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Abstract

Marine stratocumuli cover about 40 - 60% of the ocean surface. They self-organize into

different morphological regimes. The two organized cellular regimes are called open and

closed mesoscale-cellular convective (MCC) clouds. In mid-to-high latitudes, open and

closed cells are the two most frequent types of MCC clouds. In particular, many MCC

clouds consist of a mixture of vapor, liquid droplets, and ice particles, referred to as mixed-

phase clouds (MPCs). Even for the same cloud fraction, the albedo of open cells is, on

average, lower than that of closed MCC clouds. Cloud phase and morphology individually

influence the cloud radiative effect. Thus, this thesis investigates the relationships between

the cloud phase, MCC organization, cell size, and differences regarding the cloud-radiative

effect.

This thesis focuses on space-borne retrievals to achieve extensive temporal and spatial

coverage. The liDAR-raDAR (DARDAR) version 2 product collocates two active and one

passive satellite: CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-

servations (CALIPSO), and Moderate Resolution Imaging Spectroradiometer (MODIS).

The cloud phase of DARDAR is vertically integrated to establish a single cloud phase at

each data point. The MCC classification data set based on the liquid water path (LWP)

of MODIS scenes is collocated with the DARDAR product to determine the MCC or-

ganization. Cell-size statistics of both MCC clouds are obtained using a marker-based

image segmentation method on MODIS reflectance scenes. In addition, based on MODIS

reflectance scenes, a convolutional neural network (CNN) is developed to classify open

and closed MCC scenes to avoid missing mature MPCs with a low LWP.

The first part of this thesis explores the relationships between cloud phase, morphol-

ogy, and cloud albedo in the Southern Ocean (SO). At a given cloud-top temperature

(CTT), seasonal changes in the mixed-phase fraction, defined as the number of MPCs

divided by the sum of MPC and supercooled liquid cloud (SLC) pixels, are stronger than

the morphological changes. Therefore, external factors seem to influence these changes in-

stead of morphology. The dependence of cloud phase on cloud-top height (CTH) is more

substantial than on CTT in clouds with CTHs below 2.5 km. The previously observed

acceleration of closed-to-open transition in MPCs, known as preconditioning, is not the

primary driver of climatological cloud morphology statistics in the SO. The morphological

differences in cloud albedo are more pronounced in SLCs than in MPCs. This change in

albedo alters the cloud radiative effect in the SO by 21Wm−2 to 39Wm−2 depending on
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Abstract

season and cloud phase.

Open and closed MCC clouds exhibit larger equivalent cell diameters in the MPCs than

in SLCs in austral summer, whereas, in austral winter, the SLCs are larger. The cell’s

aspect ratio accounts for varying CTHs. Closed cells have smaller aspect ratios than open

cells, so their cell diameter is smaller, independent of CTH. While the seasonal differences

in closed cells are due to changes in CTH, the seasonal aspect ratio differences in open cells

are mainly caused by MPCs. With increasing aspect ratios, the cloud albedo decreases

in both open and closed MCC clouds, with the most substantial decrease in open MPCs

clouds. This leads to cloud-radiative changes of 60 - 75Wm−2 in the SO, depending on

cloud phase and aspect ratio.

The established CNN exhibits a good accuracy of 80.6%, with even higher accuracies

in the Open (85.5%) and Closed (87.3%) categories. The global MCC climatology based

on the CNN generally agrees well with previous MCC distributions. The most notable

difference occurs in the Northern Hemisphere (NH) in boreal winter, with a higher oc-

currence frequency of closed and open MCC clouds. This might indicate missing MPCs

in previous studies based on the LWP and some restricted to warm cloud scenes. Thus,

the developed CNN seems to better represent the different morphologies in MPCs than

in previous classifications.

In conclusion, this thesis shows that understanding the dependencies of cloud phase,

cloud morphology, and cell size is important to enhance predictions of the cloud-radiative

effect and thus, it is important to evaluate how cloud phase, cloud morphology, and cell

size change in a warming climate.
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Kurzzusammenfassung

Marine Stratocumuli bedecken etwa 40 bis 60% der Meeresoberfläche. Sie organisieren

sich selbst in verschiedenen morphologischen Regimen. Die beiden organisierten zellulären

Regime werden als offene und geschlossene mesoskalig-zelluläre konvektive (MCC) Wolken

bezeichnet. In mittleren bis hohen Breitengraden sind offene und geschlossene Zellen

die beiden häufigsten Typen von MCC-Wolken. Viele MCC-Wolken bestehen aus einer

Mischung aus Dampf, Flüssigkeitströpfchen und Eispartikeln, die als Mischphasenwolken

(MPCs) bezeichnet werden. Selbst bei gleichem Wolkenbedeckungsgrad ist die Albedo

offener Zellen im Durchschnitt niedriger als die von geschlossenen MCC-Wolken. Wolken-

phase und -morphologie beeinflussen individuell die Strahlungswirkung von Wolken. Da-

her werden in dieser Arbeit die Beziehungen zwischen der Wolkenphase, der MCC-Orga-

nisation, der Zellgröße, sowie deren Unterschieden in der Wolkenstrahlungswirkung un-

tersucht.

Diese Arbeit konzentriert sich auf weltraumgestützte Messungen, um eine umfassende

zeitliche und räumliche Abdeckung zu gewährleisten. Das Produkt liDAR-raDAR (DAR-

DAR) Version 2 setzt sich aus zwei aktiven und einem passiven Satelliten zusammen:

CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO),

und Moderate Resolution Imaging Spectroradiometer (MODIS). Die Wolkenphase von

DARDAR wird vertikal integriert, um für jeden Datenpunkt eine einzige Wolkenphase

zu erstellen. Der MCC-Klassifizierungsdatensatz, der auf dem Flüssigwasserpfad (LWP)

von MODIS-Szenen basiert, wird mit dem DARDAR-Produkt kombiniert, um die MCC-

Organisation zu bestimmen. Die Zellgrößenstatistiken beider MCC-Wolken werden mit

einer markerbasierten Bildsegmentierungsmethode von MODIS-Reflektanzszenen erstellt.

Darüber hinaus wird auf der Grundlage von MODIS-Reflektanzszenen ein faltendes neu-

ronales Netzwerk (CNN) entwickelt, um offene und geschlossene MCC-Szenen zu klassi-

fizieren, um zu vermeiden, dass ausgewachsene MPCs mit einem niedrigen LWP übersehen

werden.

Im ersten Teil dieser Arbeit werden die Beziehungen zwischen Wolkenphase, Mor-

phologie und Wolkenalbedo im Südlichen Ozean (SO) untersucht. Bei einer gegebenen

Wolkenobergrenzentemperatur (CTT) sind die saisonalen Veränderungen des Mischpha-

senanteils stärker als die morphologischen Veränderungen. Der Mischphasenanteil ist de-

finiert als die Anzahl der MPCs geteilt durch die Summe der MPC- und SLC-Pixel (un-

terkühlte (supercooled) flüssig Wolken). Daher scheinen externe Faktoren diese Veränderun-
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Kurzzusammenfassung

gen zu beeinflussen und nicht die Morphologie. Die Abhängigkeit der Wolkenphase von

der Wolkenobergrenzenhöhe (CTH) ist bei Wolken mit einer CTH von weniger als 2,5 km

deutlicher als von der CTT. Die zuvor beobachtete Beschleunigung des Übergangs von

geschlossen zu offenen Wolken in MPCs, bekannt als Präkonditionierung, ist nicht der

primäre Treiber der klimatologischen Wolkenmorphologiestatistiken im SO. Die morphol-

ogischen Unterschiede in der Wolkenalbedo sind in SLCs stärker ausgeprägt als in MPCs.

Diese Änderung der Albedo verändert den Strahlungseffekt der Wolken in der SO um

21Wm−2 bis 39Wm−2 je nach Jahreszeit und Wolkenphase.

Offene und geschlossene MCC-Wolken weisen im Südsommer größere äquivalente Zell-

durchmesser in den MPCs als in den SLCs auf, während die SLCs im Südwinter größer

sind. Das Seitenverhältnis der Zellen berücksichtigt die unterschiedlichen CTHs. Geschlos-

sene Zellen haben ein kleineres Seitenverhältnis als offene Zellen, so dass ihr Zelldurch-

messer unabhängig von der CTH kleiner ist. Während die saisonalen Unterschiede in

geschlossenen Zellen auf Veränderungen der CTH zurückzuführen sind, werden die saiso-

nalen Unterschiede im Seitenverhältnis in offenen Zellen hauptsächlich durch MPCs verur-

sacht. Mit zunehmendem Seitenverhältnis nimmt die Wolkenalbedo sowohl in offenen als

auch in geschlossenen MCC-Wolken ab, wobei der stärkste Rückgang in offenen MPC-

Wolken zu verzeichnen ist. Dies führt zu Wolkenstrahlungsänderungen von 60 - 75Wm−2

im SO, je nach Wolkenphase und Seitenverhältnis.

Das entwickelte CNN weist eine hohe Genauigkeit von 80,6% auf, mit noch höheren

Genauigkeiten in den Kategorien Offen (85,5%) und Geschlossen (87,3%). Die auf dem

CNN basierende globale MCC-Klimatologie stimmt im Allgemeinen gut mit früheren

MCC-Verteilungen überein. Der auffälligste Unterschied tritt im Nordatlantik im Nord-

winter auf, mit einer höheren Häufigkeit von geschlossenen und offenen MCC-Wolken. Dies

könnte darauf hindeuten, dass MPCs in früheren Studien, die auf dem LWP basieren und

einige sich auf warme Wolkenszenen beschränken, fehlen. Das entwickelte CNN scheint

also die verschiedenen Morphologien in den MPCs besser darzustellen als frühere Klassi-

fikationen.

Zusammenfassend zeigt diese Arbeit, dass das Verständnis der Abhängigkeiten von

Wolkenphase, Wolkenmorphologie und Zellgröße wichtig ist, um die Vorhersage des wolken-

abstrahlenden Effekts zu verbessern, und dass es daher wichtig ist, zu bewerten, wie

sich Wolkenphase, Wolkenmorphologie und Zellgröße in einem sich erwärmenden Klima

verändern.
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1 Introduction

1.1 Motivation

Clouds cover, on average, almost 70% of Earth’s surface (Stubenrauch et al., 2013) and

roughly account for 30% of the planetary albedo (Trenberth et al., 2009). Due to their

vast global coverage, their impact on the hydrological cycle, and their reflection and ab-

sorption of incoming shortwave (SW) and outgoing longwave (LW) radiation, clouds play

a major role in Earth’s climate and radiative balance. Considering the microphysical and

dynamical complexity of clouds, no single clouds is alike, and its environmental impacts

substantially vary depending on its type or height (e.g., Arking , 1991; Chen et al., 2000;

Lohmann et al., 2016).

Stratocumuli prevail over the Earth’s surface like no other cloud type, covering about

23% of the ocean surface in the annual mean (Wood , 2012). These low-level clouds with

cloud-top heights (CTHs) up to 3 km exhibit a high cloud albedo (Randall et al., 1984;

Ramanathan et al., 1989; Hartmann et al., 1992; Chen et al., 2000). Marine stratocumuli

strongly reflect the incoming SW radiation exerting a cooling effect on Earth’s climate. In

addition, their warming effect in the LW radiation is smaller as cloud-top temperatures

(CTTs) of low-level clouds are comparable to surface temperatures, especially in the

subtropics. The global mean net cooling effect of low-level stratiform clouds cools the

Earth’s surface by about 30Wm−2 (Chen et al., 2000).

The persistent large decks of marine stratocumuli self-organize into four different mor-

phological regimes: non-organized stratiform clouds, organized open mesoscale-cellular

convective (MCC) clouds, organized closed MCC clouds, and disorganized clouds (Atkin-

son and Wu Zhang , 1996; Wood and Hartmann, 2006). The two organized morphological

regimes, open and closed MCC, occur as roughly hexagonal cells with a typical cell diam-

eter between 10 km to 50 km (Atkinson and Wu Zhang , 1996). Whereas closed MCC cells

are cloudy at their center, surrounded by an almost cloud-free ring, the reverse occurs in

open MCC cells. Due to their morphological differences, the cloud fraction of closed MCC

clouds is, on average, about 30% higher than in open cells (Wood and Hartmann, 2006).

However, McCoy et al. (2017) show that even for the same cloud fraction, closed cells

exhibit a higher cloud albedo than open cells. This emphasizes the importance of under-

standing the processes related to the occurrence of the two types of MCC clouds and their

transition to quantify their radiative effects on Earth’s climate. One process controlling
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1 Introduction

the transition from closed to open cells is the formation of precipitation (Feingold et al.,

2010) leading to a decoupling of the marine-boundary layer (MBL) (Abel et al., 2017).

Yamaguchi and Feingold (2015) show that not only the onset of precipitation but its

spatial extent is essential for the closed-to-open transition in the mid-to-high latitudes.

While in the subtropics, the closed-to-open transition is driven by a deepening of the

MBL along with the sea surface temperature (SST) gradient with distance to the coast

(Wood and Bretherton, 2004; Wood , 2012). In general, open MCC cells often occur in the

wake of marine cold air outbreaks (MCAOs) and cold fronts associated with precipita-

tion formation (e.g., Brümmer , 1999; Fletcher et al., 2016a; McCoy et al., 2017; Geerts

et al., 2022). MCAOs develop when cold polar air masses over ice sheets are advected

to comparatively warm water masses. Cold fronts are the leading edges of low-pressure

systems replacing the warm air before the front with colder air behind the front. Further,

Eastman et al. (2021, 2022) exhibit that a strong increase in surface winds precedes the

onset of precipitation in closed-to-open transitions. These morphological transitions due

to environmental changes can produce substantial differences in the SW feedback with a

quadrupling of CO2 (McCoy et al., 2023).

The formation of precipitation can depend on the thermodynamic phase of water in

clouds. While pure liquid clouds only contain liquid water, mixed-phase clouds (MPCs)

consists of a mixture of ice and supercooled liquid water. At high latitudes, many open

and closed MCC clouds occur as MPCs. The phase partitioning of ice and supercooled

liquid strongly impacts the cloud-radiative effect in stratocumuli (Sun and Shine, 1994;

Matus and L’Ecuyer , 2017; Korolev et al., 2017). Understanding the influence of phase

partitioning on the cloud albedo remains uncertain due to the complex microphysics of

MPCs (McCoy et al., 2015; Tan and Storelvmo, 2019). This causes a poor representation

of the cloud feedback in models (Bony et al., 2006; Zelinka et al., 2012, 2013). This is

especially important in the Southern Ocean (SO) as the computation of climate sensitivity

in this region is critical for the global climate sensitivity (Gettelman et al., 2019; Zelinka

et al., 2020). As mixed-phase stratocumuli exhibit extensive coverage at high latitudes,

the investigation of open and closed MCC MPCs and their impacts on cloud-radiative

properties is the main focus of this thesis, with a particular interest in the SO region.

1.2 Theoretical Background

This section provides a detailed description of the theoretical background on stratocu-

muli, their dynamical processes, and morphological regimes mentioned in the Motivation.

The first section describes the dynamics that drive stratocumuli and the MBL. The key

processes of MCC organization in stratocumuli and their transition are illustrated in Sec-

2



1.2 Theoretical Background

tion 2.3. Finally, MPCs and their importance for the radiative properties of clouds are

explained with a focus on the high latitudes of the SO.

1.2.1 Stratocumulus

Stratocumuli stretch over millions of square kilometers horizontally but only exhibit a

small vertical extent of 200 - 500m with CTHs below 3 km (Driedonks and Duynkerke,

1989; Wood , 2012). In general, 80% of stratocumuli are located over oceans (Warren

et al., 1986, 1988), explaining why most studies focus on marine stratocumuli. These thin

marine low-level clouds occur at the upper part of the MBL, which is capped by a tem-

perature inversion often accompanied by a moisture inversion (Lilly , 1968; Lock , 2009;

Sedlar and Tjernström, 2009; Solomon et al., 2011). The strength of large-scale subsi-

dence affects the height and intensity of the inversion (Randall et al., 1984; Wood , 2007;

Van Der Dussen et al., 2016). The key processes driving marine stratiform boundary layer

clouds are illustrated in Fig. 1. The main driver of turbulence in the MBL is LW radia-

tive cooling close to the cloud top (Lilly , 1968; Moeng et al., 1996; Mellado, 2017). The

turbulence generated by cloud-top cooling homogenizes the cloud layer through the over-

turning circulation in the cloud. Further, if strong enough, the turbulent mixing can lead

to a well-mixed MBL coupled to the ocean surface and, thus, moisture supply (Bretherton

and Wyant , 1997). An additional source of turbulent mixing is induced by latent heating

in the warm updrafts due to condensation and by evaporative cooling in the downdrafts

(Moeng et al., 1992). In contrast, the SW solar heating reduces the strength of turbulent

mixing by counteracting cloud-top cooling. Marine stratocumuli often produce light pre-

cipitation as drizzle or in MPCs as ice or snow (Wood , 2005; Leon et al., 2008; Morrison

et al., 2012).

Fig. 1 Schematic representation of processes influencing the dynamics of the stratocu-
mulus cloud deck. This figure is Fig. 2 from Wood (2012).

3



1 Introduction

Due to the main dynamical processes, marine stratocumuli preferentially occur in re-

gions of large-scale subsidence, strong lower-tropospheric stability, and with a great sup-

ply of surface moisture (e.g., Wood and Bretherton, 2006; Sun et al., 2011; Wood , 2012).

Regions of large-scale subsidence are typically connected to the general circulation or

large-scale meteorological phenomena (Bretherton and Hartmann, 2009). The downward

branches of the Hadley cells and the Walker circulation induce large-scale subsidence in

the subtropics, while in the mid-latitudes, subsidence is associated with high-pressure

systems or in the wake of cold fronts (Norris , 1998; Norris and Klein, 2000). The lower-

tropospheric stability is defined as the potential temperature difference between 700 hPa

and 1000 hPa (Klein and Hartmann, 1993) which is related to the inversion strength and

thus, to cloud-top cooling. It is particularly strong over the cold eastern parts of the

subtropical oceans (Wood and Hartmann, 2006). Due to the strong air-sea temperature

difference in MCAOs, the energy and moisture surface fluxes increase in the MBL, favoring

the occurrence of marine stratocumuli (Brümmer , 1999; Abel et al., 2017; Fletcher et al.,

2016a,b; McCoy et al., 2017). As a result of the link to the winter storms and MCAOs,

the occurrence frequency of stratocumuli depends on the season and is, in general, higher

in the winter months of the respective hemisphere (Klein and Hartmann, 1993; Wood ,

2012). In addition, the seasonal cycle of stratocumuli reflects the seasonal changes in the

lower-tropospheric stability (Klein and Hartmann, 1993; Wood and Bretherton, 2006).

The cloud albedo directly depends on the cloud optical thickness (COT) and, thus, the

liquid water path (LWP) and cloud droplet number concentration (Liou, 1992; Boucher

and Rodhe, 1994; Boucher and Lohmann, 1995). The increase of cloud albedo by an in-

crease in the cloud droplet concentration due to more cloud condensation nuclei is known

as the Twomey effect (Twomey , 1974, 1977). Thus, the contribution to the radiative effect

from even small perturbations of COT in stratocumulus can be substantial (Hartmann

and Short , 1980; Randall et al., 1984). Due to their high cloud albedo particularly in

comparison to the ocean surface, marine stratocumuli strongly reflect the incoming SW

radiation and exert a cooling effect (Randall et al., 1984; Ramanathan et al., 1989; Hart-

mann et al., 1992; Chen et al., 2000). However, especially at high latitudes over sea ice and

due to the absence of sunlight, the contrast between the clouds and the surface reduces

and, thus, their cooling effect (Ramanathan et al., 1989). The influence of the outgoing

LW radiation which exhibits a warming effect, is considerably lower than the SW cool-

ing effect due to the comparable temperature of the cloud-free MBL and the cloud tops

(Chen et al., 2000). This leads to a mean global net cooling effect of stratocumulus cloud

of about 30Wm−2.

There are multiple processes leading to the dissipation or break up of marine stra-

tocumuli. One is through cloud thinning and the dissolution of the cloud, which can be

4



1.2 Theoretical Background

initiated by strong large-scale subsidence lowering the inversion (Randall and Suarez ,

1984; Sundararajan and Tjernström, 2000; Van Der Dussen et al., 2016; Young et al.,

2018), moisture limitations due to a decoupling from the surface (Bretherton and Wyant ,

1997), or cloud top entrainment of dry air above the inversion (Randall et al., 1984;

Xiao et al., 2010). Another is through the transition from stratocumulus to cumulus

clouds which can be initiated by the cloud thinning processes and further by weaker

lower-tropospheric stability (Klein and Hartmann, 1993; Wood and Bretherton, 2006), an

increase in the ambient concentration of aerosols (Wood et al., 2011; Xue et al., 2008),

and the onset of precipitation which leads to a decoupling of the MBL (Abel et al., 2017).

The stratocumulus-to-cumulus transitions can be interpreted as the evolution of different

MCC clouds in the subtropics (Wood , 2012).

1.2.2 Mesoscale-Cellular Convective Clouds

Marine stratocumuli self-organize into four different morphological regimes, which are

detected by satellite images since their first observations in 1960 (Krueger and Fritz ,

1961; Agee et al., 1973; Agee, 1987). These four different morphological types are non-

organized stratiform clouds, organized open MCC clouds, organized closed MCC clouds,

and disorganized clouds. All four regimes are shown in a satellite image of Moderate

Resolution Imaging Spectroradiometer (MODIS) Aqua of the SO in Fig. 2. The focus of

this thesis is on the two organized MCC regimes of open and closed MCC clouds with

distinct cells which are associated with different cloud fractions (Agee, 1987; Atkinson and

Wu Zhang , 1996; Wood and Hartmann, 2006). The typical cell diameter of MCC clouds

is 10 - 50 km.

The conceptual diagram of the dynamic and radiative processes in forming closed and

open cells is displayed Fig. 3. Closed MCC cells feature cloudy cell centers of rising warm

air surrounded by almost cloud-free rings of sinking air when viewed from the top by

satellites (e.g., Agee et al., 1973; Atkinson and Wu Zhang , 1996; Wood and Hartmann,

2006). Due to their high cloud fraction, closed cells exhibit substantial radiative cooling

near the cloud top. This drives the vertical overturning circulation with localized narrow

downdrafts surrounding the cell and weak broad updrafts at the cell center. Due to adia-

batic cooling, the air condensate at the upper parts of the updrafts forming the cloud. The

closed cells are approximately stationary in the absence of precipitation and only shift

with the mean flow (Glassmeier and Feingold , 2017). Thus, closed MCC clouds are more

stratiform, preferentially occur over relatively cool oceans with strong lower-tropospheric

stability, and are mainly sustained by cloud-top radiative cooling (Helfand and Kalnay ,

1983).
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a)

b)

Fig. 2 (a) True color image of the SO from MODIS instrument on the Aqua satel-
lite taken on January 5th 2023 (provided by: https://earthdata.nasa.gov). (b)
The visual inspection identifies four organizational regimes in low-level clouds.
The stratiform box has a size of 4◦×4◦, all other boxes have a size of 6◦×6◦.

In contrast, open MCC clouds exhibit narrow cloudy cell rings of rising air surrounded

by almost cloud-free centers with sinking air viewed from the top. The strongest narrow

updrafts merge at the intersections of typically three open cells (Fig. 3 b). Due to the

stronger updrafts in open MCC cells compared to closed MCC clouds, the clouds are

generally deep enough to generate precipitation (mean thickness 600m and up to 2 km

(Jensen et al., 2021)). The evaporative cooling in the subcloud layer through precipitation

leads to the formation of cold pools near the surface. The expanding cold pools from

neighboring cells collide, enhancing the updrafts or forming new ones (Glassmeier and

Feingold , 2017). Thus, while closed cells are more stationary, the formation of open cells

is more oscillatory, where the dissipating old cells stimulate the development of new cells.

Open MCC clouds are more cumulus-like, associated with stronger surface heat fluxes,
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1.2 Theoretical Background

and mainly occur over relatively warm oceans in contrast to air temperature (Helfand and

Kalnay , 1983; Agee et al., 1973).

Fig. 3 Conceptual diagram of dynamic and radiative processes in (a) closed and (b)
open MCC clouds. Red arrows and

⊙
indicate updrafts, while blue arrows and⊗

display downdrafts. This figure is Fig. 1 from Glassmeier and Feingold (2017).

In general, based on their region of formation, both open and closed MCC organizations

can be grouped into two types: (1) over relatively cold upwelling regions in the eastern

parts of the tropical to subtropical oceans and (2) in MCAOs with strong air-sea temper-

ature difference driving heat and moisture transport in the mid to high latitudes or the

passage of extra-tropical cyclones (Agee, 1987; Noteboom, 2007). The first type is mainly

driven by cloud-top radiative cooling and, thus, primarily associated with closed MCC

cells near the west coast of continents. At the same time, open MCC clouds occur farther

off the coast with increasing MBL heights and SSTs. On the other hand, the second type

is dominated by strong surface fluxes due to the advection of cold air over relatively warm

water masses. During MCAOs, the clouds usually first form roll-like cloud streets, which

transition predominately into open MCC cells and sometimes, due to stronger subsidence,

into closed MCC clouds (Brümmer , 1999; Atkinson and Wu Zhang , 1996). While MCAOs

are stronger and larger in the Northern Hemisphere (NH), in the Southern Hemisphere

(SH), they also occur frequently (Fletcher et al., 2016a). Even though MCAOs occur in

all seasons, their occurrence frequency, intensity, and spatial scale peaks in boreal winter

(December to January (DJF)) in the NH, while the occurrence frequency in austral winter

(June to August (JJA)) in the SH is comparable to fall (NH: September to November

(SON), SH: March to May (MAM)) or spring (NH: MAM, SH: SON) in either hemisphere

(Fletcher et al., 2016a). Due to the different driving forces in open and closed MCC cells,

open and closed MCC peak in different seasons. While open cell occurrence peaks in

winter, especially in the storm tracks, closed cells occur more frequently in summer and

increase with latitude (Muhlbauer et al., 2014; McCoy et al., 2017).

Due to the organizational differences in open and closed MCC clouds, closed MCC

clouds exhibit, on average, a 30% higher cloud fraction than open cells (Wood and Hart-

mann, 2006), leading to a higher reflection of incoming SW radiation of closed MCC

7



1 Introduction

clouds. However, even for the identical cloud fraction, the cloud albedo of closed MCC

clouds is larger than that of open cells (McCoy et al., 2017). This emphasizes the impor-

tance of understanding the transition of closed and open MCC clouds.

The two mechanisms of closed-to-open transition investigated most are cold air ad-

vection over warmer water and cloud–aerosol–precipitation interactions (Yamaguchi and

Feingold , 2015). While the former is connected to the passage of cyclone and MCAOs

(Muhlbauer et al., 2014; Fletcher et al., 2016b; McCoy et al., 2017), already discussed

above, the latter is connected to the onset of precipitation through microphysics (Wang

and Feingold , 2009a,b; Feingold et al., 2010). The formation of precipitation in closed

MCC clouds leads to cloud thinning and break up of the cloud. At the same time, lo-

calized precipitation can initiate the formation of cold pools near the surface. These cold

pools expand and collide near the surface, producing new updrafts and enhancing the

surface fluxes. These newly formed updrafts drive the cloud rings of open MCC clouds

(Berner et al., 2013; Wood et al., 2011). However, Yamaguchi and Feingold (2015) show

that while precipitation is a necessary condition for closed-to-open transition, it is insuf-

ficient. Further, the spatial extent of precipitation seems to be essential for the transition

from open to closed MCC clouds. Abel et al. (2017) show that the key process in the

transition is due to a decoupling of the boundary layer induced by precipitation which

depletes the LWP. In addition, aerosols can suppress precipitation in open and closed

MCC clouds, influencing the transition (Rosenfeld et al., 2006; Xue et al., 2008). Due

to aerosol perturbations, e.g., through ship tracks or advection of continental air masses,

the reversed transition from open-to-closed MCC can occur (Goren and Rosenfeld , 2012;

Feingold et al., 2015). However, the reverse transition is slower, more complex, and re-

quires the suppression of precipitation in open cells. Precipitation suppression can also be

induced by stronger subsidence, reducing the cloud thickness and, thereby, precipitation

formation (Berner et al., 2013). Eastman et al. (2021, 2022) show that the closed-to-open

transition is a two-step process in which the onset of precipitation is preceded by strong

surface winds. This is supported by Jensen et al. (2021) exhibiting stronger surface winds

in open MCC cells. A recent study by McCoy et al. (2023) reveals that these morpholog-

ical transitions due to environmental changes can produce substantial differences in the

SW feedback with a quadrupling of CO2.

As closed-to-open transitions are strongly influenced by precipitation, ice processes in

clouds are important as they strengthen the precipitation (Field and Heymsfield , 2015). In

MCAOs in the mid to high latitudes, these clouds often occur as MPCs with temperatures

below 0 °C (Abel et al., 2017). Especially in the SO, open MCC clouds commonly occur as

MPCs (Lang et al., 2021), which frequently drizzle (Ahn et al., 2017) and are influenced

by secondary ice processes (Huang et al., 2017). Moreover, simulations show precipitation
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tends to increase horizontal scales (Zhou et al., 2018) and cold pools, in particular in

clouds with high ice water paths (IWPs) (Eirund et al., 2019a).

1.2.3 Mixed-Phase Clouds

Mixed-phase clouds (MPCs) contain a mixture of supercooled liquid droplets, water vapor,

and ice crystals (e.g., Shupe et al., 2008; Lohmann et al., 2016; Korolev et al., 2017, and

references therein). At temperatures below 0 °C, cloud droplets can remain as supercooled

liquid droplets until −38 °C, at which homogeneous nucleation starts to occur without

any foreign substance (Vali et al., 2015). Warm clouds, which are purely liquid, occur at

temperatures above 0 °C, while supercooled liquid clouds (SLCs) with CTTs below 0 °C

can either consist of warm liquid and supercooled liquid cloud droplets or only supercooled

droplets. As a result, MPCs and SLCs are confined to a temperature range from 0 °C to

−38 °C and occur throughout the year in mid-to-high latitudes.

The important microphysical processes in MPCs are displayed in Fig. 4. In contrast to

homogeneous freezing, heterogeneous freezing requires an ice nucleating particle (INP). An

INP is needed as it reduces the energy barrier for ice formation and, thus, occurs at a lower

supersaturation (e.g. Schaefer , 1946; Vonnegut , 1947; Seinfeld and Pandis , 2006; Lohmann

et al., 2016; Vali et al., 2015). Heterogeneous nucleation can occur through four different

modes (Vali , 1985; Pruppacher et al., 1998). Deposition nucleation refers to ice nucleation

directly from supersaturated vapor without a preceding liquid phase. However, with an

improvement in observational capabilities, it is suggested that depositional nucleation

involves pore condensation and freezing of water in tiny cavities of INPs that are not

detectable macroscopically (Marcolli , 2014; David et al., 2019; Marcolli et al., 2021).

Condensation freezing occurs when water vapor condenses on the surface of the INP and

freezes subsequently. The freezing that is initiated due to the collision of an INP with

a supercooled liquid cloud droplet is called contact freezing. Finally, immersion freezing

refers to the freezing of an already immersed INP in a cloud droplet and seems to be

the most important mode in MPCs (Westbrook and Illingworth, 2011; Hande and Hoose,

2017).

In particular, in the SO, the INP concentration is lower than in other regions and

a factor 100 lower than historically thought (McCluskey et al., 2018). In addition, the

INP concentration is inferior to the in-cloud ice number concentration (Sullivan et al.,

2018). This discrepancy can be explained by secondary ice processes involving preexisting

ice, which multiplies and acts as INPs in heterogeneous nucleation. In a review paper of

Korolev and Leisner (2020), six different secondary ice processes are identified: (1) rime-

splintering (Hallett–Mossop) process (Hallett and Mossop, 1974), (2) break-up due to
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Fig. 4 Schematic of microphysical processes in warm-, mixed-, and ice-phase tempera-
ture regimes. This figure is the colored version of Fig. 8.19 from Lohmann et al.
(2016).

ice-ice collision (Takahashi et al., 1995; Riley and Mapes , 2009; Mignani et al., 2019),

(3) droplet shattering during freezing (Korolev et al., 2004; Rangno, 2008; Korolev et al.,

2020), (4) fragmentation due to thermal shock (Dye and Hobbs , 1968), (5) fragmentation

of sublimating ice (Oraltay and Hallett , 1989), and (6) activation of INPs around freezing

drops in transient supersaturation (Muchnik and Rudko, 1961; Dye and Hobbs , 1968).

These six processes of secondary ice formation are displayed in Fig. 5. Out of these six,
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1.2 Theoretical Background

the first three are most investigated and seem to be most important in natural cloud en-

vironments (e.g., Libbrecht , 2005; Mignani et al., 2019; Sullivan et al., 2018; Silber et al.,

2021a). The relevance of secondary ice processes is temperature-dependent, as different

secondary ice processes occur at different temperatures.

Once an ice crystal is formed through primary or secondary ice processes, ice crystals

grow at the expense of the supercooled liquid cloud droplets (Wegener , 1911). This is due

to the different equilibrium water vapor pressures, which are lower over ice crystals than

liquid droplets. This process is part of the Wegener-Bergeron-Findeisen (WBF) mechanism

(Wegener , 1911; Bergeron, 1935; Findeisen, 1938). In addition, ice crystals can also grow

through collisions with liquid droplets which freeze upon contact referred to as riming. For

ice crystals to grow sufficiently to generate precipitation, the ice number concentration

in MPCs needs to be much lower than that of liquid cloud droplets (Bergeron, 1935;

Findeisen, 1938). Thus, in general, the in-cloud ice number concentration is much lower

than the droplet number concentration in MPCs and, thus, the IWP is lower than the

LWP. Therefore, the WBF process converts supercooled liquid to ice and eventually causes

the MPCs to glaciate fully unless there is enough cooling or moistening to maintain the

saturation (Korolev et al., 2017).

Fig. 5 Schematic of six secondary ice processes. The pink color indicates the liquid
phase, and the blue is the ice phase. This figure is Fig. 16 from Korolev and
Leisner (2020).
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Due to the WBF process, the precipitation formation in MPCs is important globally

considering the widespread nature of MPCs from the tropics to high latitudes (e.g., Wang

et al., 2013; D’Alessandro et al., 2019). Especially in the SO, the precipitation of MPCs

accounts for 40 - 50% of all precipitating clouds (Mülmenstädt et al., 2015). Despite the

fact that MPCs are microphysically unstable due to the WBF mechanism, stratiform

low-level MPCs can persist from hours to weeks (Shupe et al., 2006; de Boer et al., 2009;

Morrison et al., 2011; Stevens et al., 2018).

To counteract the depletion of LWP, the stratocumulus MPC needs to be coupled to the

surface and a moisture supply. Typically, stratocumulus MPCs consist of a supercooled

liquid layer at the cloud top required to maintain the radiative cloud-top cooling (Shupe

et al., 2006; Morrison et al., 2012). Below the supercooled liquid top, the cloud phase

is mixed with ice precipitation at the cloud base, which may evaporate before reaching

the ground. A recent study by Korolev and Milbrandt (2022) demonstrates that there are

two stages of mixed-phase, one being uniformly distributed (genuinely mixed) and the

other spatially separated (conditionally mixed), which might have implications for their

radiative effects. In addition, the phase partitioning between ice and liquid in stratocumuli

determines the cloud radiative effect (Sun and Shine, 1994; Shupe and Intrieri , 2004;

Matus and L’Ecuyer , 2017; Korolev et al., 2017). The impact of ice formation on liquid

water in the cloud is crucial as several studies show that the increase of IWP increases

with the LWP (Korolev and Isaac, 2003; Shupe et al., 2004; Morrison et al., 2005; Shupe

et al., 2006, 2008; Westbrook and Illingworth, 2011).

Due to the microphysical complexity of MPCs, our knowledge of the influence on the

radiative properties caused by ice-liquid partitioning remains constrained (McCoy et al.,

2015; Tan and Storelvmo, 2019). About 20% of the intermodel spread of the high-latitude

LWP are caused by the uncertainties in phase partition in a warming climate (McCoy

et al., 2015). Moreover, another uncertainty in climate models is related to the poor

Fig. 6 Conceptual diagram of (a) SLCs and (b) MPCs with open MCC organization.
This figure is Fig. 4 from Eirund et al. (2019a).
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representation of cloud phase feedback, especially in the SO (Bony et al., 2006; Zelinka

et al., 2012, 2013). The SO is a particularly important region for global climate sensitivity

(Gettelman et al., 2019; Zelinka et al., 2020). This highlights the importance of improving

our understanding and, thus, observations of MPCs in the SO and their impact on cloud

albedo.

As both the cloud phase and the cloud morphology impact the radiative properties

of stratocumuli, investigating the potential link between cloud phase and organization

contributes to enhancing our understanding of MCC clouds. This potential link is first

examined by Abel et al. (2017), Eirund et al. (2019a), and Tornow et al. (2021). A research

flight in the North Atlantic shows that the shift from closed to open MPCs is connected to

a transition from MPCs with a high LWP to a lower one (Abel et al., 2017). In addition,

the onset of precipitation is the main driver of the closed-to-open-cell transition. Based

on this, Tornow et al. (2021) explore which ice formation processes are most effective

in developing precipitation in the transition. They exhibit that the presence of ice is

accelerating the transition of an overcast stratocumulus deck into a broken cloud field

due to efficient riming-related effects and termed this preconditioning. While Abel et al.

(2017) and Tornow et al. (2021) focus on the link of cloud phase on the close-to-open

transition, Eirund et al. (2019a) investigates the cloud phase effects on the size of the

cloud cells in open MCC MPCs and SLCs. They analyze the cell size differences with

a model simulation of a case study in Arctic stratocumulus and find that open MPCs

exhibit a larger cell size than open SLCs. This is induced through enhanced precipitation

at cloud base below MPCs, leading to stronger cold pools near the surface. Due to the

more intense cold pools in MPCs, the open cells expand with the cold pools resulting

in larger open MPCs. Figure 6 illustrates the cold pool formation in SLCs and MPCs.

However, these three studies focus on case studies with numerical models in the NH to

study the link between cloud phase and morphology on a process level. Thus, to further

investigate this link and preconditioning due to ice-phase processes, this thesis explores

the impacts of cloud morphology and phase in four-year-long satellites-based analysis in

the SO.

1.3 Objectives

This Ph.D. thesis aims to investigate differences in marine low-level MPCs and SLCs and

the connections between cloud phase, cloud organization, cell size, and cloud albedo with a

particular focus on the SO due to the abundance of MPCs in the polar regions. Only a few

studies have examined the potential link between cloud organization and cloud phase in

marine stratocumuli (Abel et al., 2017; Eirund et al., 2019a; Tornow et al., 2021) focusing

13



1 Introduction

on field campaigns in NH. I use polar-orbiting satellite data to extend this research to

the entire SO and global coverage. The main methodical challenges of this project are to

distinguish between MPCs and SLCs in satellite retrievals and further to identify single

cells of open and closed MCC clouds and to characterize them objectively. The main

research objectives of this thesis are outlined here:

1. To obtain a climatology of open and closed MCC MPCs and liquid clouds in the

SO with a newly developed vertically integrated cloud phase classification based on

active satellite retrievals (Chapter 3).

2. To quantify the impact of ice formation in MPCs on cloud morphology and the

dependence of cloud phase on CTT, CTH, and latitude in the SO (Chapter 3).

3. To assess how the cell size of open and closed MCC clouds is affected by its cloud

phase and CTH in the SO (Chapter 4).

4. To investigate the link between cloud albedo, cloud phase, and cell size in the SO

and its possible implications in a changing climate (Chapters 3 and 4).

5. To establish a global classification of MCC clouds based on cloud reflectance instead

of LWP of current MCC classifications (Wood and Hartmann, 2006) to also be able

to detect ice-phase clouds with no LWP and MPCs with a very low LWP (Chapter 5).
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2.1 DARDAR and MODIS

The liDAR-raDAR (DARDAR) v2 data product (Delanoë and Hogan, 2010; Ceccaldi

et al., 2013) combines data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-

lite Observations (CALIPSO) and CloudSat satellites. The two products are collocated

onto the CloudSat footprints (∼1.1 km). The advantage of combining lidar and radar

measurements is that due to their different wavelengths, they detect different parts of

the hydrometer spectrum. While lidar is sensitive to small particles and thus small liquid

droplets, the radar is dominated by larger particles and, thus, mainly ice particles. In

this study, DARDARv2 is used. This product significantly reduces the overestimation

of supercooled pixels in the lowest part of the troposphere compared to DARDARv1

(Ceccaldi et al., 2013). We analyze data covering the time period from 2007 to 2010 and

focus on the SO (40° S to 65° S). While Huang et al. (2021b) report large differences in

cloud phase detection between various satellite products, which struggle specifically with

MPCs, they use the DARDARv1, which is known to overestimate supercooled liquid.

In contrast, DARDARv2 is validated with several ground-based measurements in the

Antarctic by Listowski et al. (2019), who also show that DARDARv2 has the ability to

capture the seasonal cycle of SLC fraction. Nevertheless, MPCs with very low ice crystal

number concentrations, which are common in the SO might still be misidentified as su-

percooled liquid. Further, we chose the DARDAR product as it merges information from

two active instruments and thus provides a vertically resolved cloud phase. This is in

contrast to passive satellites that only resolve cloud phase at cloud top. The DARDAR

cloud classification additionally requires a temperature profile in the radar mask and the

strong lidar backscatter layers (β532 > 2 × 10−5m−1 sr−1) of the DARDAR classification

algorithm. For further details on the DARDAR algorithm, see Ceccaldi et al. (2013). The

temperature and other thermodynamic variables like SST and surface wind speeds are

collocated on the CloudSat track by the European Centre for Medium-Range Weather

Forecasts (ECMWF)-AUX. Moreover, in this study, we combine the DARDARv2 product

with the MODIS cloud product (MYD06 L2) Collection 6 (C6) version from the Aqua

satellite (Platnick et al., 2015). The LWP and the COT are provided by MODIS. Further,

we derive the in-cloud albedo (Albcld) from the MODIS COT to remain consistent with

DARDAR’s horizontal pixel resolution of 1.1 km. Following Berner et al. (2015) based on
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Platnick and Twomey (1994), we use the equation:

Albcld =
(1− g)τ

2 + (1− g)τ
, (1)

where, COT is indicated as τ and the asymmetry parameter is g= 0.85 which assumes

small water droplets. McFarquhar and Cober (2004) find that MPCs peak at g=0.85 and

liquid clouds at g=0.87. Further, Gayet et al. (2002) show that in MPCs, the asymmetry

parameter ranges from 0.82 to 0.85 (i.e. is similar to values in liquid clouds). They find

higher values of g are typically found in liquid clouds with high liquid water content,

whereas lower values of g (0.73–0.80) are found in ice clouds. This corresponds to findings

by Shcherbakov et al. (2005) and Xu et al. (2022), who demonstrate that the asymmetry

parameter is g= 0.77 in cirrus clouds in the Southern Hemisphere. As differences between

liquid clouds and MPCs are similar, the asymmetry parameter g=0.85 is used for both

liquid and MPCs.

2.2 Vertically Integrated Cloud Phase

To analyze the cloud phase, we use the DARDAR cloud classification, which provides

a vertically resolved cloud phase with a 60m resolution from surface to 25.08 km. This

vertically resolved cloud phase is based on a lidar and radar mask provided by the DAR-

DAR algorithm (for details, see Tab. 1 of Ceccaldi et al. (2013)). Therefore, when the

lidar signal is fully attenuated, the DARDAR classification can only determine the layer

to be ice cloud, warm rain, or cold rain. The DARDAR classification has 17 different

categories, which are displayed in the example tracks of DARDAR in Fig. 17 a and S1.

In this study, the following categories of DARDAR are grouped into four categories: (1)

Ice (ice clouds, spherical or 2D ice, and highly concentrated ice), (2) Sup (supercooled

water and multiple scattering due to supercooled water), (3) Mix (supercooled + ice),

and (4) Liq liquid warm. To reduce the vertical cloud phase into a vertically integrated

cloud phase, we first identify the highest and lowest cloud levels which are categorized

as Sup, Mix, or Liq. The height of the highest cloud level is defined as the CTH and the

lowest as the liquid cloud-base height (CBH). As a result, we exclude pure ice clouds

because the MCC algorithm is based on the LWP (see Section 2.3). Since we are only

interested in low-level clouds, any data point with CTH above 3 km is excluded from this

analysis. The surface cluttering of radar can cause noise up to 2 km which can not be

clearly distinguished from the signal, especially at heights below 720m, and thus clouds

are missed (Marchand et al., 2008). Even though some studies (Liu et al., 2012; Fletcher

et al., 2016b) consider anything roughly below 1 km as ground clutter,Mioche et al. (2015)
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show that in comparison with ground-based observation, the cloud fraction of DARDAR

is 10% lower from 500m to 1000m, while in the range from 0m to 500m it is 25% lower.

Thus, in this study, we consider 720m as the threshold for surface clutter, similar to other

studies (Kay and Gettelman, 2009; Huang et al., 2017; Noh et al., 2019; Listowski et al.,

2019). In order to correctly identify the cloud phase, however, we require one level below

the liquid CBH. Thus, we restrict our analysis to clouds with a liquid CBH at 780m or

above. Moreover, we remove any multi-layer clouds, defined here as clouds with three or

more consecutive vertical levels marked as clear or fill values. As the constructed vertical

resolution of DARDAR is 60m, three levels equal a distance of 240m. This is also the

oversampled vertical resolution of CloudSat (effective vertical resolution is 480m). Thus,

this distance ensures that multi-layer clouds are two separated clouds with a sufficiently

large separation.

In order to assign one cloud phase to a certain data point in DARDAR, we need to reduce

the DARDAR cloud classification in the vertical dimension. Therefore, all data points are

classified into MPCs, liquid clouds, or clear, depending on their vertical phase distribu-

tion (Fig. 17 b). Here, we only analyze pixels. Liquid clouds are considered to be clouds

that only consist of Liq, Sup, or Sup above Liq (Sup →Liq). For MPCs, we consider five

different types: only Mix, Mix above Ice (Mix → Ice), Sup above Ice (Sup → Ice), any

combination of Sup and Mix (Sup↔Mix ), and any combination of Sup and Mix above

Ice (Sup↔Mix → Ice).

Typically, the lidar signal in our cloudy pixels fully attenuates within 300m (five verti-

cal levels) (interquartile range=360m – 240m), and thus provides information beyond

the cloud-top phase. As mentioned above, the radar mask of the DARDAR classification

requires the ECMWF wet bulb temperature to distinguish between the ice (≤ 0 °C), and

liquid (> 0 °C) or rain (> 0 °C) phase. Therefore, this could lead to uncertainty in the

cloud-phase classification close to 0 °C, especially if the lidar signal is fully attenuated. As

this affects cloud-phase classification at temperatures close to 0 °C, this should not lead

to a bias in the overall cloud-phase distinction. Furthermore, for temperatures below 0 °C,

the radar classification cannot distinguish between supercooled drizzle and ice. In the SO

in particular, supercooled drizzle is observed in stratocumulus clouds at temperatures near

−10 °C (Mace and Protat , 2018). Furthermore, Silber et al. (2019) show that at the obser-

vation station McMurdo, in Antarctica, supercooled drizzle can persist at temperatures

below −25 °C for several hours. While it might be possible that the Mix classification of

DARDAR itself is affected as this category is supercooled liquid from lidar and ice from

radar. We find it unlikely that multiple layers of Mix could be affected since the lidar

signal would fully attenuate in the presence of drizzle and the vertical lidar resolution of

CALIPSO is 30m. As most MPCs that contain Mix have mixed layers with a thickness
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of roughly 480m (eight vertical levels in DARDAR) (see Fig. 17a and Fig. S1), the MPCs

with identified Mix levels from the radar retrieval are unlikely to be pure drizzle. How-

ever, the misclassification of supercooled drizzle as Ice could lead to false identification in

MPCs when the lidar signal is fully attenuated, especially in the cloud category Sup → Ice,

as the Ice in these clouds could be supercooled drizzle. Supercooled drizzle is reported to

be misclassified as ice by several studies (Cober and Isaac, 2012; Zhang et al., 2017, 2018;

Villanueva et al., 2021), particularly at temperatures above −10 °C.

To further test the uncertainties of misclassified supercooled drizzle, we checked how our

results are changed if only clouds with an effective radius of 0 µm<Re<<14 µm at cloud

top are investigated. Thus, precipitating clouds should be excluded as Re>14 µm at cloud

top initiates drizzle (Han et al., 1995; Rangno and Hobbs , 2005; Rosenfeld et al., 2012;

Freud and Rosenfeld , 2012). However, we only find slight changes with this threshold

(compare Fig. 19 with Fig. S2). Further, since MODIS is not able to calculate Re in more

than 50% of the identified MPCs (Fig. S4), and since we would also exclude correctly

identified precipitating MPCs, the threshold of Re is not used as a constraint in this

study.

The ECMWF CTT is defined as the temperature from ECMWF at CTH. As shown in

four examples in Fig. S3, our data set, which is combined with MODIS, also provides

the CTT from MODIS. However, we decide to use the ECMWF CTT for two reasons: 1)

because it will be more consistent with the DARDAR classification methodology, which

is also based on the ECMWF temperature and further because CTH between DARDAR

and MODIS varies and 2) because the MODIS CTT exhibits unrealistically large and

abrupt changes of more than 10 °C within a distance of 2 km (Fig. S3). From a brief visual

inspection, it seems to be related to jumps in MODIS CTH which are not detected by the

active satellites. Furthermore, we find that the MODIS CTH is often higher than that of

DARDAR.

2.3 MCC Classification Dataset

The MCC regime identifications are developed by applying the supervised neural network

algorithm designed inWood and Hartmann (2006) to C6.1 MODIS Aqua LWP swath data.

The algorithm uses the power density function and power spectrum of LWP to determine

whether swath sub-scenes (256 km×256 km areas) fall into one of three categories: open

MCC, closed MCC, or cellular but disorganized. See Eastman et al. (2021) for more

information on the C6.1 MCC identifications. To collocate the MCC data set with the

CloudSat track, the haversine distance for all DARDAR data points to the middle of each

MCC scene is calculated. The MCC regime of the nearest MCC scene within a radius of
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128 km is set for each DARDAR data point.

2.4 MCC Classification with CNN

As the MCC classification described in Section 2.3 is based on the LWP, this potentially

influences the detection of MPCs and ice-phase clouds, especially MPCs with a low LWP

could be missed. Thus, I introduce a manual classified MCC data set, which is used to

develop a MCC classification with a deep convolutional neural network (CNN) model

based on the MODIS 0.86 µm reflectance band. A CNN is an artificial neural network

that is commonly used in image pattern recognition (LeCun et al., 2015) and is also used

by Yuan et al. (2020) and Lang et al. (2022) to classify open and closed MCC among other

categories and not based on the MODIS 0.86 µm reflectance band. The preparation of the

manual MCC data set and the CNN model development are part of the master thesis

from Christopher Reichel, which I supervised during my Ph.D. thesis (Reichel , 2022).

Christopher Reichel tested different data augmentation methods and several different

CNN model setups. In this thesis, I only use the most promising CNN model to identify

MCC globally (Section 2.6). As the master thesis is not published, the Sections 2.4.1

to 2.4.4 describe in detail the setup of the classified MCC data set, and the CNN model

with the best performance.

2.4.1 Scene Selection

The development of any artificial neural network requires a manually created data set that

provides data that needs to be classified, in this case, an image and the corresponding

classification. This section describes which data is used for the scenes (images) and how

they are selected and afterward classified.

To have the possibility to combine the MCC classification of the CNN model with

the cell identification from Section 2.5, the scenes are also based on the MODIS 0.86 µm

reflectance band with a 1 km resolution (Platnick et al., 2015). For further details on

the MODIS Aqua cloud product (MYD06), see Section 2.5. Here, we use the seasons

JJA and DJF of the years 2008 and 2009. As mentioned in Section 1.2.2, we focus on

these two seasons because open and closed MCC clouds have the highest frequency of

occurrence, respectively, in winter and summer (Muhlbauer et al., 2014). To achieve a

higher percentage of MCC clouds compared to other types of low-level clouds, we only

select scenes in specific regions that are known to favor MCC cells. These five regions are:

North Atlantic (40 - 60°N, 25 - 45°W), South East Pacific (20 - 40° S, 70 - 90°W), South

East Indian (40 - 60° S, 70 - 90°E), North East Pacific (15 - 40°N, 120 - 150°W), and South
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Pacific (30 - 60° S, 90 - 180°W).

To train the CNN model, we need an equal amount of open and closed MCC cloud

scenes, as otherwise, the model could become biased to the classification with more scenes.

As closed MCC clouds dominate the statistic in summer but are more equally distributed

with open cells in winter, we use the winter season of all regions, which means DJF for the

Northern Hemisphere regions and JJA for the SH regions. We also classified the summer

months for the regions North Atlantic, South East Pacific, and South East Indian because

we noticed a tendency towards open MCC clouds during our classification.

All scenes have a size of 224×224 km2. This scene size can capture the cloud morphology

of MCC clouds and is small enough to be computationally efficient. Moreover, this is

a typical image size in CNNs (e.g., Krizhevsky et al., 2012; Kiela and Bottou, 2014;

Simonyan and Zisserman, 2015; Chen et al., 2019). As the CTH and other cloud top

properties deviate more strongly in satellite scan angles greater than 32◦ (Menzel et al.,

2010), only the inner 706 pixels across the track (of 1354 pixels) with a scan angle <32◦

are used from each MODIS granule. This leads to a maximum of 27 scenes per MODIS

granule. However, we further filter the scenes by CTH and the land-sea mask. The MODIS

Aqua MYD03 geolocation product provides the land-sea mask along with the longitude

and latitude at 1 km resolution. As open and closed MCC are low-level clouds, the mean

CTH of the scenes needs to be below 3.5 km. Further, all scene pixels are required to be

over the ocean which is at least 5 km from the coast or deeper than 50m (corresponding

to the two land-sea mask categories: ”moderate or continental ocean” and ”deep ocean”).

2.4.2 Manual Classification

These selected scenes are classified by five persons, hereafter classifiers, through visual

inspection of each scene. The five classifiers are trained to identify the MCC morphology

of open and closed cells. In total, 28645 scenes are available after filtering in JJA and

DJF in 2008 and 2009. However, after three days of classifying scenes, 6944 remain un-

classified. Thus, 21701 images are classified by all of the five classifiers. All 21701 scenes

are categorized into one of the five categories: Open, Closed, NoMCC, Disorganized, and

Error. The Open, Closed and Disorganized category is only assigned to a scene if at least

70% of a scene is covered with the respective morphology. All scenes with less than 70% of

these morphologies are categorized as NoMCC. The NoMCC category further includes all

other scenes that do not belong to one of the MCC regimes, such as stratiform clouds or

almost cloud-free ocean scenes, except for erroneous scenes. Close to a latitude of 60° S/N

in the respective winter season, there often is a detection limit of the passive satellite

instrument MODIS due to the missing solar insolation and the very short daytime. This
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Table 1 Number of scenes classified by each of the five classifiers separately divided by
the categories. Table taken from Reichel (2022).

Classifiers Open Closed Disorganized NoMCC Sum Error

Classifier 1 1031 663 18 18246 19940 1698

Classifier 2 1381 1038 84 17425 19844 1721

Classifier 3 710 482 109 18455 19647 1657

Classifier 4 1683 839 100 17195 19717 1878

Classifier 5 940 705 60 13021 14666 1108

leads to scenes with precise edges and a large connected area with fill values. These scenes

and scenes with apparent spurious features are classified as Error.

The classifications of all five classifiers are shown in Table 1. The scenes with the

category Error are removed from the data set as we are not interested in the erroneous

scenes and are only shown for completeness. Table 1 also shows the sum of the four

remaining categories. Note that Classifier 5 processed about 4000 fewer scenes in total

compared to Classifiers 1-4. This is caused by the loss of a file containing some classification

results of Classifier 5. The lost file, however, only contained classifications during the

summer months. As almost all scenes are classified as NoMCC in summer by the other

four remaining classifiers, this should not affect the overall statistic of the Open and

Closed categories. This is supported by the fact that for Classifier 5, the only category

drastically reduced compared to the other classifiers is the NoMCC category. The category

Disorganized is only detected for a couple of scenes with a maximum number of 109 by

Classifier 3. This is probably due to our region selection as the selected regions have a

low frequency of occurrence for disorganized cells (Muhlbauer et al., 2014). All classifiers

label more scenes as Open than as Closed. Even the additional classification of summer

months for some regions could not entirely avoid a tendency toward the Open category.

Although all classifiers categorize more Open scenes, the number of classified scenes in

each category varies between the five classifiers.

To further ensure the correct classification of the scenes, a certain number of classifiers

must agree on each scene’s category for a scene to be included. Table 2 shows the number

of scenes for which at least three or four classifiers agree on the category. In total, there

Table 2 Number of scenes for which at least three or four Classifiers agree on the
category. Table taken from Reichel (2022).

Number of Classifiers in Agreement Open Closed Disorganized NoMCC

3 or more 847 550 3 18374

4 or more 405 255 0 16703
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are 847 Open and 550 Closed scenes.

As the CNN model needs to be able to classify Open, Closed, and NoMCC scenes

correctly, we need a training and testing data set with an equal number of scenes in each

category. Thus, we can only use 550 scenes for each category. We use all 550 Closed scenes

and randomly sample 550 Open and 550 NoMCC scenes. This yields a data set with a

total of 1650 unique scenes, which are manually divided into 70% (1155 scenes) training

and 30% (495 scenes) testing data set. The training and testing data sets individually

have an equal amount among the three categories (training: 385 scenes, test: 165 scenes).

Further, to train the model, the training data set is further divided into another 70%

(808 scenes) training and 30% (347 scenes) validation data set. The split between the

training and validation data set is automatically executed by the argument validation split

of the model.fit function from the tensorflow package in Python (Pang et al., 2020).

Unfortunately, with this argument, the data is split by taking the last, in our case, 30%

of the 1155 scenes without any regard for the category. We only noticed this after the

Master Thesis of Reichel (2022) was finished. Therefore, our training and validation data

sets do not have the same number of scenes for each category. The training data set has

273 Open, 269 Closed, and 266 NoMCC scenes, and the validation data set has 112 Open,

116 Closed, and 119 NoMCC scenes. While having an unequal number of scenes is not

ideal for training, the maximum difference between the categories Open and NoMCC is

only 2.6% in the training data set. Thus, the CNN should not favor the category Open. To

improve the performance of the model, the diversity of the training data set (808 scenes)

is artificially extended by data augmentation, described in the Section 2.4.4.

2.4.3 CNN Model

In general, deep learning means that in an artificial neural network, which is a computa-

tional model consisting of multiple layers, patterns in a large data set are recognized by

changing the model’s internal parameters through the backpropagation algorithm (LeCun

et al., 2015). A CNN uses deep learning to train and consist among other layers of at least

one convolutional layer. Deep CNN models can recognize complex patterns in images sim-

ilar to humans (LeCun et al., 2015). This section describes the CNN training process and

its specific configuration. To set up to CNN, we use the tensorflow package in Python

(Pang et al., 2020). The tensorflow package is open-source software that is widely used

and developed by Google researchers.

The training data set is split into batches to train or fit a CNN model. A batch or

batch size is the number of scenes the model is trained on at one time. Here, we set the

batch size to 20 scenes. This training is repeated on all 41 batches of the 808 training data
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Conv (32, 3x3)
with ReLu
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Fig. 7 Schematic representation of the CNN with three convolutional layers with max-
pooling for feature extraction and two dense layers for classification. In the con-
volutional layer (Conv), the first number in brackets indicates the number of
kernels (filters), and the second is the kernel size. The CNN architecture is pro-
duced with the online tool ”NN-SVG” with the LeNet style from LeNail (2019).

scenes, where the last batch only has eight scenes. After each batch, the model learns to

categorize the scenes with a learning rate of 0.001 with the adam optimizer. This complete

run of all batches is called an epoch. At the end of each epoch, the loss and accuracy of

the training and validation set are calculated. While the model is only actively trained on

the augmented training data set, the accuracy of the validation data set is also used at the

end of each epoch to adjust the CNN’s internal parameters. Thus, the validation data set

is still indirectly used to train the model and, therefore, is not used to test the model. The

final CNN model is trained with 50 epochs, and due to the random augmentation of each

training data set (see Section 2.4.4), 40400 differently augmented scenes are evaluated in

total.

The architecture of the CNN consists of three convolutional layers, followed by a max-

pooling layer. The complete architecture of the CNN is shown in Fig. 7. The three con-

volutional layers extract the patterns or features in the scenes and use the rectified linear

unit (ReLu) activation function. The ReLu activation function is a nonlinear function that

sets the negative values to zero and retains the positive values (Gu et al., 2018). Each

convolutional layer of the CNN has a different number of kernels (filters) but the same

kernel size of 3 x 3. The number of kernels increases from the first convolutional layer to

the last from 32, 64, to 128. The kernels in the first convolutional layer are designed to

detect features like curves and edges in the scenes. In contrast, the following convolutional

layers recognize more abstract patterns in the scenes (Gu et al., 2018). The max-pooling

layers after each convolutional layer have a kernel size of 2 x 2, which reduces the scene size

by half in height and width by taking the maximum. The max-pooling layers are mainly

used to reduce the number of parameters and, thus, increase the computational efficiency
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(Dhillon and Verma, 2020). Further, these layers also help to prevent overfitting of the

CNN. Overfitting occurs when a model cannot generalize the learned pattern but can

only predict the training data set well (Moen et al., 2019). However, data augmentation

should also reduce this (Section 2.4.4).

The last convolutional layer has a size of 128 x 26 x 26 and is flattened to 86528 to be

connected with the dense layers. The last two layers of the CNN are the dense layers that

are part of the actual classification compared to the feature extraction of the convolutions

layers. These dense layers are fully connected, meaning each neuron of the layer is con-

nected to all inputs of the previous layer. The first dense layer has 64 neurons and is also

activated by ReLu. The final dense layer has three neurons which are the three categories

(Open, Closed, and NoMCC), the model is supposed to predict. This dense layer uses the

activation function softmax, which assigns a probability to each of the three neurons. The

class or neuron with the highest probability is the final prediction of a scene.

The evaluation of the CNN training is shown in Fig. 8. It shows that the training and

validation accuracies asymptotically approach an accuracy of around 80% within the first

20 epochs. As the training and validation loss converge after about 15 epochs and do not

spread apart with a higher number of epochs, this shows that the CNN is not overfitted.

The CNN model configuration with the best validation accuracy of 83.28% at epoch 42

is saved.

2.4.4 Data Augmentation

Data augmentation is a common method in CNNs to increase the variance artificially

and, thus, the training data set size by slightly modifying the scenes, i.e., rotating the
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Fig. 8 Accuracy and loss for training and validation data set at each epoch. Figure
adjusted from Reichel (2022).
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image. However, it is essential that the image transformation, even though artificial and

random, still provides realistic images that could have been observed in clouds over the

ocean. Perez and Wang (2017) demonstrate the effectiveness of simple data augmentation

methods such as flipping, cropping, zooming, or rotation. An example of manual data

augmentation is shown in Fig. 9. Previous studies show that with a more extensive data

set, the performance of deep learning models, like CNNs, improves (Sun et al., 2017;

Barbedo, 2018; Soekhoe et al., 2016).

The training data set is augmented with an augmentation layer which is a function of

Original
50 km

a b

c d e

f g

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9 Different single data augmentations (a-g) of the original scene (top left). (a)
brightness, multiplied by a factor of 0.8 (b) horizontal crop, 44 pixels cropped
and resized to 224×224 km2 (c) vertical crop, 44 pixels cropped and resized to
224×224 km2 (d) zoom, a factor of 0.3 (e) horizontal flip (f) vertical flip (g)
rotation and cropping, rotated by 60◦, cropped to 163×163 km2 and than resized
to 224×224 km2. Figure taken from Reichel (2022)
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Fig. 10 The flowchart represents the data augmentation process on one batch of
20 scenes.

the tensorflow package in Python (Pang et al., 2020). The data augmentation layer runs

synchronously with the other layers of the CNNs and is more computational efficiently

than an asynchronous augmentation layer. However, the preprocessing layer of data aug-

mentation is inactive when the model is tested or evaluated. In the augmentation layer,

the image transformations occur randomly while training the model. Thus, the original

808 images are randomly transformed, meaning all six transformation types occur ran-

domly. The six types of transformation are: flipped horizontally and vertically, rotated

by an angle divisible by 40◦, zoomed in the range of 10 - 20%, changed in contrast by a

factor 0.7, cropping of the images to the size 163×163 km2 and being translated in width

and height by a factor of 0.2. The data augmentation process is schematically shown in

Fig. 10. The original 808 training data scenes are never passed to the CNN instead, a

randomly transformed version of this data set is provided. Thus, the data set size is not

increased as each model epoch, which is one complete run of all training data, still has an

input of 808 scenes. However, due to the randomness of the transformations, each epoch

is trained with a ”new” version of scenes, which effectively increases the training size.

2.5 Cell Identification

This section describes how single open and closed MCC cells are automatically identified

in a reflectance band of the Aqua satellite. I am interested in investigating whether the

cell size of these two MCC organizational regimes is influenced by the cloud phase. The

following Sections 2.5.1 to 2.5.2 define the processes from scene preparation to image

segmentation and the subsequent calculation of mean cloud properties of the single cells.

2.5.1 MODIS Scene Preparation

To identify single cloud cells in MCC organizational scenes, I use the MODIS cloud prod-

uct (MYD06) Collection 6.1 (C6.1) from the Aqua satellite with a 1 km and 5 km res-

olution in the SO (40° S to 65° S) from 2007 to 2010 (Platnick et al., 2015). This time

period is used as 2007 is the first full year in which CALIPSO and CloudSat joined the

Afternoon Constellation (A-Train). The A-Train constellation in this time period con-
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sisted of five satellites that fly close to each other in the following order: Aqua (2002),

CloudSat (2006), CALIPSO (2006), PARASOL (2004), and Aura (2004). On April 17th,

2011, CloudSat temporarily left the A-Train due to a battery failure but rejoined the

constellation behind CALIPSO on May 12th, 2012 (Stephens et al., 2018). However, due

to the positional change of CloudSat, I only investigate the time period from 2007 until

2010 for consistency of the three used satellites (and their data sets): Aqua (MODIS),

CALIPSO (DARDAR), and CloudSat (DARDAR).

From the Aqua MODIS cloud product (MYD06), the following scientific retrievals

are used with a 1 km resolution: corrected atmospheric reflectance, CTH, COT, LWP,

and effective radius Re at/near cloud top. From the corrected atmospheric reflectance,

only the 0.86 µm reflectance band is investigated as this band minimizes the underlying

surface reflectance over oceans (Platnick et al., 2003). The COT and the effective radius

Re are derived from the water-absorbing visible or near-infrared (VIS/NIR: 1.6 µm, 2.1 µm

and 3.7 µm) and non-absorbing SW infrared (SWIR: 1.6 µm and 2.1 µm) bands at 1 km

horizontal resolution (Nakajima and King , 1990; Platnick et al., 2003, 2017). The cloud

LWP is based on the effective radius Re and COT retrievals by assuming an idealized

cloud with an increasing liquid water content from cloud base to cloud top with a constant

cloud droplet number concentration (Han et al., 1994). All three retrievals, COT, LWP,

and effective radius Re, depend on a correctly identified MODIS cloud phase, which only

accounts for liquid or ice-phase clouds. Thus, this leads to biases in these MODIS retrievals

in MPCs (Miller et al., 2014) as they are treated as liquid-phase clouds. Khanal and Wang

(2018) show that in stratiform MPCs the LWP increases by about 15% and the COT bias

by about 8% at an IWP of 150 gm−2 caused by the phase treatment. Further, they show

that most MPCs exhibit an IWP <150 gm−2. Therefore, this bias in MPCs should only

slightly affect the analysis of the in-cloud albedo based on COT (Section 2.1). The MODIS

CTH retrievals are by about 0.5 km higher than the CTH retrieve by CALIPSO (Baum

et al., 2012). However, the MODIS CTH is only used to select low-level scenes, while the

DARDAR is used for further investigations.

The Aqua MODIS geolocation product (MYD03) is used to retrieve longitude and

latitude at 1 km resolution as the MYD06 product only contains them at 5 km resolution.

The Aqua MODIS satellite swath is stored in granules that contain 5minutes of the

swath. Each MODIS granule has a size of 1354 km across the satellite track and 2030 km

(every 10th granule 2040 km) along the track. Further, as the reflectance from a passive

instrument like MODIS is only retrieved during day time, only day-time granules are used.

To evaluate the cloud phase of the single MCC cells, I use the DARDAR data set

with the vertically integrated cloud phase described by Danker et al. (2022a) and in

Section 2.2. This data set is based on an active instrument that retrieves data as a line
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a) b)

Fig. 11 (a) Visual image of MODIS Aqua on February 3rd 2007 with the yellow line
indicating the DARDAR track (provided by: https://earthdata.nasa.gov).
(b) Composite of five MODIS 0.86 µm reflectance scenes with the DARDAR
track. The original data points of the MCC data set from Wood and Hartmann
(2006) are shown for open and closed MCC categories. The valid DARDAR
points are overlaid in red on the track in blue. Out of these five scenes, only
four cells are identified as the southernmost scene has no peak in the 2D Fourier
transformation (see Section 2.5.2). The missing scene in the middle is not passed
to the segmentation as it contains both open and closed DARDAR points.

along the satellite track instead of a swath like MODIS. As I am particularly interested in

MPCs, the MODIS cloud top phase can not be used as most MPCs are identified as liquid

clouds due to their supercooled liquid top (Adhikari et al., 2013). Thus, the scenes are cut

with the DARDAR track defining the center across the track with a size of 200×200 km2

(Fig. 11 b). The scene selection process is illustrated schematically in Fig. 12. Only oceanic

scenes with at least 40% of valid DARDAR points are passed to the image segmentation

described in Section 2.5.2. Here, valid DARDAR point means that the data point has to

be a low-level cloud with a DARDAR CTH below 3 km and is either a MPC or liquid

cloud. While I choose this value to ensure enough cloudy data points along the DARDAR

track, this could potentially influence the cell diameter as scenes with very large open

cells might exhibit less than the 40% valid DARDAR points due to their generally lower

cloud fraction (e.g., Wood and Hartmann, 2006). Moreover, I also require at least 40% of
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DARDAR points in each scene to be assigned to a MCC regime of either open or closed by

the MCC data set described in Section 2.3. If a scene contains both open and closed MCC

data points, the scene is not passed to the segmentation as shown in Fig. 11 b. Notice

that due to the slightly different resolutions of MODIS (1 km) and DARDAR (1.1 km), a

maximum number of 181 DARDAR points is possible in each scene.

Fig. 12 The schematic representation of the scene selection process for segmentation.

2.5.2 Image Segmentation Methods

Image segmentation methods are algorithms to segment a digital image into specific areas

or objects by their visible features. In the following, two marker-based image segmentation

methods are conceptualized, which are used for scenes with open (watershed) and closed

(random walk) MCC cells.

The conceptual description of the marker-based watershed image segmentation is gray-

scale image segmented by using the image as a topographic map where the pixel’s intensity

is considered as its height (Digabel and Lantuéjoul , 1978; Vincent and Soille, 1991; Parvati

et al., 2008). Subsequently, certain regions of the image are selected as starting points

(markers) in the ”valleys” (regional minimum) from which the water level is increased

until different water masses would connect, which provides the border of each ”valley”

(MCC cells). Further, there is the possibility to select regions that can not be flooded

with markers as background pixels.

The other image segmentation method is the marker-based random walk segmentation

(Grady , 2006). The random walk segmentation also requires a gray-scale image and mark-

ers that indicate the regional minima. The concept of this method is that every unmarked

pixel releases a ”random walker” to walk to each marked pixel and calculate the proba-

bility of which marked pixels the random walker is most like to reach first. The random

walkers are biased to avoid crossing sharp intensities of pixels to account for more than

pixel distance between marked and unmarked pixels. Similar to the watershed method, it

is also possible to additionally mark regions that belong to the background.

A common issue of both methods is over-segmentation which means that too many

segments are detected when every local minimum is considered as a marker (Parvati

et al., 2008; Martini et al., 2014; Gufan et al., 2016). To avoid this issue, the markers of

each MODIS scene need to be selected carefully, as the number of markers defines the

29



2 Data and Methods

number of cells. However, the markers must also be selected automatically to generate a

global statistic. In the following, I describe how the markers are calculated.

Marker Selection

The scenes are already gray-scale images as I use only one band from the reflectance

as input. To automatically select the markers of each MODIS scene, first, each scene is

normalized to a range from 0 to 255 to fit the typical range of an RGB image. The step-

by-step marker selection process is visualized in Fig. 14. All following image processing

a)

b)

Fig. 13 (Top) Azimuthally averaged 1D power spectra of the 2D Fourier transformation
of the (bottom) scenes for (a) open scenes and (b) closed scenes. The green
crosses indicate peaks with a prominence of 100000. The left and middle scenes
are segmented, while the right one is excluded due to the missing peak.
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steps, including filtering, morphological transformations, and segmentation, are performed

with the open-source Scikit-Image library in Python (van der Walt et al., 2014) which is

widely used in cloud detection studies (e.g., Heikenfeld et al., 2019; Yorks et al., 2021;

Janssens et al., 2021). To increase the contrast of the scenes, I normalize each scene’s

histogram, resulting in clearer lines (borders) of the cells. As I am not interested in

detecting small turbulent details in the cells, I use a Gaussian low-pass filter with a

standard deviation of 0.5, which is truncated based on the mean estimated cell diameter

of each scene (Martini et al., 2014). Estimating the cell diameter accounts for varying

cell diameters with each scene. This estimation is calculated by finding the highest peak

in the azimuthally averaged 1D power spectrum of the 2D Fourier transformation with a

prominence of 100000. If a scene does not have a peak with this prominence, the scene

is not further used and thus is not segmented. The prominence value is set to 100000

to avoid segmenting scenes without clear MCC structures, although classified as MCC

scenes. In Fig. 13, a few example scenes and their power spectra are shown for open and

closed MCC scenes. While this works very well in open scenes, there are still some more

stratiform scenes of closed MCC which exhibit an identified peak in the power spectra

(Fig. 13 b, middle). As these stratiform scenes are also segmented, this could lead to a

bias in cell area and cause a larger cell diameter in the closed MCC clouds.

To further prepare the markers of the scenes, the scenes are binarized by a dynamic

threshold calculated based on the mean of the neighboring pixels. The neighboring pixels

are also defined by the estimated cell diameter. For open cell scenes, the binarization is

inverted so that cloudy regions with values higher than the threshold are set to zero while

values lower than the threshold (ocean regions) are set to one (Fig. 14). While ocean

regions should be local minima and the cloud walls local maxima in open scenes at the

end of this process (Fig. 15 a), due to the distance transformation, in the binary image,

ocean regions have to be maxima and cloudy regions minima. While the reverse is true for

closed scenes, in which the segmented cells should be over cloudy regions with the border

over the ocean or lower intensities (Fig. 15 b). Thus, the binarization is not inverted in

closed scenes.

Two morphological operations, opening and closing, are used on the binarized scenes

(Said et al., 2016; Gufan et al., 2016). The morphological opening operation first uses

erosion (⊖) followed by dilatation (⊕) to transform the input scenes (Img) with the

same structuring elements (SE) see Eq. (2). Whereas closing has the reverse order, first

dilatation followed by erosion (Eq. (3)).
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2 Data and Methods

Opening = Img ⊖ SE⊕ SE (2)

Closing = Img ⊕ SE⊖ SE (3)

The morphological transformation ”erosion” erodes the foreground structures (pixels

equal to one; white) by replacing any pixels with the background (pixels equal to zero;

a)

b)

Fig. 14 Step-by-step marker selection process for examples scenes of Fig. 11 (a) open
and (b) closed MCC scenes on February 3rd 2007. The step-by-step process
follows the original scene, normalized histogram, low-pass filtered, binarization,
(a) opening or (b) closing, (a) closing or (b) opening, distance transformation,
background marker, foreground markers and segmentation with (a) watershed
or (b) random walk.
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2.5 Cell Identification

b)a)

d)c)

Fig. 15 (a, b) MODIS 0.86 µm reflectance of two example scenes of open and closed
MCC regimes on February 3rd. The red borders indicate the identified MCC
cells. (a) The open scene is segmented by the watershed image segmentation.
(b) The closed scene is segmented by the random walker image segmentation.
The dark blue dots on the blue line show the valid DARDAR data points on
the track. (c, d) Filled cells to visualize the cells from the background.

black) if not all pixels under the structuring element are equal to one. On the other

hand, the morphological transformation ”dilatation” dilates the foreground structures by

replacing any pixels with the foreground if any pixels under the structuring element are

equal to one. In this way, opening removes foreground structures that are smaller than the

structuring element, while closing removes background structures that are smaller than

the structuring element. In each scene, both morphological operations are used. Open

scenes are first transformed by opening and then closing with a disk-shaped structuring

element with a radius of 2 pixels. In contrast, closed scenes are first transformed by closing,

followed by opening with a disk-shape structuring element with a radius of 1 pixel. Thus,

in both cases, I remove the noise in the cloudy areas and then in the ocean regions. The

radii of the structuring elements are tested by visual inspection of a couple of test scenes.

Due to the typically lower cloud fraction in open scenes, the radius is set to a larger value

than in closed scenes.

To not segment the whole scene, especially when there are larger patches with no

MCC organization, I will mark regions that can not be segmented and thus belong to
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the background. Based on the final morphological transformation of the image (either

closing for open or opening for closed scenes), I define the markers of the background

in the segmentation. Therefore, this final morphological transformation of the image is

dilated with a disk-shaped structuring element with a radius of 8 pixels. The radius of

the structuring element is set to a relatively large value only to keep background pixels

that have a distance greater than 8 km to any foreground pixels in the final morphological

transformation. Any remaining connecting groups of background pixels with more than 3

pixels are used as a background maker. These small background pixel groups are discarded

because they mostly result in very small and unrealistic background areas. The pixel

group size is tested on multiple example scenes with a value of 3 pixels the most realistic

background is achieved.

In the final step, I define the markers of the foreground by calculating the euclidean

distance transformation of the final morphological transformation of the image. The max-

imum distance times the distance factor (open: 0.28; closed: 0.4) is used to calculate the

threshold distance. The distance factor values are tested and visually verified by the re-

sulting cell identification in multiple test scenes. In general, with an increasing distance

factor, the number of identified cells decreases as fewer foreground markers remain. This

could possibly bias the cell area of closed MCC cells to be larger, as the cells in scenes

with too few cells might have an unrealistically large cell area. However, the different

values for open and closed scenes are carefully considered and necessary to account for

the more turbulent nature of the foreground area (cloudy area) in closed cells compared
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Fig. 16 Cell diameter probability density functions (PDFs) based on the eight versions
of the cell identification.
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2.5 Cell Identification

to open cells (ocean area) shown in the distance transformation in Fig. 14. All pixels of

the distance transformation larger than the threshold distance are set to one, while the

rest is set to zero. Any remaining connecting groups of foreground pixels with more than

3 pixels are used as foreground makers, similar to the background markers.

Finally, during the image segmentation step, all scene pixels which do not belong

to either foreground or background makers are segmented and labeled. The foreground

markers label all cells, while the background markers all belong to the same background

label. Examples of the cell identifications of the watershed segmentation for an open cell

regime and the random walk segmentation for a closed cell regime are displayed in Fig. 15.

Cells connected to a scene’s border are removed to avoid a bias in the cell diameter.

To provide information about the uncertainties of this cell identification method, I

repeatedly shift the start of cutting the scenes along the track by 25 km. This yields eight

versions of the cell identification methods with slightly different scenes. Overall, the cell

diameter distributions of the eight versions are very similar, as shown in Fig. 16.

Mean Cell Properties

As I investigate the cloud phase of the identified cells shown in Fig. 15, only the cells

containing valid DARDAR data points are analyzed as they are located under the track.

The cell diameter is the equivalent cell diameter depending on the cell area. To be con-

sistent with the results from Chapter 3, the mean cloud properties of CTH, CTT, LWP,

COT, in-cloud albedo and effective radius Re are the means of all valid DARDAR points

crossing a cell.

2.5.3 Rejection Rate

To test if mean cell properties (µ) are statistically different between two distributions,

e.g., open and closed MCC cells, I introduce the rejection rate based on Welch’s t-test.

As I analyze eight different versions of the cell identification, Welch’s t-test is performed

individually for each version. Here, I use a two-tailed Welch’s t-test which accounts for

unequal variances and unequal sizes of the two samples with a significance level of 95%

(Welch, 1938, 1947).

H0 :µ1 = µ2, if p ≥ 0.05

H1 :µ1 ̸= µ2, if p < 0.05

The Null hypothesis H0 is rejected if the p-values are below 0.05 and show that the mean
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cell properties are significantly different in this version. To account for the eight versions,

the rejection rate is the fraction of rejected versions for the identical test distribution

properties in different versions. This means that all versions have statistically significantly

different means for a rejection equal to one.

2.6 Global MCC Dataset

In order to obtain a global MCC climatology and to further verify the CNN described

in the previous Section 2.4, I use the CNN to analyze the 0.86 µm reflectance band with

a 1 km resolution from MODIS Aqua C6.1 (Platnick et al., 2015) from 65° S to 65°N in

2008. For further details on the MODIS Aqua cloud product, see Section 2.5. Here, the

longitude and latitude are not taken from the geolocation product (MYD03) but to save

data storage, the 5 km resolution longitude and latitude from MYD06 are interpolated to

1 km.

To match the conditions the CNN is trained on, the MODIS granules are cut into scenes

with a size of 224×224 km2. The scan angle should be <32◦ to retrieve reliable cloud top

properties (Menzel et al., 2010). This would result in taking the inner 881 pixels (s) of each

granule which correspond to a scan angle (α) of 32◦ calculated by s = 2·flight height·tanα

with a flight height of 705 km of the MODIS instrument on the Aqua satellite. However,

instead, I select the inner 896 pixels with a scan angle of 32.43◦ at the borders to fit four

full scenes across the track. As the scenes are cut with an overlap of 112 km, each granule

is cut into 119 scenes. Only low-level cloud scenes with a mean CTH ≤3.5 km in which all

pixels are above the ocean are analyzed by the CNN model. The longitude and latitude

in the center of each scene are saved along with one of the three CNN categories: Open,

Closed, NoMCC. To retrieve the global statistic, all scene centers are binned into a 5◦ x 5◦

grid. The MCC frequency occurrence is the percentage of occurrences of open or closed

MCC scenes to the total number of all low-level cloud scenes in each bin.
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3 Exploring Relations Between

Cloud Morphology, Cloud Phase,

and Cloud Radiative Properties in

Southern Ocean’s Stratocumulus

Clouds

3.1 Stratocumulus Climatology

Cloud morphology and reflectivity are vertically integrated quantities of a 2D cloud field.

In order to explore the links between morphology, phase, and their combined poten-

tial relation to cloud albedo, a vertically integrated categorization for cloud phase was

built (Fig. 17) as described in Section 2.2. Here, we address the quality and limits of

our vertically integrated cloud phase and their seasonal differences. Further, the possible

connections between cloud phase and organization are investigated.

According to our cloud-phase classifications, most MPCs are characterized by a Mix

cloud layer with ice-phase precipitation below cloud base in the SO, whereas commonly

in the SO, many MPCs are described as consisting of a supercooled liquid top with ice

precipitation below in satellites studies (e.g., Hu et al., 2010; Morrison et al., 2011; Huang

et al., 2012; Ahn et al., 2018; Mace et al., 2021) and also by some ground-based and in

situ measurements (e.g., Shupe et al., 2008; Niu et al., 2008; D’Alessandro et al., 2021;

McFarquhar et al., 2021). Note that spaceborne studies can be based either on passive

instruments which typically only cover the cloud-top phase (Morrison et al., 2011) or on

active instruments like lidar or radar (Hu et al., 2010; Huang et al., 2012; Ahn et al., 2018;

Mace et al., 2021) which can penetrate layers below cloud top. Recently, the comparison of

active satellites from CALIPSO or CloudSat with ground-based or in situ measurements

shows that their products underestimate the occurrence of MPCs in the SO (Ahn et al.,

2018; Mace et al., 2021). This is further supported by many field campaign studies that

observe the presence of ice in the supercooled top layer, even at relatively high CTT

(>−5 °C) in MPCs (e.g., Huang et al., 2017; Ahn et al., 2017; Lang et al., 2021; Zaremba
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Fig. 17 (a) Example track of the DARDAR categorization on December 1, 2007. The
hatched area displays levels below 720m. The colored circles below the ground
show our vertically integrated cloud-phase classification and the MCC type for
every second data point.
(b) Histogram of data points of vertically integrated cloud-phase subcategories
divided into liquid clouds (orange) and MPCs (green) for JJA (black) and DJF
(gray) from 2007 to 2010. The overall percentage of liquid clouds and MPCs is
indicated in each panel separately for JJA (black) and DJF (gray). The layer
on top of the next is indicated by ”→” and interchangeable layers are indicated
by ”↔”.
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3.1 Stratocumulus Climatology

et al., 2021). The previous version of DARDAR (v1) shows a tendency to detect too many

liquid or supercooled liquid pixels in the lower troposphere (Ceccaldi et al., 2013). As the

study by Huang et al. (2012) uses the DARDARv1 product, they find more supercooled

liquid-topped MPCs which is likely due to the bias in the DARDARv1 cloud classification

algorithm.

While most of our MPCs (more than 95%) contain a Mix layer that is determined by both

the radar (ice) and the lidar (supercooled liquid), we also include Sup over Ice clouds in

our MPC classification. This category is the most uncertain as the phase distinction

between ice and rain is solely based on the wet bulb temperature (frozen < 0 °C) once

the lidar has saturated and only radar retrieval is available (Delanoë and Hogan, 2008;

Ceccaldi et al., 2013). Thus, these clouds could also be pure supercooled liquid clouds with

or without freezing rain below cloud base (see Section 2.2). The impact of this possible

misclassification only marginally affects our MPC classification, as most MPCs contain a

Mix cloud layer and further excluding them did not substantially alter our results.

Of our liquid low-level clouds, about 90% in austral winter and 60% in summer are

supercooled at cloud top and almost all of them (99%) belong to the Sup category and

thus remain supercooled at cloud base in the SO. We identify almost no low-level liq-

uid clouds that show DARDAR rain categories below cloud base (∼0.5%). However, the

DARDAR algorithm was not primarily designed to detect precipitation and as the Cloud-

Sat radar is contaminated by surface clutter, only heavy and moderate drizzle can be

detected at heights below roughly 720m and 860m, respectively (Marchand et al., 2008).

Thus, for many liquid low-level clouds which have a CTH of around 1.2 km (Fig. 18 g–h)

light drizzle rates at cloud base could have been missed at lidar saturation which explains

the too low drizzle rates. If we define precipitating clouds as clouds with an effective

radius of Re>14 µm then roughly 10% and 3% of low-level liquid clouds are precipitat-

ing in winter and summer, respectively (Fig. S4 a and c). These values are in agreement

with Mülmenstädt et al. (2015) who show that the rain probability of liquid clouds at all

levels is roughly 10% at 45° S and 3% at 60° S. Though they use DARDARv1 to iden-

tify the cloud phase, they use the 2C-PRECIP-COLUMN product based on retrievals

from CloudSat to calculate rain probability. Further, this latitudinal gradient in precip-

itation is also reported by Mace et al. (2021) who investigate MPCs with satellite and

ground-based measurements. They also show that about 33% of MPCs in the SO produce

supercooled precipitation. We find similar values of 30% (winter) and 40% (summer) of

MPCs that have Re>14 µm (Fig. S4 a and c). Additionally, we find that on average liquid

low-level clouds are 57% optically thinner than their mixed-phase counterparts calculated

independent of season and thus are more unlikely to contain sufficient water content to

generate precipitation. As most liquid clouds are optically thin and are not precipitating,
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Fig. 18 Seasonal PDFs of (a–c) CTT, (d–f) COT, (g–i) CTH, (j–l) latitude and (m–o)
cloud albedo for (left) open MCC, (middle) closed MCC, and (right) low-level
clouds with bin width of 1 °C, 1, 120m, 1◦ and 0.05, respectively. The PDFs are
normalized for each cloud regime type, phase and season individually. In JJA
only 5.1% of the annual closed MCC clouds occur, and therefore closed MCC
in JJA are indicated by more transparent color shading.
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3.1 Stratocumulus Climatology

especially in summer, this could either hint towards a mixed-phase detection bias in DAR-

DAR, which we find unlikely as discussed above, or suggest that most optically thicker

supercooled liquid clouds generate ice and become MPCs. Interestingly, liquid (and su-

percooled liquid) closed MCC clouds are optically thicker than open and low-level clouds.

This could indicate a potential link between cloud phase and cloud morphology, however,

as discussed below we find no further evidence for this link.

To further investigate the quality of the cloud phase classification, we also examine the

CTT range. Figures 18 a–c display the probability density functions (PDFs) of CTT,

which are normalized individually for each cloud phase and season. The normalization is

also performed separately within all panels. In low-level clouds, the CTT range spans from

−30 °C to 15 °C in liquid clouds and from −30 °C to 3 °C in MPCs in the SO (Fig. 18 a–c).

We note that the reason for the occurrence of MPCs above 0 °C is related to the fact that

in the radar mask of the DARDARv2 algorithm, the wet-bulb temperature of 0 °C is used

as a threshold (Delanoë and Hogan, 2010; Ceccaldi et al., 2013). Seasonal changes in the

CTT range are mainly found in the maximum temperature of liquid clouds above 0 °C.

These temperature ranges of MPCs and liquid clouds are in agreement with other satellite

studies of the SO (Morrison et al., 2011; Mason et al., 2014). The low-level MPCs occur

most often at around −15 °C. This peak corresponds to the temperature of the growth

habit of dendritic ice crystals and secondary ice processes from ice-ice collisional break-up

(Riley and Mapes , 2009; Mignani et al., 2019).

Overall, we observe a seasonal shift from predominantly MPCs (∼65%) during austral

winter to predominantly liquid clouds (∼60%) during austral summer (Fig. 17). Listowski

et al. (2019) also use the DARDARv2 product and exhibit in their Fig. 8 that during

both austral winter and summer, low-level liquid clouds occur more often than MPCs in

the SO. However, in their analysis, they include low-level clouds in the range of surface

cluttering which leads to limitations in identifying ice at those heights and thus could lead

to a bias towards liquid clouds. If we visually confine the analysis of Listowski et al. (2019)

to heights above 780m in austral winter, the occurrence of MPCs is more pronounced.

Thus, our findings are consistent with them if clouds with higher uncertainty in cloud

phase distinction are excluded.

In addition to the seasonal cycle in cloud phase, we observe a seasonal cycle in MCC

regime. As previous studies show, the predominant MCC regime shifts from open cell

MCC during austral winter to closed cell MCC during summer (Muhlbauer et al., 2014;

McCoy et al., 2017). Open cell MCC is found relatively homogeneously across the year

with the lowest rate of occurrence in austral summer (16%) and the highest rate of oc-

currence in winter (24.4%). Meanwhile, closed cell MCC display a strong seasonal shift.

McCoy et al. (2017) explained this seasonal shift in MCC occurrence with the varying
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3 Relations Between Cloud Morphology, Cloud Phase, and Cloud Radiative Effect

strength and frequency of occurrence of MCAOs. Merely 5.1% of all closed cell MCC

are found in austral winter while 40.5% of all closed cell MCC occur in summer. This

results in fewer than 100 clouds per 1 °C CTT bin in some bins in austral winter. Thus,

if the austral winter closed MCC clouds are further subdivided by other variables e.g.

CTT, CTH, or Lat, their climatology might not yield sufficient data points for a reliable

statistical analysis which is indicated by more transparent colors in that panel or season

in our figures (Fig. 18 b,e,h,k,n, 19, 20, and 21).

In general, both MCC regimes exhibit a similar CTT distribution (Fig. 18 a and b).

Mixed-phase MCC clouds feature one peak at around −4 °C in all seasons which is es-

pecially strong in austral summer, and a second peak at roughly −15 °C which is more

pronounced in closed cells. The first peak falls in the temperature range (−3 °C to −8 °C)

of secondary ice production by the Hallet-Mossop process (Hallett and Mossop, 1974).

While the second peak at −15 °C is found in many ice formation studies (Magono, 1962;

Takahashi et al., 1995; Libbrecht , 2005; Mignani et al., 2019; Sullivan et al., 2018; Silber

et al., 2021a), multiple ice processes can occur at this temperature range. This second peak

will be extensively discussed in Section 3.2. We note that in MCC clouds the CTT range

only extends down to about −20 °C to −25 °C, which is likely caused by the condition of

the MCC algorithm that cloud tops need to be within 30 °C of the surface temperature

(McCoy et al., 2017). Further, we only identify small cloud phase seasonal changes in

open and closed MCC clouds compared to the overall low-level cloud statistic (Fig. 18 c).

During austral winter, we see slightly more open MPCs than low-level MPCs and during

austral summer more closed MPCs.

We observe that the seasonal decrease in cloud occurrence south of 60° S is stronger in

MPCs than in liquid clouds (Fig. 18 l). This is consistent with Listowski et al. (2019),

who also find that the occurrence of MPCs is reduced to a larger degree than that of

liquid clouds. This behavior is likely related to seasonal differences in sea ice extent (not

shown). This connection between the sea ice edge and low-level cloud fraction is also found

in other studies (Taylor et al., 2015; Wall et al., 2017; Morrison et al., 2018). Further,

the latitudinal difference in cloud organization shows that in the open cell regime, the

decrease of cloud occurrence in both MPCs and liquid clouds is more substantial than in

low-level clouds (Fig. 18 j). This might also be impacted by the sea ice extent as open

MCC clouds are correlated with MCAOs (McCoy et al., 2017), which shift equatorward

in austral winter along with the sea ice edge. During austral winter, we observe a detec-

tion limit in the MCC regimes south of 60° S, as the algorithm is based on the passive

MODIS Aqua satellite instrument, which depends on solar insolation for measurements.

However, we do not find it likely that this limit impacts our hypothesis as the reduction

of cloud occurrence at latitudes closer to the pole also appears in austral spring, which is
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not impacted by this detection limit.

Overall, we are confident that our cloud phase classification of MPCs contains ice and

that we can therefore trust our phase classification. Further, the climatology of SO stra-

tocumuli as characterized by DARDARv2 did not display any evidence that organization

and cloud phase are interlinked in the full climatology. Although, we observe that closed

cells remain in the SLC regime at higher COT than observed for open cell and low-level

clouds.

3.2 Link of Freezing Behavior and Cloud

Phase

In this section, we analyze whether different predictors of ice occurrence in stratocumuli

display varied behavior in differently organized clouds. From these analyses, we can de-

termine whether there are statistical relationships that suggest that individual freezing

processes vary in their effectiveness in clouds characterized by different cloud dynamics.

Here, we analyze the cloud phase fraction between MPCs and SLCs. Their cloud phase

fractions (mixed fraction and supercooled liquid fraction) are defined as the number of

MPC or SLC pixels divided by their sum. The cloud phase dependence on CTT has

already been studied by several other publications to find a relationship between ice for-

mation and CTT (e.g. Bühl et al., 2013; Zhang et al., 2014, 2015; Silber et al., 2021b,a).

Thus, we restrict our analysis for the rest of this study to a CTT range from −20 °C

to 0 °C. We choose this temperature range as most clouds in the open and closed MCC

regime have CTTs above −20 °C. This restriction does not affect the overall distribution

of MPCs and liquid clouds except for the fact at we remove all pure liquid clouds (Fig. S4).

Therefore, this analysis is restricted to MPCs and clouds containing a supercooled liquid

layer or only supercooled liquid, referred to as SLCs.

Overall, the mixed fraction is much higher in austral winter at the same CTT than

in summer for all three investigated cloud regimes (Fig. 19). This seasonal increase in

mixed fraction during austral winter could either be caused dynamically or due to in-

creased INP availability at colder temperatures. An increase in surface fluxes or higher

surface wind speeds in austral winter could indicate a dynamic reason. However, we did

not find substantial seasonal changes in either SST or surface wind speed (Table 3). As

described in Section 3.1 we find an equatorward shift of MPCs in austral winter (Fig. 18,

Table 3). However, we find that the mixed fraction at the same CTT is independent of

latitude (Fig. 20). Further, we find that the same CTTs are reached at lower CTHs in
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Fig. 19 Supercooled liquid and mixed fraction binned by CTT from −20 °C to 0 °C with
a bin width of 1 °C (2007 - 2010) for (top) all seasons, (middle) austral winter
and (bottom) austral summer in (left) open MCC, (middle) closed MCC, and
(right) low-level clouds. As only 5.1% of the annual closed MCC clouds occur
in JJA the panel is displayed in more transparent color shading.

austral winter than in summer (Fig. S5 and S1). Thus, we hypothesize that the vertical

distribution of INP might influence the seasonal difference in mixed fractions. McCluskey

et al. (2019) investigate the simulated vertical INP distribution based on observational

data from the Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition

Over the southeRN ocean campaign (CAPRICORN) and show that independent of the

season the INP concentration in the SO is higher closer to the surface as the main source

of INP is sea spray aerosols (Burrows et al., 2013; DeMott et al., 2016; Vergara-Temprado

et al., 2017; Huang et al., 2021a). Further, Fig. 4 of McCluskey et al. (2019) displays that

the INP concentration is slightly lower (∼35% at the surface, ∼55% at around 3 km) at

all heights in austral winter than in summer. Nonetheless, we find a higher mixed fraction
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3.2 Link of Freezing Behavior and Cloud Phase

Table 3 Geometric mean and standard deviation factor of different cloud properties
during austral winter and summer in the CTT range from −20 °C to 0 °C. The
mean values are calculated separately for open MCC, closed MCC, and low-
level clouds which are further subdivided into MPCs and SLCs. [The geometric
standard deviation factor is shown in brackets and should be interpreted as a
range from ”geomean/geostd” to ”geomean*geostd”].

CTH Lat SST Wind LWP COT Albcld

in km in ° S in K in m s−1 in g m−2

JJA

Open
MPC 1.57 (1.22) 48.17 (1.10) 279.7 (1.01) 11.14 (1.45) 151.5 (2.29) 13.19 (2.52) 0.45 (1.64)
SLC 1.41 (1.24) 47.15 (1.10) 280.6 (1.01) 10.52 (1.51) 47.0 (2.12) 5.38 (2.26) 0.27 (1.75)

Closed
MPC 1.49 (1.25) 48.38 (1.10) 278.6 (1.01) 9.10 (1.56) 164.8 (1.89) 15.98 (1.97) 0.52 (1.41)
SLC 1.43 (1.27) 48.34 (1.10) 279.0 (1.01) 7.78 (1.67) 63.1 (1.95) 8.02 (1.96) 0.36 (1.55)

Low-Level
MPC 1.60 (1.25) 51.44 (1.13) 277.8 (1.02) 10.49 (1.55) 146.4 (2.29) 12.93 (2.53) 0.45 (1.66)
SLC 1.43 (1.29) 49.66 (1.13) 279.0 (1.02) 9.46 (1.66) 48.7 (2.21) 5.81 (2.34) 0.28 (1.77)

DJF

Open
MPC 1.78 (1.27) 52.68 (1.13) 279.5 (1.01) 10.76 (1.48) 95.8 (2.65) 11.22 (2.30) 0.42 (1.61)
SLC 1.56 (1.30) 51.72 (1.12) 279.9 (1.01) 10.18 (1.48) 27.0 (2.36) 4.52 (2.08) 0.24 (1.72)

Closed
MPC 1.79 (1.28) 56.60 (1.10) 276.2 (1.01) 9.50 (1.60) 136.7 (2.21) 16.59 (1.99) 0.52 (1.41)
SLC 1.64 (1.28) 56.14 (1.11) 276.2 (1.01) 8.63 (1.61) 52.3 (2.28) 8.73 (2.05) 0.37 (1.58)

Low-Level
MPC 1.84 (1.28) 56.21 (1.12) 276.6 (1.01) 9.08 (1.65) 114.7 (2.52) 14.12 (2.18) 0.48 (1.53)
SLC 1.61 (1.31) 55.08 (1.12) 277.2 (1.02) 8.36 (1.68) 37.7 (2.52) 6.50 (2.23) 0.31 (1.73)

in MCC and all low clouds for CTTs above −12 °C at CTHs between 1.4 km and 2.3 km

which decreases with higher CTHs (Fig. S1). Surprisingly, this behavior is not observed

during austral summer. Therefore, we suggest that the increase in mixed fraction in aus-

tral winter is related to the higher mixed fraction at CTHs between 1.4 km and 2.3 km.

But it remains unclear what is causing this effect as higher INP concentration closer to

the surface is also found in austral summer (McCluskey et al., 2019) which does not show

a higher mixed fraction at lower CTHs.

In austral summer, the mixed fraction remains below 0.5 for temperatures higher than

−12 °C with a secondary peak at around −5 °C in open MCC and all low-level clouds.

Surprisingly, this peak is not observed in closed MCC clouds. This could potentially be

related to a detection bias close to 0 °C as the mixed fraction at temperatures above

−10 °C is lower for clouds with 0 µm<Re<14 µm (Fig. S2). However, even for clouds

with 0 µm<Re<14 µm this secondary peak is barely detectable and much weaker than in

open MCC and all low-level clouds. This secondary peak in open MCC and all low-level

clouds in the mixed fraction occurs at temperatures at which the secondary ice production

by the Hallet-Mossop process is especially active (Hallett and Mossop, 1974). A recent

study by Silber et al. (2021a) in the Arctic also shows that the liquid water occurrence in

clouds reduces at roughly −6 °C and −15 °C. They conclude that this is caused by a more

efficient vapor growth of ice at these temperatures. Moreover, their second minimum at
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3 Relations Between Cloud Morphology, Cloud Phase, and Cloud Radiative Effect

−15 °C corresponds to the strong increase in the mixed fraction from −12 °C to −16 °C

that we find for all cloud regimes in austral summer and the annual mean. This increase

occurs across all latitudes in the SO (Fig. 20) and is also seen in austral winter, though

due to the overall higher mixed fraction in winter, the increase is not as pronounced. This

peak in ice formation at roughly −15 °C is found in several studies (Magono, 1962; Taka-

hashi et al., 1995; Libbrecht , 2005; Mignani et al., 2019; Sullivan et al., 2018; Silber et al.,

2021a), though there are different reasons for this increase in the numbers of ice crystals.

Takahashi et al. (1995) find that ice-ice collisional break-up (secondary ice formation)

favors this temperature range at roughly −15 °C. Further, Mignani et al. (2019) investi-

gate whether an ice crystal that grows at temperatures between −12 °C and −17 °C forms

due to primary or secondary ice formation. They find that only every eighth ice crystal

contains an INP and thus that secondary ice formation is more important at this temper-

ature range. Another possible way of ice formation at this temperature range would be

droplet shattering. However, a modeling study by Sullivan et al. (2018) shows that droplet

shattering seems to play only a minor role for clouds with a cloud base temperature below

12 °C (285K) as the droplets cannot grow to a sufficient size to shatter. As our data set

does not include INP information, we cannot determine which ice processes are causing

the mixed fraction at −15 °C to increase.
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Fig. 20 Two-dimensional histograms of mixed fraction against CTT and latitude for
(left) open MCCs, (middle) closed MCC, and (right) low-level clouds in austral
(top) winter and (bottom) summer. Dotted bins indicate bins with less than 50
data points. As only 5.1% of the annual closed MCC clouds occur in JJA the
panel is displayed in more transparent color shading.
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3.2 Link of Freezing Behavior and Cloud Phase

At temperatures below −16 °C, there is a strong decrease in mixed fraction in all cloud

regimes during austral summer which is less pronounced in the annual mean and austral

winter. We suggest that the cause for the reduction in mixed fraction is due to a rapid

glaciation of MPCs at these temperatures due to updraft or moisture limitation. A strong

increase in fully glaciated clouds at these temperatures is found by D’Alessandro et al.

(2021) who base their study on data from the Southern Ocean Clouds Radiation Aerosol

Transport Experimental Study (SOCRATES) and cover the time period from 15 January

to 28 February 2018. Figure 4 of D’Alessandro et al. (2021) shows that at roughly −17 °C

the relative occurrence frequency of MPCs and SLCs decreases along with temperature,

whereas the frequency of ice clouds increases rapidly at this temperature. Further, a direct

comparison of SOCRATES flight observations from D’Alessandro et al. (2021) with our

mixed fraction in Fig. S6 shows a similar trend across the CTT range in low-level clouds

during January and February, though our mixed fraction shows higher values than the

in-cloud flight measurements. D’Alessandro et al. (2021) discuss the underestimation of

MPCs due to a detection limit of small ice particles (<50 µm) by the instruments. Fur-

ther, their cloud phase has a spatial resolution of about 150m, depending on the aircraft’s

velocity (D’Alessandro et al., 2021), while our cloud phase classification has a 1.1 km res-

olution. Thus, one data point of our cloud phase classification would be subdivided into

seven samples of their cloud phase. Further, D’Alessandro et al. (2021) investigate mixed-

phase transects, which consist of 20 cloud phase samples, and find that these are more

likely heterogeneous than other phase transects. This suggests that the mixed fraction

depends on the spatial resolution of the data. Further supported by comparing the an-

nual fractions of MPCs to SLCs in each cloud pixel (Section 3.2) to an entire cloud cell

(Section 4.1), which reveals an increase in the mixed fraction from 65% in both open and

closed cloudy data points to 86% in closed and 92% in open MCC cells. Thus, the direct

comparison of satellite data and in-flight observations supports the rapid glaciation of

MPCs at temperatures below −16 °C as soon as ice is formed via the Wegener-Bergeron-

Findeisen process. D’Alessandro et al. (2021) suggest that this is caused by the activation

of INP at these temperatures. On the other hand, we find it unlikely that CTH-dependent

INP limitation is the primary cause for the decrease in mixed fraction below −16 °C at

high CTHs as it seems to be unaffected by CTH (Fig. S1). Our analysis shows that the

mixed fraction during austral winter is not decreasing as strongly as in summer. As a

temperature-dependent activation of INP should not change with season this cannot fully

explain the seasonal differences we observe. Therefore, we do not think this is a result of

different INP activation within these clouds, but we propose that the supercooled liquid

water is depleted due to an increased decoupling of the marine boundary layer.

In agreement with the findings of Section 3.1, the mixed fraction of closed MCC clouds
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Fig. 21 Supercooled liquid and mixed fraction binned by CTH from 0.78 km to 3 km
with a bin width of 0.12 km (2007 - 2010) during austral (top) winter and
(bottom) summer for (left) open MCC, (middle) closed MCC, and (right) low-
level clouds. As only 5.1% of the annual closed MCC clouds occur in JJA the
panel is displayed in more transparent color shading.

is higher than that of open MCC clouds. Abel et al. (2017) show that transitions between

closed and open cells in the Northern Hemisphere extratropics may be driven by precipi-

tation as opposed to a pure boundary layer deepening. This idea is further supported by

findings from Tornow et al. (2021) who introduce the idea of preconditioning by ice-phase

processes, which accelerate the precipitation-driven transition. Early onset of precipitation

by riming processes and subsequent sublimation trigger an earlier boundary layer decou-

pling and preconditions the boundary layer for an earlier transition. If preconditioning

would be a dominant process in stabilizing the sub-cloud layer and forcing closed-to-open

transitions, one would expect this to manifest in phase statistics across the two morpho-

logical regimes. However, mixed fraction curves (Fig. 19) and phase statistics show little

changes with respect to cloud morphology. As the LWP:IWP ratio cannot be detected

reliably in the used satellite retrievals, the mixed fraction might include MPCs with a

very low ice ratio. Eirund et al. (2019a) find that the impact of ice formation on cloud

morphology in simulated open MCC clouds is only apparent for a ratio of LWP:IWP of

1:2, which could influence our statistics. However, any differences detected in the mixed

fraction are small in comparison to seasonal changes in cloud phase, which are driven by

other factors than mesoscale organization. Thus, a prevalence of open MCC clouds to-

wards MPCs, which would be consistent with accelerated transitions from closed to open

MCC clouds through precipitation is not found.
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3.2 Link of Freezing Behavior and Cloud Phase

We also investigate the dependence of mixed-phase occurrence upon CTH. Typically,

the cloud depth is a better indicator for thermodynamic or dynamic changes in the bound-

ary layer or radiative changes in stratocumulus clouds than the CTH (Wood et al., 2008;

Bretherton, 2015). However, even though we derive a liquid CBH to reduce the contam-

ination of surface clutter from the radar, this CBH is highly biased in the distance from

CTH because the lidar signal will be fully attenuated in clouds with a COT greater than

3.5 (Delanoë and Hogan, 2008). Thus, the geometrical cloud depth would also be biased

as most clouds have a COT greater than 3.5 (Fig. 18 d–f). Nevertheless, the CTH might

still give some insight to surface forcing and the mixing strength in the boundary layer

(Bretherton et al., 2010).

In general, we observe that the mixed fraction increases with CTH from roughly 0 to

around 0.6 to 0.8 in all cloud regimes and during both austral winter and summer (Fig. 21).

We find seasonal differences in the height at which the mixed fraction surpasses the su-

percooled liquid fraction. This height is lower during austral winter. As clouds with CTHs

below 1 km can only have a small vertical extent, this could potentially lead to a bias to-

wards SLC occurrence at CTHs below 1 km as thicker clouds tend to form ice as discussed

in Section 3.1. However, this is the same for all seasons and cloud morphologies. Thus, dif-

ferences across seasons and between open and closed cells can still be interpreted. Further,

we show that MPCs appear at higher CTHs than SLCs in all cloud regimes (Table 3).

This is in agreement with a field campaign study in the Arctic that shows that MPCs tend

to have higher CTHs than SLCs (Achtert et al., 2020). The mean CTHs between open

and closed MCC clouds are similar during austral summer, whereas during austral winter

at least for MPCs we see higher CTHs in open cells. Many studies show that there are

CTH differences between the two morphological regimes with higher CTHs in open MCC

clouds (Muhlbauer et al., 2014; Glassmeier and Feingold , 2017; Jensen et al., 2021). A

study using ground-based and satellite observations in the Eastern North Atlantic shows

that closed MCC clouds have a lower mean CTH (Jensen et al., 2021). Further, Glassmeier

and Feingold (2017) demonstrate in a large-eddy simulation that open cells favor deeper

boundary layer heights and thus also higher CTHs. In global data, Muhlbauer et al. (2014)

reveal that the mean CTH in open MCC clouds is about 100m higher than in closed cells

which is similar to what we see in MPCs in austral winter. However, they also investigate

the mean CTH in SO which did not show a substantial mean CTH difference between

open and closed cells.

Deeper boundary layers associated with higher CTHs are often decoupled and favor con-

ditional instabilities associated with stronger vertical updrafts which in turn favor ice

growth and potentially ice formation through secondary ice processes. This is shown by

a SOCRATES study from Wang et al. (2020) which investigates generating cells in the
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SO and show that within these generating cell updrafts ice particles occur more often

and are also larger than outside. Thus, this favors ice precipitation inside the updraft

cores. Further, they still find substantial amounts of ice outside the generating cells which

suggests that turbulent mixing in the boundary layer is important to reduce differences

between inside and outside of the updrafts. The stronger precipitation within updrafts is

also confirmed by large eddy simulations (e.g. Keeler et al., 2016; Zhou et al., 2018; Young

et al., 2018; Eirund et al., 2019b). The updraft strength can also vary depending on the

organizational regime. Wood et al. (2011) analyze the updraft strength in MCC regimes

in a case study over the Southeast Pacific and show that while open cells can reach higher

updraft velocities, closed cells also exhibit moderate updrafts. Apart from the updrafts,

the CTH and MPC occurrence also depends on the sources of mixing in the stratocumulus-

topped boundary layer. Therefore, we test for indicators of surface-generated turbulence

such as SST and ∆T (difference between SST and 2m air temperature). However, nei-

ther variable displayed the expected trend (not shown). Thus, if there is a correlation

between ice occurrence and vertical acceleration, it does not seem to be driven by surface

fluxes (Fig. S7). We cannot evaluate the importance of cloud-top-generated turbulence

and cloud-scale overturning circulations for CTHs in SO stratocumuli due to data lim-

itations. However, Lang et al. (2022) show that cloud top generated mixing, especially

in closed MCC affects the occurrence frequency during the diurnal cycle. Further, they

find that wind shear due to the relatively large climatological near-surface winds in the

SO may also be a stronger generator of boundary layer turbulence than in other regions.

Overall, this could suggest that the mechanisms of mixing (turbulence and circulation)

may play a larger role in CTH than previously thought (McCoy et al., 2017).

In summary, our analysis shows that across regimes of varied subsidence, clouds that

form in likely decoupled layers requiring moderate updraft cloud cores to be maintained

are more likely to sustain ice formation in mixed-phase stratocumuli. Our analysis of the

different freezing behavior across cloud morphologies further supports our climatological

findings, which show that the sustained ice formation in MPC stratocumuli does not pri-

marily depend on cloud morphology but is constrained by other environmental factors.

3.3 Relationship between Cloud Phase,

Cloud Morphology, and Cloud Albedo

Here, we examine how cloud phase and cloud morphology may change the cloud albedo

in the SO. The cloud albedo physically depends on the LWP and cloud droplet number

50



3.3 Relationship between Cloud Phase, Cloud Morphology, and Cloud Albedo

concentration (in liquid clouds). Variations of cloud phase, cloud fraction, and different

organizational regimes can alter the LWP and the cloud droplet number concentration

and hence, impact cloud albedo and COT. For the same total water content, liquid clouds

typically have a higher cloud albedo than ice clouds, because liquid water droplets are

smaller than ice crystals, and thus reflect more incoming solar radiation due to their

greater surface area. Thus, the cloud albedo in MPCs varies depending on the phase

partitioning of supercooled liquid and ice (McCoy et al., 2014a,b). Further, any optically

thick cloud (COT> 10) typically contains ice, which suggests that clouds with a sub-

stantial LWP can sustain ice formation. Consistently, we find that the LWP and COT of

MPCs are much higher than those of SLCs independent of organizational regime and sea-

son (Table 3). This is in agreement with other studies, which also show that supercooled

liquid layers in MPCs are much thicker than in pure (supercooled) liquid clouds (Shupe

et al., 2006; Achtert et al., 2020). In austral winter, both mixed-phase MCC clouds have

a similar LWP. Whereas in austral summer, open MPCs have a lower LWP than mixed-

phase closed cells. We should note that the MODIS LWP algorithm used here does not

distinguish between MPCs and liquid clouds and retrieves the LWP as based on a liquid

cloud. Therefore, the LWP in MPCs is likely overestimating the true LWP. This can lead

to an overestimated LWP of about 15% for stratiform MPCs (Khanal and Wang , 2018).

Not only the cloud phase influences the cloud albedo but also the cloud fraction and cloud

morphology. Loeb et al. (2007) determine that the variability of all-sky albedo from the

Clouds and the Earth’s Radiant Energy System (CERES) is dominantly controlled by

variations in cloud fraction. The cloud fraction of closed MCC regimes is typically higher

than in open MCC regimes (Muhlbauer et al., 2014). Moreover, McCoy et al. (2017) in-

vestigate differences in the cloud fraction albedo relation between open and closed MCC

clouds and show that, in general, closed MCC clouds have a higher albedo. Additionally,

they exhibit that even for the same cloud fraction, the cloud albedo of closed MCC clouds

is about 0.05 higher on average than the albedo of open MCC clouds. Our analysis of

in-cloud albedo confirms their findings that closed cells are more reflective than open cells

(Table 3). In addition, we also see that in-cloud albedo differences between closed and

open cells are even stronger in SLCs (JJA: 0.09, DJF: 0.13) compared to MPCs (JJA:

0.07, DJF: 0.10). This is caused by stronger differences between optically thin (COT< 10)

open and closed cells in SLCs compared to MPCs. Whereas in open cells roughly 80% of

the SLCs are optically thin, in closed cells about 45% have COT values larger than 10.

Differences in in-cloud albedo ranging between 0.07 to 0.13 correspond to a cloud-radiative

effect of 21Wm−2 to 39Wm−2 when assuming typical solar insolation of 300Wm−2 in

the SO. Thus, a reduction in ice-phase occurrence in a warming climate is likely to impact

open-cell clouds more strongly than closed-cell clouds changes in clouds with larger op-

51



3 Relations Between Cloud Morphology, Cloud Phase, and Cloud Radiative Effect

tical depth have a weaker impact on cloud scene albedo. Further, we find a considerable

seasonal change in in-cloud albedo in open cells, which is not observed in closed cells.

This is even stronger in open MPCs than in SLCs. This seasonal decrease of the in-cloud

albedo in open clouds is correlated with a strong decrease in LWP from austral winter to

summer.
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4 Investigating the Dependence of

Cloud Phase and Cloud Albedo on

Spatial Scales of MCC Cells

This chapter investigates the cell properties of open and closed MCC clouds in the SO

with a particular focus on their spatial scale in the annual mean and all seasons (JJA,

SON, DJF, MAM). To obtain the equivalent cell diameter of MCC clouds, I use the

cell identification method based on image segmentation of a MODIS reflectance band

as described in Section 2.5. Further, I explore whether cell diameter and aspect ratio

differences relate to ice formation and, thus, cloud phase. Similar to Sections 3.2 and 3.3,

I restrict the CTT from −20 °C to 0 °C to focus on the mixed-phase regime in this chapter.

Moreover, Section 4.2 analyzes the dependence of the cloud albedo on the aspect ratio.

4.1 Spatial Scale of MCC Cells and Cloud

Phase

Overall, 90% (5th to 95th percentile) of open MCC clouds have a cell diameter between

18 - 65 km in the SO, while 90% of closed MCC clouds have a cell diameter between 18 -

59 km. This shows that while both organizational regimes exhibit the same 5th percentile of

18 km, open MCC clouds exist as larger cells than closed MCC cells. Open MCC cells are

statistically significantly larger than closed cells about 1 km in the annual mean (Tables 4

and 5). Further, open MCC clouds are larger than closed cells in all seasons but only

statistically significant in austral spring (SON) and summer (DJF). The largest mean

cell diameters occur in summer for both open and closed MCC clouds, with open cells

being 3 km larger than closed cells. This increase in the mean cell diameter in summer is

mostly caused by an increase in cells with a very large diameter (>80 km) as displayed in

Fig. 22. As discussed in Section 2.5.2, there might be a bias towards larger closed MCC

cells as some more stratiform scenes are segmented as closed scenes and further due to

the larger distance factor compared to open scenes. In addition, due to the scene selection

process (Section 2.5.1), open cells might be biased to a lower cell diameter as scenes with

large cell diameters and a low cloud fraction might not be passed to the segmentation.
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Table 4 Annual and seasonal mean cell diameters in km for JJA, SON, DJF, and MAM
in SLCs and MPCs with CTT from −20 °C to 0 °C.

Open Closed Open Closed
MPC SLC MPC SLC

Annual 37.19 36.04 37.17 37.42 36.04 36.01

JJA 35.04 33.20 34.99 36.17 32.96 35.02

SON 37.70 35.42 37.82 36.70 35.31 36.24

DJF 40.52 37.21 40.82 39.24 37.39 36.33

MAM 37.23 36.24 37.25 37.06 36.43 35.29

Table 5 Rejection rates based on hypothesis tests of the eight versions for the null
hypothesis of µ1= µ2 equal mean of cell diameter (shown in Table 4) for six
different tests indicated by columns. A rejection rate of 1.0 indicates that all
versions have statistically significantly different means. See Section 2.5.3 for
more information on the rejection rate.

Open Closed MPC SLC
Open vs Closed MPC vs SLC MPC vs SLC Open vs Closed Open vs Closed

Annual 1.0 0.125 0.0 1.0 0.5

JJA 0.75 0.125 0.375 0.75 0.0

SON 1.0 0.125 0.25 1.0 0.0

DJF 1.0 0.25 0.375 1.0 0.5

MAM 0.5 0.172 0.25 0.5 0.25

However, while this bias might influence the true mean cell diameter of open and closed

cells, it should not affect the significantly larger open to closed MCC clouds. A previous

study shows that the cell size scales with the MBL height (Wood and Hartmann, 2006)

and finds that closed MCC cells have a larger mean field cell diameter at the same MBL

height. Meanwhile, Glassmeier and Feingold (2017) exhibit that open MCC clouds favor

deeper MBLs in contrast to closed MCC clouds and, thus, show that open cells have a

larger cell diameter. This is supported by Jensen et al. (2021), who also observed that

open MCC clouds have higher CTH and, therefore, occur at deeper MBLs. These findings

are consistent with the results of larger open cells than closed cells. Further, Lang et al.

(2018) exhibit the highest MBL with a height of 2 km in SON closely followed by DJF

with height of 1.8 km at the Macquarie Island (54.62° S, 158.85°E) in the SO. Seasonal

changes in the MBL height are also examined by Chan and Wood (2013), showing the

strongest seasonal anomalies in MBL height in DJF and the lowest in JJA in the SO. The

seasonal differences between Lang et al. (2018) and Chan and Wood (2013) might be due

to the spatial differences of comparing station data with the entire SO. Thus, the season

with the deepest MBL from Chan and Wood (2013) matches the seasons with the largest

cells and the season with the lowest MBL with the smallest cell sizes for closed and open
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4.1 Spatial Scale of MCC Cells and Cloud Phase

MCC clouds. In conclusion, the larger open MCC clouds compared to closed cells are in

agreement with other studies (Glassmeier and Feingold , 2017; Jensen et al., 2021).
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Fig. 22 Histogram of cloud phase occurrence frequency binned by cell diameter with
a bin width of 6 km for CTT from −20 °C to 0 °C normalized by the sum of
SLCs and MPCs. Note different y-axes for SLCs and MPCs. Numbers below the
histogram indicate the mean number of identified cells for MPCs and SLCs. As
only 6% of the annual closed MCC clouds occur in JJA, the panel is displayed
in more transparent color shading.

To investigate the difference in the cell diameter between different cloud phases, Table 4

provides the mean cell diameters of MPCs and SLCs for open and closed MCC cells, re-

spectively. In the annual mean, both open and closed cells show only minimal (<0.25 km)

and statistically insignificant differences between MPCs and SLCs. The seasonal differ-

ences between MPCs and SLCs are in general larger up to ∼2 km in open and closed

MCC clouds (e.g., JJA: closed MPC: 32.96 km and closed SLC: 35.02 km). Interestingly,

I find that in austral summer (DJF), open and closed MPCs are larger than their SLC

counterparts. At the same time, the reverse occurs in austral winter (JJA), where the
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4 Dependence of Cloud Phase and Cloud Albedo on Spatial Scales of MCC Cells

mean cell diameter of SLCs is larger compared to MPCs in both MCC regimes. These

contrasting seasonal means explain why the annual means are indifferent. Further, the

seasonal cell diameter differences within MPCs are considerably larger in open (difference

between DJF and JJA: 5.8 km) and closed (4.5 km) cells than within SLCs (open: 3.0 km;

closed: 1.3 km). This might be caused by the much higher occurrence of MPCs in JJA

compared to SLCs (Fig. 22). This shows the importance of seasonal differences in the

two MCC regimes as already observed in Section 3.2. Although the seasonal differences

are stronger between MPCs and SLCs than in the annual mean, they are statistically in-

significant in most of the eight versions (Table 4). However, this is most likely influenced

by the substantially lower number of SLCs compared to MPCs in both regimes (Fig. 22).

While the cell sizes of open and closed MCC clouds are investigated by other studies

(Agee et al., 1973; Atkinson and Wu Zhang , 1996; Wood and Hartmann, 2006; Wang and

Feingold , 2009b), differences in the cell diameter depending on the cloud phase are only

examined in open MCC clouds in an idealized large eddy simulation of a case study in

the Arctic by Eirund et al. (2019a) in March (boreal spring). They find that open MPCs

are about 2 km larger than open SLC caused by stronger cold pools induced by stronger

precipitation in MPCs. This supports the findings of slightly larger open MPCs in austral

spring (SON: 1 km), summer (DJF: 1.6 km), and fall (MAM: 0.2 km). However, as the

differences are comparatively small to the mean cell diameter, the ice formation in closed

and open MPCs only weakly affects the cell size in seasonal means.

While differences in the cell diameter between open and closed MPCs are statistically

significant (Table 5, 4. column), this is not the case for SLCs. However, in both MPCs

and SLCs, the cell diameter is larger in open than closed MCC cells in the annual and

seasonal means. Thus, cloud phase distribution in the two morphological organizations

can not explain the differences in cell sizes between open and closed MCC clouds.

To investigate further why open cells are larger than closed cells and the seasonal differ-

ences depending on cloud phase, the cell diameter against the CTH is displayed in Fig. 23.

The aspect ratio is the ratio between cell diameter and CTH. Wood and Hartmann (2006)

show that in open and closed MCC clouds, the aspect ratio is between 40:1 to 30:1 in the

northern and southern parts of the subtropical East Pacific in shallow MBLs (<1.4 km),

but this ratio breaks down for MBL heights above 1.5 km or cell diameters above 50 km.

This is further supported by Zhou et al. (2021) showing that this constant aspect ratio

only holds for shallow MBL heights in open and closed MCC clouds and that for cell size

larger than 40 km, the mean MBL height is not varying with cell size. I exclude clouds

with very shallow CTHs (<780m) due to surface cluttering which influences the cloud

phase detection ability (see Section 2.2 and Fig. 24). The mean cell diameter is almost

constant with CTH in open and closed cells in the SO (Fig. 23), which is in agreement
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4.1 Spatial Scale of MCC Cells and Cloud Phase

Fig. 23 Mean cell diameter as a function of CTH for SLCs and MPCs with CTT from
−20 °C to 0 °C. The constant aspect ratios of 40:1, 30:1, and 20:1 are indicated
as grey lines from top to bottom, respectively. Numbers below the lines indi-
cate the mean number of identified cells for MPCs and SLCs. As only 6% of
the annual closed MCC clouds occur in JJA, the panel is displayed in more
transparent color shading.

with the results for deeper MBLs by other studies (Wood and Hartmann, 2006; Zhou

et al., 2021).

To further analyze the cloud size dependence on the cloud organization and phase, I

investigate the aspect ratio to account for changes in CTH in single cloud cells (Tables 6

and 7). In the annual mean, SON, and DJF, open MCC clouds exhibit significantly larger

aspect ratios than closed MCC cells. This means that larger open MCC cells than closed
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Fig. 24 Histogram of cloud phase occurrence frequency binned by CTH with a bin
width of 120m for CTT from −20 °C to 0 °C normalized by the sum of SLCs
and MPCs. Note different y-axes for SLCs and MPCs. Numbers below the
histogram indicate the mean number of identified cells for MPCs and SLCs. As
only 6% of the annual closed MCC clouds occur in JJA, the panel is displayed
in more transparent color shading.

cells occur independently of CTH (compare Tables 4 and 6). The mean aspect ratio

of closed MCC cells is statistically significantly larger than that of open cells in austral

winter (JJA), even though their mean cell diameter is smaller. This is caused by low CTHs

(<1.3 km, see Fig. 24) of closed MCC cells in austral winter. As indicated by the more

transparent color shading for closed MCC clouds in JJA, only a few cells are identified in

JJA due to the lower occurrence frequency of closed MCC in winter months (Sections 3.2

and 5.2). However, as CTH and aspect ratio distributions in JJA diverge strongly from

the other seasons and the annual mean (Figs. 24 and S8), I further investigate the cell

aspect ratio with a different MCC classification to reduce the segmentation biases due to

the MCC classification. Therefore, I use the same segmentation method (Section 2.5.2),
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4.1 Spatial Scale of MCC Cells and Cloud Phase

but the MCC type is based on most occurring MCC type in the 1◦×1◦ gridded product

of the CNN using the MODIS 0.55 µm reflectance band developed by Yuan et al. (2020).

The mean aspect ratios and its histogram for the year 2007 are shown in Tables S1 and S2

and Fig. S9. Due to the substantially lower occurrence frequency of open MCC cells in

the 1◦×1◦ MCC data set (Yuan et al., 2020; Mohrmann et al., 2021) compared to the

scene-based MCC data set used here (Wood and Hartmann, 2006; Muhlbauer et al., 2014;

McCoy et al., 2017; Eastman et al., 2021), less than 200 open cells are detected compared

to almost 7000 closed cells in one year. Thus, I only compare the aspect ratios of closed

MCC clouds of the two segmentation data sets with different MCC classifications. The

aspect ratio distribution in JJA with the 1◦×1◦ MCC data set is similar to the other

seasons of this data set (Fig. S9) and the scene-based MCC data set (Fig. S8). Further,

the mean aspect ratio in JJA is 21.65 and, thus, lower in the 1◦×1◦ MCC data set and

more comparable to the other seasons. It remains unclear why the scene-based MCC data

seems to exhibit a tendency towards very low CTHs in closed MCC clouds in winter in the

SO, but it might be unrealistic as this behavior is not found in the 1◦×1◦ MCC data set.

Thus, the aspect ratio values of closed MCC clouds in JJA are most likely biased to too

high aspect ratios. Interestingly, the aspect ratios of open MCC cells still show seasonal

differences, while in closed MCC clouds, the seasonal mean aspect ratios are similar in

contrast to their cell diameter (Tables 4 and 6). Thus, while the seasonal differences in

cell diameter in closed MCC cells mainly depend on changes in CTH, this is not the case

Table 6 Same as Table 4, but for aspect ratios.

Open Closed Open Closed
MPC SLC MPC SLC

Annual 22.93 22.44 22.64 26.11 22.26 23.49

JJA 21.76 23.55 21.55 26.26 23.16 26.55

SON 23.10 22.13 22.76 26.12 21.81 24.63

DJF 25.60 22.41 25.26 27.11 22.37 22.60

MAM 22.74 22.80 22.58 25.04 22.84 22.63

Table 7 Same as Table 5, but for aspect ratios.

Open Closed MPC SLC
Open vs Closed MPC vs SLC MPC vs SLC Open vs Closed Open vs Closed

Annual 1.0 1.0 1.0 0.625 1.0

JJA 1.0 1.0 0.75 1.0 0.0

SON 1.0 1.0 1.0 1.0 0.125

DJF 1.0 0.375 0.125 1.0 1.0

MAM 0.125 0.875 0.0 0.375 0.5
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4 Dependence of Cloud Phase and Cloud Albedo on Spatial Scales of MCC Cells

in open MCC cells.

The differences between mean aspect ratios of MPCs and SLCs in open and closed

MCC clouds are examined to evaluate how this is influenced by cloud phase. The aspect

ratios in SLCs are statistically significantly higher than in MPCs in both open and closed

MCC cells in the annual mean. In general, I observe higher aspect ratios in SLCs than

MPCs in all seasons in both regimes. However, not all are significant. The only exception

is in closed MCC clouds in MAM with insignificantly higher values in MPCs than SLCs.

As SLCs exhibit a significantly larger mean aspect ratio than MPCs, but not a larger

mean cell diameter, this means that most larger open and closed MPCs cells occur at

higher CTHs than SLCs (Fig. 24 and Section 3.2, Fig. 21).

Fig. 25 Mean aspect ratio as a function of CTT for SLCs and MPCs with CTT from
−20 °C to 0 °C. Numbers below the lines indicate the mean number of identified
cells for MPCs and SLCs. As only 6% of the annual closed MCC clouds occur
in JJA, the panel is displayed in more transparent color shading.
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4.1 Spatial Scale of MCC Cells and Cloud Phase

To further investigate what influences the aspect ratio differences between MPCs and

SLCs, the dependence of the aspect ratio on CTT is analyzed in Fig. 25. In both open and

closed MCC clouds, I observe a linear increase of aspect ratios with CTT independent of

cloud phase. However, the CTT also depends on the CTH. This linear increase with CTT

explains the larger mean aspect ratios in SLCs compared to MPCs, as the fraction of

SLCs decreases drastically with lower CTT (Fig. 25 and Section 3.2, Fig. 19). Thus, MCC

cells have smaller aspect ratios in deeper MBLs with lower CTT. Moreover, due to the

aspect ratio dependence on CTT, the more considerable seasonal differences in open MCC

aspect ratios are most likely linked to the strong seasonal changes in the mixed fraction

discussed in Section 3.2 which are not as strong in closed MCC clouds. Especially, the

substantially lower number of open MPCs below CTT <−16 °C in DJF compared to JJA

(Fig. 19) corresponds to the season with the largest aspect ratios in open MCC clouds

(Table 6).

A brief examination of the impact of other environmental meteorological conditions

(not shown), e.g., estimated inversion strength (EIS), relative humidity of the free tro-

posphere, or MCAO strength with Modern-Era Retrospective analysis for Research and

Applications version 2 (MERRA-2), did not reveal any dependence on the aspect ratio.

This is supported by the findings of Zhou et al. (2021), which show that the cell size

does not depend on environmental conditions, like SST, EIS, or wind speed. Thus, while

these environmental meteorological conditions are important to distinguish between the

formation of open and closed MCC shown by several studies (e.g., Wood and Hartmann,

2006; Muhlbauer et al., 2014; McCoy et al., 2017; Eastman et al., 2021), the impact on

cell size is neglectable.

In conclusion, the cell size of single open and closed MCC cells depends on a combina-

tion of CTH and CTT in a supercooled environment with CTTs between −20 °C to 0 °C in

the SO. As both the mixed fraction (Section 3.2) and the aspect ratio depend on the CTT

and due to the seasonal varying mixed fractions, the aspect ratios are differently affected

in summer and winter. Eirund et al. (2019a) show that cell size increases as a function of

formation time in open cells until it dissolves. Thus, the question remains whether cloud

phase and, therefore, ice formation extends the lifetime of open and closed MPCs, lead-

ing to higher CTHs and lower CTTs, or whether this is caused by a faster evolution in

MPCs due to stronger updrafts. Further investigations are also needed to answer whether

SLCs are limited to certain CTHs due to phase changes or other dynamical effects. These

questions could be examined with a Lagrangian approach of the segmentation method in

geostationary satellite data similar to Eastman et al. (2021, 2022).
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4.2 Dependence of In-Cloud Albedo on

Aspect Ratio

This section focuses on how the in-cloud albedo is linked to the aspect ratios and cell

size. While other studies investigate changes in albedo due to cloud morphology (McCoy

et al., 2017; Abadi et al., 2016; McCoy et al., 2023), differences in in-cloud albedo due to

cell size have not been analyzed in previous studies. Similar to the results of Section 4.2, I

find that closed MCC clouds have a higher in-cloud albedo than open MCC cells for both

MPCs and SLCs independent of their aspect ratios. In closed MCC clouds, the in-cloud
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Fig. 26 Mean in-cloud albedo as a function of aspect ratio for SLCs and MPCs with
CTT from −20 °C to 0 °C. Numbers below the lines indicate the mean number
of identified cells for MPCs and SLCs. As only 6% of the annual closed MCC
clouds occur in JJA, the panel is displayed in more transparent color shading.
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albedo decreases slightly with the aspect ratio in both MPCs and SLCs (<0.1) and shows

only marginal seasonal changes. This is in contrast to open MCC clouds, which exhibit a

more drastic reduction of in-cloud albedo in MPCs of about 0.2 with an increase of the

aspect ratio from 5 to 55 in the annual mean and austral spring (SON), while SLCs are

only slightly decreasing (<0.1). A similar strong decrease of in-cloud albedo is only seen

in open SLCs in austral fall (MAM). This difference between open and closed MCC clouds

might be caused by less liquid remaining to be detrained at cloud top in open cells. As the

in-cloud albedo is based on COT (Section 2.1), open MPCs with a higher aspect ratio are

optically thinner with a lower LWP than open MPCs with a lower aspect ratio. A brief

investigation of examples scenes (Fig. S11) shows that this is likely caused by optically

thinner cloudy cell walls in larger open MPCs as there are close to dissolving at the end

of their lifetime.

Improving the understanding of changes in cell size in MCC clouds in a changing climate

is important, as low-level clouds, especially in the SO, remain the main uncertainty in

climate models (Bony and Dufresne, 2005; Bony et al., 2006, 2015). Section 4.1 shows

that cell size changes are related to CTH and CTT. An increase in the height of the

MBL in a warming climate, as shown by recent trends (Dı́az et al., 2019), would lead

to changes in the aspect ratio and could, therefore, influence the cell size. However, it

is unclear how it exactly affects the cell size as changes in CTT or cloud phase are also

likely during climate change. Nonetheless, the changes in albedo due to changes in aspect

ratio are up to 0.2, and at low aspect ratios, albedo changes associated with cloud phase

are even higher (0.25). Assuming a typical solar insolation of 300Wm−2 in the SO, these

changes in albedo relate to a cloud-radiative effect from 60 - 75Wm−2. This emphasizes

the importance of correctly predicting the cloud phase and cell sizes of MCC clouds in

climate predictions.
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5 Global MCC Climatology with

CNN

To classify MCC clouds globally with the newly developed CNN model described in Sec-

tion 2.4.3, I first evaluate the CNN model in detail. In Section 5.1, I investigate the CNN

performance on the remaining test data set and discuss possible improvements for a future

version. The second part of this chapter analyzes the global MCC climatology classified

by the CNN. Moreover, annual and seasonal distributions of open and closed MCC occur-

rences are inspected and checked for consistency with the current understanding of MCC

organization.

5.1 CNN Model Evaluation

To evaluate the CNN model, 495 scenes from the test data set are classified. These test

data scenes have never been presented to it before. The confusion matrices summarize the

results from this classification of the test data set in Fig. 27, and example test scenes of

correctly predicted scenes are shown in Fig. 28. A confusion matrix shows the percentage
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Fig. 27 Confusion matrices of the manual test data set and CNN predicted categories
(a) normalized by the manual classification and (b) normalized by the CNN
classification. Input data taken from Reichel (2022).
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5 Global MCC Climatology with CNN

Fig. 28 Example scenes of the three categories from the test data set correctly predicted
by the CNN classification. (1. row) Open test scenes, (2. row) Closed test scenes,
and (3. row) NoMCC test scenes.

of correctly predicted categories in the diagonal while all incorrectly predicted classes are

off the diagonal. The overall test accuracy of the CNN is 80.61%. At the same time, the test

accuracies for Open and Closed are even higher with 85.45% and 87.27%, respectively.

The accuracy of NoMCC scenes is lower with 69.09%. Typically, accuracy or precision

values below 60% are considered poor, from 60 - 70% as fair, between 70 - 90% as good,

and above 90% as very good. Thus, the overall CNN accuracy as well as the accuracies for

Open and Closed are good, except for the NoMCC category which is fair. However, the

NoMCC category is designed as a category for all scenes which are not Open or Closed

scenes, or open and closed cell coverage with less than 70%. Thus, the NoMCC category

is not as a distinct physical category which is expected to have lower accuracy, and scenes

of this category are not further analyzed.

As this CNN is designed to precisely predict Open and Closed scenes, chances of mis-

classification between Open and Closed categories should be minimal. As shown in Fig. 27,

the percentage of misclassification from Open to Closed is only 1.21%, and the percent-

age of the reverse case is even lower with 0.61%. As described in Section 2.4.2, we, the

classifiers, also categorize scenes with open and closed MCC structure with less than 70%

coverage as NoMCC (see Fig. 28, 3. row, 5. column). About 9% and 22% of NoMCC test

scenes are misclassified as Open and Closed, respectively. In Fig. 29, the first two rows

show these scenes that in the test data set are classified as NoMCC but are ”misclassi-

fied” by the CNN as Open and Closed. However, most of these test NoMCC scenes show

at least partial structures of the organization of open and closed MCC cells. Therefore,

the precision of both Open (89.81%) and Closed (79.12%) would improve by using a test

data set in which the NoMCC category has no scenes with partial MCC organizations.

The last two rows from Fig. 29 display the manually classified Open and Closed scenes,
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5.1 CNN Model Evaluation

Fig. 29 Example scenes of four different misclassification groups between manual and
CNN classification. (1. row) NoMCC test scenes classified as Open. (2. row)
NoMCC test scenes classified as Closed. (3. row) Open test scenes classified as
NoMCC. (4. row) Closed test scenes classified as NoMCC. Figure inspired by
Reichel (2022).

which are classified as NoMCC by the CNN. About 13% of both categories are misclassi-

fied as NoMCC. Most Open scenes misclassified as NoMCC display tiny cells, substantial

variance in brightness, or thick cell walls. In most of the Closed scenes misclassified as

NoMCC, the closed MCC organization varies in cell size within a scene, decreasing and

fading into a clear area.

In conclusion, the CNN archives a good precision for both Open and Closed. Though

the precision of Open is higher than of Closed, this is probably caused by randomly having

more NoMCC scenes with some coverage of closed cells than open cells in the test data set.

To improve accuracy and precision in a future version of the CNN, the randomly taken

550 NoMCC scenes need to be reevaluated. Any scenes with partial coverage of open and

closed MCC organization in the NoMCC category should be removed from all training,

validation, and test data sets and replaced by other scenes of the remaining NoMCC group.

While the threshold in the Open and Closed category of at least 70% coverage is important

to define the MCC scene, any open or closed MCC scenes with less than 70% coverage

should be removed from the NoMCC category in a future CNN version. As visible in
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some scenes in Fig. 29 (e.g., open: 1. row, 1. column compared to 3. row, 3. column; closed:

2. row, 2. column compared to 4. row, 6. column), scenes in different test categories are very

similar but are supposed to be categorized differently by the CNN. Further, in a future

version, the categories should have identical distributions in the training and validation

data set to avoid biasing the model to one category. However, as the difference between

the categories is small and the sums of each category from the training and validation data

set, which both adjust the model parameters, are equal, the model bias to one category

is most likely weak. Overall, I show that the model is reasonably accurate at predicting

scenes with open and closed MCC structure.

5.2 Global MCC Climatology

To understand the different types of MCC organization, it is important to know the

frequency and location of the MCC regimes. The global MCC frequency of occurrence

in 2008 is investigated annually and seasonally for open and closed MCC organizations

to evaluate the CNN model (Section 2.4). All low-level cloud scenes between 65° S to

65°N are binned into a 5◦ x 5◦ grid by their central latitude and longitude. The fraction

of occurrences of open or closed MCC scenes to the total number of all evaluated scenes

defines the MCC frequency of occurrence in each grid box.

In general, the low latitudes are known for their persistent decks of stratocumuli (e.g.,

Atkinson and Wu Zhang , 1996; Klein and Hartmann, 1993; Wood , 2012) which are driven

by large-scale subsidence and increased stability. In Fig. 30, the stratocumulus-dominated

regions are indicated by white outlined boxes. While marine stratocumulus in mid-to-high

latitudes span around the globe, in the subtropics they are confined to the eastern parts

of the ocean basin roughly 5◦ off the coast. The displacement off the coast by around 5◦ is

connected to the depth of the MBL which deepens with distance to the coast (Wood and

Bretherton, 2004; Wood , 2012), especially visible in open MCC clouds. As seen in Fig. 30,

the stratocumulus regions agree well with the annual occurrence frequency of open and

closed MCC cells.

In the annual global mean, closed MCC clouds occur more frequently than open MCC

clouds. Overall, closed MCC occurrence increases from ±30°N with increasing latitude

(Fig. 30). The highest occurrence frequency of closed MCC clouds is found at high lati-

tudes close to 65° S. Previous studies show that the mid-to-high latitudes are associated

with a high frequency of closed MCC clouds (Muhlbauer et al., 2014; McCoy et al., 2017;

Mohrmann et al., 2021; Lang et al., 2022, 2023). Additionally, there are three regions west

of the continents in the tropics and subtropics (Northeast Pacific, Southeast Pacific, and

Southeast Atlantic) with frequent occurrence of closed MCC clouds. This matches the
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occurrences of closed MCC clouds shown by other studies (Klein and Hartmann, 1993;

Wood and Hartmann, 2006; Muhlbauer et al., 2014; Mohrmann et al., 2021).

The global distribution of open MCC occurrence is mostly confined to the mid-latitudes

between ±30°N and ±60°N (Fig. 30). The highest frequencies of open cells are located

in the center of this band which is associated with the storm tracks between ±40°N and

Fig. 30 Annual and seasonal global distribution of open and closed MCC frequency
of occurrence based on the MODIS Aqua 0.86 µm reflectance band from 2008.
Within 65° S to 65°N, all low-level cloud scenes with a mean CTH ≤3.5 km
are binned into 5◦ x 5◦ bins. The frequency of occurrence is the percentage of
occurrences of open or closed MCC scenes to the total number of all low-level
cloud scenes. White outlined boxes indicate regions dominated by stratocumu-
lus based on Klein and Hartmann (1993).
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±50°N and MCAOs. McCoy et al. (2017) investigate the link between MCAOs with the

occurrence of open and closed MCC clouds. They find a strong correlation between the

MCAO index and open MCC clouds and, therefore, show that open MCC clouds favor

lower static stability and stronger surface forcing. Further, open MCC clouds also display

secondary peaks of occurrence in the eastern parts of oceans in the subtropics. However,

these regions of open cells are shifted away from the continents and are west of the

subtropical regions of closed cells. This regional pattern is also observed in previous studies

(Wood and Hartmann, 2006; Muhlbauer et al., 2014; McCoy et al., 2017; Mohrmann et al.,

Fig. 31 Same as Fig. 30, but only cloud scenes with a mean CTT above 0 °C are passed
to the CNN. White boxes over the ocean indicate that no scenes are passed to
the CNN.
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2021) and associated with a transition from closed to open MCC clouds (Eastman et al.,

2022).

In the NH, the closed MCC occurrence frequency peaks in boreal summer (JJA),

especially at high latitudes in the North Pacific. While in the SH, the highest frequency

of closed MCC occurs in austral spring (SON). However, austral summer (DJF) only

shows a slightly weaker occurrence frequency. This matches the seasonal peaks of closed

MCC occurrence by Muhlbauer et al. (2014). Further, it is also similar to McCoy et al.

(2017) and Lang et al. (2022, 2023), which also exhibit the highest occurrence frequency

of closed MCC clouds in summer in the SH. Interestingly, I observe a region of a high

frequency (above 50%) of closed MCC cells during boreal winter (DJF) over the Labrador

Sea, which is not apparent in other climatologies (Muhlbauer et al., 2014). This area is

known for MCAOs during winter, in which clouds develop from roll-like stratocumulus

cloud streets near the coast to sometimes closed MCC cells and then typically to open

MCC cells (Raasch and Schröter , 2001). Further, I verified the frequently observed closed

MCC clouds from the CNN by visually inspecting this area using satellite images from

January 2008. Closed MCC cells occur 14 out of 31 days over the Labrador Sea during

this January. These closed cells often develop from cloud streets, which should also be

identified as closed MCC clouds by Muhlbauer et al. (2014) (Wood and Hartmann, 2006;

McCoy et al., 2017). Thus, a possible explanation could be that these closed MCC clouds

are MPCs which could be missed in their MCC classification, which is based on LWP

and restricted to scenes with warm clouds (CTT>273K) in Muhlbauer et al. (2014). To

further investigate this, Fig. 31 shows the same global climatology of open and closed

MCC clouds as Fig. 30 but only scenes with a mean CTT>273K are passed to the CNN.

Figure 31 reveals that especially over the Labrador Sea there are almost no warm cloud

scenes explaining the lower occurrence of closed MCC clouds in Muhlbauer et al. (2014).

Further, Fig. 32 displays the MCC data set used in McCoy et al. (2017) for the year 2008

which is not restricted to warm cloud scenes but based on the LWP (see Section 2.3).

In comparison to the results of the developed CNN (Fig. 30), the occurrence frequencies

of closed cells are lower in both the North Atlantic and North Pacific in Fig. 32. This

would support the hypothesis that MCC classification based on LWP miss MPCs with

a low LWP which are detected by the CNN used here. Nevertheless, the overall seasonal

distribution of closed MCC clouds coincides with previous studies (Wood and Hartmann,

2006; Muhlbauer et al., 2014; McCoy et al., 2017; Mohrmann et al., 2021; Lang et al.,

2022, 2023).

Seasonally, the highest occurrence frequency of open MCC clouds is observed during

winter in both hemispheres. In the SH, open MCC cells shift equatorward from austral

summer (DJF) to winter (JJA). Both, the higher frequency and the equatorward shift in
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winter are influenced by more frequent MCAOs, which shift equatorward during winter

with the edge of sea ice (Section 3.1). The strong correlation of open cells and MCAOs is

already established by McCoy et al. (2017). The seasonal open cell distribution findings

generally agree with other works (Muhlbauer et al., 2014; McCoy et al., 2017). How-

ever, the overall occurrence frequency of open cells is lower in Fig. 30 than in Fig. 32

based on McCoy et al. (2017). This agrees with recent findings by Yuan et al. (2020)

and Mohrmann et al. (2021) who also show much lower open occurrence frequency than

McCoy et al. (2017). These differences in the occurrence frequency of open MCC cells

Fig. 32 Annual and seasonal global distribution of open and closed MCC frequency of
occurrence based on the MCC data set from McCoy et al. (2017) for the year
2008.
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in different classification methods reveal the difficulty of distinguishing open MCC cells

from disorganized convection. To differentiate between open MCC clouds and disorga-

nized convection is especially challenging, as the transition from open to disorganized

regimes is very smooth. Thus, whether a scene is considered as open with large cells or

already as disorganized is subjective. This influences the training data set which impacts

the occurrence frequency of open MCC clouds in different classifications and explains the

higher occurrence frequency of open MCC clouds in Muhlbauer et al. (2014) and McCoy

et al. (2017) (as displayed in Fig. 32) in comparison with the developed CNN and other

works (Yuan et al., 2020; Mohrmann et al., 2021). Lang et al. (2022, 2023) exhibit the

maximum of open MCC clouds in austral spring (SON) in a part of the SO, south of

Australia. In contrast to others, they find a higher occurrence of open than closed MCC

clouds in this part of the SO in all seasons. Nevertheless, in their data, open MCC clouds

occur almost as frequently in austral winter as in spring (Lang et al., 2022, 2023). In the

NH, the highest frequency occurrence in boreal winter (DJF) agrees well with Muhlbauer

et al. (2014) except for a region in the North Atlantic, east of Greenland and the eastern

part of the North Pacific. There, I find an occurrence frequency of open cells, which is

lower in Muhlbauer et al. (2014). This might again be related to the setup of their MCC

classification, which could miss MPCs with a low LWP and CTT below 273K.

In summary, I show that the developed CNN model used to create the global MCC

climatology is able to produce a realistic occurrence of open and closed MCC clouds.

Further, I detected hints for missing MPCs in the NH, which should be better represented

in the developed CNN based on the MODIS 0.86 µm reflectance band instead of the LWP

(Sections 2.3 and 2.4.3).
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6.1 Summary

Marine stratocumuli cover vast areas of the SO and are globally the most dominant

cloud type by area coverage. The main objective of this thesis is to explore cloud phase

differences in their self-organized morphological regimes and evaluate connections between

cloud phase, cloud morphology, cell size, and cloud albedo in the SO. While the influence

of the cloud phase on the cloud morphology in the NH is analyzed by a small number of

case studies with numerical models (Abel et al., 2017; Eirund et al., 2019a; Tornow et al.,

2021), so far, it has not been examined in the SH or with extensive spatial coverage. Thus,

this thesis investigates the link between cloud phase and morphology with spaceborne

lidar-radar retrievals focusing on the SO.

Using polar-orbiting satellite retrievals has the advantage of covering almost the entire

globe. While passive satellites have higher coverage than active satellites, their cloud

phase instruments can only classify the cloud phase at cloud top. Thus, to evaluate the

cloud phase in this thesis, active satellite retrievals are used to avoid missing MPCs with a

supercooled layer at cloud top. The evaluation of the newly developed vertically integrated

cloud phase classification based on the DARDARv2 shows that its results are similar to

previous studies (e.g., Huang et al., 2017; Lang et al., 2021; Zaremba et al., 2021).

6.1.1 Interplay Between Cloud Morphology, Phase,

and Radiative Properties

The first part of this thesis investigates the relationships between cloud phase and mor-

phology in the SO. At a given CTT, seasonal changes in the mixed-phase fraction are

more significant than any morphological changes. These seasonal changes seem to de-

pend on the nucleation rate of INPs. The dependence of cloud phase on CTH is more

substantial than on CTT, particularly in clouds with CTHs below 2.5 km. This suggests

that deeper and more decoupled MBLs have a tendency to generate ice in supercooled

environments. Overall, these changes seem to be more impacted by external factors rather

than morphology.

The hypothesis of preconditioning is formulated by Abel et al. (2017) and Tornow et al.
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(2021) and states that the closed-to-open transition is favored in MPCs compared to SLCs

in case studies. Thus, this could conclude in a preference of open MCC clouds to occur as

MPCs. However, this cannot be confirmed by the mixed fraction of open and closed MCC

clouds. As the LWP:IWP ratio is not investigated, the mixed fraction might include MPCs

with low IWPs, which can influence the impact of ice formation on cloud morphology

(Eirund et al., 2019a). Thus, these results suggest that preconditioning seems not to

impact closed-to-open transitions in the general climatology of marine stratocumulus.

The examination of the link between cloud morphology and in-cloud albedo reveals

substantial in-cloud albedo differences between open and closed cells from 0.07 to 0.13,

depending on cloud phase and season. This is consistent with the results from McCoy

et al. (2017), which show higher albedo in closed MCC clouds than in open clouds, even

for the same cloud fraction. These seasonal and cloud-phase-dependent differences in in-

cloud albedo can drive changes in the cloud radiative effect of 21Wm−2 to 39Wm−2

in the SO. Moreover, the cloud phase differences within the MCC organizations reveal

that in-cloud albedo differences are more pronounced in SLCs than MPCs in both MCC

regimes.

6.1.2 Examining Effects of MCC Cells Spatial Scales

To examine how the cell sizes of MCC cells are influenced by cloud phase, I establish an

automatic image segmentation method based on 200×200 km2 MODIS 0.86 µm reflectance

scenes (Platnick et al., 2015). The equivalent mean cell diameter in open and closed MCC

clouds is similar in MPCs and SLCs in the annual mean. However, the seasonal cell

diameter differences between MPCs and SLCs are significant. While in austral summer,

the mean cell diameter of MPCs is larger than of SLCs, in austral winter, MPCs are

smaller than SLCs in both MCC organizations. The seasonal changes in cell size in MPCs

are larger in both MCC regimes than in SLCs, highlighting the importance of seasonal

differences in the two MCC regimes. Even though the automatic segmentation method is

carefully tested and designed to avoid biasing the cell diameters, remaining small biases

cannot be excluded.

To account for varying CTHs in cloud cells, the aspect ratios are analyzed to gain

further insights into the dependence of cell size on cloud morphology and phase. Closed

MCC clouds exhibit smaller aspect ratios than open MCC cells in the annual mean. Thus,

closed MCC cells are smaller than open cells independent of CTH. I find that the seasonal

differences observed in cell diameter are not apparent in the aspect ratio of closed MCC

clouds, while they are apparent in open MCC clouds. Therefore, changes in CTH mainly

explain the seasonal differences in cell diameter in closed MCC cells, whereas, in open
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MCC cells, the seasonal variations are independent of CTH.

The in-cloud albedo decreases in both open and closed MCC clouds with increasing

aspect ratios. The most substantial decrease is found in open MPCs. Further, differences

in the in-cloud albedo due to cloud phase changes are typically around 0.2 and up to 0.25

at low aspect ratios. Cloud albedo changes of 0.2 - 0.25 relate to cloud-radiative effects

from 60 - 75Wm−2, emphasizing the correct prediction of MCC cloud cell size and cloud

phase in climate models.

6.1.3 Global MCC Climatology with CNN

Detecting MCC organization independent of cloud phase is essential to investigate MPCs

with low LWPs or ice-phase clouds. Thus, a CNN is established based on 224×224 km2

MODIS scenes from the 0.86 µm reflectance band as part of the master thesis from Reichel

(2022). The overall test performance of the CNN shows a accuracy of 80.6%, with even

higher accuracies in Open (85.5%) and Closed (87.3%) categories. The misclassifications

between Open and Closed categories are very low, with less than 1.2%. The evaluation of

the CNN shows that the scene classification of both Open and Closed can be trusted.

To enhance our understanding of different MCC organizations, the annual and sea-

sonal global MCC occurrence frequencies in 2008 are classified with the CNN. In general,

closed MCC clouds increase with latitude from ±30°N towards high latitudes, while open

MCC clouds mainly occur within the storm tracks, peaking roughly at ±45°N. Overall,

the global MCC climatology is in accordance with other MCC distributions (Wood and

Hartmann, 2006; Muhlbauer et al., 2014; McCoy et al., 2017; Mohrmann et al., 2021; Lang

et al., 2022, 2023). The most notable difference in frequency occurs in the NH in boreal

winter. Compared to studies based on the LWP (Muhlbauer et al., 2014; McCoy et al.,

2017), I exhibit an increase in closed and open MCC clouds in the NH. This increase of

MCC in the NH during winter might be caused by missing MCC MPCs as the study from

Muhlbauer et al. (2014) is restricted to warm cloud scenes (CTT>273K) and MPCs with

a low LWP might not be detected (Muhlbauer et al., 2014; McCoy et al., 2017).

6.2 Conclusions

Overall, changes in cloud phase, morphology, or cell size can have significant implications

in a warming climate by altering the cloud-radiative properties. Especially in the SO,

low-level clouds remain the key uncertainty in global climate models (Bony and Dufresne,

2005; Bony et al., 2006, 2015; Zelinka et al., 2020; Schuddeboom and McDonald , 2021).

In general, global climate models predict a decrease in cloud cover leading to a positive
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feedback which amplifies the warming through a reduced albedo (Clement et al., 2009; Qu

et al., 2015; Myers and Norris , 2016; Norris et al., 2016; Myers et al., 2021; Zelinka et al.,

2020). The possible cloud morphology feedback is hypothesized by McCoy et al. (2017).

They argue that a weakening in MCAO strength, found by Kolstad and Bracegirdle (2008),

in the NH could lead to less open and more closed MCC cells if the results from Kolstad

and Bracegirdle (2008) can be assumed globally. This correlation between MCAOs and

cloud morphology (Fig. S7) and the differences of in-cloud albedo (Table 3 and Fig. 26)

between open and closed MCC cells may partially offset the cloud feedback and lead to

an overall reduced decline of low-level clouds.

In addition to changes in cloud morphology in a warming climate, a shift of cloud phase

to more warm liquid clouds and less MPCs and SLCs is expected in mid-to-high latitudes.

Previous studies defined the cloud phase feedback as a negative feedback which results

in optically thicker clouds with a higher albedo (Storelvmo et al., 2015; Gettelman and

Sherwood , 2016). However, recent studies (Murray et al., 2021; Wall et al., 2022) show

that the cloud phase feedback only marginally contributes to the overall cloud feedback

as it depends on the optical thickness of MPCs which are often already optically thick.

Nevertheless, the phase shift can lead to a longer lifetime due to a lower precipitation

efficiency in liquid clouds (Tan and Storelvmo, 2019; Mülmenstädt et al., 2021). While this

thesis did not find any evidence that open cells occur more often within MPCs than closed

cells, precipitation is one of the key drivers of the closed-to-open transition (Yamaguchi

and Feingold , 2015; Abel et al., 2017; Eastman et al., 2021, 2022). Thus, the ice-to-liquid

conversion could lead to less precipitation in warm MCC clouds and to fewer transitions

from closed to open MCC clouds in warm clouds. Therefore, this could potentially lead to

even more closed MCC clouds compared to open cells and in turn to a higher albedo than

by the cloud morphology feedback alone. In conclusion, these two feedbacks might lead

to an overall positive feedback. However, this is a very complex system with many other

environmental factors changing with climate change, e.g., an increase in INPs (Murray

et al., 2021; Twohy et al., 2021), in MBL height (Dı́az et al., 2019) or in cloud lifetime (Tan

and Storelvmo, 2019), which are not discussed here. Overall, this shows the importance

of enhancing cloud prediction in global climate models.

In summary, this thesis shows that seasonal changes in drivers of cloud formation im-

pact SO stratocumulus cloud phase more strongly than differences in cloud morphology

and thus cloud-driven dynamics. Both cloud phase and morphology seem to be mostly con-

trolled by other environmental factors. Cloud-phase changes can alter the in-cloud albedo

by up to 0.25 at low aspect ratios relating to a cloud-radiative effect of 75Wm−2 in the

SO. This thesis emphasizes understanding the dependencies of cloud phase, morphology,

and cell size to enhance predictions of the cloud-radiative effect.
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6.3 Outlook

The findings of this thesis highlight the importance of improving our understanding of

cloud phase, organizational transitions, and cell size to enhance predictions of changes in

the cloud-radiative effect in the open and closed MCC cells. This section describes the

remaining open questions and suggests future research avenues:

• Investigating large-scale subsidence

As stated in Section 3.2, due to limitations in satellite retrievals, it was not possi-

ble to evaluate the influence of cloud-top-generated and boundary-layer turbulence

on CTHs in SO stratocumuli. To further investigate the hypothesis that the MCC

occurrence and accelerated updraft speeds are linked to ice formation, I suggest

examining the large-scale subsidence which influences the turbulent cloud-top en-

trainment induced by cloud-top radiative cooling (Mellado, 2017). The effects of

increased large-scale subsidence in Arctic mixed-phase stratocumuli yield a strength-

ening of the MBL, a reduction of cloud-top entrainment, and an increase of LWP

and IWP (Young et al., 2018). Due to increased cloud-top cooling, the convective

overturning circulation within the cloud is accelerated, which could lead to stronger

updrafts in the cloud core. I propose to analyze the large-scale subsidence with a

reanalysis data set from National Centers for Environmental Prediction (NCEP),

which has a spatial resolution of 2◦ and temporal resolution of 6 h, in combination

with spaceborne retrievals to identify large-scale trends.

• Global statistics of cloud phase and cell size

To investigate whether the findings of cloud phase and cell size are constrained to the

SO or extend globally, I propose to extend the analysis to global coverage. In the SO,

the open cells are larger than closed MCC cells independently of CTH. In contrast,

Wood and Hartmann (2006) find that closed MCC cells are larger than open cells in

the northern and southern parts of the subtropical East Pacific. Thus, investigating

the cell size with the segmentation method in the subtropical regions might reveal

contrasting results to the SO or differences between the cell size methods.

As in general MPCs are mainly confined to higher latitudes, the seasonal differences

in cloud phase depending on CTT should be inspected with a focus on high latitudes

in the NH (45°N to 65°N). As the evaluation of the CNN in Section 5.2 indicates

the possibility of missing MPCs, especially in the NH, with the MCC data set based

on LWP, it should be considered to change the MCC classification to the established

CNN in Section 2.4 or the 1◦×1◦ MCC gridded product developed by Yuan et al.

(2020).
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• Lagrangian segmentation approach

As mentioned in Section 4.1, it remains unanswered how cloud phase influences

the cell size. This dependence could potentially extend the lifetime of open and

closed MPCs, which might explain the higher CTHs and lower CTT. Otherwise,

it could lead to a faster cloud evolution in MPCs due to stronger updrafts. To

investigate the temporal evolution of clouds, polar-orbiting satellites are insufficient

as they only detect a certain cloud once a day. Thus, a higher temporal resolution

is needed, which is achieved by geostationary satellites e.g., Himawari-8, with a

temporal resolution of 10min. While the transition from closed to open cell regimes is

explored with a Lagrangian approach in MODIS data by Eastman et al. (2021, 2022),

I suggest a similar Lagrangian approach combined with the single cell segmentation

in geostationary satellites to examine the lifetime of a single MCC cell.

• Cell segmentation with different MCC data set

To reduce possible biases in the cell size in the cell identification method, I propose

to address the selection of closed MCC scenes. As discussed in Section 2.5.2, some

closed MCC scenes identified by the MCC data set fromWood and Hartmann (2006)

display more stratiform clouds than cellular organization. This could lead to larger

cell areas and bias the cell diameter. A simple test that would be computationally

efficient is to run the CNN on all selected closed MCC scenes before segmentation.

While this adjustment of the cell segmentation could be easily adapted, it would

not solve missing MPCs with a low LWP. Thus, using a MCC classification method

based on reflectance like the 1◦×1◦ MCC data set (Yuan et al., 2020) or the estab-

lished CNN could provide more insight into these MPCs. However, as the 1◦×1◦

MCC data set detects substantially fewer open MCC occurrences as discussed in

Section 4.1, it might be better to use the CNN to identify MCC clouds in the cell

segmentation focusing on differences in open and closed cells.

• CNN model improvements

To improve the accuracy and precision of the CNN, the NoMCC category needs

to be carefully reevaluated. As examined in Section 5.1, the randomly chosen 550

NoMCC scenes used to train, valid, and test the CNN include ambiguous scenes

partly displaying MCC organization with less than 70% coverage. These ambiguous

scenes should be removed from the randomly selected NoMCC scenes and replaced

by unambiguous scenes from the remaining unused NoMCC scenes (17824 scenes).

As discussed in Section 5.1, while the condition of at least 70% coverage of open and

closed MCC scenes is important as a threshold, any open or closed MCC scenes with

less than 70% coverage should be removed from the NoMCC category in a future
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CNN version due to very similar scenes in different test categories. Thus, only the

NoMCC category should be reevaluated. A manual reclassification of the NoMCC

category, however, should be selected by at least three classifying individuals to be

consistent with the rest of the manually classified data set.

Another issue that should be addressed is the unequal number of training and vali-

dation scenes due to the validation split argument, which takes the last 30% without

any regard for the category. To avoid an unequal amount of scenes, the split between

training and validation should be prepared manually and randomly before passing

it to the model.fit function from the tensorflow package in Python (Pang et al.,

2020). In addition, similar to Yuan et al. (2020), it might be advantageous to use a

pre-trained deep CNN model, which is better at extracting features, as the base of

the developed CNN.
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6.4 Zusammenfassung

Marine Stratocumuli bedecken weite Teile des Ozeans und sind flächenmäßig die do-

minierende Wolkenart. Sie ordnen sich selbst in verschiedenen morphologischen Regimen

an (Wood and Hartmann, 2006). Die beiden organisierten zellulären Regime werden als

offene und geschlossene mesoskalig-zelluläre konvektive (MCC) Wolken bezeichnet. In mit-

tleren bis hohen Breitengraden sind offene und geschlossene Zellen die beiden häufigsten

Typen von MCC-Wolken (Muhlbauer et al., 2014). Viele MCC-Wolken bestehen aus einer

Mischung aus Dampf, flüssigen Tröpfchen und Eispartikeln, die als Mischphasenwolken

(MPCs) bezeichnet werden. Selbst bei gleichem Wolkenbedeckungsgrad ist die Albedo

offener Zellen im Durchschnitt niedriger als die von geschlossenen MCC-Wolken. Wolken-

phase und -morphologie beeinflussen individuell den Strahlungseffekt von Wolken (McCoy

et al., 2017).

Das Hauptziel dieser Arbeit ist es, die Unterschiede zwischen den Wolkenphasen in

ihren selbstorganisierten morphologischen Regimen zu erforschen und die Zusammenhänge

zwischen Wolkenphase, Wolkenmorphologie, Zellgröße und Wolkenalbedo im Südlichen

Ozean (SO) zu bewerten. Während der Einfluss der Wolkenphase auf die Wolkenmor-

phologie in der Nordhemisphäre (NH) durch eine kleine Anzahl von Fallstudien bere-

its mit numerischen Modellen analysiert wurde (Abel et al., 2017; Eirund et al., 2019a;

Tornow et al., 2021), wurde dieser bisher nicht in der Südhemisphäre (SH) oder mit

umfassender räumlicher Abdeckung untersucht. Daher wird in dieser Arbeit der Zusam-

menhang zwischen Wolkenphase und -morphologie mit weltraumgestützten Lidar-Radar-

Messungen im SO untersucht. Darüber hinaus werden die Auswirkungen der Wolkenphase

auf die Größe der einzelnen Wolkenzellen in beiden Organisationsregimen untersucht.

Obwohl frühere Studien die Unterschiede in der Zellgröße in offenen und geschlossenen

MCC-Wolken analysiert haben, konzentrieren sich die meisten Studien auf den mittleren

Zelldurchmesser ganzer Wolkenszenen (Wood and Hartmann, 2006; Zhou et al., 2021) oder

wie kleine Zellgrößen in gröberen Modellauflösungen dargestellt werden können (Martini

et al., 2014). Schließlich analysieren wir die globale MCC-Klimatologie auf der Grundlage

des 0,86 µm-Reflektanzsbandes von MODIS, das im Gegensatz zu dem in den Kapiteln 3

und 4 verwendeten MCC-Datensatz (Wood and Hartmann, 2006), auch MPCs mit einem

niedrigen Flüssigwasserpfad (LWP) detektiert.
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Die Verwendung polarumlaufender Satelliten hat den Vorteil, dass sie fast den gesamten

Erdboden abdecken. Passive Satelliten haben zwar eine größere Abdeckung als aktive

Satelliten, ihre Wolkenphasenmessgeräte können jedoch nur die Wolkenphase an der Wol-

kenobergrenze (CTH) klassifizieren. Daher werden für die Auswertung der Wolkenphase

in dieser Arbeit aktive Satellitenmessungen verwendet, um zu vermeiden, dass MPCs

mit einer unterkühlten (bzw. supercooled) Schicht an der Wolkenobergrenze übersehen

werden. Die Auswertung der neu entwickelten vertikal integrierten Wolkenphasenklassi-

fikation auf der Grundlage von liDAR-raDAR (DARDAR) v2 zeigt, dass die Ergebnisse

mit denen früherer Studien vergleichbar sind (e.g., Huang et al., 2017; Lang et al., 2021;

Zaremba et al., 2021).

6.4.1 Wechselwirkung zwischen Wolkenmorphologie,

Wolkenphase und Strahlungseigenschaften der

Wolken

Im ersten Teil dieser Arbeit werden die Beziehungen zwischen der Wolkenphase und

der Morphologie im SO untersucht. Bei einer bestimmten Wolkenobergrenzentemperatur

(CTT) sind die jahreszeitlichen Veränderungen des Mischphasenanteils signifikanter als

alle morphologischen Veränderungen. Diese saisonalen Veränderungen scheinen von der

Keimbildungsrate der eiskeimbildenden Partikel (INPs) abzuhängen. Die Abhängigkeit

der Wolkenphase von der CTH ist deutlicher als von der CTT, insbesondere bei Wolken

mit einer CTH von weniger als 2,5 km. Dies deutet darauf hin, dass tiefere und stärker

entkoppelte marine Grenzschichten (MBLs) dazu neigen, in unterkühlten Umgebungen

Eis zu bilden. Insgesamt scheinen diese Veränderungen eher von äußeren Faktoren als von

der Morphologie beeinflusst zu werden.

Die Hypothese der Präkonditionierung wird von Abel et al. (2017) und Tornow et al.

(2021) formuliert und besagt, dass die Umwandlung von geschlossen zu offen in MPCs

im Vergleich zu unterkühlten (bzw. supercooled) flüssigen Wolken (SLCs) in Fallstudien

bevorzugt wird. Daraus könnte man schließen, dass offene MCC-Wolken bevorzugt als

MPCs auftreten. Dies kann jedoch durch den Mischungsanteil offener und geschlossener

MCC-Wolken nicht bestätigt werden. Da das LWP:IWP (Eiswasserpfad)-Verhältnis nicht

untersucht wird, könnte der Mischungsanteil auch MPCs mit geringem IWPs enthalten,

die die Auswirkungen der Eisbildung auf die Wolkenmorphologie beeinflussen können

(Eirund et al., 2019a). Somit deuten diese Ergebnisse darauf hin, dass die Präkondition-

ierung keinen Einfluss auf die Umwandlung von geschlossener zu offener Wolke in der

allgemeinen Klimatologie von marinem Stratocumulus zu haben scheint.
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6.4 Zusammenfassung

Die Untersuchung des Zusammenhangs zwischen Wolkenmorphologie und In-Wolken-

Albedo zeigt erhebliche Unterschiede in der In-Wolken-Albedo zwischen offenen und ge-

schlossenen Zellen von 0,07 bis 0,13, je nach Wolkenphase und Jahreszeit. Dies steht

im Einklang mit den Ergebnissen von McCoy et al. (2017), die eine höhere In-Wolken-

Albedo in geschlossenen MCC-Wolken als in offenen Wolken zeigen, selbst bei gleichem

Bedeckungsgrad. Diese saisonalen und wolkenphasenabhängigen Unterschiede in der In-

Wolken-Albedo können zu Änderungen der Wolkenstrahlungswirkung von 21Wm−2 bis

39Wm−2 im SO führen. Darüber hinaus zeigen die Wolkenphasenunterschiede innerhalb

der MCC-Organisationen, dass die Unterschiede in der In-Wolken-Albedo in SLCs stärker

ausgeprägt sind als in MPCs in beiden MCC-Regimen.

6.4.2 Exploration der Auswirkungen der

MCC-Zellgröße

Um zu untersuchen, wie die Zellgrößen von MCC-Zellen durch die Wolkenphase beein-

flusst werden, habe ich eine automatische Bildsegmentierungsmethode auf der Grundlage

von 200×200 km2 Moderate Resolution Imaging Spectroradiometer (MODIS) 0,86 µm-

Reflexionsszenen entwickelt (Platnick et al., 2015). Der äquivalente mittlere Zelldurchmes-

ser in offenen und geschlossenen MCC-Wolken ist in MPCs und SLCs im Jahresmittel ähn-

lich. Allerdings sind die jahreszeitlichen Unterschiede im Zelldurchmesser zwischen MPCs

und SLCs erheblich. Während im Südsommer der mittlere Zelldurchmesser der MPCs

größer ist als der der SLCs, sind die MPCs im Südwinter in beiden MCC-Organisationen

kleiner als die SLCs. Die saisonalen Veränderungen der Zellgröße in MPCs sind in bei-

den MCC-Regimen größer als in SLCs, was die Bedeutung der saisonalen Unterschiede in

den beiden MCC-Regimen unterstreicht. Obwohl die automatische Segmentierungsmeth-

ode sorgfältig getestet und so konzipiert wurde, dass eine Verzerrung der Zelldurchmesser

vermieden wird, können verbleibende kleine Verzerrungen nicht ausgeschlossen werden.

Um die unterschiedlichen CTHs in den Wolkenzellen zu berücksichtigen, werden die

Seitenverhältnisse analysiert, um weitere Erkenntnisse über die Abhängigkeit der Zellgröße

von der Wolkenmorphologie und -phase zu gewinnen. Geschlossene MCC-Wolken weisen

im Jahresmittel ein kleineres Seitenverhältnis auf als offene MCC-Zellen. Geschlossene

MCC-Zellen sind also unabhängig von der CTH kleiner als offene Zellen. Ich konnte fest-

stellen, dass die beobachteten jahreszeitlichen Unterschiede im Zelldurchmesser sich nicht

auf das Seitenverhältnis geschlossener MCC-Wolken auswirken, während sie bei offenen

MCC-Wolken erkennbar sind. Daher sind die jahreszeitlichen Unterschiede im Zelldurch-

messer in geschlossenen MCC-Zellen hauptsächlich auf Veränderungen der CTH zurück-

zuführen, während in offenen MCC-Zellen die jahreszeitlichen Schwankungen unabhängig
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von der CTH sind.

Die In-Wolken-Albedo nimmt sowohl in offenen als auch in geschlossenen MCC-Wolken

mit zunehmendem Seitenverhältnis ab. Der stärkste Rückgang ist in offenen MPCs zu

verzeichnen. Darüber hinaus liegen die Unterschiede in der In-Wolken-Albedo aufgrund

von Wolkenphasenänderungen typischerweise bei 0,2 und bei niedrigen Seitenverhältnis-

sen bei bis zu 0,25. In-Wolken-Albedo-Änderungen von 0,2 - 0,25 entsprechen Wolken-

strahlungseffekten von 60 - 75Wm−2, was die korrekte Vorhersage der MCC-Wolkenzel-

lengröße und der Wolkenphase in Klimamodellen unterstreicht.

6.4.3 Globale MCC-Klimatologie mit CNN

Die Erkennung der MCC-Organisation unabhängig von der Wolkenphase ist für die Unter-

suchung von MPCs mit niedrigen LWPs oder Eisphasenwolken unerlässlich. Aus diesem

Grund wurde im Rahmen der Masterarbeit von Reichel (2022) ein faltendes neuronales

Netzwerk (CNN) auf der Grundlage von 224×224 km2 MODIS-Szenen aus dem 0,86 µm-

Reflexionsband erstellt. Die Testleistung des gesamten CNN zeigt eine Genauigkeit von

80,6%, mit noch höheren Genauigkeiten in den Kategorien Offen (85,5%) und Geschlossen

(87,3%). Die Fehlklassifikationen zwischen offenen und geschlossenen Kategorien sind mit

weniger als 1,2% sehr gering. Die Auswertung des CNN zeigt, dass man sich auf die

Szenenklassifizierung von Offen und Geschlossen verlassen kann.

Um unser Verständnis der verschiedenen MCC-Organisationen zu verbessern, werden

die jährlichen und saisonalen Häufigkeiten des globalen MCC-Vorkommens aus dem Jahr

2008 mit dem CNN klassifiziert. Im Allgemeinen nehmen geschlossene MCC-Wolken mit

der geografischen Breite ab ±30°N in Richtung hoher Breiten zu, während offene MCC-

Wolken hauptsächlich innerhalb der Sturmzugbahnen auftreten und ihren Höhepunkt

etwa bei ±45°N erreichen. Insgesamt stimmt die globale MCC-Klimatologie mit anderen

MCC-Verteilungen überein (Wood and Hartmann, 2006; Muhlbauer et al., 2014; McCoy

et al., 2017; Mohrmann et al., 2021; Lang et al., 2022, 2023). Der auffälligste Unterschied

in der Häufigkeit tritt in den NH im Nordwinter auf. Im Vergleich zu Studien, die auf

dem LWP basieren (Muhlbauer et al., 2014; McCoy et al., 2017), zeige ich eine Zunahme

von geschlossenen und offenen MCC-Wolken in der NH. Diese Zunahme von MCC in der

NH während des Winters könnte durch fehlende MCC-MPCs verursacht werden, da die

Studie von Muhlbauer et al. (2014) auf warme Wolkenszenen (CTT>273K) beschränkt

ist und MPCs mit einem niedrigen LWP möglicherweise nicht erkannt werden (Muhlbauer

et al., 2014; McCoy et al., 2017).
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6.5 Fazit

Insgesamt können Veränderungen der Wolkenphase, Wolkenmorphologie oder Zellgröße

in einem sich erwärmenden Klimasystem erhebliche Auswirkungen haben, da sie die

Strahlungseigenschaften der Wolken verändern. Vor allem im SO bleiben niedrige Wolken

die größte Unsicherheit in globalen Klimamodellen (Bony and Dufresne, 2005; Bony et al.,

2006, 2015; Zelinka et al., 2020; Schuddeboom and McDonald , 2021). Im Allgemeinen

prognostizieren globale Klimamodelle eine Abnahme der Wolkenbedeckung, was zu einer

positiven Rückkopplung führt, die die Erwärmung durch eine geringere Albedo verstärkt

(Clement et al., 2009; Qu et al., 2015; Myers and Norris , 2016; Norris et al., 2016; Myers

et al., 2021; Zelinka et al., 2020). Die mögliche Rückkopplung der Wolkenmorphologie

wird von McCoy et al. (2017) vermutet. Sie argumentieren, dass eine Abschwächung der

Stärke von marinen Kaltluftausbrüchen (MCAO), die von Kolstad and Bracegirdle (2008)

in der NH gefunden wurde, zu weniger offenen und mehr geschlossenen MCC-Zellen führen

könnte, wenn die Erkenntnisse von Kolstad and Bracegirdle (2008) global angenommen

werden können. Diese Korrelation zwischen MCAOs und Wolkenmorphologie (Fig. S7)

und die Unterschiede in der In-Wolken-Albedo (Table 3 and Fig. 26) zwischen offenen

und geschlossenen MCC-Zellen könnten die Wolkenrückkopplung teilweise ausgleichen

und zu einem insgesamt geringeren Rückgang der niedrigen Wolken führen.

Zusätzlich zu den Veränderungen der Wolkenmorphologie in einem sich erwärmenden

Klimasytem wird eine Verschiebung der Wolkenphase hin zu mehr warmen Flüssigwolken

und weniger MPCs und SLCs in mittleren bis hohen Breiten erwartet. In vorherigen Stu-

dien wurde die Rückkopplung der Wolkenphase als negative Rückkopplung definiert, die

zu optisch dickeren Wolken mit einer höheren Albedo führt (Storelvmo et al., 2015; Gettel-

man and Sherwood , 2016). Neueste Studien (Murray et al., 2021; Wall et al., 2022) zeigen

jedoch, dass die Wolkenphasenrückkopplung nur geringfügig zur gesamten Wolkenrück-

kopplung beiträgt, da sie von der optischen Dicke der MPCs abhängt, die häufig bere-

its optisch dick sind. Dennoch kann die Phasenverschiebung aufgrund einer geringeren

Niederschlagseffizienz in flüssigen Wolken zu einer längeren Lebensdauer führen (Tan and

Storelvmo, 2019; Mülmenstädt et al., 2021). Während in dieser Arbeit keine Belege dafür

gefunden wurden, dass innerhalb von MPCs durch Präkonditionierung häufiger offene

Zellen als geschlossene Zellen auftreten, ist Niederschlag einer der wichtigsten Treiber

der Umwandlung von geschlossen zu offen Zellen (Yamaguchi and Feingold , 2015; Abel

et al., 2017; Eastman et al., 2021, 2022). Somit könnte die Eis-zu-Flüssig-Umwandlung zu

weniger Niederschlag in warmen MCC-Wolken und zu weniger Übergängen von geschlosse-

nen zu offenen MCC-Wolken in warmen Wolken führen. Dies könnte daher möglicherweise

zu noch mehr geschlossenen MCC-Wolken im Vergleich zu offenen Zellen und damit zu

einer höheren Albedo führen als durch die Rückkopplung der Wolkenmorphologie allein.
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Zusammenfassend lässt sich sagen, dass diese beiden Rückkopplungen zu einer insgesamt

positiven Rückkopplung führen könnten. Es handelt sich jedoch um ein sehr komplexes

System mit vielen anderen Umweltfaktoren, die sich mit dem Klimawandel verändern, z.B.

eine Zunahme der INPs (Murray et al., 2021; Twohy et al., 2021), der MBL-Höhe (Dı́az

et al., 2019) oder der Wolkenlebensdauer (Tan and Storelvmo, 2019), die hier nicht disku-

tiert werden. Insgesamt zeigt dies, wie wichtig es ist, die Wolkenvorhersage in globalen

Klimamodellen zu verbessern.

Abschließend zeigt diese Arbeit, dass jahreszeitliche Veränderungen bei den Einflussfak-

toren für die Wolkenbildung die SO-Stratocumulus-Wolkenphase stärker beeinflussen als

Unterschiede in der Wolkenmorphologie und damit die wolkengetriebene Dynamik. Sowohl

die Wolkenphase als auch die Wolkenmorphologie scheinen hauptsächlich durch andere

Umweltfaktoren gesteuert zu werden. Veränderungen der Wolkenphase können die In-

Wolken-Albedo bei niedrigen Seitenverhältnissen um bis zu 0,25 verändern, was mit einem

Wolkenabstrahleffekt von 75Wm−2 im SO einhergeht. Im Fokus dieser Dissertation steht

das Verständnis der Abhängigkeiten von Wolkenphase, Morphologie und Zellgröße, um

die Vorhersage des Wolkenstrahlungseffekts zu verbessern.
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Fig. S1 Two-dimensional histograms of mixed fraction against CTT and CTH for (left)
open MCC, (middle) closed MCC, and (right) low-level clouds in austral (top)
winter and (bottom) summer. Dotted bins indicate bins with less than 50 data
points.
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Fig. S2 Supercooled liquid and mixed fraction binned by CTT from -20 °C to 0 °C with
a bin width of 1 °C (2007 - 2010) for (top) all seasons, (middle) austral winter
and (bottom) austral summer in (left) open MCC, (middle) closed MCC, and
(right) low-level clouds for clouds with an effective radius 0 µm<Re<14 µm. As
only 5.1% of the annual closed MCC clouds occur in JJA the panel is displayed
in more transparent color shading.
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Fig. S3 Four example tracks of the DARDAR categorization on 1 December 2007. The
blue line indicates the CTT of MODIS and the orange of ECMWF. The hatched
area displays levels below 720m. The colored circles below the ground show the
newly defined vertically integrated cloud phase and the MCC type for every
other data point.
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Fig. S4 (a) Histogram of data points of vertically resolved cloud phase types divided
into two categories: liquid clouds (orange) and MPCs (green) for austral winter
(black) and summer (grey) in the temperature range from -20 °C to 0 °C from
2007 to 2010. Overall percentage of liquid clouds and MPCs is indicated in
each panel separately for JJA (black) and DJF (grey). ”→” indicates the layer
on top of the next. ”↔” indicates interchangeable layers. (b) Same as (a) but
only for clouds with an effective radius 0 µm<Re<14 µm. (c) Same as (a) but
only for clouds with an effective radius Re >14 µm.
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(a)

(b)

Fig. S5 Two-dimensional histograms of CTH against CTT and latitude for (left) open
MCC, (middle) closed MCC, and (right) low-level clouds in (1. and 3. row)
austral winter and (2. and 4. row) summer separately for (a) MPCs and (b)
SLCs. Dotted bins indicate bins with less than 50 data points.
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Fig. S6 (a) Supercooled liquid and mixed fraction binned by CTT from -20 °C to 0 °C
with a bin width of 5 °C (2007 - 2010) for January and February in low-level
clouds. The months and region (42° S to 62° S and from 133°W to 163°W) are
set to match the SOCRATES campaign. SOCRATES data is adapted from
Fig. 4 by D’Alessandro et al. (2021). (b) Same as (a) but only for clouds with
an effective radius 0 µm < Re < 14 µm
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Fig. S7 (a) Two-dimensional histograms of (top) the MCAO and (bottom) occurrence
frequency against ∆T and EIS separately for (left) open MCC and (right)
closed MCC MPCs. Dotted bins indicate bins with less than 100 data points.
(b) Same as (a) but for SLCs. (c) ∆T–EIS composites computed from the data
in (a) for MPCs and (b) for SLCs separated in MPCs and SLCs for (left) open
MCC and (right) closed MCC clouds binned by the MCAO index. This figure
is produced in a similar way as from Fig. 8, and 9 by McCoy et al. (2017) but
separately for MPCs and SLCs. [As MPCs and SLCs occur evenly across the
MCAO index, the correlation between ice occurrence and vertical acceleration
does not seem to be driven by surface fluxes.]
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Supplementary Figures
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Fig. S8 Same as Fig. 22, but for aspect ratio.
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Table S1 Same as Table 6, but the classified MCC type is based on most occurring
MCC type in the 1◦×1◦ gridded product of the CNN using the MODIS
0.55 µm reflectance band from Yuan et al. (2020) for the year 2007.

Open Closed Open Closed
MPC SLC MPC SLC

Annual 26.81 22.43 25.59 31.44 22.14 24.17

JJA 26.15 21.65 25.73 27.79 21.29 24.76

SON 27.07 22.77 26.07 31.07 22.41 25.32

DJF 28.28 22.90 26.74 32.64 22.70 23.67

MAM 26.18 21.67 24.67 32.64 21.51 22.86

Table S2 Same as Table 7, but the classified MCC type is based on most occurring
MCC type in the 1◦×1◦ gridded product of the CNN using the MODIS
0.55 µm reflectance band from Yuan et al. (2020) for the year 2007.

Open Closed MPC SLC
Open vs Closed MPC vs SLC MPC vs SLC Open vs Closed Open vs Closed

Annual 1.0 0.625 1.0 1.0 0.875

JJA 0.625 0.0 0.875 0.25 0.0

SON 0.625 0.0 1.0 0.0 0.0

DJF 0.75 0.125 0.25 0.5 0.625

MAM 0.625 0.125 0.5 0.375 0.5
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Supplementary Figures
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Fig. S9 Histogram of cloud phase occurrence frequency binned by aspect ratio with a
bin width of 5 for CTT from −20 °C to 0 °C normalized by the sum of SLCs and
MPCs, but the classified MCC type is based on most occurring MCC type in the
1◦×1◦ gridded product of the CNN using the MODIS 0.55 µm reflectance band
from Yuan et al. (2020) for the year 2007. Note different y-axes for SLCs and
MPCs. Numbers below the histogram indicate the mean number of identified
cells for MPCs and SLCs. As only very few open MCC clouds are identified,
all open panels are displayed in more transparent color shading.
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Fig. S10 Mean in-cloud albedo as a function of aspect ratio for SLCs and MPCs with
CTT from −20 °C to 0 °C, but the classified MCC type is based on most
occurring MCC type in the 1◦×1◦ gridded product of the CNN using the
MODIS 0.55 µm reflectance band from Yuan et al. (2020) for the year 2007.
Numbers below the lines indicate the mean number of identified cells for MPCs
and SLCs. As only very few open MCC clouds are identified, all open panels
are displayed in more transparent color shading.
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Supplementary Figures

a) Open MPCs

b) Open SLCs

c) Closed MPCs

d) Closed SLCs

Fig. S11 Examples scenes with red outlines of segmented cells for (a) open MPCs,
(b) open SLCs, (c) closed MPCs, and (d) closed SLCs.
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B List of Abbreviations

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-

vations
CAPRICORN Clouds, Aerosols, Precipitation, Radiation, and atmospherIc

Composition Over the southeRN ocean campaign
CBH cloud-base height
CNN convolutional neural network
COT cloud optical thickness
CTH cloud-top height
CTT cloud-top temperature

DARDAR liDAR-raDAR
DJF December to January

ECMWF European Centre for Medium-Range Weather Forecasts
EIS estimated inversion strength

INP ice nucleating particle
IWP ice water path

JJA June to August

LW longwave
LWP liquid water path

MAM March to May
MBL marine-boundary layer
MCAO marine cold air outbreak
MCC mesoscale-cellular convective
MERRA-2 Modern-Era Retrospective analysis for Research and Applica-

tions version 2
MODIS Moderate Resolution Imaging Spectroradiometer
MPC mixed-phase cloud

NCEP National Centers for Environmental Prediction
NH Northern Hemisphere

PDF probability density function
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List of Abbreviations

ReLu rectified linear unit

SH Southern Hemisphere
SLC supercooled liquid cloud
SO Southern Ocean
SOCRATES Southern Ocean Clouds Radiation Aerosol Transport Experi-

mental Study
SON September to November
SST sea surface temperature
SW shortwave

WBF Wegener-Bergeron-Findeisen
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D. Brühwiler, U. Lohmann, and Z. A. Kanji (2019), Pore condensation and freezing is

responsible for ice formation below water saturation for porous particles, Proceedings of

the National Academy of Sciences of the United States of America, 116 (17), 8184–8189,

doi:10.1073/PNAS.1813647116/-/DCSUPPLEMENTAL. 9

de Boer, G., E. W. Eloranta, and M. D. Shupe (2009), Arctic mixed-phase strat-

iform cloud properties from multiple years of surface-based measurements at two

high-latitude locations, Journal of the Atmospheric Sciences, 66 (9), 2874–2887, doi:

10.1175/2009JAS3029.1. 12
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