Synthese und Kristallstruktur von [Na-15-Krone-5][WF₅(NCl)]

Synthesis and Crystal Structure of [Na-15-Crown-5][WF₅(NCl)]

Astrid Görge, Kurt Dehnicke*

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg/Lahn

Dieter Fenske

Institut für Anorganische Chemie der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt/Main 50

Z. Naturforsch. 44b, 117-120 (1989); eingegangen am 17. Oktober 1988

Sodium-15-crown-5-pentafluoro-N-chloronitreno-tungstate(VI), Synthesis, Crystal Structure

[Na-15-crown-5][WF₅(NCl)] has been prepared as yellow crystals by the reaction of NaF with WCl₄(NCl) in the presence of 15-crown-5 in acetonitrile solution. The compound was characterized by its IR spectrum as well as by an X-ray structure determination. Crystal data: space group P2₁/n, Z = 4 (2945 observed, independent reflexions, R = 0.035). Lattice dimensions at -65 °C: a = 827.2(8); b = 1617.3(13); c = 1372.2(10) pm; $\beta = 99.42(5)^{\circ}$. The compound forms ion pairs, in which the sodium ion is seven-coordinated by the oxygen atoms of the crown ether molecule, and by two fluorine ligands of the [WF₅(NCl)]⁻ unit with Na-F distances of 228.3(6) and 251.3(6) pm. The W=N-Cl group of the anion is nearly linear (bond angle 176.1(5)°) with bond lengths WN = 173.3(6) and NCl = 162.2(7) pm.

Nach der kürzlich von uns beschriebenen ersten Synthese eines N-Chlornitrenokomplexes des Wolframs, $[Cl_4W \equiv NCl]_2[1]$, und der hiervon abgeleiteten, durch Kristallstrukturen charakterisierten Derivate $[CH_3CN-WCl_4(NCl)]$ [1], PPh₃Me $[WCl_5(NCl)]$ [2] und (PPh₄)₃{ $[WCl_5(NCl)]_2Cl$ } [2] erhielten wir nun durch Cl/F-Ligandenaustausch einen Fluorokomplex des Wolframs mit der gestreckten Baugruppe $\hat{W} \equiv \hat{N} - Cl$. Wir erhielten diese Verbindung durch Einwirkung von überschüssigem Natriumfluorid auf $[CH_3CN-WCl_4(NCl)]$ in Acetonitrillösung bei Gegenwart von 15-Krone-5 (1,4,7,10,13-Pentaoxocyclopentadecan) bei Raumtemperatur:

 $[CH_{3}CN-WCl_{4}(NCl)] + 5 NaF + 15 Krone-5 \rightarrow$ $[Na-15-Krone-5][WF_{5}(NCl)] + 4 NaCl + CH_{3}CN (1)$

Die Verbindung kristallisiert beim Abkühlen der Lösung in Form gelber, kompakter, feuchtigkeitsempfindlicher Kristalle. Das am N-Atom gebundene Chloratom wird nicht ausgetauscht, was als Hinweis auf den deutlich positiven Charakter dieses Cl-Atoms gelten kann:

 $\stackrel{\scriptscriptstyle \odot}{W} \equiv \stackrel{\scriptscriptstyle \oplus}{N} - \overline{Cl} \mid \, \leftrightarrow \stackrel{\scriptscriptstyle 2 \odot}{W} = \stackrel{\scriptscriptstyle \oplus}{N} = \overline{Cl} \stackrel{\scriptscriptstyle \oplus}{=}$

Im IR-Spektrum von [Na-15-Krone-5][WF₅(NCl)] beobachten wir ν WN bei 1200 cm⁻¹ und ν NCl bei 520 cm⁻¹ als mittelstarke Banden; wegen der gestreckten Achse WNCl liegt wie in anderen N-Chlornitrenkomplexen [1-6] starke Schwingungskopplung vor. Im Bereich der WF-Valenzschwingungen tritt eine sehr starke Absorption bei 590 cm⁻¹ mit zwei Schultern bei 610 und 570 cm⁻¹ auf. Diese Bandengruppe entspricht nach allen Erfahrungen [7] den WF-Valenzschwingungen der terminal gebundenen F-Atome. Eine weitere WF-Valenzschwingung tritt als starke Bande bei 500 cm⁻¹ auf. Sie läßt sich der W-F(5)-Valenzschwingung zuordnen, da das Fluoratom F(5) einerseits dem trans-Einfluß des NCl-Liganden ausgesetzt ist und andererseits F(5) auch durch die Brückenfunktion zum Na⁺-Ion beansprucht wird. Beide Effekte tragen zu dem langen W-F(5)-Abstand von 196,8(4) pm bei (s.u.), der sich im IR-Spektrum in der langwelligen Lage dieser Valenzschwingung widerspiegelt. Weitere Einzelheiten zum IR-Spektrum s. Lit. [8].

Die Ergebnisse der Kristallstrukturanalyse sind in den Tab. I bis III wiedergegeben*. Die Verbindung bildet das in Abb. 1 dargestellte Ionenpaar; sie ist isotyp zu der entsprechenden Molybdänverbindung, über die wir kürzlich berichtet haben [9]. Eine ausführliche Diskussion der Struktur ist entbehrlich, da sich alle Bindungsabstände und -winkel nur sehr we-

^{*} Sonderdruckanforderungen an Prof. Dr. K. Dehnicke. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/89/0200–0117/\$ 01.00/0

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 53372, der Autoren und des Zeitschriftenzitats angefordert werden.

Gitterkonstanten	a = 827,2(8) pm; b = 1617,3(13) pm;
	c = 1372,2(10) pm
	$\beta = 99,42(5)^{\circ}$
Zellvolumen	1811,0 Å ³
Zahl der Formeleinheiten pro Zelle	4
Dichte (berechnet)	$1,72 \text{ g/cm}^3$
Kristallsystem, Raumgruppe	monoklin, $P2_1/n$
Ausgelöschte Reflexe	h0l: h+l=2n+1, 0k0: k=2n+1
Meßgerät	Vierkreisdiffraktometer, Siemens AED II
Strahlung	MoK α (Graphit-Monochromator)
Meßtemperatur	-65 °C
Zahl der Reflexe zur Gitterkonstanten- berechnung	32
Meßbereich, Abtastungsmodus	$3-54^\circ, \omega, \theta$ -Scan
Zahl der gemessenen Reflexe	4394
Zahl der unabhängigen Reflexe	2945 mit I > $2\sigma(I)$
Korrekturen	Lorentz- und Polarisationsfaktor, Absorp-
	tionskorrektur, ψ -Scan, μ (MoK α) =
	$69,6 \text{ cm}^{-1}$
Strukturaufklärung	W-Lage aus Pattersonsynthese, alle anderen
	Lagen aus Differenz-Fourier-Synthesen
Verfeinerung	H-Atome isotrop, sonst anisotrop
Verwendete Rechenprogramme	SHELXS-86 [11], SHELX-76 [11],
	SCHAKAL [12]
Atomformfaktoren, $\Delta f'$, $\Delta f''$	Int. Tabellen 1974
$R = \Sigma F_{o} - F_{c} / \Sigma F_{o} $	3,5%

N-Cl	162,2(7)	W-N-Cl	176,1(5)	F(4) - Na - F(5)	63.4(2)
W-N	173.3(6)	N-W-F(1)	98.5(3)	F(4) - Na - O(1)	134.2(2)
W-F(1)	187,8(4)	N-W-F(2)	95.0(3)	F(4) - Na - O(2)	80.7(2)
W-F(2)	187.7(5)	N-W-F(3)	97.1(3)	F(4) - Na - O(3)	83.9(2)
W-F(3)	189.2(5)	N-W-F(4)	94,9(3)	F(4) - Na - O(4)	93.5(2)
W-F(4)	188,7(5)	N-W-F(5)	176,6(3)	F(4) - Na - O(5)	148.5(2)
W-F(5)	196,8(4)	F(1) - W - F(2)	88,9(2)	F(5) - Na - O(1)	103.1(2)
Na-F(4)	251,3(6)	F(1) - W - F(3)	88,8(2)	F(5) - Na - O(2)	119.6(2)
Na-F(5)	228,3(6)	F(1) - W - F(4)	166,7(2)	F(5) - Na - O(3)	141,6(2)
Na - O(1)	241,9(7)	F(1) - W - F(5)	84,8(2)	F(5) - Na - O(4)	92,6(2)
Na - O(2)	247,2(6)	F(2) - W - F(3)	167,9(2)	F(5) - Na - O(5)	92,3(2)
Na - O(3)	236,8(6)	F(2) - W - F(4)	90,7(2)	O(1) - Na - O(2)	68,7(2)
Na-O(4)	244,9(6)	F(2) - W - F(5)	85,9(2)	O(1) - Na - O(3)	114,3(2)
Na-O(5)	247,6(7)	F(3) - W - F(4)	88,8(2)	O(1) - Na - O(4)	131,9(2)
		F(3) - W - F(5)	82,0(2)	O(1) - Na - O(5)	67,8(2)
С-О 140(1) - 145(1)	F(4) - W - F(5)	81,9(2)	O(2) - Na - O(3)	69,9(2)
C-C 148(1) - 149(1)	Na-F(4)-W	99,7(2)	O(2) - Na - O(4)	138,6(2)
		Na-F(5)-W	105,4(2)	O(2) - Na - O(5)	130,6(2)
				O(3) - Na - O(4)	68,7(2)
				O(3) - Na - O(5)	108,7(2)
				O(4) - Na - O(5)	66,4(2)
				С-О-С 113,3(8)-	-115,6(8)
				O-C-C 104,9(9)-	.111,2(8)
				Na-O-C 102,9(5)-	-115,7(6)

Tab. II. Bindungsabstände [pm] und -winkel [Grad].

Tab. I. Kristalldaten und Angaben zur Kristallstrukturbe-

stimmung.

Tab. III. Atomkoordinaten und Parameter für den äquivalenten isotropen Temperaturfaktor $\exp(-8\pi^2 \text{Usin}^2\theta/\lambda^2)$ [13]. U-Werte als 10^{-4} -fache in pm².

Atom	x	у	z	U
w	910(1)	1247(1)	3350(1)	0,028(1)
F(1)	457(6)	873(3)	2037(3)	0,035(2)
F(2)	3058(6)	1489(3)	3164(4)	0,050(3)
F(3)	-1364(6)	1217(3)	3393(4)	0,051(3)
F(4)	1212(6)	1861(3)	4535(4)	0,049(3)
F(5)	337(6)	2345(3)	2776(4)	0,044(3)
N	1403(9)	304(4)	3922(5)	0,035(4)
Cl	1791(3)	-560(1)	4514(2)	0,052(1)
Na	-601(4)	3079(2)	3991(2)	0,030(2)
O(1)	-3488(6)	3240(3)	3355(5)	0,039(3)
C(1)	-4538(12)	3092(6)	4054(9)	0,046(6)
C(2)	-3996(12)	2325(6)	4591(9)	0,044(6)
O(2)	-2308(6)	2384(3)	5065(4)	0,036(3)
C(3)	-2064(13)	2759(6)	6005(6)	0,047(6)
C(4)	-276(13)	2920(6)	6305(6)	0,049(6)
O(3)	182(6)	3518(3)	5647(4)	0,037(3)
C(5)	1912(12)	3714(6)	5836(9)	0,052(6)
C(6)	2228(12)	4352(6)	5116(9)	0,051(6)
O(4)	1696(6)	4052(3)	4147(5)	0,042(3)
C(7)	1592(15)	4665(6)	3406(10)	0.053(7)
C(8)	323(16)	4425(6)	2560(9)	0.055(7)
O(5)	-1160(8)	4314(4)	2922(5)	0,045(4)
C(9)	-2569(16)	4111(6)	2191(8)	0.057(7)
C(10)	-3901(13)	3941(6)	2767(8)	0,049(6)

nig voneinander unterscheiden. Das Na⁺-Ion befindet sich 85 pm oberhalb der besten Ebene der fünf O-Atome des Kronenethermoleküls. Zu dem Fluoratom F(5) besteht der sehr kurze Na-F-Abstand von 228,3(6) pm, der noch etwas kürzer ist als im Natriumfluorid (230,7 pm [10]). Ein weiterer Na…F-Kontakt besteht mit einem Abstand von 251,3(6) pm zu dem Fluoratom F(4), so daß sich die Koordinationszahl am Natriumion zu 6+1 ergibt. Die WNCl-Gruppe des Anions ist mit 176,1(5)° nahezu gestreckt, entsprechend sp-Hybridisierung am N-Atom. Der Bindungsabstand WN mit 173,3(6) pm ist nur wenig länger als in Nitridokomplexen des Wolframs mit W \equiv N-Dreifachbindung, in denen er etwa 165 pm beträgt [3].

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit. NaF wurde durch Glühen getrocknet, Acetonitril durch Destillation über P_4O_{10} , 15-Krone-5 (1,4,7,10,13-Pentaoxocyclopentadecan) war ein handelsübliches Präparat. [WCl₄(NCl)]₂ erhielten wir wie beschrieben [1] aus W(CO)₆ und überschüssigem

Abb. 1. Wiedergabe eines Ionenpaares [Na-15-Krone-5][WF $_5$ (NCl)] (Atome mit will-kürlichen Radien).

NCl₃ in CCl₄-Lösung. Für das IR-Spektrum standen die Geräte Perkin-Elmer 577 und Bruker IFS-88 zur Verfügung, Nujol-Verreibungen, CsI-Scheiben.

[Na-15-Krone-5][WF₅(NCl)]

Zu einer Lösung von 2,55 g $WCl_4(NCl)$ (6,80 mmol) in 40 ml Acetonitril fügt man 1,43 g NaF (34,0 mmol) und rührt den Ansatz 3 d bei R.T. Man filtriert die gelbe Lösung und kühlt auf -18 °C. Die gelben Kristalle werden filtriert, mit wenig kaltem Acetonitril gewaschen und i. Vak. getrocknet. Ausbeute 2,18 g (63%). Durch Einengen des Filtrats läßt sich die Ausbeute noch steigern.

 $C_{10}H_{20}O_5NF_5WClNa$ (571,6)

Gef. C21,40 H3,60 N2,70 Cl6,21 F15,76, Ber. C20,99 H3,49 N2,45 Cl7,08 F16,62.

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für großzügige Unterstützung.

- A. Görge, K. Dehnicke und D. Fenske, Z. Naturforsch. 43b, 677 (1988).
- [2] A. Görge, U. Patt-Siebel, U. Müller und K. Dehnicke, Z. Naturforsch. 43b, 1633 (1988).
- [3] K. Dehnicke und J. Strähle, Angew. Chem. 93, 451 (1981); Angew. Chem., Int. Ed. Engl. 20, 413 (1981).
- [4] J. Fawcett, R. D. Peacock und D. R. Russell, J. Chem. Soc. Dalton Trans. 1987, 567.
- [5] W. Kafitz, K. Dehnicke, E. Schweda und J. Strähle, Z. Naturforsch. **39b**, 1114 (1984).
- [6] D. Fenske, K. Völp und K. Dehnicke, Z. Naturforsch. 42b, 1398 (1987).
- [7] J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen II, G. Thieme-Verlag, Stuttgart-New York (1986).

- [8] A. Görge, Dissertation, Universität Marburg (1989).
- [9] D. Fenske, K. Völp und K. Dehnicke, Z. Naturforsch. 43b, 1125 (1988).
- [10] A. F. Wells, Structural inorganic chemistry, Clarendon Press, Oxford (1984).
- [11] G. M. Sheldrick, SHELX-76, SHELXS-86, Programs for Crystal Structure Determinations, Cambridge (1976), Göttingen (1986).
- [12] E. Keller, SCHAKAL-86, A FORTRAN Program for the Graphical Representation of Molecules and Crystallographic Models, Freiburg (1986).
- [13] W. C. Hamilton, Acta Crystallogr. 12, 609 (1959).