Eine elektrochemische und strukturelle Studie an den Eisensilylamiden Fe[N(SiMe₃)₂]₂ und Fe[N(SiMe₃)₂]₃

An Electrochemical and Structural Study of the Iron Silylamides $\text{Fe}[N(\text{SiMe}_3)_2]_2$ and $\text{Fe}[N(\text{SiMe}_3)_2]_3$

Günter Margraf, Frauke Schödel, Inge Sänger, Michael Bolte, Matthias Wagner und Hans-Wolfram Lerner

Institut für Anorganische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany

Reprint requests to Dr. Hans-Wolfram Lerner. Fax: ++49-69-79829260.

E-mail: lerner@chemie.uni-frankfurt.de

Z. Naturforsch. **2012**, 67b, 549 – 556 / DOI: 10.5560/ZNB.2012-0060 Received March 1, 2012

Herrn Professor Wolfgang Beck zum 80. Geburtstag gewidmet

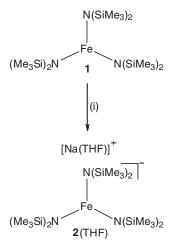
The bis(trimethyl)silylamido complex Na(THF){Fe[N(SiMe₃)₂]₃} and the disilane $tBu_3SiSitBu_3$ were obtained from the reaction of Fe[N(SiMe₃)₂]₃ with the sodium silanide Na(THF)₂[SitBu₃] in a mixture of benzene and THF. Single crystals of Na(THF){Fe[N(SiMe₃)₂]₃} suitable for X-ray diffraction were grown from the reaction solution at ambient temperature (orthorhombic, C222₁, Z = 4). The solid-state structure features a contact-ion pair with two short N–Na contacts. The THF adducts {M(THF)₂[N(SiMe₃)₂]₂} reacted with 2,2'-bipyridine to give the corresponding complexes {M(2,2'bipy)[N(SiMe₃)₂]₂} (M = Mn, Fe). Their structures (M = Fe: orthorhombic, $Pca2_1$, Z = 8; M = Mn: orthorhombic, Pbca, Z = 8) feature monomeric units. The cyclic voltammogram of Fe[N(SiMe₃)₂]₃ revealed a reversible redox transition with the potential of -0.523 V ($E_{1/2}$), which was assigned to the Fe(III)[N(SiMe₃)₂]₃ \rightarrow Fe(II)[N(SiMe₃)₂]₃ redox transition, whereas the compounds {Fe(THF)₂[N(SiMe₃)₂]₂} ($E_{ox} = -0.379$ V) and {Fe(2,2'bipy)[N(SiMe₃)₂]₂} ($E_{ox} = -0.436$ V) featured irreversible oxidation waves. The related manganese bis(trimethylsilyl)amido complexes {Mn(THF)₂[N(SiMe₃)₂]₂} ($E_{ox} = -0.458$ V) and {Mn(2,2'bipy)[N(SiMe₃)₂]₂} ($E_{ox} = -0.513$ V) also underwent irreversible electron transfer processes.

Key words: Silylamide, Iron, Manganese, Cyclic Voltammetry, X-Ray Structure Analysis

Einleitung

Silylamidokomplexe der Zusammensetzung $M[N(SiMe_3)_2]_n$ (M = Übergangsmetall der 3*d*-Reihe, n = 1, 2, 3) stellen wichtige Substanzen in der Komplexchemie dar, denn sie ermöglichen den Zugang zu einer Vielzahl von weiteren Verbindungen, in welchen die Metallzentren häufig eine ungewöhnliche Koordinationsgeometrie aufweisen [1, 2]. Im Jahre 1965 wurde die Synthese von $Zn[N(SiMe_3)_2]_2$ erstmals von Wannagat und Mitarbeitern beschrieben [3]. Die Kristallstruktur zeigt als zentrales Strukturelement dieses monomeren Zinkamids eine nahezu lineare N-Zn-N-Einheit [4]. Monomere Molkülstrukturen weisen neben dem erwähnten Zinkamid auch die Komplexe M[N(SiMe₃)₂]₃ der dreiwertigen Metalle (M = Cr, Mn, Fe, Co) auf [5-7]. Andererseits

findet man Dimere in den Festkörperstrukturen von $\{M[N(SiMe_3)_2]_2\}_2$ (M = Mn [8], Fe [9], Co und Ni [10]). Des Weiteren sind auch trimere bzw. tetramere Molekülstrukturen von Silylamidokomplexen bekannt (z. B. $\{Cu[N(SiMe_3)_2]\}_4$) [11]. Die Strukturen der zuletzt genannten Silylamidokomplexe zeigen die Fähigkeit des Amidosubstituenten $[N(SiMe_3)_2]^-$, sowohl als terminaler als auch als verbrückender Ligand zu fungieren. Andererseits lassen sich jedoch mehrkernige Komplexe mit [N(SiMe₃)₂]⁻ als Brückenligand leicht mit Lewis-Basen in die entsprechenden monomeren Metallsilylamide überführen (z. B. {M(THF)₂[N(SiMe₃)₂]₂} (M = Fe, Mn) [9, 12]). Darüber hinaus führt das Einwirken stärkerer Basen im Vergleich zu [N(SiMe₃)₂] zur Freisetzung und damit zur Substitution des Amidoliganden durch den stärkeren Donor. So verdrängt das silylierte Carbanion $[C(SiMe_3)_3]^-$ leicht das Silylamid $[N(SiMe_3)_2]^-$ von Übergangsmetallzentren [13].


Nachfolgend berichten wir über die Reaktion von Fe[N(SiMe₃)₂]₃ mit dem Tri-*tert*-butylsilanid (Supersilanid) Na(THF)₂[SitBu₃] [14, 15]. Das Ergebnis dieser Reaktion veranlasste uns zudem, die Redoxpotentiale der Silylamide M[N(SiMe₃)₂]₂ (M = Mn, Fe) und Fe[N(SiMe₃)₂]₃ mittels Cyclovoltammetrie zu bestimmen. Des Weiteren werden die Kristallstrukturen des Kontaktionenpaars Na(THF){Fe[N(SiMe₃)₂]₃} sowie der 2,2'-Bipyridin-Addukte {M(2,2'bipy)[N(SiMe₃)₂]₂} (M = Mn, Fe) beschrieben.

Ergebnisse und Diskussion

Setzt man das Eisen(III)-silylamid Fe[N(SiMe₃)₂]₃ (1) [16] mit $Na(THF)_2[SitBu_3]$ [14, 15] im Molverhältnis 1:1 in einer Mischung aus Benzol und THF bei Raumtemperatur um, so beobachtet man neben der Bildung von tBu₃SiSitBu₃ überraschenderweise das Entstehen von Na(THF){Fe[N(SiMe₃)₂]₃} [2(THF); Schema 1]. Offensichtlich wirkt das Supersilanid-Anion [SitBu₃] hierbei als Reduktionsmittel. Das dabei entstandene Silylamid-Anion konnte zusammen mit Na+ und einem Molekül THF Kontaktionenpaar $Na(THF)\{Fe[N(SiMe_3)_2]_3\}$ [2(THF)] aus Benzol/THF bei Raumtemperatur kristallisiert und durch Einkristallröntgenstrukturanalyse identifiziert werden. An dieser Stelle sei darauf hingewiesen, dass bei der Zugabe von $Na[N(SiMe_3)_2]$ zu $Fe[N(SiMe_3)_2]_2$ in Toluol trotz homogener Reaktionsführung keinerlei Umsetzung stattfindet. Interessanterweise lässt sich 2 jedoch durch Einwirken von Na[N(SiMe₃)₂] auf das Eisen(III)silylamid 1 in Toluol gewinnen. Bermerkenswerterweise führt aber erst die Zugabe von 12-Krone-4 zu einer Reaktion [17].

Das Einwirken des Chelatliganden 2,2'-Biyridin auf die Komplexe $\{M(THF)_2[N(SiMe_3)_2]_2\}$ [M = Fe(3(THF)), Mn(4(THF))] bewirkt die Substitution von zwei Molekülen THF bezogen auf ein Übergangsmetallzentrum und damit die Bildung der entsprechenden 2,2'-Biyridin-Komplexe 3(2,2'bipy) [18] und 4(2,2'bipy) (Schema 2).

Das Cyclovoltammogramm (CV) des Eisen(III)silylamids 1 ist in Abb. 1 dargestellt. Es ist ein Redoxübergang zu sehen, der die Bedingungen

Schema 1. Synthese von $Na(THF)\{Fe[N(SiMe_3)_2]_3\}$ [2(THF)]. (i) $+Na(THF)_2[SitBu_3], -0.5 tBu_3SiSitBu_3$, in Benzol bei RT.

für elektrochemische Reversibilität erfüllt, denn das Peakstromverhältnis $i_{\rm pc}/i_{\rm pa}$ liegt bei verschiedenen Spannungsvorschubgeschwindigkeiten zwischen 0,939 und 0,949, die Peakstromfunktion $i_{\rm pa}/v^{1/2}$ ist zudem nahezu konstant, und die Peakpotentialabstände (ΔE) entsprechen denen des inter-

$$(Me_3Si)_2N$$
 $(Me_3Si)_2N$
 $(Me_3Si)_2N$

Schema 2. Synthese von $\{M(2,2'bipy)[N(SiMe_3)_2]_2\}$ $[M = Fe\ (3(2,2'bipy)), Mn\ (4(2,2'bipy))].$ (i) + 2,2'-Bipyridin, -2 THF, in THF bei RT.

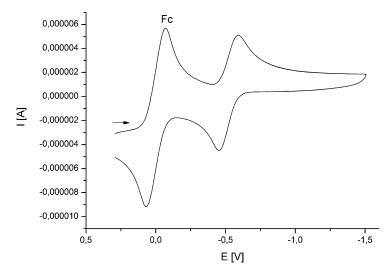


Abbildung 1. Cyclovoltammogramm von 1. Lösung in THF, [NBu₄] [PF₆] (0,1 M), 25 °C; Spannungsvorschubgeschwindigkeit 200 mV s^{-1} ; vs. FcH/FcH⁺.

nen Standards Ferrocen. Das Redoxereignis im CV von **1** findet bei $E_{1/2}=-0.523\,\mathrm{V}$ statt ($\Delta E=0.134\,\mathrm{V},\ z.\,\mathrm{Vgl}.\ \Delta E_\mathrm{FcH}=0.140\,\mathrm{V};\ \mathrm{Spannungsvorschubgeschwindigkeit}\ 200\,\mathrm{mV\,s^{-1}})$ und ist der Reduktion von Fe(III)[N(SiMe₃)₂]₃ zur Stufe des Anions Fe(II)[N(SiMe₃)₂]₃ zuzuordnen.

Das CV von **3**(THF) zeigt eine irreversible Oxidationswelle bei $E_{\rm ox}=0.379\,{\rm V}$, das CV von **3**(2,2'bipy) weist einen Redoxübergang im Bereich von $E_{\rm ox}=-0.436\,{\rm V}$ auf. Diese Potentiale können den Übergängen Fe²⁺/Fe³⁺ zugeordnet werden, deren Irreversibilität wahrscheinlich auf den Verlust von Liganden bzw. auf deren Substitution mit THF während des Oxidationsvorgangs zurückzuführen ist. Im CV sowohl von **4**(THF) als auch von **4**(bipy) erkennt man ebenfalls irreversible Oxidationswellen bei $E_{\rm ox}=-0.458\,{\rm V}$ bzw. $E_{\rm ox}=-0.513\,{\rm V}$. Diese Wellen lassen sich Mn²⁺/Mn³⁺ Übergängen zuordnen. In Tabelle 1 sind die Oxidationspotentiale der in dieser Studie untersuchten Silylamidokomplexe aufgelistet.

In Tabelle 2 sowie in den entsprechenden Legenden der Abb. 2, 3 und 4 sind ausgewählte Bindungslängen und -winkel der Verbindungen **2**(THF), **3**(2,2'bipy)

 $\label{eq:continuous} \begin{array}{lll} Tabelle~1. & Oxidations potentiale & der & Silylamidokomplexe \\ Fe(II)[N(SiMe_3)_2]_3^- & (\mathbf{2}^-), & \{Fe(II)(THF)_2[N(SiMe_3)_2]_2\} \\ [\mathbf{3}(THF)], & \{Fe(II)(2,2'bipy)[N(SiMe_3)_2]_2\} & [\mathbf{3}(2,2'bipy)], \\ \{Mn(II)(THF)_2[N(SiMe_3)_2]_2\} & [\mathbf{4}(THF)] & und & \{Mn(II)(2,2'-bipy)[N(SiMe_3)_2]_2\} & [\mathbf{4}(2,2'bipy)]. \end{array}$

	2^{-}	3 (THF)	3(2,2'bipy)	4 (THF)	4 (2,2'bipy)
$E_{\rm ox}$ [V]	-0,451	-0,379	-0,436	-0,458	-0,513

und **4**(2,2'bipy) aufgeführt. Tabelle 3 enthält die kristallographischen Daten und Angaben zu den Strukturlösungen.

Der Eisen(II)-silylamidokomplex **2**(THF) kristallisiert zusammen mit einem Molekül Benzol in der orthorhombischen Raumgruppe $C222_1$, Z=4 (Abb. 2 und 3). Im Festkörper liegen Anionen vor, in denen die Fe(II)-Ionen von drei N(SiMe₃)₂-Liganden trigonalplanar umgeben sind (Winkelsumme an Fe(II): 360°). Die Na-Kationen in **2**(THF) bilden Bindungen zu zwei der N(SiMe₃)₂-Anionen und einem THF-Molekül aus (Abb. 2).

Ein analoges Strukturmotiv wie im Fe[N $(SiMe_3)_2]_3^-$ -Anion wurde ebenfalls in den Verbindungen [Na(12-Krone-4)₂]{Fe(II)[N(SiMe_3)_2]₃} [**2**(12-Krone-4)] [17] und Fe(III)[N(SiMe_3)₂]₃ (**1**) [16]

Tabelle 2. Ausgewählte Strukturparameter der Silylamidokomplexe **1**, **2**(THF), **3**(2,2'bipy) und **4**(2,2'bipy).

1 [16]	2(THF)	3 (2,2'bipy)	4 (2,2′bipy)
(M = Fe)	(M = Fe)	(M = Fe)	(M = Mn)
1,905(2)	2,015(1)a	1,976(7)a	2,048(4) ^a
		1,968(8) ^{a, b}	
1,744(1)	$1,729(1)^{a}$	1,709(8)a	$1,712(5)^{a}$
		1,713(8)a, b	
$1,869(2)^a$	1,877(2)a	$1,885(12)^a$	$1,880(8)^a$
		1,877(20) ^{a, b}	
120,0	$120,0(1)^{a}$	127,4(3)	128,2(2)
		$129,7(5)^{b}$	
120,7(1)	$118,0(1)^{a}$	124,6(4)a	124,3(2)a
		123,4(4) ^{a, b}	
	$(M = Fe)$ $1,905(2)$ $1,744(1)$ $1,869(2)^{a}$ $120,0$	$\begin{array}{ll} (M = Fe) & (M = Fe) \\ \hline 1,905(2) & 2,015(1)^a \\ \hline 1,744(1) & 1,729(1)^a \\ \hline 1,869(2)^a & 1,877(2)^a \\ \hline 120,0 & 120,0(1)^a \\ \end{array}$	$\begin{array}{ccccc} (M=Fe) & (M=Fe) & (M=Fe) \\ \hline 1,905(2) & 2,015(1)^a & 1,976(7)^a \\ & & 1,968(8)^{a,b} \\ 1,744(1) & 1,729(1)^a & 1,709(8)^a \\ & & 1,713(8)^{a,b} \\ 1,869(2)^a & 1,877(2)^a & 1,885(12)^a \\ & & 1,877(20)^{a,b} \\ 120,0 & 120,0(1)^a & 127,4(3) \\ & & 129,7(5)^b \\ 120,7(1) & 118,0(1)^a & 124,6(4)^a \end{array}$

^a Mittelwert; ^b zweites Molekül.

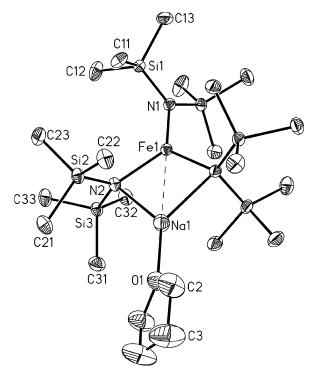


Abbildung 2. Molekülstruktur von **2**(THF) im Kristall (ORTEP, Auslenkungsparameter 50%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°]: Fe(1)–N(1) 1,9599(14), Fe(1)–N(2) 2,0427(11), Fe(1)–N(2)#1 2,0428(11), Fe(1)–Na(1) 2,9630(9), N(1)–Si(1) 1,7204(7), N(1)–Si(1)#1 1,7205(7), N(2)–Si(2) 1,7342(11), N(2)–Si(3) 1,7402(11), N(2)–Na(1) 2,4453(13), Na(1)–O(1) 2,167(2), Na(1)–N(2)#1 2,4453(13); N(1)–Fe(1)–N(2) 125,17(3), N(1)–Fe(1)–N(2)#1 125,17(3), N(2)–Fe(1)–N(2)#1 109,66(6), N(1)–Fe(1)–Na(1) 180, Si(1)–N(1)–Si(1)#1 120,16(8), Si(1)–N(1)–Fe(1) 119,92(4), Si(1)#1–N(1)–Fe(1) 119,92(4), Si(2)–N(2)–Si(3) 115,79(6). Symmetrie-transformation: #1 1 – x, y, 1/2 – z.

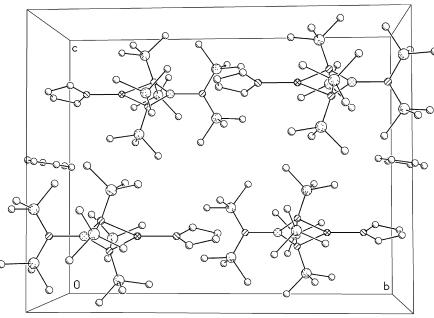


Abbildung 3. Molekülpackung von **2**(THF) im Kristall.

gefunden. Beide Komplexe weisen im Festkörper trigonal-planar koordinierte Fe-Zentren auf. Die gemittelte Fe-N-Bindungslänge in **2**(12-Krone-4) beträgt 1,985 Å und ist von ähnlicher Größenord-

nung wie die Fe(1)–N(1)-Bindung in **2**(THF). Im Fe(III)-Komplex **1** [16] ist die Fe–N-Bindung demgegenüber um 0,110 Å auf 1,905 Å verkürzt (Tabelle 2). Dies ist auf die höhere Ladung und den damit

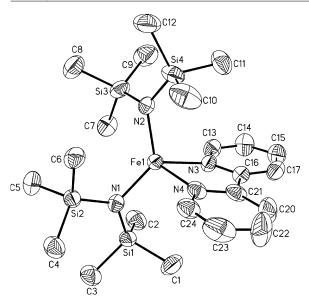


Abbildung 4. Festkörperstruktur eines von zwei unabhängigen Molekülen in der asymmetrischen Einheit von 3(2,2'bipy) (ORTEP, Auslenkungsparameter 50%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°]: Fe(1)–N(1) 1,979(7), Fe(1)–N(2) 1,973(7), Fe(1)–N(3) 2,207(7), Fe(1)–N(4) 2,159(7), N(1)–Si(1) 1,693(7), N(1)–Si(2) 1,732(7), N(2)–Si(3) 1,722(8), N(2)–Si(4) 1,705(8); Si(1)–N(1)–Si(2) 126,9(4), Si(1)–N(1)–Fe(1) 116,2(4), Si(2)–N(1)–Fe(1) 116,9(4), Si(3)–N(2)–Si(4) 122,2(4), Si(3)–N(2)–Fe(1) 118,5(4), Si(4)–N(2)–Fe(1) 118,5(4).

einhergehenden kleineren Radius des Fe(III)-Ions zurückzuführen. Letztendlich zeigt es sich, dass die strukturellen Unterschiede zwischen 1 und dem Anion Fe(II)[N(SiMe_3)_2]_3^- von 2 eher gering sind, was auch im CV durch die Reversibilität des Redox-Vorgangs Fe(III)[N(SiMe_3)_2]_3^- sichtbar wird.

Die Silylamide 3(2,2'bipy) (orthorhombische Raumgruppe $Pca2_1$, Z=8) und 4(2,2'bipy) (orthorhombische Raumgruppe Pbca, Z=8) liegen im Festkörper als isolierte mononukleare Komplexe vor (Abb. 4, 5 und 6). Die zentralen Metallionen werden pseudotetraedrisch von jeweils zwei anionischen $N(SiMe_3)_2$ -Liganden [Bindungswinkel: N(2)- $Fe(1)-N(1)=127,4(3)^\circ$, $N(2)-Mn(1)-N(1)=128,24(17)^\circ$] und jeweils einem 2,2'-Bipyridin-Molekül [Bindungswinkel: $N(3)-Fe(1)-N(4)=75,8(3)^\circ$, $N(3)-Mn(1)-N(4)=72,91(18)^\circ$] koordiniert. Die Molekülgeometrien von 3(2,2'bipy)

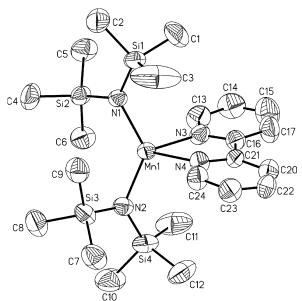


Abbildung 5. Molekülstruktur von 4(2,2'bipy) im Kristall (ORTEP, Auslenkungsparameter 50%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°]: Mn(1)–N(1) 2,050(4), Mn(1)–N(2) 2,045(4), Mn(1)–N(3) 2,253(5), Mn(1)–N(4) 2,267(5), N(1)–Si(1) 1,706(4), N(1)–Si(2) 1,717(4), N(2)–Si(3) 1,710(5), N(2)–Si(4) 1,713(5); Si(1)–N(1)–Si(2) 125,2(3), Si(1)–N(1)–Mn(1) 117,6(2), Si(2)–N(1)–Mn(1) 116,9(2), Si(3)–N(2)–Si(4) 123,3(2), Si(3)–N(2)–Mn(1) 118,0(2), Si(4)–N(2)–Mn(1) 118,4(3).

und **4**(2,2'bipy) ähneln derjenigen des verwandten Komplexes Mn(1,10-Phenantrolin)[N(SiMe₃)₂]₂ [19].

Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluss von Luft und Wasser unter Verwendung von Stickstoff (99,996%) oder Argon (99,996%) als Schutzgas durchgeführt. Die Reaktionsmedien wurden mit Natrium in Gegenwart von Benzophenon vorgetrocknet und vor Gebrauch von diesen Stoffen destilliert. Zur Verfügung standen MnCl₂, FeCl₂, FeCl₃, nBuLi, tBuLi und HN(SiMe₃)₂. Nach Literaturvorschriften wurden Li(OEt₂)[N(SiMe₃)₂] [20], Na(THF)₂[SitBu₃] [15], Fe[N(SiMe₃)₂]₃ [7], {Fe[N(SiMe₃)₂]₂ [9] und {Mn[N(SiMe₃)₂]₂}₂ [8] synthetisiert. Für NMR-Spektren dienten die Kernresonanzspektrometer Bruker AM 250, Bruker DPX 250, Bruker Avance 300 und Bruker Avance

Für elektrochemische Untersuchungen kam ein EG&G Princeton Applied Research 263A Potentiostat zum Einsatz.

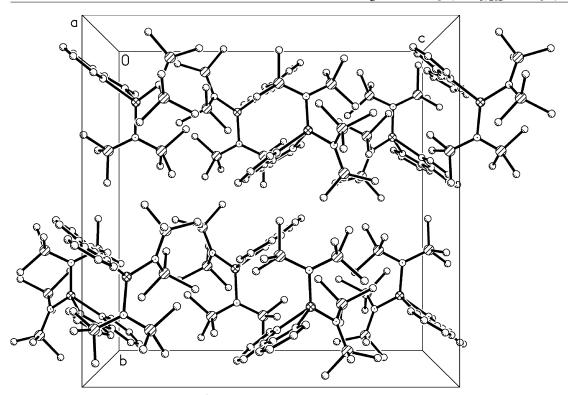


Abbildung 6. Molekülpackung von **4**(2,2'bipy) im Kristall.

Tabelle 3. Kristallstrukturdaten für **2**(THF), **3**(2,2'bipy) und **4**(2,2'bipy).

	2 (THF)	3 (2,2′bipy)	4 (2,2'bipy)
Summenformel	C ₂₈ H ₆₈ FeN ₃ NaOSi ₆	C ₂₂ H ₄₄ FeN ₄ Si ₄	C ₂₂ H ₄₄ MnN ₄ Si ₄
M_r	710,23	532,82	531,91
Kristallgröße [mm ³]	$0,52 \times 0,48 \times 0,42$	$0.38 \times 0.19 \times 0.18$	$0.14 \times 0.09 \times 0.07$
Kristallsystem	orthorhomisch	orthorhombisch	orthorhombisch
Raumgruppe	$C222_1$	$Pca2_1$	Pbca
a [Å]	11,8572(4)	18,9986(17)	17,384(4)
<i>b</i> [Å]	21,2443(9)	18,3770(15)	19,000(4)
c [Å]	16,8010(8)	17,7147(14)	19,280(4)
$V [\mathring{A}^3]$	4232,1(3)	6184,9(9)	6 368 (2)
Z	4	8	8
$D_{\rm ber}$ [g cm ⁻³]	1,11	1,14	1,11
$\mu(\text{Mo}K_{\alpha}) \text{ [mm}^{-1}]$	0,6	0,7	0,6
F(000) [e]	1544	2288	2280
hkl-Bereich	$\pm 16, -30 \le 29, \pm 23$	$-22 \le 19, -21 \le 20, -16 \le 20$	$-20 \le 12, \pm 22, -23 \le 21$
$((\sin\theta)/\lambda)_{\max} [\mathring{A}^{-1}]$	0,7120	0,5924	0,6026
Gemessene / unabh. Refl. / R _{int}	36530/6358/0,032	17216/9350/0,064	25752/5704/0,179
Verfeinerte Parameter	183	560	280
$R(F) / wR(F^2)^{a, b}$ (alle Reflexe)	0,0278/0,0794	0,1026/0,1701	0,1585/0,1275
Gewichtungsparameter <i>a/b</i> ^b	0,0564/0,6009	0,0846/0	0,0330/0
GoF $(F^2)^c$	1,057	0,976	0,929
x (Flack)	0,008(9)	0,47(3)	
$\Delta \rho_{\text{fin}} \text{ (max / min) [e Å}^{-3}$]	0.71/-0.58	0.92/-0.70	0.28/-0.23

 $^{{}^{}a}R = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; \ {}^{b}wR = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \ w = [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP]^{-1}, \ \text{where} \ P = (\text{Max}(F_{o}^{2}, 0) + 2F_{c}^{2})/3; \ {}^{c}\text{GoF} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/(n_{\text{obs}} - n_{\text{param}})]^{1/2}.$

Als Arbeitselektrode wurde bei cyclovoltammetrischen Messungen eine 2 mm Pt-Scheibenelektrode verwendet. Tetrahydrofuran wurde vor Gebrauch sorgfältig getrocknet und entgast, das Leitsalz war [NBu₄][PF₆] (0,1 M). Als interner Standard diente Ferrocen (FcH); alle aufgeführten Potentiale sind gegen FcH/FcH⁺ referenziert.

Darstellung von $Na(THF)\{Fe[N(SiMe_3)_2]_3\}$ [2(THF)]

Zu 1,98 g (3,20 mmol) Fe[N(SiMe₃)₂]₃(1) in 30 mL Benzol wurde eine Lösung (0,48 M) von Na(THF)₂[SitBu₃] (3,21 mmol) in 6,7 mL THF langsam bei RT gegeben. Nach einer Woche bildeten sich aus der Reaktionslösung Einkristalle von **2**(THF) (Ausbeute: 60%). Das ²⁹Si-NMR-Spektrum der verbliebenen Reaktionslösung zeigte ein Signal bei 35,4 ppm, das dem Disilan tBu₃SiSitBu₃ zugeordnet werden kann (Identifizierung durch Vergleich mit authentischer Probe [21]). – C₂₂H₆₂FeN₃NaOSi₆ (632,09): ber. C 41,80, H 9,89, N 6,65; gef. C 41,97, H 9,93, N 6,43.

Darstellung von $\{Fe(2,2'bipy)[N(SiMe_3)_2]_2\}$ [3(2,2'bipy)]

Zu einer Lösung von 2,15 g (2,85 mmol) **3**(THF) in 20 mL THFwurde bei RT 2,2'-Bipyridin (0,91 g; 5,83 mmol) gegeben. Die so erhaltene Lösung wurde eine Woche bei RT belassen, wobei Einkristalle von **3**(2,2'bipy) entstanden (Ausbeute: 56%). – $C_{22}H_{44}$ FeN₄Si₄ (532,80): ber. C 49,59, H 8,32, N, 10,52; gef. C 48,97, H 8,13, N 10,22.

Darstellung von $\{Mn(2,2'bipy)[N(SiMe_3)_2]_2\}$ [4(2,2'bipy)]

Zu einer Lösung von 1,58 mg (2,10 mmol) 4(THF) in 10 mL Benzol wurde bei RT 2,2'-Bipyridin (0,67 g; 4,28 mmol) gegeben. Die Lösung wurde eine Woche bei RT belassen, wobei Einkristalle von 4(2,2'bipy) entstanden (Ausbeute: 48%). – $C_{22}H_{44}MnN_4Si_4$ (531,89): ber. C 49,68, H 8,34, N 10,53; gef. C 49,14, H 8,24, N 10,37.

Röntgenstrukturanalysen

Für die Strukturbestimmungen wurde ein Stoe IPDS II Diffraktometer benutzt. Die Strukturen wurden mit Direkten Methoden gelöst. Alle Nicht-Wasserstoffatome wurden anisotrop, die H-Atome mit dem Reitermodell und fixierten isotropen Auslenkungsparametern verfeinert [22]. Abbildungen 2, 4 und 5 zeigen ORTEP-Darstellungen der Strukturen von 2(THF), 3(2,2'bipy) und 4(2,2'bipy). Es sei darauf hingewiesen, dass die Strukturen von 2(THF) und 3(2,2'bipy) in nicht-zentrosymmetrischen Raumgruppen verfeinert wurden, wobei bei 3(2,2'bipy) die Verfeinerung des Flack-Parameters (x=0,47(3)) ergab, dass ein Inversionszwilling vorliegt (Tabelle 3). Angaben zu den Röntgenstrukturanalysen sind in Tabelle 3 zusammengestellt.

CCDC 864465 [**2**(THF)], 864466 [**3**(2,2'bipy)] und 864464 [**4**(2,2'bipy)] enthalten die beim Cambridge Crystallographic Data Centre hinterlegten Kristallstrukturdaten. Anforderung: www.ccdc.cam.ac.uk/data_request/cif.

- [1] M. F. Lappert, A. Protchenko, P. Power, A. Seeber, Metal Amide Chemistry, John Wiley, New York 2009.
- [2] H. Bürger, U. Wannagat, Monatsh. Chem. 1963, 94 1007 – 1012; H. Bürger, U. Wannagat, Monatsh. Chem. 1964, 95, 1099 – 1102.
- [3] H. Bürger, W. Sawodny, U. Wannagat, *J. Organomet. Chem.* **1965**, *3*, 113–120.
- [4] G. Margraf, H.-W. Lerner, M. Bolte, M. Wagner, Z. Anorg. Allg. Chem. 2004, 630, 217 – 218.
- [5] M. Westerhausen, M. Hartmann, A. Pfitzner, W. Schwarz, Z. Anorg. Allg. Chem. 1995, 621, 837–850
- [6] J. J. Ellison, P. P. Power, S. C. Shoner, J. Am. Chem. Soc. 1989, 111, 8044 – 8046.
- [7] D. C. Bradley, M. B. Hursthouse, P. F. Rodesiler, *Chem. Commun.* **1969**, 14–15; M. B. Hursthouse, P. F. Rodesiler, *Dalton Trans.* **1972**, 2100–2102.
- [8] R. D. Köhn, G. Kociok-Köhn, M. Haufe, *Chem. Ber.* 1996, 129, 25–27.

- [9] D. C. Bradley, M. B. Hursthouse, K. M. A. Malik, R. Moseler, *Transition Met. Chem.* 1978, 3, 253– 254.
- [10] M. M. Olmstead, P. P. Power, S. C. Shoner, *Inorg. Chem.* 1991, 30, 2547 2551.
- [11] B. D. Murray, P. P. Power, *Inorg. Chem.* 1984, 23, 4584-4588.
- [12] P. Miele, J. D. Foulon, N. Hovnanian, J. Durand, L. Cot, Eur. J. Solid State Inorg. Chem. 1992, 29, 573 – 583.
- [13] T. Viefhaus, W. Schwarz, K. Hübler, K. Locke, J. Weidlein, Z. Anorg. Allg. Chem. 2001, 627, 715 – 725.
- [14] H.-W. Lerner, Coord. Chem. Rev. 2005, 249, 781 798.
- [15] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 1997, 542, 1–18.
- [16] Fe[N(SiMe₃)₂]₃ (1) wurde nach [7] synthetisiert und durch Einkristallröntgenstrukturanalyse charakterisiert: CCDC 864467.
- [17] M. A. Putzer, B. Neumüller, K. Dehnicke, J. Magull, Chem. Ber. 1996, 129, 715 – 719.

- [18] Der Silylamidokomplex 3(2,2′bipy) lässt sich auch aus {Fe[N(SiMe₃)₂]₂}₂ und 2,2′-Biypridin im nicht-basischen Solvens Toluol präparieren: T. A. Chesnokova, E. V. Zhezlova, A. N. Kornev, Y. V. Fedotova, L. N. Zakharov, G. K. Fukin, Y. A. Kursky, T. G. Mushtina, G. A. Domrachev, J. Organomet. Chem. 2002, 642, 20–31.
- [19] M. Andruh, H. W. Roesky, M. Noltemeyer, H. G. Schmidt, Z. Naturforsch. 1994, 49b, 31–35.
- [20] Praktikum Präparative Anorganische Chemie, Universität Frankfurt, Frankfurt (Deutschland) 2005.
- [21] N. Wiberg, H. Schuster, A. Simon, K. Peters, Angew. Chem. 1986, 98, 100-101; Angew. Chem., Int. Ed. Engl. 1986, 25, 79-80; F. Meyer-Wegner, S. Scholz, I. Sänger, F. Schödel, M. Bolte, M. Wagner, H.-W. Lerner, Organometallics 2009, 28, 6835-6837.
- [22] G. M. Sheldrick, SHELXS/L-97, Programs for Crystal Structure Determination, Universität Göttingen, Göttingen (Deutschland) 1997. Siehe auch: G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467–473; ibid. 2008, A64, 112–122.