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Measurements of the groomed jet radius and momentum splitting fraction
with the soft drop and dynamical grooming algorithms in pp collisions at√

s = 5.02 TeV

ALICE Collaboration

Abstract

This article presents measurements of the groomed jet radius and momentum splitting fraction in
pp collisions at

√
s = 5.02 TeV with the ALICE detector at the Large Hadron Collider. Inclusive

charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm for transverse mo-
mentum 60 < pch jet

T < 80 GeV/c. We report results using two different grooming algorithms: soft
drop and, for the first time, dynamical grooming. For each grooming algorithm, a variety of grooming
settings are used in order to explore the impact of collinear radiation on these jet substructure ob-
servables. These results are compared to perturbative calculations that include resummation of large
logarithms at all orders in the strong coupling constant. We find good agreement of the theoretical
predictions with the data for all grooming settings considered.
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1 Introduction

Measurements of high-energy jets produced in proton–proton collisions provide opportunities to test per-
turbative calculations and study non-perturbative (NP) effects in quantum chromodynamics (QCD) [1–3].
Jets also can be used to probe the properties of the quark–gluon plasma by comparing jet observables in
high-energy heavy-ion collisions to reference measurements in proton–proton collisions [4–12].

Jet grooming techniques, such as soft drop [13–15] and dynamical grooming [16–19], reduce the mag-
nitude of non-perturbative contributions to jet substructure cross sections in pp collisions by selectively
removing soft large-angle radiation. This allows for well-controlled comparisons of measurements to
perturbative QCD (pQCD) calculations. Grooming techniques have also previously been applied to
heavy-ion collisions, in order to explore whether the quark–gluon plasma modifies the hard substructure
of jets [19–29]. Several measurements of groomed jet observables have been made in pp and heavy-ion
collisions at the LHC and RHIC [30–37], as well as in e+e− collisions [38]. The benefits of different jet
grooming algorithms remain a topic of ongoing study, since different grooming algorithms have differ-
ent perturbative structure and offer different flexibility via grooming parameters that can be adapted to
specific physics goals in either proton–proton or heavy-ion collisions (see e.g. Refs. [19,26,29]). In this
article, we explore both the soft drop and dynamical grooming algorithms, and test the ability of pQCD
calculations to describe their behavior for a variety of grooming parameters.

Jet grooming algorithms rely on procedures to recluster the constituents of reconstructed jets into a
structure that better isolates perturbative emissions in the jet. One such structure is the primary Lund
plane, which approximately represents the angular and momentum phase space of partonic emissions
off the leading hard-scattered parton. The soft drop and dynamical grooming algorithms each identify a
single splitting in the primary Lund plane [39] that satisfies a grooming condition. The two algorithms
are described in Section 3. In this article, we consider two observables that define the kinematics of the
identified splitting: zg, the groomed jet momentum splitting fraction, and θg, the (scaled) groomed jet
radius, as shown in Fig. 1. The groomed jet momentum splitting fraction is defined as the fraction of
transverse momentum (pT) relative to the beam that the sub-leading prong in the splitting carries relative
to its parent:

zg ≡
pT,subleading

pT,leading + pT,subleading
. (1)

The (scaled) groomed jet radius is defined as the angular distance between the two prongs of the identified
hard splitting

θg ≡
Rg

R
≡
√

∆y2 +∆ϕ2

R
, (2)

where R is the jet radius and Rg is the rapidity–azimuth (y–ϕ) separation of the identified splitting.

The soft drop zg and θg distributions have recently been calculated in pp collisions at Next-to-Leading
Logarithmic (NLL′) accuracy [40, 41]. Measurements of zg and θg serve to test these analytical predic-
tions, in particular, the role of beyond-LL pQCD effects, as well as constrain the role of non-perturbative
effects. Moreover, by measuring these observables for a variety of grooming conditions β (see Sec-
tion 3.1 for further details), one can systematically study the role of collinear radiation in jet substructure,
since increasing β removes less and less collinear radiation in the grooming process. Measurements of
both zg and θg for β = 0,1, and 2 have been performed by the ATLAS Collaboration [32] for dijet events
with leading pjet

T > 300 GeV/c, and several measurements of zg and θg have been performed for β = 0
across a wide range of jet pT [31, 33, 36, 38]. In this article, we complement these studies by measuring
zg and θg for β = 0,1, and 2 for 60 < pch jet

T < 80 GeV/c.
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θg ≡ Rg
R

≡
Δy2 + Δφ2

R

R

Rg

zg ≡ pT,subleading
pT,leading + pT,subleading

y

φ

Figure 1: Graphical representation of the angularly-ordered Cambridge–Aachen reclustering of jet constituents
and subsequent grooming procedure, with the identified splitting denoted in black and the splittings that were
groomed away in light blue.

The dynamically groomed zg and θg distributions have recently been calculated in pp collisions at Next-
to-Next-to-Double Logarithm (N2DL) accuracy [16,18]. In this article, we perform the first measurement
of dynamically groomed jet substructure observables, providing the first test of these calculations.

We report measurements in pp collisions at center-of-mass collision energy
√

s = 5.02 TeV with the
ALICE detector. Charged-particle jets are reconstructed in the pseudorapidity range |ηjet| < 0.5 for jet
radius R = 0.4 with 60 < pch jet

T < 80 GeV/c. The zg and θg distributions are measured using both the
soft drop and dynamical grooming procedures, each with a variety of grooming settings. These results
are compared to pQCD calculations as well as the PYTHIA8 [42,43] Monte Carlo (MC) event generator.
While track-based jet observables are collinear-unsafe [44–46], they can be measured with greater preci-
sion than calorimeter-based jet observables, and recent measurements have demonstrated that for many
substructure observables track-based distributions are compatible with the corresponding collinear-safe
distributions [32]. Comparisons of theoretical calculations to our track-based jet substructure measure-
ments are discussed further in Section 5.

2 Experimental setup and data sets

A description of the ALICE detector and its performance can be found in Refs. [47, 48]. The pp data set
used in this analysis was collected in 2017 during LHC Run 2 at

√
s = 5.02 TeV using a minimum-bias

trigger defined by the coincidence of the signals from two scintillator arrays in the forward region (V0
detectors) [49]. The event selection includes a primary vertex selection, where the primary vertex is
required to be within 10 cm from the center of the detector along the beam direction. Events with more
than one reconstructed primary vertex were classified as pileup and rejected [50]. After these selections,
the pp data sample contains 870 million events and corresponds to an integrated luminosity of 18.0±0.4
nb−1 [51].

The analysis uses charged-particle tracks reconstructed with information from the Time Projection Cham-
ber (TPC) [52] and the Inner Tracking System (ITS) [53]. Two types of tracks are defined: global tracks
and complementary tracks. Global tracks are required to include at least one hit in the silicon pixel
detector (SPD) comprising the first two layers of the ITS and to satisfy several track quality selections.
Complementary tracks are all those satisfying all the selection criteria of global tracks except for the
request of a point in the SPD. They are refitted using the primary vertex to constrain their trajectory in
order to preserve a good momentum resolution, especially at high transverse momentum. Including this
second class of tracks ensures approximately uniform azimuthal acceptance, while preserving similar pT
resolution to tracks with SPD hits. Tracks with 0.15< pT < 100 GeV/c are accepted over pseudorapidity
range |η |< 0.9 and azimuthal angle 0 < ϕ < 2π .
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The instrumental performance of the detector is estimated with a MC simulation done using PYTHIA8 [42]
with the Monash 2013 tune [43] for the event generation and GEANT3 [54] for the transport code prop-
agating particles through the simulated ALICE apparatus. The tracking efficiency in pp collisions is
approximately 67% at track pT = 0.15 GeV/c, and rises to approximately 84% at pT = 1 GeV/c, and re-
mains above 75% at higher pT. The momentum resolution σ(pT)/pT was estimated from the covariance
matrix of the track fit [48], and is approximately 1% at track pT = 1 GeV/c and 4% at pT = 50 GeV/c.

3 Analysis method

Jets are reconstructed from charged-particle tracks with FastJet 3.2.1 [55] using the anti-kT algorithm
with E-scheme recombination with resolution parameter R = 0.4 [56, 57]. All tracks are assigned a
mass equal to the π± meson mass. The jet axis is required to be within the fiducial volume of the TPC,∣∣ηjet

∣∣ < 0.5, where ηjet is the jet pseudorapidity. The jet reconstruction performance for this data set is
described in Ref. [30]. The underlying event (UE) consists of approximately pT = 1 GeV/c per jet, and is
not subtracted. Therefore, UE corrections must be included in theoretical calculations when comparing
to the data.

3.1 Grooming algorithms

The soft drop and dynamical grooming algorithms identify a single splitting in the primary Lund plane [39]
that satisfies a grooming condition. The ith splitting in the primary Lund plane is defined by

zi ≡
pT,subleading,i

pT,leading,i + pT,subleading,i
,

θi ≡
∆Ri

R
,

(3)

where ∆Ri =
√

∆y2
i +∆ϕ2

i is the rapidity-azimuth separation of the ith splitting. Note that when re-
constructing the primary Lund plane, one must choose a reclustering radius Rrecluster; for soft drop
Rrecluster = R is used, which results in θg ≤ 1, whereas for our implementation of dynamical grooming
Rrecluster = ∞ is used, which results in θg > 1 for <1% of cases (which we neglect).

In the soft drop grooming algorithm, the grooming condition is given by

zi > zcutθ
β

i , (4)

where zcut and the exponent β are tunable free parameters of the grooming algorithm. The first such
splitting to pass the grooming condition defines the soft drop groomed jet splitting. As the grooming pa-
rameter β increases, the quantity zcutθ

β

i becomes small for collinear radiation. This causes the algorithm
to be less likely to drop collinear radiation — corresponding to less grooming overall, and particularly
less grooming for collinear radiation. Note that for the values β ≥ 0 considered here, zg is Sudakov
safe [15] and θg is infrared-collinear safe [40].

The dynamical grooming algorithm, on the other hand, identifies the splitting that maximizes

zi(1− zi)pT,iθ
a
i (5)

over all splittings in the primary Lund plane, where the exponent a is a continuous free parameter. The
grooming parameter a defines the density with which the phase space of the Lund plane is groomed
away. The case a→ 0 selects the splitting with largest z, and is somewhat similar to soft drop with
β = 0, which grooms away splittings below a certain z. The case a = 1 selects the splitting with largest
transverse momentum, and is roughly analogous to soft drop with β =−1, which grooms away splittings
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below a certain transverse momentum (see Ref. [16] for further details). Since the grooming condition
in dynamical grooming defines a maximum rather than an explicit cut (as in the case of soft drop), every
dynamically groomed jet will always return a splitting, whereas in soft drop it is possible that a jet does
not contain any splitting satisfying the grooming condition.

3.2 Corrections

The reconstructed pch jet
T and zg (θg) differ from their true values due to tracking inefficiency, particle–

material interactions, and track pT resolution. To account for these effects, events are simulated using
PYTHIA8 Monash 2013 [42, 43] for the event generation and GEANT3 [54] for the transport code
propagating particles through the simulated ALICE apparatus, as described in Section 2. The truth-level
jets are constructed from the charged primary particles of the PYTHIA8 event, defined as all particles
with a mean proper lifetime larger than 1 cm/c, and excluding the decay products of these particles [58].
A 4D response matrix is constructed that describes the detector response in pch jet

T and zg (and similarly for

θg): R
(

pch jet
T,det , pch jet

T,truth,zg,det,zg,truth

)
, where pch jet

T,det is the detector-level pch jet
T and pch jet

T,truth is the truth-level

pch jet
T .

Then, a 2D unfolding is performed in pch jet
T and zg using the iterative Bayesian unfolding algorithm [59,

60] implemented in the RooUnfold package [61]. The distributions are corrected for “misses”, in which
a jet exists inside the considered truth level range but not inside the detector level range. The rate of
“fakes”, in which a jet exists inside the considered detector level range but not inside the truth level
range, is negligible. The number of iterations, which sets the strength of regularization, is chosen by
minimizing the quadrature sum of the statistical and systematic unfolding uncertainties. This results in
the optimal number of iterations equal to 3 in all cases.

To validate the performance of the unfolding procedure, refolding tests are performed, in which the
response matrix is multiplied by the unfolded solution and compared to the original detector-level spec-
trum. Closure tests are also performed, in which the shape of the generated MC spectrum is modified
to account for the fact that the true distribution may be different from the MC spectrum. In all cases,
successful closure within statistical and systematic uncertainties is achieved.

4 Systematic uncertainties

Systematic uncertainties due to the tracking efficiency, the unfolding procedure, and the MC generator
model dependence are considered. Table 1 summarizes the systematic uncertainty contributions from
each of these sources. The total systematic uncertainty is calculated as the sum in quadrature of all of the
individual systematic uncertainties described below.

The systematic uncertainty due to the uncertainty in the tracking efficiency is evaluated using random
rejection of additional tracks in the jet finding. The tracking efficiency uncertainty, estimated from the
variation of the track selection criteria and a detailed study of the ITS–TPC track-matching efficiency
uncertainty, is 4%. In order to assign a systematic uncertainty to the nominal result, an alternative
response matrix is constructed by randomly rejecting an additional 4% of tracks in jet finding, and the
unfolding procedure is repeated. This result is compared to the nominal result, with the differences in
each bin taken as the systematic uncertainty. The uncertainty on the track momentum resolution is a
sub-leading effect to the tracking efficiency and is taken to be negligible.

Four sets of variations of the unfolding procedure are performed in order to estimate the systematic
uncertainty arising from the unfolding regularization procedure.

– The number of iterations in the unfolding procedure are varied by ±2 units and the average differ-
ence with respect to the nominal result is taken as the systematic uncertainty.
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Table 1: Summary of systematic uncertainties on unfolded zg and θg distributions for 60 < pch jet
T < 80 GeV/c.

The ranges correspond to the minimum and maximum systematic uncertainties obtained.

Relative uncertainty (%)
Soft drop, zcut = 0.1 Tracking efficiency Unfolding Generator Total
zg β = 0 0–2% 0–4% 0–1% 2–5%

β = 1 0–4% 0–4% 0–3% 1–6%
β = 2 0–3% 1–5% 0–5% 2–7%

θg β = 0 2–8% 2–6% 0–4% 3–9%
β = 1 2–10% 0–5% 0–3% 2–12%
β = 2 2–11% 1–6% 0–5% 2–13%

Dynamical grooming Tracking efficiency Unfolding Generator Total
zg a = 0.1 0–14% 2–10% 0–4% 2–17%

a = 1.0 0–5% 1–4% 0–2% 1–5%
a = 2.0 0–4% 1–5% 0–3% 2–7%

θg a = 0.1 0–6% 1–5% 0–4% 2–8%
a = 1.0 1–9% 1–5% 0–3% 2–10%
a = 2.0 0–8% 1–3% 0–7% 2–11%

– The prior distribution is scaled by a power law in pch jet
T and by p±0.5

T z±0.5
g for the zg analysis. For the

θg analysis, a linear scaling in θg by ±50% over its reported range, scaling by p±0.5
T [1±0.5(2θg−

1)], is applied. The average difference between the result unfolded with this prior and the original
is taken as the systematic uncertainty.

– The binnings in zg and θg are varied to be finer and coarser than the nominal binning.

– The lower bound in the detector level charged-particle jet transverse momentum pch jet
T,det range is

extended up and down by 5 GeV/c.

The total unfolding systematic uncertainty is then the standard deviation of the variations,
√

∑
N
i=1 σ2

i /N,
where N = 4 and σi is the systematic uncertainty due to a single group of variations, since they each
comprise independent estimates of the same underlying systematic uncertainty in the regularization.

The systematic uncertainty due to the model dependence of the generator used to construct the response
matrix is estimated by comparing results obtained with PYTHIA8 Monash 2013 [42,43] to that obtained
with Herwig7 (default tune) [62]. The tracking efficiency and track pT resolution are parameterized using
fast simulations and response matrices are built using these two generators. These response matrices are
then used to unfold the measured data, and the differences between the two unfolded results in each
interval are taken as a symmetric uncertainty.

5 Results

We report the zg and θg distributions in the pch jet
T interval between 60 and 80 GeV/c. All presented results

use R= 0.4 jets reconstructed from charged particles at midrapidity, and are corrected for detector effects.
The distributions are reported as normalized differential cross sections,

1
σjet

dσ

dzg
=

1
Njet

dN
dzg

, (6)

where Njet (σjet) is the number (cross section) of inclusive charged-particle jets within the given pch jet
T

interval, and N (σ ) is the number (cross section) of groomed splittings. The same normalization as in

6



Measurements of the groomed jet radius and groomed splitting fraction ALICE Collaboration

Eq. 6 is used for θg. With this normalization, the integral of Eq. 6 is equal to the fraction of jets that pass
the grooming condition.

5.1 Soft drop

Figures 2 and 3 show the measured zg and θg distributions for jets with soft drop grooming for grooming
parameters zcut = 0.1 and β = 0,1, and 2. The zg distributions fall with increasing zg, as is typical of the
Altarelli–Parisi splitting functions [63]. The zg distribution for β = 0 cannot populate zg < 0.1 due to the
grooming condition. However, for β > 0 it is possible for a sufficiently narrow splittings with zg < zcut
to pass the grooming condition. The zg distributions are generally described by PYTHIA8 [42] within
approximately 20%. The θg distributions exhibit a peak at increasingly large θg as β increases, due to
the angular component in the grooming condition. The θg distributions are described by PYTHIA8 [42]
typically within 20% but with deviations at low θg up to approximately 50%. Due to ill-defined per-
turbative accuracy in general-purpose MC generators such as PYTHIA and the fact that they are highly
tuned to reproduce data, including jet-related observables [43], it is difficult to draw detailed physics
conclusions from their comparison to data. Because of this, we instead turn our attention to comparisons
with analytical calculations based on pQCD, where deeper insight can be obtained.

Theoretical calculations with soft drop grooming have been carried out within the Soft-Collinear Effec-
tive Theory (SCET) framework [64] for θg [40] and zg [41]. These calculations include all-order re-
summations of large logarithms to NLL′ accuracy [40]. In order to compare these parton-jet predictions
to our measurement using charged-particle jets, a “forward folding” procedure is applied to account for
hadronization and charged-particle effects, followed by a bin-by-bin scaling to account for Multi-Parton
Interactions. These corrections are carried out following the procedure outlined in Ref. [30]. Given that
the scale θgzg pTR becomes non-perturbative at low θg, and that our measurements of the zg distribution
do not include a lower cutoff in θg, we forgo these comparisons for the zg distribution and refer the reader
to Ref. [41]. Instead, we focus on comparison of the measured θg distribution to the SCET calculations.

Figure 4 compares the measured θg distributions with pQCD calculations based on SCET [40] using
either PYTHIA8 [42] or Herwig7 [62] to account for non-perturbative corrections. The PYTHIA8 and
Herwig7 corrections show generally similar behavior. Systematic uncertainties on the analytical predic-
tions are estimated by systematically varying combinations of scales that emerge in the calculation. The
softest of these scales determines a transition between the perturbative and non-perturbative regimes:

θ
NP
g .

(
Λ

zcut pTR

) 1
1+β

, (7)

where Λ is the energy scale at which αs becomes non-perturbative. This transition is indicated by a
dashed vertical blue line at Λ = 1 GeV/c, taking pT to be the weighted average pch jet

T in the considered
interval scaled by 20% to approximately translate the pT scale from charged-particle jets to full jets. The
cross section is normalized according to the integral of the distribution in the perturbative region,

1
σθg>θ NP

g

dσ

dθg
, where σθg>θ NP

g
=
∫ 1

θ NP
g

dσ

dθg
dθg. (8)

The measured θg distributions agree with the SCET calculations within uncertainties in the perturbative
region (i.e. to the right of the dashed line), whereas divergence is seen at low values of θg, where non-
perturbative effects dominate and the perturbative calculation is expected to break down. This holds
for all values of β . Note that the perturbative regime contains an increasingly small fraction of the
distribution as β grows, which demonstrates that at these pch jet

T values, the majority of the θg distribution
can only be captured by pQCD for sufficiently small β .
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Figure 2: ALICE measurements of zg distributions in pp collisions at
√

s = 5.02 TeV with soft drop for three
values of the grooming parameter β , compared with PYTHIA8 Monash 2013 [42, 43] calculations.
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Figure 3: ALICE measurements of θg distributions in pp collisions at
√

s = 5.02 TeV with soft drop for three
values of the grooming parameter β , compared with PYTHIA8 Monash 2013 [42, 43] calculations.
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Figure 4: ALICE measurements of θg distributions in pp collisions at
√

s = 5.02 TeV with soft drop, com-
pared with NLL′ predictions carried out with SCET [40] and corrected for non-perturbative effects using either
PYTHIA8 [42] or Herwig7 [62]. The distributions are normalized such that the integral of the perturbative region
defined by θg > θ NP

g (to the right of the dashed vertical blue line) is unity. The non-perturbative scale in Eq. 7 is
taken to be Λ = 1 GeV/c. In determining the normalization, intervals that overlap with the dashed blue line are
considered to be in the non-perturbative (left) region.

5.2 Dynamical grooming

Figures 5 and 6 show the zg and θg distributions in pp collisions for jets with dynamical grooming for
several values of the grooming parameter a. For small values of a, the grooming condition favors split-
tings with symmetric longitudinal momenta, which is reflected in the distributions skewing towards large
zg and small θg. As a increases, the grooming condition favors splittings with large angular separation,
which is reflected in the distributions skewing towards small zg and large θg. The results are compared
with PYTHIA8 Monash 2013 [42, 43], which generally describes the data within approximately 20%.

In Figs. 7 and 8, we compare the zg and θg distributions, respectively, to pQCD calculations described in
Ref. [18]. The theoretical calculations include non-perturbative corrections based on MC event genera-
tors, which are implemented in Ref. [18]. The theoretical uncertainty bands account for scale variations
together with non-perturbative effects, the latter generally being the dominant contribution. The calcu-
lations generally describe the data within the precision of the statistical and systematic uncertainties of
the data and the theoretical uncertainties of the calculation, demonstrating that pQCD predictions, when
coupled with corrections for non-perturbative effects, provide a sufficient description of the data even at
the moderate pch jet

T considered here.

6 Conclusions

We have presented new measurements of the groomed jet radius and momentum splitting fraction in pp
collisions at

√
s = 5.02 TeV with the ALICE detector at the Large Hadron Collider. We studied two

grooming algorithms, soft drop and dynamical grooming, each with a variety of grooming settings in
order to study their impact on soft- and wide-angle radiation. These studies have provided the first mea-
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Figure 5: ALICE measurements of zg distributions in pp collisions at
√

s = 5.02 TeV with dynamical groom-
ing [16] for three values of the grooming parameter a, compared with PYTHIA8 Monash 2013 [42, 43] calcula-
tions.
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Figure 6: ALICE measurements of θg distributions in pp collisions at
√

s = 5.02 TeV with dynamical groom-
ing [16] for three values of the grooming parameter a, compared with PYTHIA8 Monash 2013 [42,43] calculations.
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Figure 7: ALICE measurements of zg distributions in pp collisions at
√

s = 5.02 TeV with dynamical grooming
for two values of the grooming parameter a, compared with pQCD calculations [16, 18].
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Figure 8: ALICE measurements of θg distributions in pp collisions at
√

s = 5.02 TeV with dynamical grooming
for two values of the grooming parameter a, compared with pQCD calculations [16, 18].

surement of a jet substructure observable with the dynamical grooming procedure. We compared these
results to perturbative calculations that include resummation of large logarithms at all orders in the strong
coupling constant, and generally found agreement of the theoretical predictions with the data in the per-
turbative regime. This conclusion holds for all grooming settings considered. However, the soft drop
θg distributions increasingly deviate from the perturbative calculations at small θg as the grooming pa-
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rameter β is increased (corresponding to grooming away less collinear radiation). This is in accordance
with the predicted limitation of the perturbative calculation in describing the non-perturbative region,
and provides guidance for the regimes within which perturbative QCD can be used to describe the ob-
servables. These measurements can be used both to test future perturbative calculations and models of
non-perturbative effects, and can serve as a baseline reference for future measurements in heavy-ion
collisions.
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