. We denote by
P�Man

g the Berkovich analytic space associated to P�Mg in the sense of [Uli17]. There
is a natural tropicalization map

trop� : P�Man
g → P�Mtrop

g

that sends an element in P�Man
g , represented by a pair (X,KX) consisting of a smooth

algebraic curveX over a non-Archimedean extension of the base field and a canonical di-
visorKX onX, to the point consisting of the dual tropical curve 0 of a stable reduction X
of X together with specialization of KX to 0 (see Section 4 below for details).

Theorem 1 thus gives a complete characterization of the elements in the so-called
realizability locus, the image of trop� in P�Mtrop

g .
In general, by the classical Bieri–Groves Theorem (see [BG84, Theorem A] and

[EKL06, Theorem 2.2.3]) the tropicalization of a subvariety of a split algebraic torus
is a rational polyhedral complex of the same dimension. The Hodge bundle does not em-
bed into an algebraic torus but rather in a suitably defined toroidal compactification (in
the sense of [KK+73]). Consequently, we know in this case a priori only that the dimen-
sion of the realizability locus is bounded above by 4g− 4 by [Uli15a, Theorem 1.1]. Our
methods allow us to prove the following stronger result.

Theorem 2. The realizability locus in P�Mtrop
g admits the structure of a generalized

rational polyhedral cone complex of pure dimension 4g − 4.

The main ingredient in the proofs of both Theorems 1 and 2 is the description of com-
pactifications of strata of abelian differentials in [BC+18b], which is achieved using the
method of plumbing and gluing. So our proof only works in equicharacteristic zero. It
would be highly interesting to find a purely algebraic-geometric proof of these results
(and the ones in [BC+18b]) that generalizes to all characteristics.

Realizability locus for strata

The Hodge bundle has a natural stratification by locally closed subsets

P�Mg =

⋃
m1,...,mn

P�Mg(m1, . . . , mn)

where the strata parametrize canonical divisors whose support has multiplicity profile
(m1, . . . , mn) for non-negative integersmi withm1+· · ·+mn = 2g−2. In our proof we
construct a realization of a tropical canonical divisor by an element in the open stratum
P�Mg(1, . . . , 1)an of P�Man

g . However, our criterion works exactly the same way for
the realizability by an element in a fixed stratum P�Mg(m1, . . . , mn)

an. In Section 6.3
we discuss this criterion in detail and show, in an example, how it can be applied to study
the realizability problem for Weierstrass points in genus 2.



188 Martin Möller et al.

Related works

The realizability problem for divisors (or divisor classes) of a certain fixed rank on trop-
ical curves is central to many applications of the tropical approach to limit linear series
and has recently received a significant amount of attention (see [BJ16, Section 10] and
the references therein). It is a crucial element in the tropical approach to the maximal
rank conjecture for quadrics [JP16], which is based on a realizability result coming from
[CJP15], as well as in the recent works on the Brill–Noether varieties for curves of fixed
gonality [Pfl17, JR17]. We also highlight [Car15], in which the author shows that this re-
alizability problem fulfills a version of Murphy’s Law in the sense of Mnëv universality,
and [He19], which connects the classical smoothing problem for limit linear series with
the divisor theory on metrized curve complexes of Amini and Baker [AB15].

In [BN16], Baker and Nicaise study the geometry of the Kontsevich–Soibelman
weight function on a non-Archimedean curve Xan (see [KS06, MN15] for details). Its
restriction to the skeleton 0X of Xan is precisely the specialization of effective (pluri-)
canonical divisors from algebraic to tropical curves. In [BN16, Theorem 3.2.3] Baker and
Nicaise show in particular that the specialization of an effective canonical divisor onX is,
in fact, an effective canonical divisor on 0X (which is our Proposition 4.2). Moreover, in
[BN16, Section 3.4] they found that the union of Kontsevich–Soibelman skeletons asso-
ciated to all effective canonical divisors (and not to all pluri-canonical divisors) excluded
precisely the bridges on 0X, which foreshadows the special role played by bridges in our
realizability result (see Example 6.4). We also refer the reader to [Tem16] for a more
general perspective on Kontsevich–Soibelman weight functions from the point of view of
metrization of differential pluriforms.

1. Compactifying the moduli space of algebraic divisors

Fix an algebraically closed field k. Let X be a scheme over k. Recall that a Cartier divi-
sorD onX is effective if it admits a representation (Ui, fi) such that fi ∈ 0(Ui,OX) and
fi is a non-zero divisor. We may think of D as the closed subscheme of X whose ideal
sheaf I (D) = O(−D) is invertible and generated by fi on Ui .

Given a morphism X → S of schemes over k, we say that an effective divisor D on
X is a relative effective Cartier divisor if it is flat over S when regarded as a subscheme
of X. If S is connected, the function s 7→ degDs is constant and will be referred to as the
degree of D.

Inspired by both [Cap94] and [Has03], we define the following moduli space.

Definition 1.1. Let g ≥ 2 and d ≥ 0. Define Divg,d to be the fibered category over Mg

whose fiber over a family π : X→ S of stable curves is the set of pairs (X′,D) consisting
of a semistable model X′ of X, i.e. a semistable curve over S with stabilization X, and a
relative effective Cartier divisor D on X′ such that

(i) the support of D does not meet the nodes in each fiber X′s of π ′ : X′→ S; and
(ii) the twisted canonical divisor KX′ +D is relatively ample.
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Denote by Divg,d the preimage of the locus Mg of smooth curves.

Theorem 1.2. The fibered category Divg,d is a Deligne–Mumford stack of dimension
N = 3g − 3 + d that is smooth and proper over k. Its coarse moduli space Divg,d is
projective. The complement of Divg,d in Divg,d is a divisor with (stack-theoretically)
normal crossings, and the forgetful morphism Divg,d →Mg is toroidal.

Given a smooth curve X over the field k, it is well-known that the restriction of Divg,d to
the point [X] in Mg is representable by the d-th symmetric product Symd X ofX (see e.g.
[Mil86, Theorem 3.1.3]). One can generalize this result to all of Divg,d using an instance
of Hassett’s moduli space of weighted stable curves [Has03] that automatically provides
us with a compactification of Divg,d with favorable properties. The precise statement is
as follows:

Let g ≥ 2, d ≥ 0, and εd = (ε, . . . , ε) ∈ Qn for ε > 0 such that d · ε ≤ 1,
e.g. ε = 1/d . The moduli space Mg,εd of εd -stable curves (in the sense of [Has03])
parametrizes semistable curves (X, s1, . . . , sd) with d sections such that each rational
component has at least two nodes and contains a marked point whenever it has precisely
two nodes. Then our moduli stack Divg,d is the relative coarse moduli space of the stack
quotient [Mg,εd /Sd ] over Mg in the sense of [AOV11, Theorem 3.1]. So, in particlar,
every fiber of Divg,d → Mg is the coarse moduli space of the corresponding fiber of
[Mg,εd /Sd ] → Mg . Over Mg this specializes to an isomorphism between Divg,d and
the relative symmetric product

Symd Xg = Xg ×Mg
· · · ×Mg

Xg/Sd

of the universal curve Xg over Mg .
Using these observations, the proof of Theorem 1.2 now consists of an adaption of

well-known techniques that is left to the avid reader.

Remark 1.3. After making our preprint available, we learned that the moduli space
Divg,d is a special instance of the moduli space of stable quotients (see [MOP11, Sec-
tion 4.1] for more details).

Remark 1.4. In [JR17, proof of Theorem 4.6] Jensen and Ranganathan work with the
symmetric product Symd X g of the compactified universal curve X g over Mg as a com-
pactification of Divg,d . This compactification is not smooth and not even toroidal, in
general; the authors get around this by working with the stacky symmetric product

[Symd X g] = [X d
g /Sd ]

whose boundary admits (stack-theoretically) toroidal singularities. Our compactification
is a relative coarse moduli space of a toroidal resolution of the singularities of [Symd X g].
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2. Tropical divisors and their moduli

Let us first introduce tropical curves (see e.g. [Mik06]). A metric graph is an equivalence
class of tuples (G, | · |) consisting of a connected finite graph G = (V ,E) together with
an edge length function | · | : E(G) → R>0. Two such tuples (G, | · |) and (G′, | · |′)
are equivalent if there is a common length preserving refinement. We implicitly identify
a metric graph, represented by (G, | · |), with its realization as a metric space, by gluing
in an interval of length |e| for every edge e according to the incidences in G.

A tropical curve 0 is a metric graph together with a function h : 0→ Z≥0 with finite
support. We refer to a tuple (G, | · |) as a model of 0 if it represents 0 as a metric graph,
and if h is supported on the vertices of G. The genus of a tropical curve is defined to be

g(0) = b1(0)+
∑
p∈0

h(p). (1)

A model G of a tropical curve is said to be semistable if for every vertex v of G we have
2h(v)−2+|v| ≥ 0, where |v| denotes the valency of the vertex v. It is called stable if the
above inequality is strict, i.e. 2h(v)−2+|v| > 0 for all vertices v ofG. Notice that when
a tropical curve 0 admits a semistable model, its minimal model is necessarily stable. In
this case, we call 0 stable.

Later we will also use the notion of a tropical curve 0 with legs for a tropical curve 0
decorated with a collection L of infinite half-edges, called legs, emanating from the ver-
tices of G. In this case, we modify the definition of stability by also counting the legs,
when determining the valency of a vertex. Whenever it is clear from the context, we refer
to a tropical curve with legs simply as a tropical curve.

Let g ≥ 2. The moduli space M trop
g of stable tropical curves is defined to be the set

of isomorphism classes of stable tropical curves (without legs) of genus g. By [ACP15]
it has the structure of a generalized (rational polyhedral) cone complex, i.e. it arises as
a colimit of a diagram of (not necessarily proper) face morphisms of rational polyhedral
cones.

The goal of this section is to construct a moduli space Divtrop
g,d of tropical divisors of

degree d over M trop
g .

2.1. Divisors on tropical curves

A divisor on a tropical curve 0 is a finite formal sum D =
∑
aipi of points pi ∈ 0

with integral coefficients ai . We let deg(D) =
∑
ai be the degree of the divisor and write

D(p) for the coefficient of a point p ∈ 0. A divisor D is said to be effective, denoted by
D ≥ 0, if D(p) ≥ 0 for all points p of 0. Given a tropical curve 0, we denote by Div(0)
the group of divisors on 0.

A rational function on 0 is a continuous function f : 0 → R whose restriction to
every edge 0 (thought of as an interval [0, |e|]) is a piecewise linear function whose slopes
are integral. We write Rat(0) for the abelian group of rational functions on 0. Given a
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rational function f on 0 and P ∈ 0, we define the order ordp(f ) of f at p to be the sum
of the outgoing slopes of f over all edges emanating from p. This defines a map

div : Rat(0)→ Div(0), f 7→
∑
p∈0

ordp(f ) · p,

that assigns to any rational function its divisor. The image of the map div is the sub-
group PDiv(0) ⊂ Div(0) of principal divisors. Divisors D and D′ are called equivalent
(denoted by D ∼ D′) if D −D′ ∈ PDiv(0).

We can now define the linear system of a divisor D to be

|D| = {D′ ∈ Div(0) : D ≥ 0 and D ∼ D′}.

It is convenient to also introduce the tropical analogue

R(D) = {f ∈ Rat(0) : D + div(f ) ≥ 0}

of the global sections of O(D). Note that we can shift any element in R(D) by adding a
real number and that |D| = R(D)/R.

For any divisor D the space R(D) has the structure of a polyhedral complex (see e.g.
[GK08, Lemma 1.9], [MZ08], and [LU17, Proposition 3.2]). However, this polyhedral
complex is not equidimensional in general, as we will see in the case of the canonical
linear system in Section 6.

2.2. Moduli of tropical divisors

Definition 2.1. Let g ≥ 2. The moduli space Divtrop
g,d is the set of isomorphism classes of

tuples (0,D) consisting of a stable tropical curve of genus g and an effective divisor D
on 0 of degree d .

Proposition 2.2. The moduli space Divtrop
g,d naturally has the structure of a generalized

cone complex of dimension 3g − 3+ d.

Consider a pair (G′,D) consisting of a finite semistable vertex-weighted graph G′ of
genus g and an effective divisor D on G′ of degree d supported on the vertices of G′. We
say that the pair (G′,D) is stable if for every vertex v of G′ we have 2h(v) − 2 + |v| +
D(v) > 0.

Proof of Proposition 2.2. Denote by Jg,d the category of stable pairs (G′,D) where G′

is of genus g and D has degree d . The morphisms in Jg,d are generated by

• automorphisms φ of the weighted graph G′ such that φ∗D = D; and
• weighted edge contractions π : (G′1,D1) → (G′2,D2) (i.e. edge contractions for

which g(π−1(v)) = h(v) for all vertices v of G′2) that fulfill π∗D1 = D2.
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There is a natural functor from Jg,d to the category RPCface of (rational polyhedral) cones
with (not necessarily proper) face morphisms, given by (G′,D) 7→ σG′ = RE(G

′)
≥0 . Recall

that a face morphism is a morphism of rational polyhedral cones σ → σ ′ that induces
an isomorphism between σ and a (not necessarily proper) face of σ ′; the class of face
morphisms includes in particular all automorphisms.

For a fixed (G′,D), the open cone σ̊G′ = RE(G
′)

>0 parametrizes the space of triples
consisting of
• a tropical curve 0 in M trop

g ,
• an effective divisor D on 0 of degree d , and
• an isomorphism between G′ and the unique minimal semistable model of 0 whose

vertices contain the support of D.

The automorphism group Aut(G′,D) acts on σG′ = RE(G
′)

≥0 by permuting the entries of

the vectors accordingly and the natural map σ̊G′ → Divtrop
g,d factors through the injection

σ̊G′/Aut(G′,D) ↪→ Divtrop
g,d . Thus the set Divtrop

g,d arises as a colimit of the diagram Jg,d →

RPCface and therefore carries the structure of a generalized cone complex.
Finally, a maximally degenerate object (G′,D) in Jg,d with all vertex weights equal

to zero has precisely 3g − 3+ d finite edges. Therefore the dimension of every maximal
cone in Divtrop

g,d is 3g − 3+ d . ut

Remark 2.3. Let 0 be a stable tropical curve. The set Div+d (0) of effective divisors of de-
gree d on 0 admits a natural rational polyhedral subdivision given by subdividing Symd 0

along the folds that arise when taking the quotient of 0d by the Sd -operation. The moduli
space Divg,d naturally recovers this polyhedral decomposition in the fiber over a tropical
curve [0] ∈ M trop

g (see [BU18, Section 1] for details).

Remark 2.4. Using the language of tropical moduli stacks developed in [CC+20], we
may consider the natural moduli functor Divtrop

g,d that associates to a rational polyhedral
cone σ the groupoid of semistable pairs (G′,D) together with non-zero edge lengths
on G′ in the dual monoid Sσ . The proof of Proposition 2.2 actually shows that Divtrop

g,d

is representable by a cone stack in the sense of [CC+20] (see [CC+20, Section 3.4] for
an analogous argument for the moduli stack Mtrop

g,n of n-marked stable tropical curves of
genus g).

A stable tropical curve 0 of genus g (with real edge lengths) then corresponds to
a morphism R≥0 → Mtrop

g . Expanding on [CC+20, Section 4], one can show that the
pullback R≥0 ×Mtrop

g
Divtrop

g,d is representable by a cone space and its fiber over 1 ∈ R≥0

is exactly the polyhedral decomposition of Div+d (0) we have considered in Remark 2.3.

3. Specialization versus tropicalization

Let k be an algebraically closed field endowed with the trivial absolute value. Denote
by Divan

g,d the non-Archimedean analytification of the moduli space of smooth curves
together with an effective divisor of degree d. In this section we define a natural tropical-
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ization map
tropg,d : Divan

g,d → Divtrop
g,d

from the Berkovich analytic space Divan
g,d to the tropical moduli space Divtrop

g,d and show
that this map can be identified with a natural strong deformation retraction onto the non-
Archimedean skeleton of Divan

g,d in the sense of [Thu07].
Note that for every algebraic stack X which is locally of finite type over k, there is an

associated analytic stack X an defined by pullback with respect to the usual analytification
functor on k-schemes [Uli17, Definition 2.18]. We usually abuse notation and denote
by X an the associated topological space as defined in [Uli17, Definition 3.3]. Hence,
if X is a separated algebraic Deligne–Mumford stack, by [Uli17, Proposition 3.8], the
space X an can be identified with the Berkovich analytification of the coarse moduli space
associated to X .

3.1. Tropicalization of Divg,d

We begin by defining the tropicalization map

tropg,d : Divan
g,d → Divtrop

g,d .

A point in Divan
g,d is represented by a proper, smooth algebraic curve X of genus g over

a field K that is a non-Archimedean extension of k together with an effective divisor D
on X of degree d. Possibly after replacing K by a finite extension, there is a semistable
model X /S of X over the spectrum S of the valuation ring R of K together with a rela-
tive effective divisor D on X that does not meet the singularities in the special fiber Xs
and makes the divisor KX + D relatively ample. Here we use the fact that the moduli
stack Divg,d is proper. Its special fiber (Xs,Ds) (as a Cartier divisor) is an element in
Divg,d(K̃), where K̃ denotes the residue field of R. At the level of points, the tropicaliza-
tion map

tropg,d : Divan
g,d → Divtrop

g,d

associates to the pair (X,D) the dual tropical curve 0 of Xs together with the specializa-
tion of D to 0, an effective divisor of degree d on 0. More precisely, the weighted dual
graph G′ is the incidence graph of Xs together with the vertex weights h(v) given by the
genus of (the normalization of) the corresponding irreducible component of Xs . The dual
tropical curve of X is the tropical curve with semistable modelG′ for which the length |e|
of the edge e ∈ E(0) is defined to be valR(f ), where xy = f is the local equation of the
node corresponding to e, and where valR denotes the valuation. For v ∈ V (0) we denote
the normalization of the component Cv of the special fiber Xs by C̃v . The specialization
of D to 0 is then defined as the multidegree

mdeg(Ds) =
∑

v∈V (0)

deg(Ds |C̃v ) · [v] (2)

of the special fiber Ds of D, thought of as a divisor on 0 (with support contained in the
vertices of G′).

The independence of the choices made in this construction is checked in [Viv13] for
the moduli space of stable curves. It also follows a posteriori from Theorem 3.2 below.



194 Martin Möller et al.

Remark 3.1. Instead of working with (X ,D) as above, we can also work (at least in the
case that S is the spectrum of a discrete valuation ring) with any semistable model X̃ /S
in which D does not meet the singularities of Xs . The dual graph of the special fiber,
metrized as above, is equivalent to that of X /S in that it results from a subdivision of
edges by a finite number of 2-valent genus zero vertices.

3.2. Baker’s specialization map

Let X be a smooth curve over a non-Archimedean extension K of k, and let D be an
effective divisor on X. Then there is a minimal skeleton 0 associated to Xan [Ber90,
Section 4.3], which is a deformation retract of Xan, that is, there exists a continuous
retraction map τ : Xan

→ 0. Denote by τ : X(K) → 0 its restriction to X(K) ⊆ Xan.
By linear extension, and using the fact that Divd(XK) = Divd(X(K)), we may define a
homomorphism

τ∗ : Divd(XK)→ Divd(0),
∑
i

aipi 7→
∑
i

aiτ(pi).

We also refer the reader to [Bak08, Section 2C] and in particular to [BJ16, Section 6.3]
for details of this construction.

Suppose now that D is effective. Since Divg,d is proper, we may find a semistable
model X of X over R (possibly after replacing R by a finite extension, and X and D by
their base changes) such that the closure D of D on X does not meet the singularities of
the special fiber Xs of X (and so that KX + D is relatively ample). If the support of D
is K-rational and R is a discrete valuation ring, then the image τ∗(D) coincides with the
multidegree of Ds on Xs , thought of as a divisor on 0. In other words,

tropg,d([X],D) = (tropg([X]), τ∗(D)).

This observation has originally appeared in [Bak08, Remark 2.12] (see also [BJ16, Sec-
tion 6.3]).

3.3. The retraction to the skeleton

Let X0 ↪→ X be a toroidal embedding, i.e. an open immersion of normal schemes locally
of finite type over k that étale locally on X admits an étale morphism γ : X → Z into
a T -toric variety Z such that γ−1(T ) = X0. Moreover, suppose for notational simplicity
that X is proper over k.

In [Thu07] Thuillier has constructed a strong deformation retraction

pX0↪→X : X
an
0 → Xan

0

onto a closed subset S(X0 ↪→ X) of Xan
0 with the structure of a generalized cone com-

plex, the non-Archimedean skeleton of X0 (defined with respect to the toroidal compacti-
fication X0 ↪→ X). We refer the reader to [ACP15, Section 6] for a generalization of this
construction to separated toroidal Deligne–Mumford stacks.
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In fact, Thuillier’s construction in [Thu07] extends to the analytification of the toroidal
compactification Xan and we obtain a strong deformation retraction to a compactified
skeleton SX0↪→X ofXan. The strong deformation retraction is proper and closed as a map
Xan
→ SX0↪→X, since SX0↪→X is compact. Therefore pX0↪→X is proper and closed as

well.
By Theorem 1.2, the open immersion Divg,d ↪→ Divg,d is toroidal and hence there is

a natural strong deformation retraction

pg,d : Divan
g,d → Divan

g,d

onto the skeleton Sg,d of Divan
g,d . The following Theorem 3.2 shows that the tropicaliza-

tion map tropg,d defined above is precisely equal to the retraction pg,d . This in particular
implies that tropg,d is well-defined, continuous, proper, and closed.

Theorem 3.2. There is a natural isomorphism 8g,d : Divtrop
g,d

∼
−→ Sg,d that makes the

diagram

Divan
g,d Divtrop

g,d

Sg,d

pg,d

tropg,d

8g,d

∼=

commute.

The proof of Theorem 3.2 is an adaption of the well-known methods of [ACP15] to our
situation. Its central observation is that there is a natural one-to-one correspondence be-
tween the boundary strata of Divg,d and stable pairs (G′,D) as in Proposition 2.2. We
leave the technical details of this argument to the avid reader.

Remark 3.3. Let 0 < ε ≤ 1/d . At the level of underlying topological spaces, the two an-
alytic stacks [Man

g,εd
/Sd ] and Divan

g,d are homeomorphic, since they have the same coarse
moduli space (using [Uli17, Proposition 3.9]). Moreover, one may observe that Divtrop

g,d is

naturally homeomorphic to the quotient M trop
g,εd

/Sd of the tropical analogue M trop
g,εd

of Has-
sett’s moduli space of weighted stable curves (as introduced in [CH+16, Uli15b]) by the
Sd -operation that permutes the markings of the legs. By [Uli15b, Theorem 1.2] we have a
natural identification of the non-Archimedean skeleton of Man

g,εd
with the tropical moduli

space M trop
g,εd

. Therefore, since this identification is invariant under the Sd -operations on

both sides, we may also deduce from this earlier result that Divtrop
g,d is homeomorphic to

the skeleton of Divan
g,d .

Remark 3.4. LetX be a smooth curve over a non-Archimedean and algebraically closed
extension K of k and denote by 0 its dual tropical curve. For a stable model X of X
over R, corresponding to a morphism S → Mg with S = SpecR, the fiber product
S ×Mg

Divg,d defines a polystable model of Div+d (X). In [BU18], the authors show that

the non-Archimedean skeleton of Div+d (X)
an in the sense of Berkovich [Ber99, Section 5]

is isomorphic to Div+d (0) with the natural polyhedral structure described in Remark 2.3.
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4. Tropicalizing the Hodge bundle

From now one we specialize from general divisors to canonical divisors and the Hodge
bundle. In contrast to the case of algebraic curves, the canonical linear system on a tropical
curve 0 without legs comes with a distinguished element

K0 =
∑

v∈V (0)

(2h(v)+ |v| − 2) · v

with support at the vertices of 0. We denote by |K0| the canonical linear series.
In [LU17] Lin and the second author introduce a tropical analogue of the Hodge

bundle �Mg and of its projectivization P�Mg on the moduli space Mg . As a set, the
tropical Hodge bundle �Mtrop

g is defined to be the set of isomorphism classes of pairs
(0, f ) consisting of a stable tropical curve 0 of genus g and a rational function f ∈
Rat(0) with K0 + div(f ) ≥ 0. Its projectivization1 P�Mtrop

g parametrizes pairs (0,D)
consisting of a stable tropical curve 0 of genus g and an effective divisor D = K0 +

div(f ) in |K0|. Both spaces come with a natural forgetful map to Mtrop
g .

Proposition 4.1 ([LU17, Theorem 1]). The tropical Hodge bundle P�Mtrop
g is a closed

subset of Divtrop
g,2g−2 that canonically carries the structure of a generalized cone complex

of (maximal) dimension 5g − 5.

The Hodge bundle is not equidimensional: see Example 6.7 below. Proposition 4.1 shows
in particular that P�Mtrop

g is a closed subset of Divtrop
g,2g−2 that is a subcomplex of a

subdivision of Divtrop
g,2g−2.

Proof of Proposition 4.1. Proposition 4.1 has already been proved as part of [LU17,
Theorem 1] (and building upon the polyhedral description of tropical linear systems from
[GK08, MZ08]). We rephrase the main insights of this proof using the language developed
in Section 2.

LetG′ be a semistable finite vertex-weighted graph of genus g and an effective divisor
D ∈ Divg,2g−2(G

′)making (G′,D) into a stable pair. WriteG for the stabilization ofG′.
We will show that the pullback of the tropical Hodge bundle to σG′ = RE(G

′)
≥0 is given by

a finite union of linear subspaces of σG′ .
For simplicity choose an orientation on every edge of the graphG; the resulting struc-

ture will not depend on this choice. Consider a tropical curve 0 whose underlying graph
is G′. In order to specify a rational function f on 0 such that D = K0 + div(f ) (up to
a global additive R-operation) we need to specify a collection of integers (me) ∈ ZE(G)
(one for each edge of the stabilization G of G′), the initial slopes of f at the origin of the
edge e, subject to the condition

2h(v)− 2+ |v| =
∑

outward edges at v

me +
∑

inward edges at v

−(degD|e +me).

1 This space was denoted Htrop
g in [LU17], and �Mtrop

g was denoted 3trop
g there. Here we

mainly follow the notation conventions of [BC+18b].
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Notice that by [GK08, Lemma 1.8] there are, in fact, only finitely many choices for the
initial slopes me.

In each of the finitely many cases where such an f ∈ Rat(0) exists, the continuity
of f imposes a collection of linear conditions on the coordinates of σG′ = RE(G

′)
≥0 (i.e.

the edge lengths of G′). The intersection of σG′ with such a linear subspace is a cone in
the generalized cone complex structure on P�Mtrop

g . ut

Let P�Man
g be the analytification of the projective Hodge bundle over an algebraically

closed field k endowed with the trivial absolute value. In this section we recall in detail the
construction of the tropicalization map on the Hodge bundle from [LU17, Proposition 6]
and elaborate on its properties.

The moduli space P�Man
g parametrizes pairs (X/K,KX) consisting of a point X/K

∈ Man
g as recalled above, together with a divisor KX that is equivalent to the canonical

bundle ωX/K . We define a natural tropicalization map

trop� : P�Man
g → P�Mtrop

g

by setting
trop�(X/K,KX) = tropg,2g−2(X/K,KX), (3)

where tropg,2g−2 is the tropicalization map introduced in Section 3.1.

Proposition 4.2. The tropicalization map trop� is well-defined, continuous, proper, and
closed.

Proof. The fact that trop� is well-defined can be shown using a moving lemma as in
[Bak08, Lemma 4.20]. We will give an alternative proof of this fact in Section 6.1 in the
framework of this article.

Let X be a semistable model of X over a discrete valuation ring R (or a finite ex-
tension thereof) extending k. We may assume that X is regular; otherwise we blow up
accordingly. By a moving lemma, such as [Liu02, Proposition 9.1.11], we may find a (not
necessarily effective) canonical divisor KX on X that does not meet the singularities in
the special fiber. It is well-known that the multidegree of KX in the special fiber is equal
toK0 (see e.g. [Bak08, Remark 4.18]). Any effective canonical divisorKX onX is equiv-
alent to the generic fiber of KX and therefore the specialization of KX to 0 is equivalent
to K0 .

The discretely valued points in P�Man
g are dense, and since tropg,2g−2 is contin-

uous and P�Mtrop
g is closed by Proposition 4.1 above, we find that tropg,2g−2(x) is

in P�Mtrop
g for every (not necessarily discretely valued) point x ∈ P�Man

g . Since
P�Mtrop

g is naturally a closed subset of Divtrop
g,2g−2, the properness and closedness of

trop� follow from the corresponding properties of tropg,2g−2. ut

Definition 4.3. The realizability locus PR� in P�Mtrop
g is the image

PR� = trop�(P�Man
g )

of the tropicalization map.
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The realizability locus PR� is the locus of tuples (0,D) consisting of a stable tropical
curve 0 and a canonical divisor D for which there is a stable family X of curves over a
valuation ring R together with an effective canonical divisor KX on the generic fiber X
of X such that 0 is the dual tropical curve of X and D is the specialization of KX.

5. Twisted differentials and the global residue condition

From now on we work over the field C of complex numbers. Let X/C be a smooth and
proper algebraic curve, i.e. a compact Riemann surface. We let �Mg → Mg be the
space of pairs (X, ω) consisting of an algebraic curve together with a non-zero holomor-
phic one-form ω on X. This is the Hodge bundle over the complex-analytic moduli space
of curves, deprived of the zero section. The multiplicities of the zeros of ω define a parti-
tion µ of 2g − 2 and the subspaces �Mg(µ) with fixed partition µ form a stratification
of �Mg . Most of the time we will focus on the principal stratum corresponding to the
partition µ = (1, . . . , 1) and we usually put n = |µ|.

In this section we recall from [BC+18b] the description of a compactification of the
strata of �Mg . More concretely, observe that there is a natural map ϕ : �Mg(µ) →

Mg,[µ] sending (X, ω) to the curve marked by the zeros of ω. Here Mg,[µ] is the quo-
tient of Mg,n by the symmetric group that permutes the entries of µ. The main theorem
of [BC+18b] is a characterization of the closure of ϕ in terms of twisted differentials that
arise from rescaling degenerating one-parameter families of abelian differentials so that
the limits on the components of the special fiber are non-zero. The version given here
highlights the functions arising as scaling parameters. These scaling parameters will re-
flect the location of the support of the corresponding tropical divisors. We need to set up
some notation to recall the theorem for the case of holomorphic abelian differentials.

Definition 5.1. A type is a tuple µ = (m1, . . . , mn) ∈ Zn such that
∑
mi = 2g − 2 and

m1 ≥ · · · ≥ mr > mr+1 = 0 = · · · = mr+s > mr+s+1 ≥ · · · ≥ mr+s+p. We denote
by p1 the number of −1’s occurring in this tuple.

We assign a type to any meromorphic differential via the multiplicities of its associated
divisor.

The moduli space �Mg(µ) parametrizes meromorphic one-forms whose divisor is
of type µ. We may view these spaces as strata of a twisted Hodge bundle (see [BC+18b],
but we do not need this viewpoint here).

5.1. Level graphs

Let 0 = (V ,E) be an (unmetrized) graph. A full order 0 on 0 is an order < on the
vertices V that is reflexive, transitive, and such that for any v1, v2 ∈ V at least one of the
statements v1 < v2 or v2 < v1 holds. We call any function ` : V (0) → Z≤0 such that
`−1(0) 6= ∅ a level function on 0. Note that a level function induces a full order on 0 by
setting v 4 w if `(v) ≤ `(w). A level graph is a graph together with a choice of a level
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function (see e.g. Figure 2, where the level function is depicted as the height above 0).
Abusing notation, we use the symbol 0 also for level graphs.

For a given level L we call the subgraph of 0 that consists of all vertices v with
`(v) > L along with edges between them the graph above level L of 0, and denote it
by 0>L. We similarly define the graph 0≥L above or on level L, and the graph 0=L on
level L. An edge e ∈ E(0) of a level graph 0 is called horizontal if it connects two
vertices of the same level, and vertical otherwise. Given a vertical edge e, we denote
by v+(e) (resp. v−(e)) the vertex that is its endpoint of higher (resp. lower) level.

5.2. Twisted differentials

Let C be a nodal, in general non-smooth curve over the complex numbers. Let µ =
(m1, . . . , mn) be a type. A twisted differential of type µ on a stable n-pointed curve
(C, s) is a collection of (possibly meromorphic) differentials ηv on the irreducible com-
ponents Cv of C such that no ηv is identically zero with the following properties.

(0) (Vanishing as prescribed) Each differential ηv is holomorphic and non-zero outside
of the nodes and marked points of Cv . Moreover, if a marked point si lies on Cv , then
ordsi ηv = mi .

(1) (Matching orders) For any node of C that identifies q1 ∈ Cv1 with q2 ∈ Cv2 , the
vanishing orders satisfy ordq1 ηv1 + ordq2 ηv2 = −2.

(2) (Matching residues at simple poles, MRC) If ordq1 ηv1 = ordq2 ηv2 = −1 at a
node of C that identifies q1 ∈ Cv1 with q2 ∈ Cv2 , then Resq1 ηv1 + Resq2 ηv2 = 0.

Let 0 be the dual graph of C. Recall that the vertices v in 0 correspond to the irreducible
components Cv of C. If ` is a level function on 0, we write C>L for the subcurve of C
containing only the components Cv with v of level strictly higher than L. Similarly, we
define C=L. If two components Cv and Cw with `(v) < `(w) intersect in the point q, we
denote by q− the corresponding point on Cv , and we write v = v−(e) for the edge e in 0
connecting v and w.

Denote by 0 the full order on the dual graph 0 given by a level function. We say that
a twisted differential η of type µ on C is compatible with 0 if in addition it also satisfies
the following two conditions.

(3) (Partial order) If a node of C identifies q1 ∈ Cv1 with q2 ∈ Cv2 , then v1 < v2 if
and only if ordq1 ηv1 ≥ −1. Moreover, v1 � v2 if and only if ordq1 ηv1 = −1.

(4) (Global residue condition, GRC) For every level L and every connected compo-
nent Y of C>L the following condition holds: Let q1, . . . , qb denote the set of all
nodes where Y intersects C=L. Then

b∑
j=1

Resq−j ηv−(qj ) = 0,

where we recall that q−j ∈ C=L and v−(qj ) ∈ 0=L.
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5.3. The characterization of limit points

Suppose that S is the spectrum of a discrete valuation ring R with residue field C, whose
maximal ideal is generated by t . Let X /S be a family of semistable curves with smooth
generic fiber X and special fiber C. Let ω be a section of ωX /S of type µ whose divisor
is given by the sections s = (s1, . . . , sn) with multiplicity mi . The triple (X /S, s, ω) is
called a pointed family of stable differentials if moreover (X /S, s) is stable. Then we
define the scaling factor `(v) for the node v as the non-positive integer such that the
restriction of the meromorphic differential t−`(v) · ω to the component Cv of the special
fiber corresponding to v is a well-defined and generically non-zero differential ηv on Cv
(see [BC+18b, Lemma 4.1]). The ηv are called the scaling limits of ω.

Theorem 5.2 ([BC+18b]). If (X /S, s, ω) is as above, then the function `(v) defines a
full order on the dual graph 0 of the special fiber of X and the collection ηv|Xv is a
twisted differential of type µ compatible with the level function `.

Conversely, suppose that C is a stable n-pointed curve with dual graph 0 and η =
{ηv}v∈V is a twisted differential of type µ compatible with a full order 0 on 0. Then for
every level function ` : 0 → Z defining the full order 0 and for every assignment of
integers ne to horizontal edges there is a stable family X /S over S = Spec(C[[t]]) with
smooth generic fiber and special fiber C that satisfies the following properties:

(i) There exists a global section ω of ωX /S whose horizontal divisor divhor(ω) =∑n
i=1mi6i is of type µ and whose scaling limits are the collection {ηv}v∈V .

(ii) The intersections 6i ∩ C = {si} are smooth points of the special fiber and η has a
zero of order mi at si .

(iii) There exists a positive integer N such that a local equation near every node corre-
sponding to a horizontal edge e is xy = tNne , and it is xy = tN(`(q

+(e))−`(q−(e))) for
every vertical edge e.

Proof. The first statement is the necessity of [BC+18b, Theorem 1.3], proven in Sec-
tion 4.1. Note that the arguments given in loc. cit. for this direction hold over any discrete
valuation ring.

For the second statement one has to trace the proof of sufficiency of this theorem,
given in Section 4.4 of loc. cit. As stated there (see equation (4.8) and the last two para-
graphs of the proof of Addendum 4.8), there are no constraints on the plumbing fixtures to
be used for plumbing horizontal nodes, whereas for the plumbing fixtures used for every
vertical node, given by an edge e, the level function `0 used for plumbing has to satisfy
the divisibility constraint

(ordq+(e) η + 1) | (`0(q
+(e))− `0(q

−(e))) .

Multiplying the prescribed function ` by a sufficiently divisible N , the resulting level
function `0 = N · ` satisfies this divisibility property. ut

5.4. Dimension and period coordinates

In preparation for the dimension statements in Section 6.2 we recall here two results about
the geometry of strata of meromorphic differentials. Consider the neighborhood of a point
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(X, ω) ∈ �Mg(µ). We denote by Z the r + s zeros and marked points of ω and let P
be the p poles of ω. On such a neighborhood, integration of the meromorphic one-form
against a basis of the relative cohomology group H 1(X \ P,Z;Z) gives local coordi-
nates, called period coordinates. See [BC+18a] for a proof of this statement (including
the case of k-differentials) and for references to the history of this result. The fact that
these functions are local coordinates also proves the following dimension statement.

Theorem 5.3. The stratum �Mg(µ) has dimension 2g− 1+ n if the type µ is holomor-
phic (i.e. p = 0), and it has dimension 2g − 2 + n if the type µ is strictly meromorphic
(i.e. p > 0).

The following result is the special case for one-forms of a main result of [Che19].

Theorem 5.4 ([Che19]). The projectivization of a stratum P�Mg(µ) of strictly mero-
morphic type (i.e. with p > 0) does not contain a complete curve.

5.5. The image of the residue map

Since the global residue condition imposes strong constraints on the residues, we need
a criterion for which residues can actually be realized. Since a twisted differential is a
collection of meromorphic differentials, rather than just holomorphic differentials, we
have to deal more generally with types of meromorphic differentials. Recall from the
beginning of Section 5 the conventions used to denote types of meromorphic differentials.
In particular, p1 ≤ p denotes the number of simple poles. For every type µ with p 6= 0
we let

Res : �Mg(µ)→ H

be the residue map, whose range is contained by the residue theorem in

H =
{

x = (x1, . . . , xp) ∈ Cp :
p∑
i=1

xi = 0
}
.

Moreover we define the ‘non-zero set’ N ⊆ Cp to consist of those x with xi 6= 0 when-
ever mi = −1. By definition of a stratum, the image of Res is obviously contained
in H ∩ N . This set is non-empty unless p = p1 = 1, which we exclude from our
discussion.

To illustrate the problem of determining the image of Res, consider differentials η of
type µ = (a,−b, b − 2− a) with a ≥ 0, b ≥ 2 and b − a − 2 ≤ −2 on a projective line
with coordinate z. We may assume that the zero of ω is at z = 1, while the poles are at
z = 0 and z = ∞. Consequently, η = C(z− 1)adz/zb with C 6= 0. This implies that the
residue

Resz=0(η) = C · coeffz−1

(
z−b

a∑
i=0

(−1)a−i
(
a

i

)
zi
)
= C · (−1)a−b+1

(
a

b − 1

)
is non-zero since a ≥ b and b − 1 ≥ 0. In fact Im(Res) = H \ {(0, 0)} ⊂ H . The image
of the map Res in the general case was determined by Gendron and Tahar [GT17]. We
restate a simplified version of their main result that is sufficient for our purposes.
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Proposition 5.5. (i) If g ≥ 1 then Res is surjective onto N ∩H .
(ii) If g = 0 and p > p1 > 0, or p1 = 0 and there does not exist an index 1 ≤ i ≤ n

with

mi >
( r+s+p∑
j=r+s+1

−mj

)
− p − 1, (4)

then Res is surjective onto N ∩H .
(iii) If g = 0 and p1 = 0 and there exists an index 1 ≤ i ≤ n with (4), then Res is

surjective onto N ∩H \ {(0, . . . , 0)}.
(iv) If g = 0 and p = p1 = 2, then Res is surjective onto N ∩H .
(v) If g = 0 and p = p1 > 2, then the image of Res contains all tuples in N ∩ H

consisting of p complex numbers that are not R-collinear (i.e., whose R-span is C).
Proof. All the conditions except for the case g = 0 and p = p1 (only simply poles) are
restatements of the case of abelian differentials in [GT17, Theorems 1.1–1.5]. The case
p = p1 = 2 follows directly from the preceding discussion. The case p = p1 > 2 is
stated for r = 1 in [GT17, Proposition 1.6]. For r > 1 it can be easily deduced from
this by the procedure of splitting a zero, or it can be derived from the more involved
formulation in [GT17, Proposition 1.7]. ut

6. The realizability locus

In this section we prove Theorem 1 describing the realizability locus of tropical canonical
divisors over an algebraically closed field of characteristic zero. For tropical curves with
rational side lengths and canonical divisors with rational coordinates we use the complex-
analytic techniques of the previous section to characterize the image of the tropicalization
map. For general points the results follow from the general properties of trop�.

6.1. From rational functions to enhanced level graphs

To formalize the correspondence between rational functions and level graphs, we in-
troduce the following enhancement of the notion of a level graph. We consider vertex
weighted graphs of the form 0 = (V ,E,L, h) without edge lengths, where (V ,E) is a
classical graph, L is a finite set of legs, i.e. infinite half-edges starting at a vertex, and h is
a marking of the vertices with integers. After choosing a level function on the underlying
graph (V ,E), we call 0 a level graph. We divide every edge e into two half-edges and
write 3 for the set containing all half-edges and all legs in 0. Note that every λ ∈ 3
is adjacent to a unique vertex. An enhanced level graph 0+ is a level graph 0 as above
together with an assignment k : 3→ Z such that the following compatibility conditions
hold.

(i) If e+ and e− are two half-edges forming an edge e, then k(e+) + k(e−) = −2. An
edge is horizontal if and only if k(e±) = −1 for both its half-edges. Moreover, if e is
a vertical edge consisting of the half-edges e+ leading downwards and e− leading
upwards, then k(e+) > k(e−).
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(ii) For each vertex v ∈ V , ∑
k(λ) = 2h(v)− 2 , (5)

where the sum is over all λ ∈ 3 which are adjacent to v.

Let v be a vertex in an enhanced level graph 0+. Then we define the type µ(v) as the
ordered tuple consisting of all k(λ), where λ is a half-edge adjacent to v. Note that µ(v)
is a type in the sense of Definition 5.1 if we replace g by h(v).

This definition is motivated by the notion of twisted differentials. In fact, given a stable
curveX, let 0 be the associated graph consisting of the dual graph ofX with legs attached
for each marked point and h given by the genera of the irreducible components Xv for
v ∈ V . Note that up to the choice of a metric this is the same construction as in Section 3.
Every λ in 3 gives rise to a point zλ in Xv , where v is the vertex adjacent to λ: If λ is a
half-edge, we let zλ be the node corresponding to the edge containing λ, and if λ is a leg
we let zλ be the associated smooth point. For any twisted differential η on X, we decorate
all λ ∈ 3 with the order of η at zλ. This defines an enhanced level graph structure on 0.

Lemma 6.1. Let 0 be a tropical curve. To every element D = K0 + div(f ) ∈ |K0|
we can associate a natural structure of an enhanced level graph 0+ = 0+(f ) on some
realization of 0.

Proof. Let 00 be the minimal realization of 0 subdivided with vertices at the places
where f is not differentiable. We use the function f itself to give 00 a full order, i.e. for
nodes v,w of G0 we declare v < w if and only if f (v) ≥ f (w).

We provide each vertex v of 00 with 2h(v)− 2+
∑
e(1+ s(e)) legs, each given the

decoration k = 1. Here the sum runs over all non-leg half-edges adjacent to v and s(e)
denotes the slope of f along e, oriented to be pointing away from v. The fact that D ∈
|K0| is equivalent to this number of legs being indeed non-negative for all vertices. We
provide each half-edge e which is not a leg with k = −s(e)−1, using the same orientation
convention. The conditions for an enhanced level graph now follow immediately. ut

We need two more notions to state our main theorem.

Definition 6.2. A vertex v of an enhanced level graph is called inconvenient if h(v) = 0
and if its type µ(v) = (m1, . . . , mn) has the property that p1 = 0 and there exists an
index i such that (4) holds.

A cycle is called simple if it does not visit any vertex more than once. Recall the tropical-
ization map trop� : P�Man

g → P3trop
g from Proposition 4.2.

Theorem 6.3. Suppose that k is an algebraically closed field of characteristic zero.
A pair (0,D) with D = K0 + div(f ) in the tropical canonical linear series lies in
the image of trop� if and only if the following two conditions hold:

(i) For every inconvenient vertex v of 0+(f ) there is a simple cycle γ ⊂ 0 based at v
that does not pass through any node on a level lower than f (v).

(ii) For every horizontal edge e there is a simple cycle γ ⊂ 0 passing through e which
does not pass through any node on a level lower than f (e).
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2

0+

0

Fig. 1. Illustration of the edge condition.

Figure 1 illustrates the conditions of the theorem. The value of f is given by the height
of the point in 0+(f ) over its image point in 0. In this example there is a simple cycle
through the horizontal edge in the foreground. However all the possible simple cycles
through this edge pass through the vertex with two markings, which is on a lower level.
Consequently, this graph is not realizable. Note also that realizability depends on the edge
lengths here: If the edge containing the vertex with two markings were shorter (and all
the other lengths remained the same), the corresponding vertex could be on a level above
the horizontal edge and the corresponding divisor would be realizable.

Proof of Theorem 6.3. Proof that (i) and (ii) implies D ∈ Im(trop�). First assume that
k = C. Conditions (i) and (ii) define a closed subset of P�Mtrop

g . Tropical curves 0
with rational edge lengths and divisors D = K0 + div(f ) associated to a function f are
dense in this subset. Since trop� is continuous and closed by Proposition 4.2, the image
of trop� is the closure of this locus. We may therefore assume that 0 has rational edge
lengths. Moreover, if (0,K0+div(f )) is realizable, we may rescale the edge lengths by a
global constant and still obtain a realizable object in P�Mtrop

g . Therefore we may assume
that 0 has integral edge lengths.

Suppose that the enhanced level graph 0+(f ) associated with D satisfies (i) and (ii)
and the integrality hypothesis made above on 0. We want to show that there is a twisted
differential of typeµ = (1, . . . , 1) on a stable pointed curveC with dual graph 0, compat-
ible with the enhanced level structure 0+(f ), and then apply the ‘converse’ implication
in Theorem 5.2. For every vertex v this amounts to finding a differential of type µ(v) on
some smooth curve Cv . This is indeed the type of a meromorphic differential on Cv by
property (ii) of an enhanced level graph. The matching order condition and the partial or-
der condition of a twisted differential are built into the condition (i) of an enhanced level
graph.

Hence the main point is to choose the curves Cv and the differential ηv so that the
matching residue condition (MRC) and the GRC can be satisfied. For this purpose, we
want to apply Proposition 5.5. By the following procedure we specify residues which on
the one hand lie in H ∩ N at every node and satisfy both MRC and GRC, and on the
other hand are non-zero at inconvenient nodes, and match the conditions of the last item
in Proposition 5.5 at all nodes with only simple poles.

For each inconvenient vertex vi choose a cycle γi as in condition (i) and let It be
the index set for these γi . Similarly, for each horizontal edge ej choose a cycle δj as in
condition (ii) and collect the indices in the set Jh. We provide these cycles with some
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orientation. Let {αi, i ∈ It } ∪ {βj , j ∈ Jh} be a collection of complex numbers such that
no sum of a subset of the ±αi and ±βj is real. (That is, the αi and βj lie in a complement
of a finite union of real codimension 1 hyperplanes in C|It |+|Jh|.) Starting from residue
zero at each edge we increase, for every i ∈ It , the prescribed residue at all the half-
edges e with f (e) = f (vi) by αi if the outward pointing orientation of e agrees with
the orientation of the cycle, and by −αi otherwise. For every j ∈ Jh we increase the
prescribed residue at all the half-edges e with f (e) = f (ej ) by βj . The collection of
residues prescribed in this way is non-zero for every horizontal edge (since our choice of
the cycles δj for j ∈ Jh covers each such edge and the choice of the αi and βj avoids
unintended cancellations), it is non-zero at every inconvenient node (by the choice of the
cycles γi) and satisfies the residue theorem (since a cycle enters and exits any vertex the
same number of times), i.e. the prescribed residues lie in the image of the residue map
at each inconvenient node by Proposition 5.5. At each vertex with only simple poles, i.e.
with p = p1, the residues are non-zero and R-linearly independent (if there are more than
one pair of such poles, i.e. if p1 > 2 at such a vertex). Consequently, by Proposition 5.5,
the residues lie in the image of the residue map at each vertex. Finally, we check that the
GRC continues to hold at each step of adding the contributions along a cycle γi or δj . We
give the details for the first case, the second being the same, on replacing f (vi) by f (ej )
everywhere. In fact, the addition procedure prescribes a zero total sum of residues to each
component of C>f (vi ) the cycle passes through, so the GRC holds for C≥f (vi ). Since the
cycle does not pass through levels below f (vi), the GRC for those levels remains valid.
If w is a vertex with level f (w) > f (vi) then all the edges up to level f (vi) are unseen
in the GRC for C≥f (w) and hence the GRC for these levels continues to hold, too.

Consequently, we can now use Theorem 5.2 with the level function ` = f as de-
scribed in Lemma 6.1 and with ne = |e|, the length in 0 for any horizontal edge. The
conclusion of the theorem is precisely that the divisor D+ div(f ) is the specialization of
an effective canonical divisor on a graph equivalent to 0, with all the lengths rescaled by
the integer N of Theorem 5.2(iii). Hence (0,D) lies in the image of trop� by definition
of this map in (3).

Proof that D ∈ Im(trop�) implies (i) and (ii). Points of the form (X,D), where X is
the smooth generic fiber of a stable curve X over the valuation ring R of a finite ex-
tension of C(t), are dense in P�Man

g . Since trop� is continuous by Proposition 4.2, it
suffices to show that trop�(X,D) satisfies conditions (i) and (ii) in our claim. Denote
by S the spectrum of R. Moreover, let ω be a stable differential on X such that the divisor
of its generic fiber is D. We may assume, by the density of the principal stratum, that
div(ω)hor

=
∑2g−2
i=1 si(S) consists of 2g − 2 images of sections.

Let ` be the level function on the dual graph 0 of the special fiber given by the scaling
parameters of this family (cf. Section 5.3). Let η be the twisted differential on the special
fiber C of X , obtained as the scaling limit of ω, and let 0+(`) be the enhanced level graph
given by ` and the enhancement given by η, as described before Lemma 6.1. We want to
show that trop�(X,D) = (0,K0 + div(`)) and that the enhanced level graph 0+(`)
satisfies (i) and (ii).

Concerning the first claim, we note that by definition of η exactly 2h(v)−2−
∑
k(e)

sections of ω lie in the irreducible component Cv of the special fiber associated to the
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vertex v, counted with multiplicity. Here the sum runs over all half-edges adjacent to v
which are not legs at v. By definition of trop� in (3) the first claim thus amounts to show-
ing that the slope defined by ` of non-leg half-edges e is equal to −k(e)− 1. This in turn
is a consequence of the way degenerating families are built by plumbing (cf. [BC+18b,
Theorem 4.5]). The core observation is that at a node xy = ta the differential on the two
ends of the node is

(
xk + ta(k+1) r

x

)
dx and −ta(k+1)

· (y−k−2
+

r
y
)dy, where ta(k+1)r is

the period of ω along the vanishing cycle. Consequently, the difference of the scaling pa-
rameters (or, equivalently, the values of the level function) is a(k + 1), proving the slope
claim.

To show (i), we work with the complex topology. Note that there exists a disc 1
in C such that X (C) can be extended to a complex-analytic space X1(C) over 1. At
every inconvenient vertex v the restriction of η to v has non-zero residue at q−(e) for
some edge e with k(e) < 0 by Proposition 5.5. To illustrate the idea of constructing
the necessary cycle, let e1, . . . , em be the edges adjacent to v with k(e) < 0. Choose a
continuously varying family βj (s) for s ∈ 1 of simple closed curves in the fibers Xs
belonging to the homotopy class which is pinched to the node ej . If all the curves βj (s)
are separating for one (hence every) s ∈ 1, the period of ωs around α0 is zero by Stokes’
theorem. This gives a contradiction to the non-zero residue in the limit. Consequently,
there is some non-trivial cycle γ passing through v.

To deal with the general case and to derive the claimed property of γ we revisit the
proof of the GRC (compare [BC+18b, Section 4.1]. Let A = α1(s) ∪ · · · ∪ αm(s) be the
union of simple closed curves which are pinched (when s → 0) to the nodes joining a
level ≥ `(v) to a level < `(v). If βj (s) is a separating loop on the connected component
of Xs \ A that contains βj (s), we obtain the same contradiction from Stokes’ theorem as
before. In fact, let I ⊂ {0, . . . , s} be the index set of curves bounding a component of
Xs \ (A ∪ βj ). Then ∫

βj

t`(v)ω(t)+
∑
i∈I

∫
αi

t`(v)ω(t) = 0

by Stokes. The first term of this sum tends to the residue we are interested in. The other
terms tend to the residue of the limiting twisted differential on level ≥ ` at a node cor-
responding to an edge to level < `, which is zero since the limiting differential is holo-
morphic there (see the ‘partial order’ condition in the definition of twisted differential
in Section 5.2). Consequently, if some βj (s) does not separate its connected component
in Xs \ A, there exists a cycle as claimed in (i). The argument for horizontal edges is the
same and gives (ii).

Hence we have proved the theorem in the case k = C. If K ⊂ L is a field extension
of two trivially valued algebraically closed fields of characteristic zero, we have a natural
surjective projection map (P�Mg,L)

an
→ (P�Mg,K)

an which is compatible with the
tropicalization map, i.e. the diagram

(P�Mg,L)
an

(P�Mg,K)
an P�Mtrop

g

trop�

trop�
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is commutative by the definition of trop� in Section 3.1. Hence the realizability locus
does not depend on the choice of the algebraically closed ground field of characteristic
zero, which implies our claim. ut

Example 6.4. Figure 2 shows points in the realizability locus over the dumbbell graph
in genus 2, i.e. all vertex genera zero. Those points in the realizability locus consist of
two symmetrically placed marked points on either dumbbell end (left) or double point
anywhere on the central edge (including the ends) of the dumbbell (right). A canonical
divisor whose support consists of two different points on the central edge of the dumbbell
(see Figure 3) is not in the realizability locus, since the edge between those two points is
horizontal in the enhanced level graph and separating, thus violating condition (ii) in The-
orem 6.3. These two figures are reinterpretations of the corresponding figures in [GK08]
from our viewpoint of level graphs.

0+

0
2

0+

0

Fig. 2. Realizability locus over the dumbbell graph.

0+

0

Fig. 3. A non-realizable configuration over the dumbbell graph.

Proof of Proposition 4.2, alternative proof that the image of trop� belongs to |K0|. We
need to show that for any given graph 0 there exists a rational function f ∈ Rat(0) with
K0 + div(f ) ≥ 0 such that 0+(f ) satisfies conditions (i) and (ii) of the preceding theo-
rem. We prove this by induction on the genus. Since adding marked points and increasing
the vertex genus can only improve the situation concerning inconvenient vertices, it suf-
fices to treat the case that all vertex genera h(v) are zero.

For g = 2, there are two cases. For the graph with three nodes joining the two vertices
(and in general, for any graph 0 without separating edges), the canonical divisor K0 is in
the image of trop�. For the dumbbell graph, we take a function f that is constant on the
edges and has a global minimum on the separating edge (see Figure 2, right).

In the induction step, we consider a graph 0 of genus g and remove a non-separating
edge e. Let 1 = 0 − e be the resulting graph. There are two cases to consider. First,
suppose that the two ends of e are different nodes in 1. Then 1 is semistable and we
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start with the f0 given by induction on the stable graph equivalent to 1. We complete
this to a function f on 0 having slope ≥ −1 on each half-edge of e. (This is possible for
all values of f0 at the ends of e.) Together with the induction hypothesis this condition
impliesK0 + div(f ) ≥ 0. Neither a horizontal separating edge nor a trivalent vertex with
negative decorations has been added, hence conditions (i) and (ii) continue to hold.

Second, suppose that e is a cycle adjacent to some vertex v.
If1 = 0− e is semistable, we simply declare f to be constant on e. Otherwise, there

is a separating edge es ending at v and 1 \ es is semistable. In this case we take f0 from
1 \ es by induction and complete it to f constant on e and with slopes −1 on the two
half-edges of es (i.e. div(f ) contains twice the midpoint of es). Then conditions (i), (ii)
and K0 + div(f ) ≥ 0 follow from the construction. ut

Example 6.5. To give a more involved example we discuss the realizability locus over
the complete graph K4. We first claim that there are five types of maximal-dimensional
cones, as given in Figures 4–6.

←
−

e6

e1 e2e3

e4

e5

0+

0

0+

0

Fig. 4. Realizable configurations of maximal dimension on K4: 3-cycles on top level, edges with
two points.

0+

0

0+

0

Fig. 5. Realizable configurations of maximal dimension on K4: 3-cycles on top level, more than
two points on some edge.

0+

0

Fig. 6. Realizable configurations of maximal dimension on K4: 4-cycle on top level.
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To prove this claim, we establish some notation. Suppose that 0+ is the enhanced
level graph corresponding to a canonical divisor in the realizability locus. Let v1, . . . , v4
be the four vertices of the original K4 and let w1, . . . , wn with n ≤ 4 be the remaining
vertices of 0, each of them having at least one leg. Consider the vertices on the top level
of 0+. A vertex wi cannot be on the top level, since its two non-leg half-edges have
k = −1, since it has at least one leg and since the sum of decorations is equal to −2.
Suppose one of the vi on the top level is decorated with a leg. This requires vi to have (at
least) three horizontal edges, otherwise the sum of decorations cannot be −2. Together
with the previous argument this implies that all vi lie on the top level, and that each of
them is decorated with a single leg. By Lemma 6.8 below the cone with this configuration
has dimension 6, strictly less than the maximal dimension 8.

Consequently, the top level consists of vertices vi without legs, hence each of them
is adjacent to precisely two horizontal edges. Thus the subgraph on the top level is a
simple cycle. In K4 the length of the cycle might be 3 or 4. In the case of a 4-cycle on
top, the case of a single wi with just one leg on one of the edges is ruled out by the sum
of decorations being equal to −2. The configuration in Figure 6 remains and attains the
maximal dimension.

Suppose the top level is a 3-cycle consisting of v1, v2, v3 and that v4 is on a lower
level. Consider the edges ei for i = 4, 5, 6 joining vi−3 to v4. For each partition (4, 0, 0),
(3, 1, 0), (2, 2, 0) and (2, 1, 1) of the four vertices wi on these three edges there is a
unique solution to the enhancement conditions, leading to the graphs in Figures 4 and 5,
all of maximal dimension. Graphs with less than four wi are degenerations thereof, and
hence of strictly smaller dimension.

Note that for a given tropical curve 0 with underlying graph K4 the preim-
age π−1([0])may not meet all of these maximal cones. For example the graph in Figure 6
is possible for any edge lengths, with the canonical divisor supported on an arbitrary pair
of disjoint edges. However, the graph pictured in Figure 4 (left) with the canonical divisor
supported on a pair of adjacent edges is possible if and only if |e6| < |e4|, |e6| < |e5|.

The realizability locus is connected in codimension 1 over the closure of the K4-
cone. To see this, note that contracting one of the horizontal edges on the top level 4-
cycle in Figure 6 and reopening it as a vertical edge connects this cone to the cone in
Figure 4 (left). This cone is connected to the cone in Figure 5 (left) by pushing one of the
wi adjacent to v4 into v4. This cone is connected to the cone in Figure 5 (right) by pushing
the isolated wi on e6 through v4 onto the edge e5. Finally, the cone in Figure 5 (left) is
also connected to the cone in Figure 4 (right) by pushing the vertex wi on e5 adjacent
to v4 through v4.

It is an interesting combinatorial question whether in general the maximal cones of the
realizability locus are connected in codimension 1.

6.2. Dimensions

The fundamental Theorem of Bieri–Groves [BG84, Theorem A] (see also [EKL06, Theo-
rem 2.2.3]) shows that, given a closed subvariety of a split algebraic torus, its tropicaliza-
tion admits the structure of a polyhedral complex of the same dimension. In our situation,
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the tropical Hodge bundle does not admit a natural embedding into a toric variety, but
rather a toroidal embedding in the sense of [KK+73], the compactification Divg,2g−2 of
Divg,2g−2 over Mg . In this situation a weaker version of the Bieri–Groves Theorem holds
(see [Uli15a, Theorem 1.1]) and we only know that the realizability locus (i.e. the tropi-
calization of P�Mg) is a generalized cone complex of dimension ≤ 4g − 4. This result
technically only applies when the boundary has no self-intersection, but the arguments
immediately generalize to our situation. Our methods allow us to prove the following
much stronger statement.

Theorem 6.6. The realizability locus PR� admits the structure of a generalized cone
complex, all of whose maximal cones have dimension 4g − 4. The fiber in PR� over
a maximal-dimensional cone σG in M trop

g (i.e. for a trivalent graph G with all vertex-
weights h(v) zero) is a generalized cone complex, all whose maximal cones have relative
dimension g − 1.

Recall that in Figure 1 we have seen that the realizability locus is not a subcomplex
of Divtrop

g,2g−2.

Example 6.7. We revisit Example 6.4. The dumbbell graph is one of the two trivalent
genus 2 graphs. For any edge lengths assigned to the dumbbell, the fiber of P�Mtrop

g over
the corresponding tropical curve is the folded square with two ends pictured in Figure 7.
The realizability locus corresponds to the thickened line segments, drawn horizontally.

Fig. 7. The simplices over the dumbbell graph.

Notice that the canonical divisorK0 (which corresponds to the third corner in the triangle)
is not in the realizability locus.

The dimension estimates are based on the following lemma. The contraction procedure
in the lemma stems from the fact that the length information encoded in those genus zero
nodes is not recorded when passing to the associated tropical curves with divisor. Note
that for all enhanced level graphs that appear in Theorem 6.3, i.e. those resulting from
Lemma 6.1, we have 0+ = 0+0 in the following statement.

Lemma 6.8. For every level graph 0+ let 0+0 be the graph obtained by successively
contracting edges in 0+ that have an (n+ 1)-valent genus zero node with n ≥ 1 marked
points at one of its ends. The dimension of a cone σ(0+) in the realizability locus with
associated level graph 0+ is 1 less than the number of levels of Lev(0+0 ) plus the number
of horizontal edges EH (0+0 ), i.e.

dim(σ (0+)) = |Lev(0+0 )| − 1+ |EH (0+0 )| .
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Proof. Assign a real number di ≤ 0 (‘depth’) to each level i ∈ Lev(G, `) in such a way
that d0 = 0 and di < dj if i < j . Then endow any edge e joining the vertices v1 and v2
with `(v1) > `(v2) with length (d`(v1) − d`(v2))/(k(e

+)+ 1) and endow horizontal edges
with arbitrary lengths. By construction this tropical curve admits a unique continuous
function f (up to addition of a global constant) that is linear of slope zero on horizontal
edges and linear of slope −k(e+) − 1 on each edge (as viewed from the top end). This
implies that dim(0+) ≥ |Lev(0+0 )| − 1+ |EH (0+0 )|.

On the other hand, every rational function f on a tropical curve with enhanced level
graph 0+0 determines uniquely a collection of real numbers di with d0 = 0 and d`(v1) −

d`(v2) = |e|s(e) whenever `(v1) > `(v2). This implies the converse estimate. ut

Proof of Theorem 6.6. To prove the upper bound 4g − 4, we compare with the complex
dimension of the moduli space of twisted differentials (denoted by Mab(0) in [BC+18a])
compatible with a level graph 0. (The dimension does not depend on the enhancement.)
Each level contributes at least 1 to the dimension of Mab(0), namely by rescaling the dif-
ferentials on that level by a scalar, the dimension of Mab(0) is the sum of the dimensions
of the spaces of twisted differentials on each level. Consequently, the maximal dimension
is bounded above by the number of horizontal edges plus dimCMab(0) − 1. This sum
is computed in [BC+18a, Theorem 6.1] to be equal to dimC�Mg(µ) − 1, where µ is
the type of the twisted differential. This quantity is maximized for the principal stratum
µ = (1, . . . , 1) and gives dimC�Mg(µ)− 1 = 2g − 2+ |µ| = 4g − 4 by Theorem 5.3
and thus the claimed upper bound.

To show that this upper bound is always attained we have to split vertices whose con-
tribution to Mab(0) is greater than 1. The claim follows from the more precise statement
in the subsequent proposition. ut

Proposition 6.9. Maximal-dimensional cones of the realizability locus correspond pre-
cisely to the enhanced level graphs 0+ with the following properties.

(i) All the vertices have vertex genus zero.
(ii) Each vertex is either

(ii.1) n-valent (n ≥ 3) with precisely two edges which are legs or edges to a lower
level, or

(ii.2) n-valent (n ≥ 3) with precisely one edge which is a leg or an edge to a lower
level.

(iii) Each level L contains either

(iii.1) precisely one vertex as in (ii.1); all the edges of this vertex to a higher level
disconnect the subgraph 0+

≥L, or
(iii.2) only vertices as in (ii.2); at each of these nodes v moreover |v| − 2 edges dis-

connect the subgraph 0+
≥L while the remaining edges of the nodes on level `

together with the connected components of the subgraph 0+>L form a simple
cycle.

In (iii.2) the valence |v| refers to the valence of the subgraph 0+
≥L, i.e. an edge to a lower

level does not contribute. In the proof we will see that the conditions in the theorem can
be explained using period coordinates (see Section 5.4).
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Proof of Proposition 6.9. In order to show that these cones are maximal we need to show
that the contribution of each level to the dimension of Mab(0) is at most 1. Then we
conclude using [BC+18a, Theorem 6.1], since then the number of levels has to be at least
4g − 4− |EH (0)|.

We start by discussing the dimension contribution for the cones in the statement of
the proposition. Recall from Theorem 5.3 that the space of differentials corresponding to
an n-valent vertex of genus zero has dimension n− 2.

If there are two marked points (or edges to a lower level) as in (ii.1), this space is
parametrized by the relative period between the two marked points and n − 1 residues.
Moreover the condition in (iii.1) and the GRC imply that all the residues are zero and the
resulting contribution of that level L is of dimension 1.

If there is only one marked point (or edges to a lower level), the space of differentials
is parametrized by the n−1 residues with one constraint given by the residue theorem. The
condition in (iii.2) and the GRC imply again that n− 3 residues vanish. Hence each node
contributes again individually 1 to the complex dimension of the space of differentials on
that level. Moreover, the cycle constraint in (iii.2) implies that this residue is the same
for each vertex on the given level. Consequently, the total contribution of that level to the
space of twisted differentials is 1, as claimed.

To show that the cones listed in the proposition are the only cones of maximal dimen-
sion, we show that we can split the vertices in an enhanced level graph until the conditions
of the proposition are met, while maintaining conditions (i) and (ii) of Theorem 6.3(i, ii).
E.g. while some vertex genus is positive, we apply the splitting of Figure 8 where ai ≥ 0
and where bi ≤ −1.

g

bp

ar

b2

a2

b1

a1

· · ·

· · ·

¨
g − 1

g = 0

bp

ar

b2

a2

b1

a1

· · ·

· · ·

Fig. 8. Splitting positive genus.

We may thus assume from now on that all vertex genera are zero. In order to show
that the nodes on a given level i can be split until their contribution to the dimension of
Mab(0) is 1 (in the sense at the beginning of the proof) we could argue combinatori-
ally, but arguing geometrically as follows seems more enlightening. Consider the space
of twisted differentials η = {ηv} compatible with the level graph currently under con-
sideration. Suppose that the subspace of twisted differentials with all ηv fixed except for
those with `(v) = i has dimension greater than 1. To put it differently, we assume that
the projectivization of this subspace has positive dimension. This subspace is cut out in-
side P�Mg(µ) by a collection of residue conditions. Since P�Mg(µ) does not contain
a projective curve by Theorem 5.4, a subspace defined by residue conditions does not
contain such a curve either. Consequently, there is some way to degenerate the meromor-
phic differential, thus increasing either the number of levels or the number of horizontal
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Fig. 9. Rearranging trees of marked points.

edges. This also increases the dimension of the corresponding cone in the realizability lo-
cus and we can repeat the process until each cone has dimension 1, with the caveat given
in Lemma 6.8 that trees of marked points are contracted. If we replace each such tree as in
Figure 9 then this is also a degeneration of the graph where all trees of marked points are
contracted, the number of levels and horizontal edges is the same, and this graph satisfies
the conditions of Theorem 6.3 if the graph prior to the replacement did. This concludes
the proof of the existence of a splitting procedure. ut

6.3. The realizability locus for strata of abelian differentials

Let µ be a partition of d . We say that an effective divisor D of degree d on a trop-
ical curve 0 has type µ if the multiplicities at its support define the partition µ. No-
tice in particular that in complete analogy with the situation for the projective algebraic
Hodge bundle P�Mg , the tropical Hodge bundle P�Mtrop

g admits a stratification by
strata P�Mtrop

g (µ) that are indexed by partitions µ of 2g − 2.
Theorem 6.3 also contains a characterization of the realizability locus PR�(µ) of the

stratum of type µ, defined as the image of the restriction of the tropicalization map to the
corresponding stratum P�Mg(µ)

an of abelian differentials. In fact, the proof of our main
theorem applies verbatim to give the following criterion.

Proposition 6.10. An element D = K0 + div(f ) in the tropical canonical linear series
lies in PR�(µ) if and only if D is a divisor of type µ and for the enhanced level graph
0+(f ) conditions (i) and (ii) of Theorem 6.3 hold.

Example 6.11. We give for example the realizability locus PR�(2) if the underlying
graph is the dumbbell graph, i.e. a subset of Example 6.4. Restricted to this graph, the
tropical Hodge bundle is disconnected and consists of (isolated) double zeros at the mid-
point of either of the dumbbell cycles and of a one-dimensional component with a double
zero on the central edge of the dumbbell. The midpoints of the dumbbell cycles satisfy
criteria (i) and (ii). A point of multiplicity 2 in the interior of the central edge (as in Fig-
ure 2, right) does not satisfy criterion (i), since a vertex with one zero (of order 2) and two
poles (of order 2) is inconvenient. However, if the double point is located on the vertices
of the dumbbell, the vertices are no longer inconvenient and the criteria are satisfied.

In conclusion, the realizability locus PR�(2) on the dumbbell graph consists of four
‘Weierstrass’ points as in Figure 10.
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Fig. 10. The realizability locus PR�(2).

6.4. Algorithmic aspects

Our main theorem can be turned into an algorithm to compute the simplicial structure of
the realizability locus.

(i) For each genus g construct the finitely many abstract graphs G = (E, V,L) with a
genus function h : V → Z>0 of genus g (in the sense of (1)) and with |L| = 2g − 2
that are stable.

(ii) There are a finite number of partial orders on G such that any two vertices joined by
an edge are comparable (equality permitted). For each of those partial orders there
are a finite number of enhancements k with the properties that k(e±) = −1 for both
half-edges of e joining v1 and v2 with v1 � v2 and such that whenever there is an
edge e joining v1 and v2 with v1 � v2 then k(e1) ≥ 0, where e1 is the half-edge of e
adjacent to v1.

To see this, we assign k(e±) = −1 to all edges with v1 � v2 and argue induc-
tively top-down: for each vertex v such that all the upward pointing half-edges have
already been assigned an enhancement, there are a finite number of possibilities to
assign a non-negative enhancement to each of the downward pointing half-edges e+

such that the genus formula (5) holds. We complete this enhancement on each of the
complementary half-edges e− using the condition k(e+)+ k(e−) = −2 and proceed
to another vertex.

(iii) For each of the partial orders there are a finite number of full orders that refine the
partial order. We assume for notational convenience that the full order is given by
the level function `.

(iv) For each of the horizontal edges e (i.e. both half-edges are decorated with k(e±) =
−1) check if e disconnects the graph G≥`(e) and discard the graph if this is the case.
Here `(e) := `(v) for any of the two vertices adjacent to e.

(v) Using the enhancement we can determine the set of inconvenient vertices I ⊂ V .
For each vertex v ∈ I check if v disconnects the graph G≥`(v) and discard the graph
if this is the case.

(vi) The realizability locus consists of a cone σ = σ(G,h,k,`) for each tuple (G, h, k, `)
not discarded. The cone σ(G,h,k,`) parametrizes the following tropical curves. Assign
as in the proof of Lemma 6.8 a real number di ≤ 0 (‘depth’) to each level i ∈
Lev(G, `) in such a way that d0 = 0 and di < dj if i < j . Then endow any edge e
joining the vertices v1 and v2 with `(v1) > `(v2) with length

|e| = (d`(v1) − d`(v2))/(k(e
+)+ 1) .

This algorithm is effective but not efficient, since most of the enhanced level graphs that
are built in the process will be discarded in the end.
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cation au type d’homotopie de certains schémas formels. Manuscripta Math. 123, 381–
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