

Figure S1: Southern blot verification and germination analysis of $\Delta PaMic60/\Delta PaCrd1$. (**A**) Southern blot analysis with EcoRV-digested DNA to verify the newly generated double mutant $\Delta PaMic60/\Delta PaCrd1$ by the use of the hygromycin (*Hph*) resistance gene. (**B**) Comparison of germinated spores of crossing two wild-type strains (WT, black) or two $\Delta PaMic60$ strains (blue), of a cross of $\Delta PaCrd1$ (orange) with the wild type, and of a cross of $\Delta PaMic60/\Delta PaCrd1$ (violet) with $\Delta PaMic60$. Ascospores were germinated on BMM with 60 mM ammonium acetate for 2 days at 27 °C in the dark. Normally, *P. anserina* forms asci with four spores each of them containing two different nuclei giving rise to heterokaryotic mycelia. For experimental purposes monokaryotic spores are preferred, which rarely are present in so-called "irregular asci". Here, irregular asci with five spores, consisting of 3 dikaryotic and 2 monokaryotic spores were used [60]. 'WT' or ' Δ ' in the respective colors indicate the genotype of each nucleus in a spore. Isolated spores, either di- or monokaryotic, of the $\Delta PaMic60/\Delta PaCrd1$ double mutant germinate poorly due to a germination defect. The last horizontal row shows a magnification of the spores of the $\Delta PaMic60/\Delta PaCrd1$ genotype. After initial formation of germination tubes, growth of the double mutant completely stops. Scale bar = 1 cm.

Figure S2: Loss of PaTAZ1 affects lifespan of *P. anserina*. (A) Survival curves of wild type (n = 25) and $\Delta PaTaz1$ (n = 26) grown on M2 medium. (B) Mean lifespan of cultures from (A). Data represent mean ± SD. ** *p* < 0.01.

Figure S3: Ablation of PaMIC60 and PaTAZ1 alters CL species and amount of 18-chained acyl residues incorporated into membrane lipids. (**A**) Different CL species in wild type, $\Delta PaMic60$, $\Delta PaMic60/\Delta PaTaz1$, $\Delta PaTaz1$, $\Delta PaMic26/\Delta PaTaz1$, and $\Delta PaMic26$ according to total length of all four acyl chains (66-72) and total degree of unsaturation (4-10). The most abundant CL species are represented. (**B**) Alterations in the amount of 18-chained acyl residues across all identified lipid classes in wild type, $\Delta PaMic60/\Delta PaTaz1$, and $\Delta PaTaz1$. * Significant differences to wild type, * p < 0.05 ** p < 0.01 *** p < 0.001; # significant differences to $\Delta PaTaz1$, ## p < 0.01; * significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01; \$\$ significant differences to $\Delta PaMic60$, \$\$ p < 0.01.

Figure S4: Growth tests and appearance of lipid droplets after supplementation with linoleic acid (LA). (**A**) Growth tests of the wild type (n = 3) grown on M2 medium with or without different concentrations of LA. Data represent mean \pm SD. * p < 0.05, ** p < 0.01. (**B**) Staining of wild type grown on M2 medium with or without 0.8 mM LA for one day. Visualization was performed using LipidSpotTM. Scale bar = 10 µm.

Table S4: Overview of lifespan and growth rate of wild type, $\Delta PaTaz1$, $\Delta PaMic60$, and $\Delta PaMic60/\Delta PaTaz1$ mutants. The *p*-values were determined with SPSS (IBM; SPSS Statistics, New York, USA) with three different tests. Indicated are the *p*-values of the lifespan curves in comparison to the wild type. "*p*-value 1" = Log Rank (Mantel-Cox); "*p*-value 2" = Breslow (Generalized Wilcoxon); "*p*-value 3" = Tarone-Ware. Moreover, *p*-values of the lifespan curves compared to $\Delta PaMic60$. "*p*-value 4" = Log Rank (Mantel-Cox); "*p*-value 5" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware. And *p*-values of the lifespan curves compared to $\Delta PaTaz1$. "*p*-value 7" = Log Rank (Mantel-Cox); "*p*-value 8" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware. And *p*-values of the lifespan curves compared to $\Delta PaTaz1$. "*p*-value 7" = Log Rank (Mantel-Cox); "*p*-value 8" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware.

	wild trops	ADaTaa1	AD a Mi a GO	$\Delta PaMic60/$	
	wild type	ΔPu1uz1		∆PaTaz1	
mean lifespan (d)	24	22	54	26	
± SD	± 2.7	± 2.9	± 20.2	± 6.2	
maximum lifespan (d)	30	27	103	39	
<i>p</i> -value 1	/	0.0062	1.257E-13	0.0107	
<i>p</i> -value 2	/	0.0062	1.854E-11	0.1451	
<i>p</i> -value 3	/	0.0059	1.632E-12	0.0476	
<i>p</i> -value 4	/	1.001E-13	/	1.772E-13	
<i>p</i> -value 5	/	1.742E-11	/	3.726E-11 2.511E-12 9.042E-05	
<i>p</i> -value 6	/	1.398E-12	/		
<i>p</i> -value 7	/	/	1.001E-13		
<i>p</i> -value 8	/	/	1.742E-11	2.264E-03	
<i>p</i> -value 9	/	/	1.398E-12	5.147E-04	
growth rate (cm/d)	0.66	0.64	0.64	0.61	
± SD	± 0.03	± 0.02	± 0.02	± 0.02	
growth distance (cm)	14.0	11.9	32.6	14.2	
± SD	± 1.5	± 1.6	±14.0	± 3.7	
biological replicates	25	26	24	32	

Table S5: Overview of lifespan and growth rate of wild type, $\Delta PaTaz1$, $\Delta PaMic26$, and $\Delta PaMic26/\Delta PaTaz1$ mutants. The *p*-values were determined with SPSS (IBM; SPSS Statistics, New York, USA) with three different tests. Indicated are the *p*-values of the lifespan curves in comparison to the wild type. "*p*-value 1" = Log Rank (Mantel-Cox); "*p*-value 2" = Breslow (Generalized Wilcoxon); "*p*-value 3" = Tarone-Ware. Moreover, *p*-values of the lifespan curves compared to $\Delta PaMic26$. "*p*-value 4" = Log Rank (Mantel-Cox); "*p*-value 5" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware. And *p*-values of the lifespan curves compared to $\Delta PaTaz1$. "*p*-value 7" = Log Rank (Mantel-Cox); "*p*-value 8" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware. And *p*-values of the lifespan curves compared to $\Delta PaTaz1$. "*p*-value 7" = Log Rank (Mantel-Cox); "*p*-value 8" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware.

		ADaTaa1	AD-Mi-26	$\Delta PaMic26/$	
				∆PaTaz1	
mean lifespan (d)	24	21	53	34	
± SD	± 4.1	± 3.9	±13.2	±11.8	
maximum lifespan (d)	32	29	85	64	
<i>p</i> -value 1	/	0.0032	4.383E-20	1.025E-07	
<i>p</i> -value 2	/	0.0093	5.545E-18	2.821E-06	
<i>p</i> -value 3	/	0.0050	5.039E-19	5.277E-07	
<i>p</i> -value 4	/	3.320E-21	/	5.246E-10 4.513E-10 3.078E-10 1.765E-12 3.807E-10	
<i>p</i> -value 5	/	9.761E-19	/		
<i>p</i> -value 6	/	5.843E-20	/		
<i>p</i> -value 7	/	/	3.320E-21		
<i>p</i> -value 8	/	/	9.761E-19		
<i>p</i> -value 9	/	/	5.843E-20	2.750E-11	
growth rate (cm/d)	0.66	0.63	0.67	0.62	
± SD	± 0.02	± 0.03	± 0.06	± 0.04	
growth distance (cm)	13.6	11.8	33.1	19.3	
± SD	± 2.8	± 2.6	± 8.9	± 7.2	
biological replicates	24	27	43	50	

Table S6: Overview of lifespan and growth rate of wild type, $\Delta PaTaz1$, $\Delta PaMic60$, and $\Delta PaMic60/\Delta PaTaz1$ mutants with and without linoleic acid. The *p*-values were determined with SPSS (IBM; SPSS Statistics, New York, USA) with three different tests. Indicated are the *p*-values of the lifespan curves in comparison to the wild type without linoleic acid. "*p*-value 1" = Log Rank (Mantel-Cox); "*p*-value 2" = Breslow (Generalized Wilcoxon); "*p*-value 3" = Tarone-Ware. Additionally, *p*-values of the lifespan curves compared to the corresponding deletion mutant without linoleic acid are given. "*p*-value 4" = Log Rank (Mantel-Cox); "*p*-value 5" = Breslow (Generalized Wilcoxon); "*p*-value 6" = Tarone-Ware.

	wild type	∆PaTaz1	ΔPaMic60	ΔPaMic60/	wild type	∆PaTaz1	$\Delta PaMic60$	$\Delta PaMic60/$	
				$\Delta PaTaz1$				$\Delta PaTaz1$	
		0 mM linoleic acid				0.8 mM linoleic acid			
mean lifespan (d)	25	24	59	27	20	19	46	42	
± SD	± 2.3	±1.7	± 22.1	± 4.6	± 3.0	± 6.7	±14.5	± 16.7	
maximum lifespan (d)	30	27	103	34	26	27	75	74	
<i>p</i> -value 1	/	0.0682	1.702E-09	0.0228	6.692E-04	0.0051	2.037E-07	5.291E-06	
<i>p</i> -value 2	/	0.0950	4.898E-08	0.1259	1.907E-04	0.0032	3.394E-06	2.021E-04	
<i>p</i> -value 3	/	0.0816	9.333E-09	0.0584	3.132E-04	0.0037	8.503E-07	3.514E-05	
<i>p</i> -value 4	/	/	/	/	/	0.2192	0.0966	3.695E-05	
<i>p</i> -value 5	/	/	/	/	/	0.1014	0.1413	7.071E-04	
<i>p</i> -value 6	/	/	/	/	/	0.1418	0.1264	1.684E-04	
growth rate (cm/d)	0.65	0.64	0.63	0.62	0.46	0.48	0.44	0.41	
± SD	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	
growth distance (cm)	14.4	12.9	36.2	14.9	7.7	7.5	19.1	16.5	
± SD	± 1.1	± 0.8	± 15.5	± 2.8	± 1.2	± 3.2	± 6.4	± 6.7	
biological replicates	17	14	16	20	15	15	14	15	