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The phase diagram of the (1 + 1)-dimensional Gross-Neveu model is reanalyzed for (non-)zero
chemical potential and (non-)zero temperature within the mean-field approximation. By investi-
gating the momentum dependence of the bosonic two-point function, the well-known second-order
phase transition from the Z2 symmetric phase to the so-called inhomogeneous phase is detected. In
the latter phase the chiral condensate is periodically varying in space and translational invariance is
broken. This work is a proof of concept study that confirms that it is possible to correctly localize
second-order phase transition lines between phases without condensation and phases of spatially
inhomogeneous condensation via a stability analysis of the homogeneous phase. To complement
other works relying on this technique, the stability analysis is explained in detail and its limitations
and successes are discussed in context of the Gross-Neveu model. Additionally, we present explicit
results for the bosonic wave-function renormalization in the mean-field approximation, which is ex-
tracted analytically from the bosonic two-point function. We find regions – a so-called moat regime
– where the wave function renormalization is negative accompanying the inhomogeneous phase as
expected.

Keywords: Gross-Neveu model, phase diagram, mean-field, stability analysis, two-point function, inhomo-
geneous phases, wave-function renormalization, moat regime

CONTENTS

I. Introduction 1
Structure 3
Conventions 4

II. Theory 4
A. The Gross-Neveu model 4
B. Phenomenology of the Gross-Neveu model at

(non-)zero µ and (non-)zero T – the phase
diagram 5

C. The grand canonical potential 7
D. Stability analysis of the spatially

homogeneous Z2 symmetric phase 8
1. The bosonic two-point function 9
2. The bosonic wave-function

renormalization 11

III. Results 11
A. The momentum structure of the bosonic

two-point function 12

∗ The list of authors is sorted by (former) affiliations and sur-
names. All authors contributed in equal shares to this work.
S. Rechenberger initiated this project and produced preliminary
results before leaving academia.
† koenigstein@th.physik.uni-frankfurt.de
‡ pannullo@itp.uni-frankfurt.de
§ winstel@itp.uni-frankfurt.de
¶ msteil@theorie.ikp.physik.tu-darmstadt.de

B. The phase diagram from the stability
analysis 15

C. The wave vector of the inhomogeneous
perturbation and the wave vector of the true
inhomogeneous condensate 15

D. The bosonic wave-function renormalization 16

IV. Conclusion and Outlook 18
A. Conclusion 18
B. Outlook 19

Acknowledgments 19

A. The bosonic two-point function 20

B. The bosonic wave-function renormalization 21

References 22

I. INTRODUCTION

In this work we examine and cross-check the func-
tionality of a technical method in quantum field theory
(QFT) that can be used to investigate the thermody-
namic phase structure in a broad range of systems that
exhibit condensation phenomena, namely: the stability
analysis of a spatially homogeneous ground state. The
method and closely related techniques were promoted
[1, 2] and already applied [3–19] in the context of low-
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energy (effective) models and theories of systems that
describe different kinds of strongly interacting matter.

In general, a lot of the aforementioned systems un-
dergo phase transitions, if some external energy scale
like the temperature, chemical potentials or a magnetic
field etc. is tuned. These phase transitions go hand in
hand with the breaking and restoration of one or more
symmetries and usually the formation of some conden-
sates. Understanding this (thermodynamic) behavior of
strongly-interacting matter is one of the major challenges
in high-energy and condensed matter physics.

Oftentimes, for the sake of simplicity and feasibility
of calculations, it is assumed that condensation is
homogeneous in space and that the corresponding con-
densates do not oscillate in time, which is usually a good
first approach. However, it is well-known that certain
systems show spatially inhomogeneous condensation – at
least in certain approximations and for specific choices of
the external parameters, like chemical potentials etc. –
meaning that the corresponding condensate oscillates in
space and thus breaks translational invariance. In short,
it has some crystal-like structure that mostly emerges in
systems at high densities1.

Such crystalline structures are commonly found in
solid-state problems, where spin-density waves are known
ground states, see Ref. [22] for a review and Refs. [23–
27] as typical examples. Originally such phases were
predicted by P. Fulde, R. A. Ferrel, A. Larkin, and
Y. Ovchinnikov in superconducting materials at large
magnetic fields [28, 29].

In the context of particle physics spatially inhomo-
geneous condensation was studied first in nuclear mat-
ter [30] in the form of inhomogeneous pion condensa-
tion and later in model studies for quark matter [31–34].
Since then, such thermodynamic phases were found or
discussed to be favored over phases of spatially homo-
geneous condensation for certain thermodynamic state
variables in various effective QFTs, which are in use
to model and study various features and aspects of
Quantum Chromodynamics (QCD) [14, 18, 35–41]. For
example, the Nambu-Jona-Lasinio (NJL) model [42–
44] or the Quark-Meson (QM) model, e.g., Refs. [45–
49], are used to model the spontaneous breaking of
chiral symmetry in QCD – assuming spatially homo-
geneous condensation/vaporization – qualitatively very
well. When allowing for spatially inhomogeneous con-
densation in these types of models, the inhomogeneous
phase (IP) typically covers the first-order boundary be-
tween a phase of spatially homogeneous chiral condensa-

1 Although the possibility of time-crystals was discussed and is still
an object of active research, see, e.g., Refs. [20, 21], we exclude
this option or related structures from our analysis for simplicity.

tion and the approximately2 chirally symmetric phase
up to critical (end) point – at least, if these models
are studied within the mean-field approximation, where
bosonic quantum fluctuations are artificially suppressed,
cf. Refs. [4, 8, 9, 15, 39, 50–54].

A recent Functional Renormalization Group (FRG)
study of full QCD found a region in the phase diagram
of QCD with a negative wave-function renormalization
[55]. While this is only a necessary condition for inhomo-
geneous chiral condensation, it serves as an indicator for
the possibility for such and other related exotic phases in
QCD. Possible experimental signals of inhomogeneities in
so-called Lifshitz or moat regimes were recently discussed
in Refs. [56–59]. We will discuss possibility of inhomo-
geneous phases in moat regimes further throughout this
paper, especially in Sections III B and III C.

However, maybe the most prominent examples for spa-
tially inhomogeneous condensation in relativistic QFT
are observed in (1 + 1)-dimensions. In the (1 + 1)-
dimensional Gross-Neveu (GN) model [60] spatially oscil-
lating condensates have been proven to be the true abso-
lute ground states in some regions of the phase diagram
[3, 61–67]. Even the exact spatial modulation of the inho-
mogeneous condensate was derived analytically in terms
of known functions [63, 64] deploying techniques of su-
persymmetric quantum mechanics [68, 69]. Also more in-
volved (1+1)-dimensional models with more complicated
symmetry breaking patterns exhibit an IP [16, 52, 70–72].

For a general review regarding IPs in the context of
high-energy physics, we refer to Ref. [37].

Notwithstanding all of these findings, it usually re-
mains extremely hard to correctly predict the shapes
of these inhomogeneous condensates or to merely guess
appropriate ansatz functions for the search of the true
absolute ground state of a system. Additionally, the
direct search for spatially inhomogeneous condensation
gets more difficult, when studying models with more
elaborated features, improved approximation schemes,
and/or more involved numerical schemes.

Thus, in literature one typically relies on certain
ansatz functions for the condensates, e.g., by embed-
ding known one-dimensional solutions, such as the
kink-antikink solution from the GN model [3, 63, 64]
or the chiral density wave (CDW) solution as found
in the chiral GN model [70, 71], in higher-dimensional
models, which reduces the functional minimization to a
minimization in certain parameters of the ansatz, see,
e.g., Refs. [4, 35, 36, 38, 40, 73, 74] as well as the review

2 When considering finite, realistic quark-masses chiral symmetry
is never fully restored and the approximate symmetry restora-
tion above the critical end point is associated with a crossover
transition. Therefore it is common [41] to use the terms critical
endpoint (CEP), pseudo Lifshitz point (PLP), and approximate
symmetry restoration instead of the terms critical point (CP),
Lifshitz point (LP), and symmetry restoration used in this pub-
lication in the chiral limit.
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Ref. [37]. This, however, has the drawback that the
application of ansatz functions does not exclude the
possibility of other, energetically preferred oscillating
solutions which are not captured by the chosen ansatz.
An alternative possibility is, thus, the discretization of
the model via lattice field theory or related methods
[10, 11, 13, 19, 52, 75, 76], which reduces the problem to
a high-dimensional optimization problem and requires
continuum limits of non-trivial inhomogeneous mod-
ulations. This is, in general, a very challenging and
time consuming numerical task and is usually restricted
to severe truncations of the effective action, like the
mean-field approximation.

Due to these difficulties, the idea came up, that an
indirect search for these exotic states of matter and ther-
modynamic phases of spatially inhomogeneous conden-
sation might yield a feasible and computationally cheap
alternative to direct computation. A possible indirect de-
tection is possible with a so-called stability analysis. The
main idea behind this method is to determine the ground
state assuming a spatially homogeneous condensate and
to study position dependent perturbations of this state
in a second step. Hence, one expands the full-quantum
effective action in the infra red (IR) in powers of the per-
turbation. By inspecting the two-point function, which is
basically the curvature of the action at its homogeneous
minimum (the homogeneous ground state), one can clas-
sify stable and unstable directions in field space from the
sign of the two-point function. Thus, one is performing
a functional curve sketching and searches for expansion
points that are saddle points of the action.

This relatively simple concept allows to examine a suf-
ficient, but not necessary condition for an IP, i.e., if the
homogeneous ground state is unstable with respect to
inhomogeneous perturbations, the ground state must be
inhomogeneous. In simple terms, stability of the homo-
geneous condensate can be found, but the true global
minimum of the action can still be an inhomogeneous
field configuration located outside the range of validity
of the stability analysis around the homogeneous ground
state – which is of course a limitation of this approach.
We discuss this limitation at length in Section III B.

Howsoever, the great advantage of the technique is that
it is basically applicable to all kinds of models and theo-
ries and works independent of the technical method and
approximation that is used. For example, it was applied
in mean-field studies of a broad range of models, but
also used in FRG calculations or in the context of lattice
field theory. There are multiple studies, see, e.g., [4, 9–
13, 15, 17, 18, 76, 77], which are based on a stability
analysis or directly related approaches.

To the best of our knowledge, there has not been a
significant attempt to discuss the limitations and suc-
cesses of this method in great detail using a fully-
understood/solved model, where the exact solution is
well-known. In addition, the afore mentioned publica-
tions were mainly focused on the discussion of physics

and phenomenology. Though, a simple low-level techni-
cal guide for this method seems to be missing in litera-
ture. Hence, our goal is to close this gap by providing
a simple proof of concept. To this end, we revisit the
(1 + 1)-dimensional GN model, as it has been solved an-
alytically in Refs. [63, 64] with an exact solution for the
ground state for all temperatures T and chemical poten-
tials µ, and extend earlier “stability analyses”3 within
this and closely related models [3, 5, 6, 16].

A related approach is the so-called fermion doubler
trick that relies on a simple harmonic ansatz for the
bosonic ground state and the minimization of the
effective potential with respect to the parameters of
the ansatz. This technique was already quantitatively
benchmarked against the exact solution of the (1 + 1)-
dimensional GN model in Ref. [2]. It was shown that
the lowest term in an expansion of the effective potential
obtained with this technique is equivalent to the exact
treatment of the bosonic two-point function. Therefore,
some of the results produced by the approach in this
work and the one presented in Ref. [2] agree exactly.
While the fermion doubler trick is also able to produce
additional qualitative results that the inspection of the
bosonic two-point function alone cannot provide. The
stability analysis of the homogeneous ground state, on
the other hand, does not rely on a specific ansatz.

At this point we emphasize that this work is explicitly
not about groundbreaking new results or a concept that is
original to this work. This publication is meant primarily
as a pedagogical and detailed supplement, and comple-
tion of existing literature – especially Refs. [2, 3, 7].

Structure

Our work is structured as follows: We start our discus-
sion with the theory Section II. There, in Section II A,
we introduce the GN model as our testing ground and
afterwards, in Section II B, briefly recapitulate its phe-
nomenology in theN →∞ limit, hence its phase diagram
at (non-)zero baryon densities and (non-)zero tempera-
ture. In Section II C the grand canonical potential and
renormalization condition are presented and the homo-
geneous ground state of the model is determined for arbi-
trary µ and T . We close the theory part with Section II D
by introducing the formalism for the stability analysis
of bosonic two-point function with respect to inhomoge-
neous perturbations. Our numerical results and the proof
of concept are shown in Section III. In Section III A the
corresponding two-point function is evaluated and dis-
cussed for all relevant cases in the model. The results
for the detection of inhomogeneous condensation in the

3 In these works the term “almost degenerate perturbation theory
(ADPT)” is used instead of “stability analysis”. However, the
approach is quite similar.
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phase diagram via the stability analysis are presented
and compared to the analytical solution of the model in
Section III B. In two additional subsections, namely Sec-
tions III C and III D, we compare the dominant mode of
the exact inhomogeneous condensate with the dominant
wave vector from the stability analysis and further com-
ment on the values of the bosonic wave-function renor-
malization and its implications. Finally, in Section IV we
conclude and give a brief outlook on possible promising
use cases.

Conventions

In order to simplify and structure our work, we use the
following conventions:

Without loss of generality and for the sake of simplic-
ity we mostly restrict our discussion in the text and the
figures to positive (background) field values and conden-
sates (σ, σ̄, Σ, . . .) and positive values of the chemical
potential µ. However, all formulae are manifestly invari-
ant under substitutions µ 7→ −µ etc..

In all figures of this work, dimensionful quantities are
measured and plotted as multiples of appropriate powers
of the vacuum minimum (fermion mass) Σ̄0, which has
the dimension of an energy, e.g., we simply use T instead
of T [Σ̄0] or T/Σ̄0 to label the axis of our plots. In the
text and figure captions we abstain from this shorthand
notation.

II. THEORY

This section is dedicated to the theoretical background
and setup of our analysis.

To this end, we start in Section II A by introducing
the (1 + 1)-dimensional GN model as a toy model and
prototype QFT, which serves as our testing ground. Af-
terwards in Section II B we recapitulate the known phe-
nomenology of the GN model in mean-field at (non-
)zero chemical potential µ and (non-)zero temperature
T and briefly comment on the phenomenology beyond
the N → ∞ approximation. The results of the stability
analysis will later be examined against these established
(mean-field) results. In Section II C we introduce the
renormalization condition via the gap equation and the
effective potential, which are needed in the subsequent
calculations for the bosonic two-point function and the
wave-function renormalization. Readers who are familiar
with these topics may just skim over these subsections to
get familiar with our conventions and notation.

The actual theoretical setup for the stability analysis
is presented in Section II D, where we also derive and
discuss the formulae for the bosonic two-point function
and the bosonic wave-function renormalization.

A. The Gross-Neveu model

The original GN model [60] is a relativistic quantum
field theory describing N ∈ N fermion flavors with a
four-fermion interaction in the scalar channel [78–80]. In
medium, in (1 + 1) space-time dimensions (x1 = x ∈ R
is the spatial coordinate and x2 = τx ∈ [0, β) is the pe-
riodic Euclidean temporal coordinate, with β ∈ R+) the
classical action of the GN model is given by

S[ψ̄, ψ] = (1)

=

∫ ∞
−∞

dx

∫ β

0

dτ
[
ψ̄ (/∂ − µγ2)ψ − g2

2N (ψ̄ ψ)2
]
.

Here, ψ = (ψ1, . . . , ψN ) contains N > 1 two-component
Dirac spinors describing massless fermion fields and g2 ∈
R+ is the coupling constant. Non-zero baryon density is
introduced by the chemical potential µ ∈ R and the in-
verse temperature β = 1

T fixes the extent of the compact-
ified Euclidean temporal direction, such that the space-
time manifold is flat and presents as a cylinder. The Eu-
clidean Gamma matrices are defined as the irreducible
representation of the Clifford algebra

{γµ, γν} = 2 ηµν I2 , µ, ν ∈ {1, 2} , (2)

where η = diag (1, 1) is the metric of the two-dimensional
cylinder and I2 is the two-dimensional identity matrix in
Dirac space. For more details, see, e.g., Ref. [81].

The action (1) is invariant under translations along
the spatial and Euclidean temporal direction as well as
parity transformations, which form the isometries of the
cylinder. In the limit of vanishing temperature T (send-
ing the radius of the cylinder to infinity) and vanishing
chemical potential µ (removing the artificial distinction
of the Euclidean temporal direction) the model (1) re-
covers the full Euclidean Poincaré symmetry of flat Eu-
clidean space-time – including “Euclidean boosts” (rota-
tions) between the spatial and temporal direction. A di-
rect consequence of the masslessness and indistinguisha-
bility of the N fermions as well as their realization as
Dirac spinors is that the model is also invariant under
transformations of the group

U(N)× Z2 , (3)

where the Z2 symmetry is called and realizes a discrete
chiral symmetry generated by γch

ψ̄ 7→ −ψ̄ γch , ψ 7→ γch ψ . (4)

The operator γch is defined as the only matrix that anti-
commutes with the Euclidean Gamma matrices4. The

4 For the irreducible, 2×2 representation of the (1+1)-dimensional
Clifford algebra one can choose γν = σν for ν = 1, 2, where σν
denotes the Pauli matrices or linear combinations of the Pauli
matrices. Consequently, γch is typically proportional to the re-
maining third Pauli matrix σ3.
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U(N) symmetry group can be further decomposed into a
so-called phase symmetry, elements of U(1), and a flavor
symmetry group, elements of SU(N). The phase symme-
try leads to conservation of the baryon number density
ψ̄ γ2 ψ/N that is tuned by the chemical potential µ for
the fermions [82–85]. On the other hand, the flavor sym-
metry group leads to the conservation of a vector current.

It can be shown [60, 79, 80] that the (grand-canonical)
partition function of the GN model is equivalent to the
partition function of a partially bosonized model (up to
a physically irrelevant constant)5, which is described by
the following action

S[ψ̄, ψ, φ] = (5)

=

∫ ∞
−∞

dx

∫ β

0

dτ
[
ψ̄ (/∂ − µγ2 + hφ)ψ + Nh2

2g2 φ
2
]
.

Here, φ is an auxiliary/constraint bosonic scalar field,
which is real valued and has canonical energy dimension
[φ] = energy0 [86]. In this action, the four-Fermi in-
teraction is replaced by a Yukawa-type interaction with
Yukawa coupling h. To ease notation, the Yukawa cou-
pling, that has canonical energy dimension [h] = energy,
is absorbed into the bosonic field σ ≡ hφ (the fermion
mass), i.e., σ has the dimension of an energy.

Through a specific Ward identity, see, e.g., Ref. [87],
the expectation value of the scalar field can be related to
the fermionic expectation value 〈ψ̄ ψ〉,

〈σ〉 = − g
2

N 〈ψ̄ ψ〉 . (6)

For this expectation value the discrete symmetry trans-
formation (4) is realized as follows,

〈ψ̄ ψ〉 7→ −〈ψ̄ ψ〉 . (7)

Since the expectation value of σ is directly proportional
to the condensate, a non-vanishing 〈σ〉 implies a sponta-
neous breaking of the discrete chiral symmetry and gen-
erates a non-zero fermion mass – a process that cannot
be observed within a purely perturbative framework [60].

The bosonized action (5) is bilinear in the fermion field,
such that the fermion fields can be integrated out to ob-
tain an effective purely bosonic action [88]

Seff[σ] = (8)

= 1
2g2

∫ ∞
−∞

dx

∫ β

0

dτ σ2 − ln
(
Det(/∂ − γ2 µ+ σ)

)
,

5 This can be shown through the isolation of a shifted Gaussian
integral in the bosonic field variable in the partition function of
the bosonized model.

and grand canonical partition function

Z =N
∫

[dσ] e−N Seff[σ] , (9)

where N is a physically irrelevant normalization factor.
In the limit N →∞ all bosonic quantum fluctuations in
Eq. (9) are suppressed, such that the so-called mean-field
approximation, i.e., the disregard all of bosonic fluctua-
tions, becomes exact [86]. In this approximation only
global minima of Seff[σ] contribute to the partition func-
tion Eq. (9). In the following, we assume that there exists
one unique global minimum σ = Σ of Seff[σ]6.

For studies of the GN model beyond the N → ∞ ap-
proximation, we refer to the discussion at the end of the
following subsection.

B. Phenomenology of the Gross-Neveu model at
(non-)zero µ and (non-)zero T – the phase diagram

The phase diagram of the GN model for N → ∞ is
well-known, which makes it an ideal testing ground for
methods in QFTs. Therefore, we will briefly summa-
rize the established phenomenology of the GN in the µ-T
plane as benchmark and reference values for the proof of
concept of the stability analysis in the following.

For related (and more comprehensive) discussions
and original works of the rich large-N phenomenology
and physics of the GN model we refer to Refs. [3, 5–
7, 10, 11, 52, 61–67, 70, 71, 75, 82, 83, 86, 88–124]7.

Enforcing the ground state (the ψ̄ψ-condensate) of the
auxiliary field to be constant (homogeneous) in space-
time, thus σ(x) = σ̄ = const., the so-called homogeneous
phase diagram of the Gross-Neveu model can be derived
semi-analytically in the mean-field approximation. The
entire phase structure solely depends on a single dimen-
sionful parameter, which sets the scale for all other ob-
servables and can be chosen, e.g., by fixing the vacuum
condensate (fermion mass) Σ̄0 or any other dimensionful
observable.

One then finds a so-called homogeneously broken phase
(HBP) with a condensate Σ̄(µ, T ) 6= 0 (broken Z2 sym-
metry) at small µ and T and a so-called symmetric phase
(SP) with Σ̄(µ, T ) = 0 with restored Z2 symmetry in the
rest of the µ-T plane, cf. Fig. 1. The phase transition is
of second-order at (µ, Tc)/Σ̄0 = (0, eγ/π) ' (0, 0.567)8

[86, 89, 90] and ranges from µ = 0 to the critical point
(CP) at (µL, TL)/Σ̄0 ' (0.608, 0.318) [88]. At this point

6 This is of course a simplifying assumption as there can be many
equivalent minima that are connected by symmetry transforma-
tions, e.g., a chiral transformation. For most of our analysis,
however, it suffices to consider only one of these equivalent min-
ima.

7 This list of references is not exhaustive.
8 Here γ ≈ 0.577 denotes the Euler-Mascheroni constant.
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1√
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µ
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eγ

π
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2nd order PB

1st order PB

Lifshitz point

FIG. 1. The phase diagram of the GN model in the N →∞
limit. The dashed red curve corresponds to the first-order
phase boundary that is obtained if spatially homogeneous con-
densation is assumed [71, 88]. The solid blue lines correspond
to second-order phase transitions, if spatially inhomogeneous
condensation is taken into account [7, 63–65].

the phase transition becomes first-order and continues
to lower temperatures until it finally terminates at
(µc,hom, T )/Σ̄0 = (1/

√
2, 0.0) ' (0.707, 0.0).

Relaxing the restrictive assumption of homogeneous
condensation and allowing for a spatially varying back-
ground field σ(x) = σ(x), a modified phase diagram is
obtained. Here, one finds an IP where the ground state
Σ(µ, T ) = Σ(µ, T, x) is an oscillating function in space.
This phase emerges for temperatures T < TL ' 0.318
and moderate chemical potentials µ > µL ' 0.608 Σ̄0

and grows in µ-direction for decreasing temperature,
cf. Fig. 1 and Refs. [3, 62–65, 67]. The former ho-
mogeneous first-order phase boundary is completely en-
gulfed by the IP. The novel phase transition between
the IP and the HBP is of second-order and ranges from
(µc, T )/Σ̄0 = (2/π, 0.0) ' (0.637, 0.0) to a so-called
Lifshitz point (LP) which is located at the position
(µL, TL)/Σ̄0 ' (0.608, 0.318) of the former CP. At the
LP three phases – a homogeneously broken, an inhomo-
geneously broken, and a restored phase – meet.

At the HBP↔ IP phase boundary, the phase-transition
is not linked to the Z2 symmetry breaking/restoration,
but rather to the breaking/restoration of spatial transla-
tional invariance, because discrete chiral symmetry is al-
ways (periodically) broken by the condensate. The other
phase boundary from the IP to the SP is also of second-
order and thus all phase boundaries of the correct/revised
mean-field phase diagram correspond to second-order
phase transitions. Crossing the SP↔ IP phase boundary
the discrete chiral symmetry as well as spatial transla-
tional invariance are broken/restored. This crucial differ-
ence between discrete chiral symmetry and translational
invariance breaking/restoration is of great importance for
the remainder of this work and the limitations of the sta-
bility analysis.

The spatially inhomogeneous chiral condensate in the

0 2 4 6 8 10 12

x

−1.0

−0.5

0.0

0.5

1.0

Σ

FIG. 2. Spatial inhomogeneous chiral condensate Σ(µ, T, x)
at T = 0 for various chemical potentials µ with
∆µ = (µ− µc)/Σ̄0 in the IP (where µc/Σ̄0 = 2/π). The
curves are calculated using expressions of Refs. [3, 63, 64].
This figure is inspired by Fig. 2 of Ref. [3].

IP is described by Jacobi elliptic functions9 and for in-
creasing chemical potential

• its shape evolves from a kink-antikink shape to a
sine-like shape,

• its amplitude decreases,

• its frequency increases,

as shown in Fig. 2 for zero temperature, see also
Refs. [63, 64]. The general behavior of the condensate is
very similar at non-zero temperature, see Ref. [63] for
details.

Before the more technical aspects of our work are dis-
cussed, we want to point out that the phase structure
of the GN model was also investigated at imaginary
chemical potential [109] and non-zero bare fermion mass
[64, 65, 67]. It was also discussed, how the bosonic fluc-
tuations alter the phenomenology of the GN model, if
the N →∞ approximation is relaxed to a finite number
N of fermions [86, 90, 97]. Only recently some of the au-
thors and their collaborators returned to this intriguing
and non-trivial question [81, 85, 126–128]. Currently, it
seems as if bosonic fluctuations at finite N vaporize any
form of homogeneous condensate (in the infinite volume
limit), such that the HBP vanishes completely, except
potentially for T = 0 [81]. For extended discussions, we
refer to these works and recent related works in the chiral
GN model [129, 130].

In this publication, however, we are primarily inter-
ested in technical aspects of the stability analysis and,
therefore, stick to the N → ∞ limit, where exact ref-
erence solutions are available. Still, we come back to
implications of the findings of this work on calculations
that involve fluctuations of the bosonic sigma mode.

9 For definitions, properties, and relations of the involved Jacobi
elliptic functions, see, e.g., Chap. 22 of Ref. [125].
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C. The grand canonical potential

In the following paragraphs we recapitulate some
well-known formulae and results for the (mean-field)
effective potential and the associated gap equation.
The latter will serve as a renormalization condition for
the effective potential as well as the bosonic two-point
function and related wave-function renormalization.
Additionally, the renormalized effective potential is also
needed for the (numerical) determination of the physical
point (the homogeneous minimum Σ̄), where the bosonic
two-point function and wave-function renormalization
are evaluated in the stability analysis. Still, all results
of this subsection can be found elsewhere, e.g., in the
Refs. [71, 81, 87], and are only presented for the sake of
completeness and consistency.

The ( 1
N -rescaled) effective potential in the mean-field

approximation is defined as

U [σ] ≡ 1
βV Seff[σ] , (10)

where V is the infinite spatial “volume” of the space-

time manifold (the infinite axial extend of the cylinder).
Furthermore, the grand canonical potential Ω(µ, T ) is de-
fined as the mean-field effective potential Eq. (10) eval-
uated at its global minimum Σ(µ, T,x), i.e.,

Ω(µ, T ) ≡ U [Σ(µ, T,x)] . (11)

In this work, the effective potential is merely considered
for homogeneous background fields σ(x) = σ̄ = const.,
such that the mean-field potential U [σ] reduces to a func-
tion Ū(σ̄, µ, T ). Hence, the homogeneous grand potential
is given by

Ω̄(µ, T ) = Ū(Σ̄(µ, T ), µ, T ) , (12)

where Σ̄(µ, T ) is the global homogeneous minimum10 of
the effective potential at some µ and T . In this case, the
eigenvalues of the Dirac operator

D̄(x,y) = β(2π) δ(2)(x− y)
(
/∂y − γ2 µ+ σ̄

)
(13)

can be calculated analytically and one obtains from
Eq. (8)

Ū(σ̄, µ, T ) = 1
2g2 σ̄

2 − 1
π

∫ ∞
0

dp 1
β

∞∑
n=−∞

ln
(

(νn − iµ)
2

+ E2
p

)
= (14)

= 1
2g2 σ̄

2 − 1
π

∫ ∞
0

dp
{
Ep + 1

β

[
ln
(

1 + e−β(Ep+µ)
)

+ ln
(

1 + e−β(Ep−µ)
)]}

,

cf. Refs. [71, 86], with the energies Ep =√
p2 + σ̄2 and fermionic Matsubara frequencies [131]

νn = 2πT
(
n− 1

2

)
. Since the vacuum contribution of the

integrand in the second line is divergent in the ultra vi-
olet (UV), the expression is regularized, with a sharp
momentum cutoff Λ11. We choose a fixed vacuum ex-
pectation value (Fermion mass) Σ̄0 of σ as the renormal-
ization condition using the gap equation in the vacuum.
Other choices for a renormalization condition like, e.g.,
fixed sigma curvature mass or critical temperature, can
be related to our choice by simple rescalings since the
GN model has only one scale in the N →∞ limit in vac-
uum. The generic gap equation is defined as the extremal

10 As discussed in Section II B there are points in the µ-T plane,
where this minimum is not unique, when allowing exclusively for
spatially homogeneous condensation. This is the case exactly on
the first-order phase transition line between the HBP and SP.

11 Other regularization schemes are possible but in the renormal-
ized limit Λ2/Σ̄2

0 →∞ all observables are regularization scheme
independent in the present one-loop/mean-field computations as
long as the observables are computed in a consistent manner, viz.
in a unified regularization scheme.

condition

d
dσ̄ Ū(σ̄, µ, T )

∣∣
σ̄=Σ̄(µ,T )

!
= 0 , (15)

which evaluates to [88, 90]

Σ̄(µ, T )
[

1
g2 − `1(Σ̄(µ, T ), µ, T )

]
= 0 (16)

with

`1(σ̄, µ, T ) ≡ (17)

≡ 2
π

∫ ∞
0

dp 1
β

∞∑
n=−∞

1

(νn − iµ)
2

+ E2
p

=

= 1
π

∫ ∞
0

dp 1
Ep

[1− n(Ep, µ)− n(Ep,−µ)] .

After summation over n one introduces the Fermi-Dirac
distribution function [132–134]

n(E, µ) ≡ 1

eβ(E+µ) + 1
. (18)
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Evaluating Eq. (16) in the vacuum (T = µ = 0) and
excluding the trivial solution σ̄ = 0, one finds the explicit
renormalization condition [88]

1
g2 = 1

π

∫ ∞
0

dp
1√

p2 + Σ̄2
0

, (19)

where

Σ̄0 ≡ Σ̄(µ, T )
∣∣
µ=0,T=0

(20)

is the vacuum expectation value of σ in the mean-field
approximation. Consistently with Eq. (14) the UV di-
vergence of the integrand in Eq. (19) is regularized via a
sharp momentum cutoff Λ, which evaluates to [60, 88, 89]

1
g2 = 1

π
arcoth

(√
1 +

Σ̄2
0

Λ2

)
. (21)

This result for the four-Fermi coupling g2 reflects the
asymptotically free behavior of the original GN model
Eq. (1), cf. Refs. [60, 79], since g2 vanishes in the renor-
malized limit Λ2/Σ̄2

0 →∞, and is a notion of dimensional
transmutation. However, inserting Eq. (21) into Eq.
(14), the Λ-dependent contributions cancel each other
for Λ2/Σ̄2

0 → ∞. One obtains the universal, renormal-
ized result

Ū(σ̄, µ, T ) = 1
2π

{
1
2 σ̄

2
[

ln
(
σ̄2

Σ̄2
0

)
− 1
]

+ (22)

−
∫ ∞

0

dp p2

Ep
[n(Ep, µ) + n(Ep,−µ)]

}
,

where the medium contributions in the second term un-
der the momentum integral stem from partial integration
of the two posterior terms in the integrand in Eq. (14)12.
In order to find the homogeneous minimum Σ̄(µ, T ) of
Ū(σ̄, µ, T ) for all µ and T Eq. (22) is minimized (numer-
ically), which yields the well-known homogeneous phase
diagram with a first-order phase transition as shown in
Fig. 1.

D. Stability analysis of the spatially homogeneous
Z2 symmetric phase

In this section we turn to the theoretical considerations
behind the stability analysis to detect spatially inhomo-
geneous phases. Our derivation is based on Ref. [1], but
similar discussions can be found in Refs. [4, 14, 15, 17].

In order to relax the assumption of spatially homoge-
neous condensation and to search for a spatially IP, one
has to find the global x-dependent minima Σ(µ, T, x) of
the functional U [σ(x)] for all possible field configurations

12 The surface term vanishes in the renormalized limit Λ2/Σ̄2
0 →∞.

σ(x). Generically – as was already discussed in Section I
– this is a extremely challenging task, both analytically
and numerically. In case of the GN model in (1 + 1)
dimensions this problem was nevertheless solved analyt-
ically in Refs. [63–65] resulting in the full phase diagram
of the GN model which we discussed in Section II B.

For more involved models, no analytic procedures are
known to find self-consistent and energetically preferred
solutions for inhomogeneous condensate. Beyond mean-
field studies of explicitly inhomogeneous phases using
functional methods like the FRG are not feasible due to
the complex nature of the involved propagators which are
non-diagonal in momentum space. One exception which
leverages specific analytic properties of a known ansatz
function, viz. of the CDW, is discussed in Refs. [74, 135].
Also a full direct numeric minimization of the effective
potential becomes extremely challenging and expensive
due to the high dimensionality of the optimizations prob-
lem for a lot of models. On top of that, model-specific
problems may arise, such that there is no “one-fits-all”
approach for direct detection of spatially inhomogeneous
condensates.

Due to these challenges, the idea of an indirect
detection of inhomogeneous condensation arose, which
is based on analyzing the stability of the spatially
homogeneous ground state against inhomogeneous per-
turbations. This was already discussed and/or applied
in various contexts [13, 15, 17, 19, 55] and to some
extend also in the context of the (chiral) GN model
[3, 16]. The proposed approach allows to search for a
sufficient condition for an IP, i.e., if Σ̄(µ, T ) is unstable
against spatially inhomogeneous perturbation, the
true ground state has to be inhomogeneous. In general,
Σ̄(µ, T ) could, however, be stable against inhomogeneous
perturbations, but by a functional minimization of U [σ]
one may still find an inhomogeneous ground state. In
this scenario the local, homogeneous and the global,
inhomogeneous minimum are separated by a “potential
barrier”, which prevents a stability analysis and calls
for global minimization approaches. This implies that
the stability analysis is expected to work properly in
the vicinity of second-order phase boundaries between
homogeneous and inhomogeneous phases. Nonetheless,
this model and approximation independent method is
still a powerful tool for the search of exotic phases of
matter.

On a formal level the stability analysis is based on
a functional (Taylor) expansion of the effective action
Γ[σ] = Seff[σ] about a spatially homogeneous back-
ground field σ̄ in powers of an inhomogeneous pertur-
bation δσ(x). A spatially homogeneous ground state is
considered to be unstable, if the second-order coefficient
of this expansion exhibits some unstable direction in field
space, if it is evaluated on the spatially homogeneous
minimum Σ̄(µ, T ). The second-order Taylor coefficient is
the bosonic two-point function Γ(2), which is analyzed in
momentum space. An unstable direction in field space
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corresponds to a negative value Γ(2) for external spatial
momentum q, which can be associated to the wave-vector
of a spatially oscillating energetically preferred ground
state. This implies a lower ground state energy for the in-
homogeneous phase when compared to the homogeneous
one assuming the higher-order contributions of the ex-
pansion beyond the second-order are either positive or
negligible. Whether or not this assumptions are met de-
pends on the model, the expansion point and the magni-
tude of the inhomogeneous oscillations as we will discuss
in detail in Section III.

Hence, the stability analysis corresponds to searching
for a sign change in Γ(2) at some external momentum q
in the µ-T -plane.

Since the aim of this work is a proof of concept for this
method using the well-known solution of the GN model,
we will introduce the method and needed formulae in
detail in the following paragraphs. This theoretical dis-
cussion already foreshadows limitations of the methods.

We close this section with a discussion on the wave-
function renormalization, which is the second-order Tay-
lor coefficient/moment of the bosonic two-point function
in momentum space about q = 0.

1. The bosonic two-point function

We start the derivation of the bosonic two-point func-
tion by expanding the effective action Eq. (8) about the
homogeneous background field by splitting13

σ(x) = σ̄ + δσ(x) , (23)

with the inhomogeneous perturbation δσ(x). As a con-
sequence, the Dirac operator can also be split into the
sum of inverse propagator of free fermions with constant
mass σ̄ and a δσ-dependent term, i.e.,

D(x,y) = D̄(x,y) + β(2π) δ2(x− y) I2 δσ(x) . (24)

For the fermion-loop contribution to the effective action
in Eq. (8) this implies,

ln Det(D) = ln Det
(
D̄
(
1 + D̄−1δσ

))
= (25)

= Tr ln
(
D̄
)

+ Tr ln
(
1 + D̄−1δσ

)
=

= Tr ln
(
D̄
)
−
∞∑
n=1

1
n Tr

(
− D̄−1δσ

)n
,

13 Note that we do not start at the energetically lowest homoge-
neous state. All derived formulae are valid for an arbitrary σ̄,
although statements about a possible, inhomogeneous ground
state can only be made after setting σ̄ = Σ̄(µ, T ).

where we slightly eased our notation for the sake of read-
ability. Consequently, the full effective action Eq. (8) can
be rewritten as follows,

Seff =

∞∑
n=0

S(n)
eff , (26)

where S(n)
eff contains the n-th order contributions in δσ.

Specifically, we find for the three lowest-order terms14

S(0)
eff = βV

2g2 σ̄
2 − Tr ln

(
D̄
)
, (27)

S(1)
eff = β

g2 σ̄

∫ ∞
−∞

dx δσ − Tr
(
D̄−1δσ

)
, (28)

S(2)
eff = β

2g2

∫ ∞
−∞

dx δσ2 + 1
2 Tr

(
D̄−1δσD̄−1δσ

)
. (29)

The functional traces above are defined as

Tr
((
δσD̄−1

)n) ≡ (30)

≡
∫ n∏

j=1

d2x(j) tr
(
δσ(x(1)) D̄−1(x(1),x(2)) · · ·

· · · δσ(x(n)) D̄−1(x(n),x(1))
)
,

where tr denotes a trace in spinor space. These expres-
sions are evaluated in momentum space using the Fourier
representation,

D̄−1(x,y) ≡ (31)

≡ 1
βV

∑∫
p

eip·(x−y) D̄−1(p) =

= 1
β

∫ ∞
−∞

dp

2π

∞∑
n=−∞

ei[νn(τx−τy)+p(x−y)] D̄−1(νn, p) ,

where

D̄−1(νn, p) =
−iγν p̃ν + I2 σ̄

p̃2 + σ̄2
, p̃ ≡

(
νn − iµ

p

)
, (32)

is the Euclidean propagator in momentum space. The
Fourier representation of the inhomogeneous fluctuations
is

δσ(x) ≡
∫ ∞
−∞

dq

2π
eiqx δσ̃(q) . (33)

14 Note that we recover the effective potential for a spatially ho-
mogeneous background field as the lowest order contribution

S(0)
eff ≡ βV Ū , see Section II C.
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For the first-order contribution to the effective action (28)
one derives

S(1)
eff = δσ̃(0) β

g2 σ̄
[
1− g2 `1(σ̄, µ, T )

]
, (34)

which vanishes, if it is evaluated at σ̄ = Σ̄(µ, T )15, due to
the homogeneous gap equation (16). Because the first-
order contribution vanishes at the homogeneous mini-
mum Σ̄(µ, T ), instabilities towards inhomogeneous fluc-
tuations can be detected by analyzing the second-order
coefficient

S(2)
eff = β

2

∫ ∞
−∞

dq

2π
Γ(2)(σ̄, µ, T, q) δσ̃(q) δσ̃(−q) (35)

at σ̄ = Σ̄(µ, T ). Thereby

Γ(2)(σ̄, µ, T, q) ≡ (36)

≡ 1
g2 + ψ

p

p+ q

σ̄

q

σ̄

q

= 1
g2 − `1(σ̄, µ, T )− `2(σ̄, µ, T, q)

is the bosonic two-point function. The green fermion
propagators are given by Eq. (32) and the bosonic legs
are amputated when going from Eq. (35) to Eq. (36).
Here, we again used Eq. (17) and additionally defined

`2(σ̄, µ, T, q) ≡ 2
π

∫ ∞
0

dp 1
β

∞∑
n=−∞

p q − 2 σ̄2

(νn − iµ)2 + E2
p+q

1

(νn − iµ)2 + E2
p

. (37)

Carrying out the Matsubara sum, one obtains

`2(σ̄, µ, T, q) = −
(
q2

2 + σ̄2
)

2
π

∫ ∞
0

dp 1
Ep

(
1

E2
p+q−E2

p
+ 1

E2
p−q−E2

p

)
[1− n(Ep, µ)− n(Ep,−µ)] . (38)

Evaluating Eq. (37) at q = 0 first, the summation over Matsubara frequencies yields16

`2(σ̄, µ, T, 0) = −σ̄2 2
π

∫ ∞
0

dp 1
4E3

p

{
1− (1 + βEp)

[
n(Ep, µ) + n(Ep,−µ)

]
+ βEp

[
n2(Ep, µ) + n2(Ep,−µ)

]}
. (39)

Note that Eq. (36) for Γ(2)(σ̄, µ, T, q) is still ill-conditioned due to the UV divergency in `1(σ̄, µ, T ). This divergence
has to be, in accordance with Section II C, treated with the same momentum cutoff regularization, viz., the sharp
cutoff Λ. Again, we renormalize via the gap equation (19) in the vacuum, such that 1

g2 − `1(σ̄, µ, T ) remains finite.

The resulting expression for the renormalized bosonic two-point function is17

Γ(2)(σ̄, µ, T, q) = 1
π

{
1
2 ln

(
σ̄2

Σ̄2
0

)
+

∫ ∞
0

dp 1
Ep

[n(Ep, µ) + n(Ep,−µ)]− `2(σ̄, µ, T, q)
}
. (40)

This result can be further simplified, if at least one of the
four arguments σ̄, µ, T , and q is zero. All possible cases
and the respective simplifications of Γ(2) are listed in Ta-
ble I and the corresponding symbolic results can be found

15 This finding is intuitive, since the first-order contributions are
only proportional to the Fourier coefficient with zero momentum,
which are expected to vanish due to the extremal condition on

S(0)
eff [Σ̄].

16 The original reason why it is challenging to derive Eq. (39) di-
rectly from Eq. (38) is that the poles of the two propagators in
Eq. (37) become degenerate for q = 0.

17 For similar results in other (higher-dimensional) models, cf.
Refs. [14, 17].

in Appendix A. A detailed derivation and discussion of
the different cases is presented in Ref. [136].

Negative values of Γ(2)(Σ̄(µ, T ), µ, T, q) indicate an
instability of the homogeneous minimum Σ̄(µ, T ) with
respect to inhomogeneous perturbations of momentum
q. Consequently, the two-point function can be used
to search for inhomogeneous ground states for arbi-
trary µ and T . This can be done by analyzing
Γ(2)(Σ̄(µ, T ), µ, T, q) as a function of q for each point
(µ, T ) in the phase diagram. In practice one searches
for regions where Γ(2)(q) is negative.

We close this discussion by noting, that the sta-
bility analysis via the bosonic two-point function, as
it is presented in this section, goes beyond an im-
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proved Ginzburg-Landau expansion of the effective ac-
tion Eq. (8), where a finite order in derivative terms (cou-
plings) is taken into account [7–9]. The bosonic two-point
function Eq. (40) retains its full momentum structure,
which makes our approach applicable for wave vectors q
of all magnitudes without the limitation to small q. Ad-
ditionally, Γ(2) does not even need to be analytic for all q.
This was already pointed out in Ref. [14] and can be ex-
plicitly seen in Fig. 5 in Section III. It is also the reason,
why the stability analysis is still predicting instabilities
of the homogeneous condensate correctly for extremely
small and even vanishing temperatures, see below.

2. The bosonic wave-function renormalization

In the past it was speculated, if it might be sufficient
to study the curvature of Γ(2)(Σ̄(µ, T ), µ, T, q) at q = 0,
i.e., the second-order coefficient of a Taylor expansion of
the two-point function in momentum space about q = 0,
which is usually referred to as wave-function renormal-
ization [14, 15, 90],

Z(σ̄, µ, T ) ≡ 1
2

d2

dq2 Γ(2)(σ̄, µ, T, q)
∣∣∣
q=0

. (41)

It was speculated that a negative bosonic wave-function
renormalization might be sufficient to destabilize spa-
tially homogeneous ground states and to energetically
favor gradients in the spatial profile of the ground state
over a spatially uniform ground state field configuration.

As pointed out, e.g., in Refs. [55, 137] and during infor-
mal discussions at conferences, a negative wave-function
renormalization might only be some rather vague hint
towards the possibility for spatial modulations of the
ground state, but it is by no means a sufficient cri-
terion, because higher-order momentum dependencies
of the bosonic two-point function might again disfavor
spatially inhomogeneous condensation over homogeneous
condensation. Consequently, a study of the full momen-
tum structure of the two-point function is necessary.

Nevertheless, the wave-function renormalization is
an extremely important quantity in QFTs, as it di-
rectly enters the dispersion relations [58, 59]. It is
worth to derive a stand-alone symbolic formula instead
of merely extracting Z(Σ̄(µ, T ), µ, T ) numerically from
Γ(2)(Σ̄(µ, T ), µ, T, q). From Eq. (41) one finds [1, 136]

Z(σ̄, µ, T ) = 1
π

∫ ∞
0

dp 1
β

∞∑
n=−∞

1

[(νn + iµ)2 + E2
p ]2
×

×
(

1−
4
3 σ̄

2

(νn + iµ)2 + E2
p

)
. (42)

The Matsubara frequency summations can again be eval-
uated using the residue theorem and contour integration
by means of pen and paper calculations and one finally
obtains Eq. (B1) from Appendix B. Also this result can
be further simplified for the different scenarios, where σ̄,

TABLE I. The table lists the equation numbers of the explicit
expressions of Appendix A for the momentum-dependent
bosonic two-point function Γ(2)(σ, µ, T, q) in different limits.

The formulae for Γ(2)(σ, µ, T, q) are simplified in terms of
known functions as far as possible.

T σ µ q 6= 0 q = 0

6= 0

6= 0
6= 0 Eq. (A1) Eq. (A2)

= 0 Eq. (A3) Eq. (A4)

= 0
6= 0 Eq. (A5) Eq. (A8)

= 0 Eq. (A9) Eq. (A10)

= 0

6= 0
6= 0 Eq. (A11) Eq. (A12)

= 0 Eq. (A13) Eq. (A14)

= 0
6= 0 Eq. (A15) Eq. (A16)

= 0 Eq. (A17) “−∞”

TABLE II. The table lists the equation numbers of the ex-
plicit expressions of Appendix B for the bosonic wave-function
renormalization, Z(σ̄, µ, T ) in different limits. The formulae
for Z(σ̄, µ, T ) are simplified in terms of known functions as
far as possible.

T σ µ

6= 0

6= 0
6= 0 Eq. (B1)

= 0 Eq. (B2)

= 0
6= 0 Eq. (B3)

= 0 Eq. (B4)

= 0

6= 0
6= 0 Eq. (B5)

= 0 Eq. (B7)

= 0
6= 0 Eq. (B6)

= 0 “+∞”

µ, and T take either non-vanishing or vanishing values,
by (partially) executing the remaining momentum inte-
grations. In Table II we list all possible combinations of
σ̄, µ, and T being (non-)zero. More details on the ex-
plicit derivation and some consistency checks are again
presented in Ref. [136].

The physically relevant wave-function renormalization
is again obtained, if Eq. (42) is ultimately evaluated at
the homogeneous ground state σ̄ = Σ(µ, T ).

III. RESULTS

Finally, we turn to the actual results and the promised
proof of concept. We start in Section III A by present-
ing the q-dependence of the bosonic two-point function
at various points in the µ-T -plane. The discussion of
this momentum structure provides deeper insights in the
(physical pairing) mechanisms and the operating princi-
ple behind the stability analysis. Furthermore, we come
back to these results, when we comment on recent cal-
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FIG. 3. The bosonic two-point function Γ(2)(σ̄, µ, T, q)
as a function of the external momentum q at vanish-
ing chemical potential µ = 0 and fixed temperatures
T/Σ̄0 ∈ {0.0, 0.3, eγ/π, 1.0} evaluated at the respective homo-
geneous minimum σ̄ = Σ̄(µ, T ).

culations in the GN model beyond the mean-field ap-
proximation [81, 85, 126–128]. Based on the analysis in
Section III A the actual stability analysis of the homoge-
neous phase in the µ-T -plane can be performed and pre-
sented in Section III B. Here, we demonstrate that this
method is actually able to detect the well-known second-
order phase-transition line between the IP and the SP,
but also comment on its shortcomings. Afterwards in
Section III C, the momentum profile of the bosonic two-
point function, i.e., the dominant wave vector, is com-
pared with the analytic solutions from Ref. [63]. Finally,
we close the discussion of our results by presenting re-
sults for bosonic wave-function renormalization in the µ-
T -plane in Section III D. We again comment on the in-
sufficiency of the wave-function renormalization as a sin-
gle measure for the detection of spatially inhomogeneous
condensates. Furthermore, we discuss possibile impli-
cations on the quality of the mean-field approximation
based on our quantitative calculations.

A. The momentum structure of the bosonic
two-point function

The entire idea of the stability analysis is based on the
momentum structure/dispersion of the bosonic two-point
function. Therefore, this subsection contains a detailed
discussion of the various possible shapes of Γ(2), which
occur in the Gross-Neveu model at different points (µ, T )
in the phase diagram. Our discussion is based on Figs. 3
to 6 and 8, which were directly produced by (numeric)
evaluation of Eq. (40) or its simplified versions, see Ta-
ble I and Appendix A. If needed, the corresponding spa-
tially homogeneous ground state Σ̄(µ, T ) was determined
(numerically) by minimization of Eq. (22).

We begin our discussion at vanishing chemical
potential µ = 0. The corresponding plots for
Γ(2)(Σ̄(0, T ), 0, T, q) are presented in Fig. 3. One finds
that the bosonic two-point function is always positive

0.0 0.5 1.0 2µ 1.5 2.0 2.5 3.0

q

−0.2

0.0

0.2

0.4

Γ
(
2
)

FIG. 4. The bosonic two-point function Γ(2)(σ̄, µ, T, q) as a
function of the external momentum q at constant chemical
potential µ/Σ̄0 = 0.6 and vanishing temperature T = 0 eval-
uated at the homogeneous global minimum σ̄ = Σ̄(µ, 0) 6= 0
and the homogeneous local minimum σ̄ = 0.0. The unphys-
ical red curve (stemming from an evaluation away from the
homogeneous ground state, viz. σ̄ = 0.0) has a pole at q = 2µ.

and convex for all external momenta at µ = 0. This
is the case for zero and non-zero temperature, in the
Z2 symmetry broken and Z2 symmetric phase. Conse-
quently, the spatially homogeneous minimum is stable
against inhomogeneous perturbations. Furthermore, this
might also imply that a low order derivative expansion
of the bosonic effective action, e.g., in the context of
FRG calculations [81], should be a decent approxima-
tion and capture the relevant momentum dependencies.
Additionally, this confirms that it is unlikely to generate
crystalline like ground states at zero density18. Only at
the phase transition at T/Σ̄0 = eγ/π the curve for Γ(2)

has a single root at q = 0, which is expected, since the
bosonic curvature mass vanishes at this phase transition
[3, 86, 138, 139].

Next, Fig. 4 is discussed, where we plot Γ(2)(σ̄, µ, T, q)
at constant chemical potential µ/Σ̄0 = 0.6 and vanishing
temperature T = 0 for two evaluation points σ̄ in the con-
stant background field space. As can be seen from Fig. 1
this µ-T -point lies in the HBP implying that the true ho-
mogeneous ground state Σ̄(µ, 0) 6= 0. The two curves in
Fig. 4 show that it is crucial to evaluate Γ(2)(σ̄, µ, T, q)
at the correct homogeneous minimum σ̄ = Σ̄(µ, 0) 6= 0 as
the evaluation at σ̄ = 0 leads to negative values of Γ(2)

giving a false signal of instability. This seems somewhat
obvious, especially for the rather simple GN model in
mean-field approximation. However, for example in more
involved FRG model calculations as in Refs. [12, 140–149]
and especially for advanced truncations, it is sometimes
not obvious to determine the correct evaluation point in
field-space for correlation functions – at least during the
renormalization group flow.

18 Remember that the stability analysis is not sufficient to exclude
inhomogeneous condensation.
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FIG. 5. The bosonic two-point function Γ(2)(σ̄, µ, T, q)
as a function of the external momentum q at constant
chemical potential µ/Σ̄0 = 0.75 and fixed temperatures
T/Σ̄0 ∈ {0.0, 0.05, 0.2, 0.3, 0.5} evaluated at the respective ho-
mogeneous minimum σ̄ = Σ̄(µ, T ) = 0. The curve for T = 0.0
has a pole at q = 2µ, cf. Eq. (A15).

After covering the simple scenarios, we turn to Fig. 5,
where we plot the behavior of Γ(2) for different temper-
atures but constant chemical potential µ/Σ̄0 = 0.75. As
discussed in Section II B and Fig. 1, these µ-T -points are
all located in the SP and in the IP, such that the cor-
rect evaluation point in background field space is always
the trivial homogeneous minimum σ̄ = Σ̄(µ, T ) = 0. As
expected we find a manifestly positive and convex Γ(2)

at very high temperatures, where thermal fluctuations
are likely to vaporize any kind of crystal like structures
and condensates, because the temperature T and not the
chemical potential µ is the dominating external energy
scale. On the other hand, for moderate temperatures
one finds that Γ(2) develops a non-trivial minimum at
some non-zero q, which indicates that the energy scale
that is set by µ gains in importance. However, this non-
trivial minimum does not destabilize the spatially ho-
mogeneous ground state if Γ(2) stays manifestly positive.
Only below a certain threshold for the temperature (here
T/Σ̄0 ≈ 0.2), where the minimum of Γ(2) turns negative,
an instability is observed implying a breaking of the Z2

symmetry and translational invariance by some lower ly-
ing ground state Σ(µ, T, x). Exactly at the temperature
threshold the new x-dependent ground state Σ(µ, T, x) is
anticipated to exhibit a single wave vector Q, namely the
single touching root of Γ(2). The latter is equal to the
minimum of the two-point function. This is discussed in
detail in Section III C. In the following Q generically de-
notes the location of the minimum of Γ(2) in q direction,
i.e.,

Q ≡ argminq Γ(2)(Σ̄(µ, T ), µ, T, q) . (43)

Further decreasing the temperature, we observe in Fig. 5
that the q-range where Γ(2) is negative grows. Addition-
ally, the minimum of Γ(2) gets more and more negative
and ultimately turns into a pole at q = 2µ for T = 0.
The roots of Γ(2) which are poles of the propagator
1/Γ(2) signal a resonance in the respective anti-fermion-
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FIG. 6. The bosonic two-point function Γ(2)(σ̄, µ, T, q)
as a function of the external momentum q at constant
temperature T/Σ̄0 = 0.15 and fixed chemical potentials
µ/Σ̄0 ∈ {0.0, 0.6, 0.8, 1.0, 1.2} evaluated at the respective ho-
mogeneous minimum σ̄ = Σ̄(µ, T ).

fermion two-point function 〈ψ̄ ψ〉. This resonance is asso-
ciated with an anti-fermion-fermion bound state in which
an anti-fermion and a fermion of opposite chirality are
paired with a non-zero total momentum forming an in-
homogeneous chiral condensate. More details and qual-
itative as well as quantitative discussions of this pairing
mechanism can be found in Refs. [35–37]. The preferred
momenta for the anti-fermion-fermion pairs are from the
momentum range of negative Γ(2)(q) with the dominant
frequency Q typically associated with the minimum of
Γ(2), see Eq. (43). The dominant frequency of Q ∼ 2µ
at low and especially zero temperature is typical for such
inhomogeneous condensates as the anti-fermion-fermion
pairs are formed in vicinity of the Fermi surface [35–37].
Apart from the identification of the dominant frequency
Q the course of Γ(2)(q) for Γ(2) < 0 between the roots
(including the pole at q = 2µ for T = 0) is not very
instructive because the employed stability analysis using
a homogeneous expansion point is incapable of capturing
the full physics of the inhomogeneous chiral condensate
in this momentum regime. A notable exception occurs
when we have a single touching root, in Fig. 5 the case for
T ≈ 0.2, signaling the onset of instability of the homoge-
neous phase in favor of an inhomogeneous phase with an
explicit single momentum mode Q instead of a spectrum.
We will discuss this further in the following Section III B.

Lastly, Fig. 6 is considered, where again Γ(2) is pre-
sented at different points in the phase diagram. In con-
trast to the previous discussion, we do not vary the tem-
perature at constant chemical potential, but fix T/Σ̄0 =
0.15 and study curves at various chemical potentials. As
can be seen from Fig. 1 the slice through the phase dia-
gram at T/Σ̄0 = 0.15 is chosen, because of its rich phe-
nomenology at different µ. Starting from zero density at
µ = 0, a convex and manifestly positive function course of
Γ(2) is observed. Increasing µ the bosonic curvature mass
(the value of Γ(2) at q = 0) is lowered, but Γ(2) stays con-
vex. As soon as one leaves the HBP and crosses the first-
order phase boundary to the Z2 symmetric phase (for
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FIG. 7. The homogeneous effective potential Ū(σ̄, µ, T ) as
a function of the homogeneous background field σ̄ at con-
stant temperature T/Σ̄0 = 0.1 and fixed chemical potentials
µ/Σ̄0 ∈ {0.67, µc,hom(T )}, where µc,hom(T ) ≈ 0.686 is the
critical chemical potential of the homogeneous phase transi-
tion at this temperature.

spatially homogeneous condensates), cf. Fig. 1, Γ(2) im-
mediately develops a non-trivial negative minimum (for
µ/Σ̄0 = 0.8 at q/Σ̄0 ≈ 1.6 in Fig. 6), which indicates that
spatially inhomogeneous condensation is energetically fa-
vorable and µ completely dominates the dynamics as an
external energy scale, i.e., one enters the IP. However,
further increasing µ at non-zero T ultimately shifts the
Γ(2)-profile to larger values, such that at µ/Σ̄0 ≈ 1.0 the
minimal value of Γ(2) turns positive again, see Fig. 6.
This means that by further increasing µ we again cross
a phase transition line and enter ultimately the Z2 sym-
metric and translation invariant phase.

At this point we remark, that the q-profiles for
Γ(2) in Figs. 3 to 6 are very similar to courses of
Γ(2) that were sketched in Fig. 5 of Ref. [137] or the
ones calculated and displayed in different contexts in
Fig. 5 of Ref. [12], Fig. 2 of Ref. [15], and Fig. 8 of Ref. [4].

We conclude this subsection with a discussion of a
shortcoming of the stability analysis. To do so, a point
in the phase diagram is studied that is located ex-
tremely close to the first-order phase transition line in
Fig. 1, but still only just corresponds to the HBP, if only
spatially homogeneous condensation is considered. At
(µ, T )/Σ̄0 = (0.67, 0.1) the correct homogeneous min-
imum of the effective potential Ū is located at σ̄ =
Σ̄/Σ̄0 ≈ 1.0, while the point σ̄ = 0 corresponds to a local
minimum, which is of similar depth, see Fig. 7. However,
it is known from the exact solution [63–65], see Fig. 1,
that this point in the µ-T -plane actually corresponds to
the IP, if one allows for spatial modulations of the ground
state. For selected sample points we experienced during
this subsection that the stability analysis seems to work
well, if the expansion point is the trivial homogeneous
minimum of the effective potential in the Z2 symmetric
phase, thus Σ̄(µ, T ) = 0. Naturally the question arises
whether or not the stability analysis maintains its predic-
tive power even with non-trivial spatially homogeneous
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FIG. 8. The bosonic two-point function Γ(2)(σ̄, µ, T, q) in the
σ̄-q-plane for the point (µ, T )/Σ̄0 = (0.67, 0.1) in the phase
diagram. The solid black line marks the non-trivial minima.

expansion points Σ̄(µ, T ) 6= 0 are considered. Hence,
we present Γ(2)(σ̄, µ, T, q) at (µ, T )/Σ̄0 = (0.67, 0.1) as a
function of σ̄ and q in Fig. 8. Evaluating Γ(2) at large
values of σ̄, e.g., at the correct homogeneous minimum
and expansion point Σ̄/Σ̄0 ≈ 1, the bosonic two-point
function is manifestly positive and does not signal any in-
stability. The reason is that the non-trivial homogeneous
minimum and the spatially oscillating minimum are sep-
arated by a “potential barrier”. The correct expansion
point does no longer become a saddle point with an un-
stable direction when studying inhomogeneous perturba-
tions. In fact the analytic solution in the IP in terms
of Jacobi elliptic functions turns into rather pronounced
kinks close to the correct second-order phase transition
to the HBP, which means that the condensate almost os-
cillates between ±Σ̄(µ, T ) and cannot be described as a
small perturbation/oscillations around just one of these
two minima. At the local unphysical homogeneous min-
imum at σ̄ = 0, however, Γ(2) shows an instability and
the homogeneous field configuration is still smoothly con-
nected to the inhomogeneous minimum, because even the
pronounced kinks can still be described as oscillations
with considerable magnitude around σ̄ = 0.

In summary, we observe that for this model the stabil-
ity analysis fails to detect the inhomogeneous phase as
long as the correct expansion point Σ̄(µ, T ) 6= 0. This
was already partially discussed in Ref. [3] and observed
in Ref. [10], where a similar analysis of the GN was done
on a finite lattice. In the latter reference, it was stated
that this “potential barrier” was a result of the finite vol-
ume, but our present results in an infinite volume suggest
that this is a generic problem of the stability analysis in-
dependent of the considered volume.
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B. The phase diagram from the stability analysis

Based on our previous discussion, we turn to the cen-
tral result of this work. Within the following paragraphs
it is demonstrated and briefly discussed that the stability
analysis correctly detects the well-known phase transition
line between the SP and the IP, but fails in the region
between the HBP↔ IP phase boundary and the homo-
geneous first-order phase transition, cf. Fig. 1 and the
related discussion in Ref. [3].

As we argued before, we can trust this method
in the regions of the phase diagram where the mini-
mum and correct expansion point in field space is at
σ̄ = Σ̄(µ, T ) = 0 and especially where the inhomogeneous
condensate oscillates with a small amplitude about the
expansion point. This is the case in the GN model at the
phase boundary between the IP and the SP. Thus, it is
expected that the exact phase boundary and the line of
instability obtained via the stability analysis match. This
is supported by our (numerical) results that are plotted
in Fig. 9. The solid black line is the line where Γ(2) has
a single root at q = Q in the external momentum, i.e.,
Γ(2)(Σ̄(µ, T ), µ, T,Q) = 0 only for one wave vector q = Q,
see also Ref. [4]. The line extends from the LP to larger
µ and is identical to the exact phase boundary, which is
shown in Fig. 1.

Interestingly (but actually not really surprisingly) also
the second-order phase boundary between the SP and
HBP is correctly detected using Γ(2). The reason is that
the bosonic curvature mass vanishes along this phase
transition line [3, 86, 138, 139]. The curvature mass, how-
ever, is defined as Γ(2)(Σ̄(µ, T ), µ, T, q) evaluated at van-
ishing external momentum q = 0. The minimum of Γ(2)

in q-direction is located at q = 0 above the LP, viz. for
T ≥ TL, as discussed in the previous subsection, which
explains the recovery of the SP↔HBP phase boundary
from the employed two-point function.

Nonetheless, at the phase boundary of the HBP and
IP, cf. Fig. 3, the amplitude of the inhomogeneous con-
densate is large and the inhomogeneous condensate al-
most oscillates between the values of the homogeneous
minima, i.e., between ±Σ̄(µ, T ). As soon as one crosses
the first-order phase transition and needs to switch to one
of these minima as the formal correct expansion point,
the initial assumption of the stability analysis of small
perturbations about the expansion point is violated and
one finds a deviation from the exact result. However,
the related analysis in Ref. [2] is able to qualitatively de-
scribe this phase boundary. This is possibly due to the
fact that the employed fermion doubler trick takes also
higher orders in the expansion of the effective potential
into account. Although, these higher-order coefficients
do not match the bosonic n-point functions Γ(n) nec-
essarily, it hints to the fact that an evaluation of these
higher-order n-point functions might improve the present
analysis in the problematic region next to the HBP↔ IP
phase boundary, cf. Ref. [26].

The additional color map in Fig. 9 shows the

value of the wave-function renormalization Z(σ̄, µ, T ),
Eq. (42), evaluated at the true homogeneous minimum
σ̄ = Σ̄(µ, T ). It is calculated via the appropriate formu-
lae from Appendix B that are listed in Table II. We
also cross-checked that these results coincide with re-
sults, which are obtained by a numeric evaluation of
the q-derivatives of Γ(2) in Eq. (41). In Eq. (41) the
wave-function renormalization is defined as the curva-
ture in q-direction of Γ(2) at q = 0. In the SP the wave-
function renormalization is given by Eq. (B3) such that
the (Z = 0)-line is given by µ/T = µL/TL ' 1.91019. It
is immediately clear that a negative Z(Σ̄(µ, T ), µ, T ) can
only be an indication that an inhomogeneous perturba-
tion might lower the action, because negative curvature
of Γ(2) at q = 0 does not guarantee that the function
has a root. This scenario is found in the region be-
tween the (Z = 0)-line and the SP↔ IP phase boundary
right of the LP, where the wave-function renormaliza-
tion is negative, but the spatially homogeneous ground
state is stable. A similar region was recently found in
fully-fledged FRG calculations for QCD [55] and is also
discussed in Refs. [56–59] and referred to as moat and Lif-
shitz regimes20. Regions of inhomogeneous phases can be
included in such moat regimes, like in the present study,
but they do not have to be present since Z < 0 is just
a necessary but not sufficient condition for instability of
the homogeneous phase in favor of inhomogeneous con-
densation. Other exotic phases of matter, like a quantum
spin liquid [57], might be possible and energetically pre-
ferred over a typical homogeneous static ground state in
the moat regime – if the particle content and space-time
dimensionality of the model is more involved.

In summary, an inhomogeneous field configuration
with momentum q that lowers the effective action can
only be guaranteed to exist through our analysis, when
Γ(2)(Σ̄(µ, T ), µ, T, q) < 0 and Σ̄(µ, T ) = 0, which corre-
sponds to the hatched region (bottom, right) in Fig. 9.

C. The wave vector of the inhomogeneous
perturbation and the wave vector of the true

inhomogeneous condensate

Even though the stability analysis is expected to work
only for very small perturbations about a vanishing ho-
mogeneous condensate, we found that it even correctly
predicts inhomogeneous condensation at points at the
right of the homogeneous first-order phase transition at

19 This specific result for the (Z = 0)-line has a connection [135]
to results of a Ginzburg-Landau analysis in the GN model, see,
e.g., Refs. [81, 120, 135].

20 Moat or Lifshitz regimes are regions of negative wave function
renormalization, which signals a dispersion relation with a min-
imum at a non-zero momentum [56–59]. The expression moat
regime [58, 59] goes back to the dispersion relations encountered
in these phases, cf. Fig. 5, resembling the deep, broad ditch –
the moat – in front of a castle wall.
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FIG. 9. The bosonic wave-function renormalization
Z(Σ̄(µ, T ), µ, T ) (heat map), line of vanishing wave-function
renormalization Z(Σ̄(µ, T ), µ, T ) = 0 (thick black dashed
line), and the line of vanishing bosonic two-point func-

tion Γ(2)(Σ̄(µ, T ), µ, T,Q) = 0 (thick, black solid line) in
the µ-T -plane. In region marked by the diagonal hatching
using thin black solid lines (bottom-right corner) we find

Γ(2)(Σ̄(µ, T ), µ, T,Q) < 0, i.e., the homogeneous minimum
is unstable with respect to an inhomogeneous perturbation.

extremely small temperatures which are far away from
the second-order SP↔ IP phase transition line. At these
points one still uses the appropriate expansion point
Σ̄(µ, T ) = 0, but the perturbations are no longer small
and the true condensate has a spectrum of wave vectors
instead of a single frequency/wave vector, cf. Fig. 2.

One might thus wonder, if the single wave vector Q
at the phase transition line actually matches the wave-
vector of the true solution, i.e., the dominating wave vec-
tor of the Jacobi elliptic functions.

Therefore, this section is used to compare the dominat-
ing wave vector of the correct inhomogeneous condensate
minimizing the effective action

qΣ ≡ argmaxq Σ̃(µ, T, q) (44)

with the wave vector that minimizes the two-point func-
tion Q as defined in Eq. (43). While Q is the direction
of the largest curvature of the action at the saddle point,
it does not necessarily coincide with qΣ.

In Fig. 10 these two quantities are plotted for two dif-
ferent temperatures. At T = 0, Q approaches qΣ for
increasing chemical potential21 and at T/Σ̄0 = 0.15 the
two momenta match at the phase boundary. This is ex-
pected as the amplitude of the inhomogeneous conden-
sate Σ(µ, T, x) at this point is infinitesimal and therefore

21 Plots similar to Fig. 10 of the wave vector of some inhomogeneous
condensate plotted over baryon density (chemical potential), can
be found in, e.g., Fig. 2 of Ref. [30], Fig. 2 of Ref. [31], Figs. 6 &
7 of Ref. [33].
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FIG. 10. The minimum of the bosonic two-point func-
tion Q(µ) and the dominating wave vector of the true in-
homogeneous condensate qΣ(µ) as a function of the chemi-
cal potential at constant temperatures T/Σ̄0 ∈ {0.0, 0.15}.
The colored regions mark the range of momenta q, where
Γ(2)(Σ̄(µ, T ), µ, T, q) < 0.

the stability analysis becomes exact. At small chemi-
cal potential – as already discussed before – the stability
analysis does not detect an inhomogeneous phase unless
Σ̄(µ, T ) = 0, right of the homogeneous first-order phase
transition. At intermediate chemical potential, Q and qΣ

do not agree. However, qΣ is within the interval where
Γ(2) < 0 is predicted by the stability analysis, which
means that the latter at least captures the dominating
wave vectors.

In Fig. 11 we again compare Q and qΣ. This time we
plot Q, Q− qΣ, and qΣ in the µ-T -plane in using differ-
ent color maps. The previously discussed trend extends
to the whole temperature range. The difference Q − qΣ

approaches zero close to the IP↔SP boundary and its
magnitude is the largest close to the HBP↔ IP bound-
ary, where Q is zero (because the stability analysis is
ill-conditioned) and qΣ is maximal. On the other hand,
Q is also non-zero in the region of Z < 0 above the phase
transition line, but does not correspond to an inhomo-
geneous perturbation that lowers the action, since Γ(2)

is manifestly positive. We want to emphasize that this
does not mark a failure of the employed method, but is
rather just an effect of the negative wave-function renor-
malization Z. A discussion similar to our elaboration on
Fig. 11 can be found in a different context in Ref. [4].

D. The bosonic wave-function renormalization

Before closing our discussion we shortly return to our
results for the bosonic wave-function renormalization and
their implications.

In Fig. 9 the bosonic wave-function renormalization
Z(Σ̄(µ, T ), µ, T ) was already presented in the entire µ-T -
plane. We stress again that negative values of Z are not
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FIG. 11. (a) Q, (b) Q− qΣ and (c) qΣ in the (µ, T )-plane. Note that the middle plot (b) has a colormap that is linear around
0 and logarithmic for values |(Q− qΣ)/Σ̄0| > 0.1.

a sufficient criterion for instabilities of the homogeneous
phase, which is also discussed in Ref. [55]. However, in
regions of the phase diagram where the stability analy-
sis is expected to work, i.e., regions with Σ̄(µ, T ) = 0,
a negative wave-function renormalization is a necessary
condition22 and central to the search of inhomogeneous
phases as discussed in length in Refs. [56–59].

Apart from this, one can learn a lot from the values
of the wave-function renormalization alone. In a first
rather rough approximation, we can use Z as a mea-
sure for the importance of bosonic quantum fluctuations,
because it accompanies the trivial quadratic momentum
dependence of the bosonic field in the action – the ki-
netic term – which drives fluctuations. Inspecting the
classical UV action of the GN model, we find that it
lacks by construction a term like Z

2 (∂µφ)2 and also all
other bosonic higher-order derivative terms, which could
partially be associated to the higher-order Taylor coeffi-
cients/moments of Γ(2) in momentum space. Hence, in
the classical action of the GN model all these coefficients
are initially zero, because there are no bosonic fluctua-
tions in the UV – there are only non-interacting fermions
– and φ is only introduced as an auxiliary field. However,
by integrating out all fermionic quantum fluctuations and
interactions one finds that the system gets strongly cou-
pled and anti-fermion-fermion pairs are bosonized and
eventually condense, if external energy scales (µ & T )
are not too large [86, 88, 90]. Ultimately, also all of the
bosonic derivative couplings are generated by integrat-
ing out the fermion fluctuations, as can be seen from our
results for Z and Γ(2). From an FRG perspective this

22 For the sake of completeness, it is strictly speaking not a neces-
sary condition. There might be more exotic dispersion relations
that allow for positive Z, but regions of negative Γ(2) at larger
external momentum q.

is a rather natural finding, see Ref. [148] and references
therein. Though, the generation of all these bosonic ki-
netic couplings actually implies that the system tends
to drive bosonic quantum fluctuations by itself, which
is only hindered by the artificially suppression of the
N →∞ limit. Therefore, one might conclude that our re-
sults for the bosonic wave-function renormalization (and
the bosonic two-point function) in the N →∞ limit may
– at least to some extend – predict the insufficiency of
the mean-field approximation at finite N . In consequence
one might state, that at least in those areas of the phase
diagram, where the bosonic wave-function renormaliza-
tion significantly deviates from zero and rapidly changes
its value (and sign) with µ and T , bosonic quantum fluc-
tuations will play an important role, if the N → ∞ ap-
proximation is relaxed and calculations are performed at
finite N . Interestingly, such values are indeed observed,
especially close to the first-order phase transition and
right below the LP. This is actually expected, since in
these regions correlation length usually diverge and fluc-
tuations of all orders become relevant.

To better visualize the behavior of Z, we additionally
plot slices through the color map of Fig. 9: Fig. 12 shows
Z as a function of µ at different fixed T , while Fig. 13
shows Z as a function of temperature and different fixed
µ. The slices are chosen in a way to cover all interesting
regions of the phase diagram.

From both plots we observe that the wave-function
renormalization increases (decreases) close to the phase
transition line23 and then jumps from positive to negative
values at the phase transition. The region of drastically
rising Z is exactly the region adjacent to the first-order

23 Except for T = 0, where Z(Σ̄(µ, 0), µ, 0) is independent of µ for
Σ̄(µ, 0)2 > µ2 ⇔ µ < 1√

2
, see Eq. (B5). This is a notion of the

silver blaze property.
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FIG. 12. The bosonic wave-function renormalization
Z(σ̄, µ, T ) as a function of the chemical potential at fixed
temperatures T ∈ {0.0, 0.2, 0.4, 0.6} evaluated at the homo-
geneous minimum σ̄ = Σ̄(µ, T ).
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FIG. 13. The bosonic wave-function renormalization
Z(σ̄, µ, T ) as a function of temperature at fixed chemical po-
tentials µ ∈ {0.55, 0.65, 0.75} evaluated at the homogeneous
minimum σ̄ = Σ̄(µ, T ).

phase transition, where the stability analysis fails. Thus,
it seems as if the wave-function renormalization already
signals that fluctuations and gradient driven bosonic field
configurations are of great importance in this region.
Moreover, in this region the phase boundary described
by the analysis in Ref. [2] deviates the most from the
exact result.

IV. CONCLUSION AND OUTLOOK

A. Conclusion

We have applied the stability analysis to the (1 + 1)-
dimensional GN model in the mean-field approximation
and benchmarked its ability to detect inhomogeneous
condensation against the exact solution.

It was shown in Section III B that the stability anal-
ysis is able to accurately predict the second-order phase
transition between the IP and SP as the amplitude of the
inhomogeneous condensate Σ at this phase boundary be-

comes infinitesimal and its functional form is described
by a harmonic wave. Matching the initial expectation,
the stability analysis fails to correctly detect the phase
boundary between the HBP and IP. This is due to the
fact that there is a “potential barrier” between the inho-
mogeneous condensate and the finite homogeneous mini-
mum. Therefore, the region of the IP, where Σ̄(µ, T ) 6= 0,
is completely undetected by the stability analysis.

Moreover, we compared the wave-vector
that minimizes the bosonic two-point function
Q = argminq Γ(2)(Σ̄(µ, T ), µ, T, q) with the domi-
nating wave-vector of the inhomogeneous condensate
qΣ = argmaxq Σ̃(µ, T, q) in Section III C. Inside the IP
close to the phase boundary between the SP and IP
these two quantities agree very well due to the relatively
small amplitudes of the sine-shaped condensate. Further
away from this phase boundary, the amplitude of the
inhomogeneous condensate is large, thus violating an
assumption of the stability analysis. This is reflected
in a small but finite tension of Q and qΣ. There are
two regions where Q and qΣ exhibit completely different
behavior. Inside the IP for µ < µc,hom(T ) the stability
analysis fails - as previously described - by predicting
Q = 0 while qΣ > 0. The second region is located
in the SP where the wave-function renormalization is
negative resulting in a finite Q, while qΣ = 0. However,
in this region the stability analysis does not fail as an
inhomogeneous phase is not detected, since Γ(2) > 0 for
all wave-vectors.

Also, the bosonic wave-function renormalization Z
was investigated. The existence of a region where the
wave-function renormalization is negative and the homo-
geneous minimum is stable under inhomogeneous per-
turbations, i.e., Z < 0 and Γ(2)(Σ̄(µ, T ), µ, T, q) > 0 ∀q,
explicitly shows that a negative Z is only a necessary
condition for an inhomogeneous phase24.

In summary, these findings show that the stability
analysis can indeed be an appropriate tool in the search
for second-order phase boundaries of inhomogeneous
phases. By using the 1 + 1-dimensional GN model as a
test ground the shortcomings of this methods were quan-
tified and it was demonstrated that it can also give a rea-
sonable estimate of quantities within the inhomogeneous
phase like the dominating wave-vector of the condensate.
These findings present a supplement and extension of the
related analysis in Ref. [2], where the importance of the
bosonic two-point function was already emphasized, and
earlier works by Thies et al., especially Ref. [3], which is
partially based on similar methods.

24 This statement is limited to the regions where the stability anal-
ysis is expected to work, i.e., where Σ̄(µ, T ) = 0.
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B. Outlook

A recent FRG calculation of the QCD phase diagram
found a region with a negative wave-function renormal-
ization [55], which was also identified as a necessary
condition for inhomogeneous phases in Refs. [56–59]. We
showed, however, in our simple test case that it is vital
to consider the full momentum structure of the bosonic
two-point function Γ(2) and not only Z < 0 in order to
accurately determine if an inhomogeneous condensate is
favored over a homogeneous one. With our results we
want to motivate that future studies in the search for
inhomogeneous phases should take the full momentum
dependent two-point function into account.

In Section III D we argued that the occurrence of large
values of the wave-function renormalization Z indicate
that bosonic quantum fluctuations that are artificially
suppressed in the N → ∞ limit play an important role
in the dynamics of the system at finite N . Of course,
we are aware that at finite N the coefficients of the
bosonic kinetic terms will also react to the bosonic
fluctuations, which they drive. This can be modeled,
e.g., via a comprehensive FRG calculation or by directly
simulating the GN model at finite N . First calculations
at finite N were performed by the authors and collab-
orators and indicate that bosonic fluctuations indeed
play an important role in the correct description of the
phase structure of the GN model and might destabilize
condensates of all types for all µ and T > 0 [81, 128].
Notwithstanding these first studies of the GN model at
finite N , further research and development is needed
to gain a robust understanding of the phase structure,
possible truncation artifacts in FRG computations, and
finite size effects in lattice Monte-Carlo simulations.

Furthermore, we also want to comment on another ap-
plication within the context of spatially inhomogeneous
condensation, where the wave-function renormalization
(but also higher derivative couplings or even the full two-
point function itself) might be of interest and use – con-
ceptually and technically independent of a specific model
or theory and the method of computation. Having cal-
culated an effective IR action, like Eq. (22), as well as
some derivative couplings like Z or even Γ(2)(q) itself
from an arbitrary method and in an arbitrary trunca-
tion/approximation, one may use the quantum equation
of motion to derive partial differential equations for the
quantum (mean) fields that describe the state of least en-
ergy, i.e., the ground state. Assuming static solutions of
these equations, but allowing for variations in spatial di-

rections, one may solve these partial/ordinary25 differen-
tial equations to obtain an approximation to the ground-
state of the system. Hereby, one uses the potential and
the coefficients of the derivative terms, which were previ-
ously calculated by the respective method of choice. The
quality of this approximation to the true ground state of
the system strongly depends on the number and impor-
tance of the derivative couplings and the quality of the
input effective potential. First promising results were al-
ready produced by the authors, but details and results
on this approach will be presented elsewhere.
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20

Appendix A: The bosonic two-point function

In this appendix, we list all explicit expressions for the
renormalized bosonic two-point function (36) depending
on the constant background field σ̄, the chemical poten-
tial µ, the temperature T , and the external momentum q.
Details on the derivation of all expressions are presented

in Ref. [136]. All results can be derived using sharp UV
and IR cutoff regularizations, while the UV divergences
are resolved using the asymptotic freedom of the four-
Fermi coupling, Eq. (21). The challenging part of some
of the derivations are the IR divergences that occur for
the special case σ̄ = 0.

For σ̄ 6= 0, µ 6= 0, T 6= 0, q 6= 0 we find

Γ(2)(σ̄, µ, T, q) = 1
π

{
1
2 ln

(
σ̄2

Σ̄2
0

)
+

√
(2σ̄)2

q2 + 1 arcoth
(√

(2σ̄)2

q2 + 1
)

+

∫ ∞
0

dp 1
Ep

[
n(Ep, µ) + n(Ep,−µ)

]
+

− 2
(

q2

(2σ̄)2 + 1
)
σ̄2

∫ ∞
0

dp 1
Ep

(
1

2pq+q2 − 1
2pq−q2

) [
n(Ep, µ) + n(Ep,−µ)

]}
. (A1)

Note that the remaining integral in the second line has a pole at p = |q|
2 , which needs careful numeric treatment, but

can be evaluated in terms of the Cauchy principal value. The same pole also appears in some of the following results.
For q = 0 but σ̄ 6= 0, µ 6= 0, and T 6= 0, we obtain,

Γ(2)(σ̄, µ, T, 0) = 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+ 1 +

∫ ∞
0

dp 1
Ep

[
n(Ep, µ) + n(Ep,−µ)

]
+ (A2)

− σ̄2

∫ ∞
0

dp 1
E3
p

{
n(Ep, µ) + n(Ep,−µ)− Ep

T

[
n2(Ep, µ) + n2(Ep,−µ)− n(Ep, µ)− n(Ep,−µ)

]}]
.

On the other hand, for µ = 0, Eq. (A1) is given by

Γ(2)(σ̄, 0, T, q) = 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+

√
(2σ̄)2

q2 + 1 arcoth
(√

(2σ̄)2

q2 + 1
)

+ 2

∫ ∞
0

dp 1
Ep
n(Ep, 0) + (A3)

− 4
(

q2

(2σ̄)2 + 1
)
σ̄2

∫ ∞
0

dp 1
Ep

(
1

2pq+q2 − 1
2pq−q2

)
n(Ep, 0)

]
.

For µ = 0 and q = 0 Eq. (A2) simplifies to

Γ(2)(σ̄, 0, T, 0) = 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+ 1 + 2

∫ ∞
0

dp 1
Ep
n(Ep, 0)− (A4)

− 2 σ̄2

∫ ∞
0

dp 1
E3
p

{
n(Ep, 0)− Ep

T

[
n2(Ep, 0)− n(Ep, 0)

]}]
.

On the other hand, for σ̄ = 0 the bosonic two-point function reads,

Γ(2)(0, µ, T, q) = 1
π

{
1
2 ln

(
(2T )2

Σ̄2
0

)
− γ−DLi0

(
µ
T

)
+ (A5)

+ q2

2

∫ ∞
0

dp 1
p

(
1

2pq+q2 − 1
2pq−q2

) [
1− n(p, µ)− n(p,−µ)

]}
,

where

DLi2n(y) ≡
[
∂
∂sLis(−ey) + ∂

∂sLis(−e−y)
]
s=2n

= (A6)

= −δ0,n( log(2π) + γ ) + (−1)1−n(2π)2n Reψ(−2n)
(

1
2 + i

2πy
)
, (A7)
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and Lis(z) is the polylogarithm26, γ is the Euler-Mascheroni constant, and Eq. (A7) holds only for 2n ≤ 0.
For q = 0 the previous expression turns into

Γ(2)(0, µ, T, 0) = 1
π

[
1
2 ln

(
(2T )2

Σ̄2
0

)
− γ−DLi0

(
µ
T

)]
. (A8)

On the other hand, for µ = 0 Eq. (A5) transforms to

Γ(2)(0, 0, T, q) = 1
π

{
1
2 ln

(
(πT )2

Σ̄2
0

)
− γ + q2

2

∫ ∞
0

dp 1
p

(
1

2pq+q2 − 1
2pq−q2

) [
1− 2n(p, 0)

]}
. (A9)

Furthermore, Eq. (A8) in the limit µ
T → 0 reads,

Γ(2)(0, 0, T, 0) = 1
π

[
1
2 ln

(
(πT )2

(hσ0)2

)
− γ

]
. (A10)

However, starting with Eq. (A1) and considering T = 0 first, we obtain,

Γ(2)(σ̄, µ, 0, q) = (A11)

= 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+

√
1 + (2σ̄)2

q2 arcoth
(√

1 + (2σ̄)2

q2

)]
+


1
π

artanh
(√

1− σ̄2

µ2

)
0 ,

−

−


1

2π

√
1 + (2σ̄)2

q2

artanh

 2σ̄2

µq +

√
1− (σ̄)2

µ2√
1+

(2σ̄)2

q2

+ artanh

− 2(σ̄)2

µq +

√
1− (σ̄)2

µ2√
1+

(2σ̄)2

q2

 , if σ̄2 < µ2 ,

0 , if σ̄2 ≥ µ2 .

Either setting q = 0 in the previous expression or studying Eq. (A2) for T = 0 we gain,

Γ(2)(σ̄, µ, 0, 0) = 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+ 1
]

+


1
π

artanh
(√

1− σ̄2

µ2

)
− 1

π

(
1− σ̄2

µ2

)− 1
2

, if σ̄2 < µ2 ,

0 , if σ̄2 ≥ µ2 .
(A12)

For µ = 0 Eq. (A11) reads

Γ(2)(σ̄, 0, 0, q) = (A13)

= 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+

√
1 + (2σ̄)2

q2 arcoth
(√

1 + (2σ̄)2

q2

)]
.

In the limit µ
σ̄ → 0 of Eq. (A12) or for q

σ̄ → 0 of Eq. (A13)
we find,

Γ(2)(σ̄, 0, 0, 0) = 1
π

[
1
2 ln

(
σ̄2

Σ̄2
0

)
+ 1
]
. (A14)

26 We experienced that the numerical evaluation of DLi2n(y) for
2n ≤ 0 is more stable and precise, if it is further expressed
and numerically evaluated in terms of the polygamma functions
ψ(−2n)(z) with complex argument z using Eq. (A7) [135].

From Eq. (A11) for σ̄ → 0 it can be derived,

Γ(2)(0, µ, 0, q) = 1
2π ln

(
|4µ2−q2|

Σ̄2
0

)
. (A15)

For q = 0 this simplifies to

Γ(2)(0, µ, 0, 0) = 1
2π ln

(
4µ2

Σ̄2
0

)
, (A16)

while for µ = 0 we find,

Γ(2)(0, 0, 0, q) = 1
2π ln

(
q2

Σ̄2
0

)
. (A17)

Appendix B: The bosonic wave-function
renormalization

In this appendix the renormalized expressions for
the bosonic wave-function renormalization Z(σ̄, µ, T ) are
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presented, which are listed in Table II, depending on the
position in background field space σ̄, the chemical poten-
tial µ, and the temperature T . A detailed discussion is

again presented in Ref. [136].
The wave-function renormalization for σ̄ 6= 0, µ 6= 0,

T 6= 0 reads

Z(σ̄, µ, T ) = (B1)

= 1
4π

[
1
3

1
σ̄2 −

∫ ∞
0

dp 1
E3
p

{
n(Ep, µ) + n(Ep,−µ)− Ep

T

[
n2(Ep, µ) + n2(Ep,−µ)− n(Ep, µ)− n(Ep,−µ)

]}
+

+ σ̄2

∫ ∞
0

dp 1
E5
p

{
n(Ep, µ) + n(Ep,−µ)− Ep

T

[
n2(Ep, µ) + n2(Ep,−µ)− n(Ep, µ)− n(Ep,−µ)

]
+

+ 1
3

E2
p

T 2

[
2n3(Ep, µ) + 2n3(Ep,−µ)− 3n2(Ep, µ)− 3n2(Ep,−µ) + n(Ep, µ) + n(Ep,−µ)

]}]
.

For µ = 0 this expression simplifies and we find

Z(σ̄, 0, T ) = 1
4π

[
1
3

1
σ̄2 − 2

∫ ∞
0

dp 1
E3
p

{
n(Ep, 0)− Ep

T

[
n2(Ep, 0)− n(Ep, 0)

]}
+ (B2)

+ 2 σ̄2

∫ ∞
0

dp 1
E5
p

{
n(Ep, 0)− Ep

T

[
n2(Ep, 0)− n(Ep, 0)

]
+ 1

3

E2
p

T 2

[
2n3(Ep, 0)− 3n2(Ep, 0) + n(Ep, 0)

]}]
.

On the other hand, for σ̄ = 0, but µ 6= 0 and T 6= 0, the
bosonic wave-function renormalization reads

Z(0, µ, T ) = − 1
8π

1
T 2 DLi−2

(
µ
T

)
, (B3)

where definition (A6) was used. For µ = 0, this simplifies
to

Z(0, 0, T ) = 7
16π3

1
T 2 ζ(3) , (B4)

which is consistent with Eq. (3.17) of Ref. [90]. Here
ζ(s) is the Riemann zeta function. However, studying

the limit T → 0 first, we find

Z(σ̄, µ, 0) = (B5)

= 1
12π

1
σ̄2 −


1

12π
1
σ̄2

(
1− σ̄2

µ2

)− 3
2

, if σ̄2 < µ2 ,

0 if σ̄2 ≥ µ2 .

Furthermore, for σ̄ = 0 this simplifies to

Z(0, µ, 0) = − 1
8π

1
µ2 , (B6)

while for µ = 0 one obtains

Z(σ̄, 0, 0) = 1
12π

1
σ̄2 , (B7)

which is consistent with Eq. (3.19) of Ref. [90].
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