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SECTION 1

Introduction

The contraction method has its origin in the analysis of recursive algo-
rithms, namely in the work of Rösler 1991[11], where he proofs a weak limit
theorem for the complexity of Quicksort. For a general introduction we refer
to Rösler and Rüschendorf 2004[12].

A typical approach in the analysis of algorithms in general is to define and
analyze certain complexity measures, depending on the input kind and na-
ture1 of the problem that is to be solved. Usually, a certain quantity within
the algorithm is identified, which can be seen as the main driver of the overall
complexity. In the analysis of Quicksort in Rösler 1991[11], the number of key
comparisons is taken as the main driver of overall time-complexity, and hence
further established.

From an algorithmic problem of, for instance, divide-and-conquer or recur-
sive type one can often quite naturally obtain equations for its complexity Xn

of the form

L pXnq � L

�
Ķ

r�1

Apnqr X
prq

I
pnq
r

� bpnq

�
, (1.1)

where pXp1q
j qj¥0, . . . , pX

pKq
j qj¥0, pA

pnq, Ipnq, bpnqq are independent, Ipnq � pI
pnq
r q

is a random vector with values in t1, . . . , nuK , Apnq � pA
pnq
r q denotes a random

vector in RK , LpXprq
j q � LpXjq @ 1 ¤ j ¤ n, 1 ¤ r ¤ K, andbpnq is a real-valued

random variable. Here, LpXq denotes the distribution of X .
A convergence of LpXnq to a limit distribution µ is usually obtained from

dpLpXnq, µq Ñ 0 with an appropriate metric d. The recursive equation (1.1) can
also be written as a contraction T : M Ñ M on an appropriate metric space of
distributions pM,dq. Therefore, the overall approach is known as "Contraction
Method".

To illustrate the basic concept of the contraction method we take an arbi-
trary distribution µ on BpRq and define a sequence of distributions µn recur-
sively by

µ1 � µ, µn�1 � L
�

2�1{2Xn � 2�1{2X 1
n

	
, (1.2)

where Xn and X 1
n are independent with LpXnq � LpX 1

nq � µn. We will see
that µn tends to the standard normal distribution under some constraints.

1As an example take the length of a list of certain objects that the algorithm takes as input.
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As metric we take the Zolotarev metric2 of order 3, denoted by ζ3. Since
ζ3 only depends on the marginal distributions we write, for real-valued X and
Y , ζ3pX,Y q instead of ζ3pLpXq,LpY qq. ζ3 is ideal of order three, i.e. for Z
independent of pX,Y q, r P R we have

ζ3 pX � Z, Y � Zq ¤ ζ3 pX,Y q ,

ζ3 prX, rY q � |r|
3
ζ3 pX,Y q .

Let W be a standard-normally distributed random variable. The convolution
property of normal distributions states that

L pW q � L
�

2�1{2W � 2�1{2W 1
	
,

where W and W 1 are independent with LpW q � LpW 1q. Convergence in ζ3
implies weak convergence, hence, we have to find out if ζ3pXn,W q tends to
zero in order to obtain LpXnq Ñ LpW q. Applying the above notations and
properties it is straightforward to obtain

ζ3 pXn�1,W q � ζ3

�
2�1{2Xn � 2�1{2X 1

n, 2
�1{2W � 2�1{2W 1

	
� 2�3{2 ζ3

�
Xn �X 1

n,W �W 1
�

¤ 2�3{2
�
ζ3
�
Xn �X 1

n,W �X 1
n

�
� ζ3

�
W �X 1

n,W �W 1
��

¤ 2�3{2
�
ζ3 pXn,W q � ζ3

�
X 1
n,W

1
��

� 2�1{2 ζ3 pXn,W q . (1.3)

Writing out the recursion we clearly observe one crucial point in using contrac-
tion method,

ζ3 pXn,W q ¤ 2�n{2 ζ3 pX,W q . (1.4)

The left handside in (1.4) convergences to zero iff ζ3 pX,W q is finite. The finite-
ness of ζ3 can be obtained using the following criterion. For real-valued ran-
dom variables X and Y it holds that

E
�
Xk � Y k

�
� 0 for k � 1, 2

E
�
|X|

3
� |Y |

3
�
  8

+
ñ ζ3 pX,Y q   8 . (1.5)

Therefore, X is supposed to have a first moment of zero, a second moment
of one and a finite absolute third moment. Note that the above estimate is an
intuitive proof of a central limit law.

The normal distribution is a member of the stable distributions family. A
random variable W is called stable of order α P p0, 2s if

L pW q � L
�
n�1{αW1 � . . . n�1{αWn

	
,

2For a systematic use of the Zolotarev metric for distributional recurrences such as (1.1) see
Neininger and Rüschendorf 2004[7].
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for all n P N, pWiq independent with LpWiq � LpW q. Since the normal distri-
bution is stable of order 2, the central limit law can also be called "stable limit
law of order 2". In general, stable limit laws of every order α P p0, 2s exist.

For stable limit laws of order less than 2 the finiteness of the recursion ori-
gin is more problematic, since stable distributions of order α   2 do not have
absolute finite moments of order ¥ α. Hence, a generalized version of the cri-
terion (1.5) does not help here. It is not clarified yet weather another criterion
for the finiteness of the Zolotarev metric ζs, s ¡ α, is applicable in this setting.
Note that s ¡ α has to be chosen in order to obtain contraction properties.

After introducing the basic notations and definitions in Section 2, we use
a result from Johnson and Samworth 2005[4] to proof the existence of λ ¡ α
such that ζλpX,W q   8, for W α-stable and X in the domain of strong normal
attraction of W , in Section 3. In this case, a variation of the estimate (1.3) leads
to the classical stable limit laws.

Nevertheless, a result of this kind is not applicable for the analysis of the
algorithms complexity, since the measured complexity is always finite and only
might "growth into" a stable distribution in the limit. Therefore, under the use
of the minimal `p metric, in Section 4 we present a stable limit law for scaled
and centered sums of independent random variables pZnq, satisfying

ņ

i�1

`β pZi,W q � on

�
n1{α

	
,

where W is α-stable distributed and 1 ¤ β   α.
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SECTION 2

Basic Notations and Definitions

The Landau Notation is widely-used for the description of the asymptotic
size of a sequence or function in a certain limit. For real-valued sequences panq
and pbnq the following symbols are defined.

i. an � Onpbnq :ô D n0 P N, C P R¡0 : |an| ¤ C|bn| @ n ¥ n0 .

ii. an � onpbnq :ô @κ P R¡0 D n0 P N : |an|   κ|bn| @ n ¥ n0 .

These symbols are also used for real functions, as

gpxq � Ox pfpxqq at 8 :ô DK ¡ 0, z ¡ 0 : |gpxq| ¤ K|fpxq| @x ¥ z .

A function f : R� Ñ R� is called slowly varying at infinity if

lim
xÑ8

f paxq

f pxq
� 1 @ a ¡ 0 .

SECTION 2.1

Stable Distributions

For α P p0, 2s a real-valued random variablesW is defined as stable of order
α if

W1 �W2 � ...�Wn
D
� n

1
αW (2.1)

@ n P N, pWiq independent with LpWiq � LpW q The definition is applied
in the same manner on distributions. The case of α � 2 leads to the normal
distribution and is special, since for the normal distribution absolute moments
of all orders exist. Under these circumstances the contraction method can be
used for stable limit laws of order 2, as presented in Section 1. We will focus on
α   2 from now on.

The finiteness of both minimal `p and Zolotarev metric depends on the
(asymptotical) tail behavior of the respective random variables. This will be
seen in more details in the later sections. Therefore, it is important to under-
stand the tail behavior of stable random variables. The following estimate is
given by Mijnheer 1986[6] (see (2.2)). For α P p0, 2q and W an α�stable random
variable there exist constants c1, c2 P R¥0, c1 � c2 ¡ 0 such that

P pW   xq �
c1
|x|α

�Ox

�
1

|x|2α



for xÑ �8 (2.2)
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and

P pW ¡ xq �
c2
xα

�Ox

�
1

x2α



for xÑ8 . (2.3)

α�stable distributions are determined by a set of four parameters, the index
of stability α, the centering constant b, and the constants c1 and c2 from (2.2)
and (2.3) (see Appendix A). We denote the stable distribution for a fixed set of
parameters by Stpα, b, c1, c2q.

SECTION 2.2

Domains of Attraction

When establishing limit laws for scaled sums of iid random variables pXnq,
LpXiq � X , one should ask about the distributions LpXq in scope of a limit
distribution µ. More precisely, it needs to be examined if real-valued sequences
panq and pbnq exist such that

L

�
a�1
n

ņ

i�1

Xi � bn

�
Ñ µ . (2.4)

All the distributions LpXq satisfying (2.4) with appropriate panq and pbnq are
said to build the domain of attraction of µ. It can be shown that only stable
distributions do have a domain of attraction. We set

DoAα :�

"
L pXq | D panq, pbnq � R,Wα� stable :

L
�
a�1
n

ņ

i�1

Xi � bn



Ñ L pW q

*
.

Moreover, all the distributions belonging to DoAα with α   2 are exactly
known by their tail behavior as follows. For constants c1, c2 P R¥0 and h slowly
varying at inifinity we have

L pXq P DoAα ô

#
P pX   �xq � c1�oxp1q

|x|α hp|x|q as xÑ �8

P pX ¡ xq � c2�oxp1q
xα hpxq as xÑ8

. (2.5)

For more details see Petrov 1975[9] (Theorem 14). Using the formula

E rXzs �

» 8
0

P
�
X ¡ x1{z

	
dx

for non-negativ X and z ¡ 0 we see that all random variables in the domain of
attraction of an α-stable random variable do have finite absolute moments up
to an order of α� ε, ε ¡ 0 only, i.e.

L pXq P DoAα ñ E r|X|ss

#
  8 , s   α

� 8 , s ¥ α
. (2.6)
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The treatment of tail behavior for random variables in DoAα as given in (2.5) is
complex and not obviously managable in our setting. Therefore, we focus on
a subspace of DoAα, the domain of strong normal attraction. By definition, a
distribution LpXq belongs to this subspace iff, for c1, c2 P R¥0, γ ¡ 0,

P pX   xq �
c1
|x|α

�Ox

�
1

|x|α�γ



as xÑ �8

and

P pX ¡ xq �
c2
xα

�Ox

�
1

xα�γ



as xÑ8 . (2.7)

Note that, as an implication of (2.2) and (2.3), every α-stable distribution be-
longs to the domain of strong normal attraction.

SECTION 2.3

Probability Metrics

As discussed in the Section 1, probability metrics are the major tool of con-
traction method. They are also needed to estimate convergence rates of limit
theorems in general. For an overview on the field of probability metrics one
can refer to Rachev 1991[10], especially the summary table on pages 464-477.

Basically, metrics can be defined on a subspace of distributions M as well
as on a subspace of random variables X. These two types of probability metrics
are linked, among others, by the following definitions. A metric d on M is said
to be the minimal metric w.r.t. a metric d� on X if, for random variables X and
Y ,

d pL pXq ,L pY qq � inf
pX,Y q

d� pX,Y q .

Furthermore, a metric d� on X is called simple if it depends on the marginal
distribution of respective random variables only. In that case d� induces a met-
ric d on M ,

d pLpXq,LpY qq � d� pX,Y q .

A metric d� on X is called ideal of order s P R¡0, if, for every r P R and random
variable Z independent from pX,Y q,

d� pX � Z, Y � Zq ¤ d� pX,Y q ,

d� prX, rY q � |r|
s
d� pX,Y q .

Here, two different metrics are used, the minimal `p metric and the Zolotarev
metric ζs.
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SECTION 2.3.1 Minimal `p Metric

The Lp metric is used in many applications, as it is complete on the space of
absolute p-integrable functions. For p ¥ 1 and random variables X,Y : Ω Ñ R
it is defined as

Lp pX,Y q :�

�
� »

Ω�Ω

|x� y|
p
d pPX ,PY q px, yq

�

1{p

� E r|X � Y |
p
s
1{p

. (2.8)

Here, pPX ,PY q denotes the product measure of PX and PY . On the space of all
distributions on BpRq, the minimal `p metric is defined as the minimal metric
w.r.t. Lp, i.e.

`p pL pXq ,L pY qq :� inf
pX,Y q

Lp pX,Y q � inf
pX,Y q

E r|X � Y |
p
s
1{p

. (2.9)

This metric is known under many names. Rösler 1991[11] refers to it, for p � 2,
as Wasserstein metric, Johnson and Samworth 2005[4] use the term Mallows
distance, whereas Rachev 1991[10] also names it Kantorovich metric for the case
of p � 1.

The minimal `p metric is ideal of order 1 for arbitrary p.

SECTION 2.3.2 Zolotarev Metric

Zolotarev 1976[14, 15] introduced a metric that is useful for the study of sums
of independent random variables. For every s � m� α with m P N0, α P p0, 1s
and real valued random variables X , Y it is defined as

ζs pX,Y q :� sup
fPCs

|E rf pXq � f pY qs| ,

where Cs �
 
f P CmpRq | |f pmqpxq � f pmqpyq| ¤ |x� y|α @x, y

(
.

ζs is ideal of order s and simple. Moreover, convergence in the Zolotarev
metric implies weak convergence. A criterion for the finiteness of the Zolotarev
metric is necessary to use it in the context of the contraction method. The fol-
lowing condition is easy to verify.

paq E
�
Xk � Y k

�
� 0 @ k � 1, . . . ,m

pbq E r|X|s � |Y |
s
s   8

+
ñ ζs pX,Y q   8 . (2.10)
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SECTION 3

Stable Limit Laws via the
Zolotarev Metric

The following theorem ensures that, as pointed out in Section 1, the con-
traction method together with the Zolotarev metric is applicable for a proof of
stable limit laws for scaled sums of random variables in the domain of strong
normal attraction.

Theorem 3.1. α P p1, 2q, c1, c2 P R¥0, c1�c2 ¡ 0, γ ¡ 0, X a random variable with
expectation µ satisfying

P pX   xq �
c1
|x|α

�Ox

�
1

|x|α�γ



as xÑ �8

and

P pX ¡ xq �
c2
xα

�Ox

�
1

xα�γ



as xÑ8 . (3.1)

Then, for the stable distribution LpW q � Stpα, µ, c1, c2q , there exists λ ¡ α such
that

ζλ pX,W q   8 .

The proof is given below. As a direct corollary of Theorem 3.1 we obtain
the classical stable limit laws.

Corollary 3.2. X and W as in Theorem 3.1. Then, for an iid sequence pXnq with
LpXiq � LpXq,

L

�
n�1{α

�
ņ

i�1

Xi � nµ

��
Ñ L pW � µq as nÑ8 . (3.2)

Proof. We assume w.l.o.g. µ � 0. Let Yn :� n�1{αp
°n
i�1Xiq. Y2n satisfies a

recursive equation,

Y2n � p2nq
�1{α

�
2ņ

i�1

Xi

�

� p2nq
�1{α

�
ņ

i�1

Xi

�
� p2nq

�1{α

�
2ņ

i�n�1

Xi

�

9



D
� 2�1{α Yn � 2�1{α Y 1

n . (3.3)

Here, Y 1
n :� n�1{αp

°n
i�1X

1
iq with pX 1

iq
D
� pXiq and pX 1

iq independent of pXiq.
An equation similar to (3.3) holds true for W . From the convolution property
(2.1) of stable distributions it is known that

W
D
� 2�1{αW � 2�1{αW 1 , (3.4)

where LpW q � LpW 1q and W 1 is independent of W . Theorem 3.1 ensures that
there exists λ ¡ α with

ζλ pX,W q   8 . (3.5)

Using both (3.3) and (3.4) we find, similar to (1.3),

ζλ pY2n,W q � ζλ

�
2�1{α Yn � 2�1{α Y 1

n, 2
�1{αW � 2�1{αW 1

	
� 2�λ{α ζλ

�
Yn � Y 1

n,W �W 1
�

¤ 2�λ{α
�
ζλ

�
Yn � Y 1

n, Yn �W 1
�
� ζλ

�
Yn �W 1,W �W 1

��
¤ 2�λ{α

�
ζλ pYn,W q � ζλ

�
Y 1
n,W

1
��

¤ 21�λ{α ζλ pYn,W q . (3.6)

From (3.6) together with (3.5) it follows that, on account of 21�λ{α   1,

ζλ pY2n ,W q ¤
�

21�λ{α
	n

ζλ pX,W q Ñ 0 as nÑ8 . (3.7)

Convergence in ζλ implies weak convergence, and thus, (3.2) follows directly
from (3.7).

The proof of Theorem 3.1 uses a result of Johnson and Samworth 2005[4],
which states that there exists β ¡ α such that `βpLpXq,LpW qq   8. Then,
ζspX,W q is bounded in dependency of `β and absolute pα� εq-th moments.
The following preparatory lemma is a variation of Lemma 5.7 in Drmota et al.
2008[2].

Lemma 3.3. Let s P p1, 2q, ε ¡ 0 and ε1 � ε
s�ε�1 . Then, for all real-valued random

variables X and Y with equal first moments,

ζs pX,Y q ¤

�
E
�
|X|

s�ε1
� s�1
s�ε1

� E
�
|Y |

s�ε1
� s�1
s�ε1



`s�ε pLpXq,LpY qq .

Proof. We set Z :� X � Y . For every f P Cs with f 1p0q � 0 the mean value
theorem implies, for appropriate 0 ¤ ξ ¤ 1,

|f pXq � f pY q| � |f pY � Zq � f pY q|

�
��f pY q � f 1 pY � ξZqZ � f pY q

��
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�
���f 1 pY � ξZq � f 1 p0q

�
Z
��

¤ |Y � ξZ|
s�1

|Z|

� |Y p1� ξq � ξX|
s�1

|Z|

¤
�
|Y |

s�1
� |X|

s�1
	
|Z| . (3.8)

Since X and Y do have equal first moments we find

sup
fPCs

|E rf pXq � f pY qs| � sup
fPCs

��E �
f pXq � f 1 p0qX �

�
f pY q � f 1 p0qY

����
� sup
fPCs,f 1p0q�0

|E rf pXq � f pY qs| . (3.9)

Substituting (3.8) in (3.9) yields

sup
fPCs

|E rf pXq � f pY qs| ¤ E
��
|Y |

s�1
� |X|

s�1
	
|Z|

�
. (3.10)

Next we apply Hölder’s inequality to (3.10). For p, q ¡1, 1
p �

1
q � 1 it states

that, for real-valued random variables U and V ,

E r|UV |s ¤ E r|U |ps1{p E r|V |qs1{q . (3.11)

By definition we have ε1 � ε
s�ε�1 , thus

sε1 � εε1 � ε� ε1 ,

and therefore,

s� 1

s� ε1
�

1

s� ε
�
s2 � s� sε� ε� s� ε1

s2 � sε� sε1 � εε1
�
s2 � sε� pε� ε1q

s2 � sε� psε1 � εε1q
� 1 .

Hence, we can use (3.11) with p � s�ε1

s�1 and q � s� ε to bound (3.10) by

ζs pX,Y q ¤ E

��
|Y |

s�1
� |X|

s�1
	 s�ε1

s�1

� s�1
s�ε1

E
�
|Z|

s�ε
� 1
s�ε

. (3.12)

Bounding the first term on the right hand side in (3.12) with Minkowski’s in-
equality yields

ζs pX,Y q ¤

�
E
�
|Y |

s�ε1
� s�1
s�ε1

� E
�
|X|

s�ε1
� s�1
s�ε1



E
�
|X � Y |

s�ε
� 1
s�ε

. (3.13)

Both X and Y are arbitrary chosen. Therefore, we can build the infimum over
all random variables with distribution LpXq and LpY q respectively on (3.13)
and conclude, using that ζs is simple,

ζs pX,Y q ¤

�
E
�
|Y |

s�ε1
� s�1
s�ε1

� E
�
|X|

s�ε1
� s�1
s�ε1



`s�ε pLpXq,LpY qq .
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Proof of theorem 3.1. From Lemma 5.1 in Johnson and Samworth 2005[4] we know
that there exists β ¡ α such that

`β pLpXq,LpW qq   8 . (3.14)

In (3.14), β   2 can be chosen w.l.o.g.. We set

δ :�
1

2
pβ � αq , λ :� β � δ and δ1 :�

δ

λ� δ � 1
.

Note that λ ¡ α. Using Lemma 3.3 we bound ζλpX,W q by

ζλ pX,W q ¤

�
E
�
|X|

λ�δ1
� λ�1
λ�δ1

� E
�
|W |

λ�δ1
� λ�1
λ�δ1



`λ�δ pLpXq,LpW qq .

(3.15)
From (3.14) it holds that `λ�δpLpXq,LpW qq is finite, so it remains to proof the
finiteness of the first term on the right hand side of (3.15). β, δ and δ1 are chosen
such that δ1 � δ{pβ � 1q ¡ δ, thus,

λ� δ1 � β � δ � δ1   β � 2δ � β � 2
1

2
pβ � αq � α . (3.16)

Both X and W belong to DoAα by definition. Therefore, (2.6) under use of
(3.16) holds that

E
�
|X|

λ�δ1
�
  8 and E

�
|W |

λ�δ1
�
  8 . (3.17)

Substituting (3.14) and (3.17) into (3.15) yields

ζλ pX,W q   8 .
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SECTION 4

Stable Limit Laws Including
"Growing Into" Sequences

Until now, the ideality of the Zolotarev metric was one key argument in
using contraction method for stable limit laws1. For a stable limit law of order
α, ζs with s ¡ α was used, since it is ideal of order s. The minimal `p metric is
ideal of order 1 only, nevertheless, it can be used to proof stable limit laws, as
shown by Johnson and Samworth 2005[4] (Theorem 1.2).

We now use their ideas to proof a stable limit law for the scaled sum of a
"growing into" sequence. A sequence of random variables Zn is said to grow
into a limit W , if Zn   8 for all n and dpZn,W q Ñ 0 for a metric d. These
sequences are of higher interest in the analysis algorithms as the distribution of
measured complexity is surely not an element of the domain of strong normal
attraction, as needed by Corollary 3.2. The measured complexity is finite for
all n, while it might converge to a stable distribution in the limit.

Bahr and Esseen 1965[13] proved some inequalities for the absolute r-th mo-
ment of a sum of independent random variables. There, Theorem 2 implies
that, for 1 ¤ r ¤ 2 and a sequence of independent, not needfully identically
distributed random variables Xi with zero mean, the absolute rth moment of
the nth partial sum can be bound by

E r|X1 � � � � �Xn|
r
s ¤ 2

ņ

i�1

E r|Xi|
r
s , (4.1)

Using this inequality give a stable limit law in two different versions; one for-
mulated for scaled sums and the other for recursively defined sequences.

SECTION 4.1

Proof for Scaled Sums

Theorem 4.1. Let α P p1, 2q, 1 ¤ β   α, W α-stable with zero mean, Zn a sequence
of independent random variables with zero mean such that

ņ

i�1

`β pLpZiq,LpW qq � on

�
n1{α

	
. (4.2)

1See the estimates (1.3) and (3.6).
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Then, the scaled sum

Yn :� n�1{α
ņ

i�1

Zi (4.3)

converges to W in distribution, i.e.

Yn
D
ÑW as nÑ8 .

Proof. We chose independent pairs of random variables pZ�i ,W
�
i q such that, for

all i � 1, . . . , n,
LpZ�i q � LpZiq , LpW�

i q � LpW q

and

E
�
|Z�i �W�

i |
β
�1{β

¤ `β pLpZiq,LpW qq � i�2 . (4.4)

Using both (4.3) and the convolution property of stable distributions (2.1) we
find

`β pLpYnq,LpW qq ¤ E

�
������n�1{α

ņ

i�1

Z�i � n�1{α
ņ

i�1

W�
i

�����
β
�
�1{β

� n�1{α E

�
������

ņ

i�1

Z�i �W�
i

�����
β
�
�1{β

. (4.5)

The particular summands pZ�i �W�
i q are independent and have a zero mean,

thus, we can apply (4.1) on (4.5) and obtain

`β pLpYnq,LpW qq ¤ 2n�1{α E

�
ņ

i�1

|Z�i �W�
i |
β

�1{β

. (4.6)

Using the inequality pa� bqy ¤ ay� by for a, b ¥ 0 and y ¤ 1 we bound (4.6) by

`β pLpYnq,LpW qq ¤ 2n�1{α
ņ

i�1

E
�
|Z�i �W�

i |
β
�1{β

. (4.7)

Applying the bounds assumed in (4.4) to (4.7) yields

`β pLpYnq,LpW qq ¤ 2n�1{α
ņ

i�1

�
`β pLpZiq,LpW qq � i�2

�
� 2n�1{α

ņ

i�1

`β pLpZiq,LpW qq � 2n�1{α
ņ

i�1

i�2 . (4.8)
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Using condition (4.2) we find for the first summand on the right handside of
(4.8) the following,

2n�1{α
ņ

i�1

`β pLpZiq,LpW qq � 2n�1{α on

�
n1{α

	
Ñ 0 as nÑ8 . (4.9)

The second summand on the right-handside of (4.8) is established using the
well known fact that

°8
i�1 i

�2   8,

2n�1{α
ņ

i�1

i�2 ¤ 2n�1{α
8̧

i�1

i�2 Ñ 0 as nÑ8 . (4.10)

Substituting (4.9) and (4.10) in (4.8) we conclude

`β pLpYnq,LpW qq Ñ 0 as nÑ8 .

SECTION 4.2

Formulation as a Degenerate Recursion

In most cases, the recursive equation itself contains certain information
about the limit distribution. As an example consider the recursive equation
(1.2) in Section 1,

X1 � X, Xn�1
D
� 2�1{2Xn � 2�1{2X 1

n .

It is obvious that, if a limit distribution µ exists, it must fulfill

µ � L
�

2�1{2 Y � 2�1{2 Y 1
	
,

where Y and Y 1 are independent with LpY q � LpY 1q � µ. In this paradigm the
limit distribution µ is asured to be a normal distribution.

There exists recursive equations which, in the limit, become

X
D
� X ,

and thus give no information about the limit distribution. Recursions of that
type are called degenerate.

Neininger and Rüschendorf 2004[8] prove a normal limit law for degenerate
recursive equations under certain constraints using the Zolotarev metric. A
natural question arises if this result can be generalized to stable limit laws of
arbitrary orders2.

2Such a stable limit law of order 1 is shown for a particular setting with analytical methods in
Drmota et al. 2009[1].
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In order to give an idea of how such a stable limit law may look like we
modify the conditions in Theorem 4.1. Let pZnq and W as in Theorem 4.1.
Instead of defining Yn directly we can determine it by a degenerate recursion,

Y1 :� Z1 , Yn�1 :�

�
n

n� 1


1{α

Yn �

�
1

n� 1


1{α

Zn�1 . (4.11)

By a simple induction we see that

Yn � n�1{α
ņ

i�1

Zi ,

and hence, as Theorem 4.1 ensures, Yn converges toW in distribution. The case
n � 1 is fulfilled by definition, for n� 1 it holds

Yn�1 �

�
n

n� 1


1{α

Yn �

�
1

n� 1


1{α

Zn�1

�

�
n

n� 1


1{α
��

1

n


1{α ņ

i�1

Zi

�
�

�
1

n� 1


1{α

Zn�1

�

�
1

n� 1


1{α ņ

i�1

Zi �

�
1

n� 1


1{α

Zn�1

�

�
1

n� 1


1{α n�1̧

i�1

Zi .
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SECTION 5

Conclusion

We presented a proof for the classical stable limit laws under use of contrac-
tion method in combination with the Zolotarev metric. Furthermore, a stable
limit law was proved for scaled sums of growing into sequences. This limit law
was alternatively formulated for sequences of random variables defined by a
simple degenerate recursion.
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APPENDIX A

Stable Distributions and
Characteristic Functions

The content of this section is mainly taken from Feller 1966[3], all references
in this section correspond to the same book1. Let µ be a probability distribution
on BpRq, its characteristic function φµ : RÑ C is defined as

φµ ptq �

» 8
�8

e�itx dµpxq .

The characteristic function is finite by definition, and thus can be used for the
description of arbitrary distributions. Distinct distributions do have distinct
characteristic functions, and every characteristic function defines uniquely a
distribution. One further important property of the characteristic function is
that it holds the following formula for the sum of independent random vari-
ables X and Y , i.e.

φLpX�Y q � φLpXqφLpY q . (A.1)

A distribution µ is called infinitely divisible if, for any n P N, there exists a
distribution µn such that

µ � L pXn,1 �Xn,2 � � � � �Xn,nq ,

where the Xn,i are independent with LpXn,iq � µn. This property can as well
be written under the use of characteristic functions, on account of (A.1). µ is
infinitely divisible if, for any n P N, there exists a characteristic function φn
such that

φµ � φnn .

Note that stable distribution are infinitely divisible. In terms of characteris-
tic functions, the convolution property (2.1) can be written as, for W α-stable
distributed,

φLpn1{αW q � φnLpW q . (A.2)

The characteristic function of an infinitely divisible distribution µ matches the
following unique form (see XVII.2 (2.9)),

φµ ptq � exp

$&
%

8»
�8

eitx � 1� it sinx

x2
dMpxq

,.
- , (A.3)

1For a more modern view we refer to Klenke 2008[5], Chapter 16.
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where M , the so called canonical measure, attributes finite masses to finite
intervals and satisfies

M� pxq �

8»
x

y�2 dMpyq   8 and M� pxq �

x»
�8

y�2 dMpyq   8 . (A.4)

For stable distributions, according to (A.2), the canonical measure Mstable is
given by (compare to XVII.3 (3.17))

Mstable
�t�x, 0u � c1 x

2�α and Mstable
�t0, xu � c2 x

2�α , (A.5)

where c1, c2 ¥ 0, c1 � c2 ¡ 0. Therefore, the quantities M�
stable and M�

stable as
defined in (A.4) can be calculated as follows.

M�
stable pxq �

x»
�8

y�2 dMstablepyq � c1 x
�a ,

and similarly

M�
stable pxq �

8»
x

y�2 dMstablepyq � c2 x
�a .

The tail behavior of stable distributions asymptotically equalsM�
stable andM�

stable
(see XVII.4 (d)), therefore, the constants c1 and and c2 are the same as in (2.2)
and (2.3), respectively. The general form of the characteristic function of a sta-
ble distribution W is obtained by substituting (A.5) in (A.3) and adding a cen-
tering constant b. This results in

φW ptq�

$'''&
'''%

exp
 
ibt� |t|

α Γp3�αq
αpα�1q ppc2 � c1q cos πα2 � sign ptq i pc2 � c1q sin πα

2 q
(

, α � 1

exptibt� |t| pc2 � c1q p
π
2 � sign ptq i pc2 � c1q log |t|qu

, α � 1

.

(A.6)
Hence, every stable distributions is uniquely determined by a set of four pa-
rameters pα, b, c1, c2q. The above form (A.6) is often referred as

φW ptq �

#
exp

 
ibt� |t|

α
C Γp3�αq
αpα�1q pcos πα2 � sign ptq iγ sin πα

2 q
(

, α � 1

exptibt� |t|Cpπ2 � sign ptq iγ log |t|qu , α � 1
,

with C � c2 � c2 and γ � pc2 � c1q{pc2 � c1q.
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