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Zusammenfassung

Sogenannte “First-principle”- Modellierungstechniken bieten die Möglichkeit, eine

Vielzahl von Systemen unter unterschiedlichen physikalischen Bedingungen wie

Temperatur, Druck und Zusammensetzung zu simulieren, ohne auf empirisches

Wissen angewiesen zu sein. Die Dichtefunktionaltheorie (DFT) [1, 2], eine quan-

tenmechanische Methode, hat sich als außergewöhnlich erfolgreiches Rahmenwerk

für die Modellierungen in den Materialwissenschaften etabliert. Durch den Einsatz

von DFT ist es möglich, wertvolle Einblicke in den grundlegenden Zustand eines

Systems zu gewinnen und Gleichgewichtskristallstrukturen zuverlässlich zu bes-

timmen. Im Laufe der Zeit hat sich DFT zu einem unverzichtbaren Werkzeug en-

twickelt, das zur Vorhersage von Eigenschaften eines Materials im Zusammenhang

mit seiner Struktur, seinem isolierenden/metallischen Verhalten, Magnetismus

und Optik in verschiedene Schemata integriert werden kann. DFT wird regelmäßig

in zahlreichen Bereichen angewendet, von grundlegenden Themen in der Physik

der kondensierten Materie bis hin zur Untersuchung von Phänomenen im großen

Maßstab in den Geowissenschaften. In letzteren ist die Effektivität von DFT da-

rauf zurückzuführen, dass sie die Eigenschaften von Materialien simulieren kann,

die auf der Erde, anderen Planeten und in Meteoriten vorkommen und deren Un-

tersuchungen im Labor große experimentelle Herausforderungen darstellen könnten.

In dieser Arbeit wurde eine umfassende Untersuchung einer Familie von Monosulfi-

den und einer Perowskit-Heterostruktur durchgeführt. Diese Materialien sind auf-

grund ihrer potenziellen Anwendungen in Technologie und Energiegewinnung [10,

21−29, 38−44, 73−77] sowie im Fall der Monosulfide aufgrund ihrer vermuteten

Häufigkeit auf dem Planeten Merkur relevant [45−50]. Zunächst wurde ein DFT-

Ansatz verwendet, um zwei nichtmagnetische Monosulfide, CaS und MgS, zu

analysieren. Der Schwerpunkt lag auf der Bestimmung ihrer strukturellen Eigen-

vii



schaften und der Modellierung des Reflexionsverhaltens im Infrarotbereich. Bei

der Berechnung der Reflexion wurden sowohl harmonische als auch anharmonis-

che Beiträge berücksichtigt [194]. Im harmonischen Limit wurde die nichtana-

lytische Korrektur verwendet [215], um die LO/TO-Aufspaltung genau zu bes-

timmen. Eine genaue Berechnung der TO- und LO-Moden ist entscheidend, da

sie die Grenzen des sogenannten Reststrahlenbands festlegen, das heißt die niedri-

gen und hohen Frequenzgrenzen der maximalen Reflexion. Um die Dämpfung in

der Reflexion korrekt zu simulieren, wurden anharmonische Effekte einbezogen.

Dies wurde durch Verwendung der Störungstheorie erreicht, wobei Dreiphononen-

Streuungen [95, 96] und Isotopen-Unordnungsprozesse [97] in den Berechnungen

berücksichtigt wurden. Es wurde festgestellt, dass diese Effekte hauptsächlich die

Verbreiterung der Kanten der Reflexionsspektren beeinflussen, wobei ein stärkerer

Einfluss bei höheren Wellenzahlen zu beobachten ist.

Während höhere anharmonische Terme wie Vier-Phononen-Streuungen in dieser

Studie nicht berücksichtigt wurden, ist es angemessen anzunehmen, dass diese

Prozesse nur bei höheren Wellenzahlen jenseits des Maximums der Reflexions-

Bande erkennbar wären. Diese höheren anharmonischen Terme könnten möglicher-

weise die in den vorhergesagten Reflexionsspektren beobachteten Spitzen beseiti-

gen. Schließlich wurde argumentiert, dass es sinnvoll sein könnte, die Integration

anharmonischer Terme in die Modellierung von polykristallinen und Pulverproben

zu untersuchen. Ihre Rolle in solchen Fällen wird jedoch als zweitrangig ange-

sehen, da die Dämpfung (Selbstenergie) in diesen Systemen hauptsächlich von

Prozessen beeinflusst wird, die für Pulverproben charakteristisch sind, wie zum

Beispiel diffuse Reflexion und Brechung.

Zweitens wurden vier verschiedene Polymorphe von MnS unter Verwendung einer

Kombination von “First-principles”-Methoden untersucht, um den antiferromag-
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netischen (AFM) und paramagnetischen (PM) Zustand zu simulieren. Die Inte-

gration von DFT+U [147, 152, 190, 200] mit Superzellen von speziellen Quasizu-

fallsstrukturen (SQS) [92] und Techniken zur Kontrolle der Besetzungsmatrix [176]

war entscheidend, um Konvergenz, Genauigkeit bei der Strukturoptimierung und

die Erzielung von endlichen Energiebandlücken und lokalen magnetischen Mo-

menten in den PM-Phasen zu erreichen. Die Hinzufügung der Hubbard-U -Korrektur

war notwendig, um die stark korrelierten Mn-d-Elektronen zu behandeln. Der

Erfolg des Ansatzes zeigte sich deutlich an den Vorhersagen zur elektronischen

Struktur für das PM-Steinsalz-B1-MnS-Polymorph. Experimentell wurde fest-

gestellt, dass diese Phase ein Isolator ist [229, 234], aber mehrere frühere ab initio-

Arbeiten prognostizierten metallisches Verhalten [230, 235]. Die Berechnungen in

dieser Arbeit sagten hingegen isolierende und magnetische Eigenschaften voraus,

was gut mit vorhandenen Messungen übereinstimmt. Darüber hinaus wurden

die Auswirkungen einer hydrostatischen Kompression auf die MnS-Polymorphe

untersucht, indem die Energieänderungen bei der Relaxation der ionischen und

gitternahen Freiheitsgrade getrennt wurden. Die berechneten Enthalpien zeigten,

dass die kubische PM-B1-MnS-Struktur die stabilste Phase bis etwa 21 GPa

ist, die danach in das orthorhombische B31-MnS-Polymorph übergeht. Diese

Trends der elektronischen Struktur und der Phasenübergänge sind natürlich vom

jeweiligen U-Wert abhängig. Eine Erhöhung oder Verringerung des U -Werts

würde zu Veränderungen der strukturellen Parameter und der Größenordnung

des Übergangsdrucks führen. Der in dieser Arbeit gewählte U -Wert basierte auf

anderen Studien zu Mn in oktaedrischer Symmetrie [175] und wird auch durch die

enge Übereinstimmung zwischen den vorhergesagten und experimentellen struk-

turellen Parametern unterstützt [81−83]. Bemerkenswerterweise ist die vorherge-

sagte B1−→B31-Transformation einem strukturellen Phasenübergang sehr ähnlich,
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der in Hochdruckexperimenten (von B1-MnS ausgehend) beobachtet wurde [80−83],

was den in dieser Studie verwendeten Modellierungsansatz weiter validiert.

Die atomaren Schwingungen der PM-B1-, B4- und B31-MnS-Polymorphe wurden

auch unter Benutzung der harmonischen Annäherung untersucht. Dazu wurde

auch die SQS Technik angewandt mit dem Ziel Konfigurationen für die lokalen

magnetischen Momente zu erhalten, die frei von weichen Moden sind. Die Suche

nach dynamisch stabilen SQS-Konfigurationen beinhaltete für jedes Polymorph

verschiedene Strategien, die letztendlich zur vollständigen Beseitigung von Moden

mit negativen Frequenzen führten. Zusätzlich wurden die optischen Eigenschaften

der PM-B1- und B4-MnS-Polymorphe jenseits der harmonischen Näherung berech-

net. Aufgrund seiner Bedeutung wurde das PM-B1-MnS-Polymorph eingehend

untersucht, indem die vollständige interatomaren Kraftkonstante (IFC) dritter

Ordnung berechnet wurde. Das resultierende Reflexionsverhalten ist in angemessener

Übereinstimmung mit experimentellen Daten, insbesondere in Bezug auf die LO/TO-

Aufspaltung von MnS, das auf einem Glassubstrat gewachsen war [229, 238].

Beobachtete Abweichungen können teilweise auf spezifische Anpassungsverfahren

zurückgeführt werden, die bei den Reflexionsmessungen verwendet wurden. Die

größte Abweichung könnte jedoch der Natur des experimentellen Systems selbst

zugeordnet werden. Während die Modellierung in dieser Arbeit an Einkristall-B1-

MnS durchgeführt wurde, basierten Experimente aus der Literatur auf polykristalli-

nen Dünnschichten und gepressten Pulverproben, Solche Experimente unterschei-

den sich stark von Einkristallexperimenten. Aufgrund der geringeren Symme-

trie der B4-MnS- und B31-MnS-Polymorphe wäre eine signifikant größere An-

zahl von Verschiebungskonfigurationen erforderlich gewesen, um die vollständigen

IFC-Matrizen zu konstruieren. Aber aufgrund von beschränkter Rechenkapazität

wurde nur die B4-MnS-Phase mit einer reduzierten Anzahl von Verschiebungskon-
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figurationen modelliert. Unter solchen Einschränkungen zeigte das berechnete Re-

flexionsverhalten des B4-MnS-Polymorphs nur eine geringfügige Abweichung von

dem idealisierten ungedämpften Fall, was darauf hindeutet, dass die Hauptdämp-

fungsprozesse jenseits der betrachteten Grenzweite der Phononwechselwirkung

auftreten. Nichtsdestotrotz stimmten die berechneten optischen Parameter des

Reststrahlenbands gut mit den experimentellen Daten überein [238]. Daher kann

angenommen werden, dass die Verwendung der vollständigen IFC-Matrix zu einem

genaueren Vergleich zwischen den berechneten und experimentellen Ergebnissen

für den B4-MnS-Polymorph führen würde.

Schließlich wurde die sauerstoffdefiziente Heterostruktur von LaAlO3−δ/SrTiO3−δ

unter Anwendung von DFT+U untersucht, mit besonderem Augenmerk auf die

potenziellen Auswirkungen von Leerstellen-Clusterbildung an der Grenzfläche.

Sauerstoffleerstellen wurden simuliert, indem manuell zwei Sauerstoffatome ent-

fernt wurden. Abhängig von der Distanz zwischen einem Ti-Platz und den Sauer-

stoffleerstellen können verschiedene Mechanismen der Orbitalrekonstruktion auftreten.

Wenn ein Ti-Platz nicht direkter Nachbar einer Sauerstoffleerstellen ist, wird

die t2g-Symmetrie aufgehoben, was zu einer energetischen Absenkung des dxy-

Orbitals führt. Dieses Phänomen wurde auch in stöchiometrischen LAO/STO-

Heterostrukturen beobachtet, bei denen es aufgrund von Phänomenen der po-

laren Katastrophe zu einer Umverteilung der Valenzelektronen kommt [10, 240,

243]. Speziell die Energieabsenkung des dxy-Orbitals kann auf Veränderungen

im umgebenden Kristallfeld als Störungursache zurückgeführt werden [88, 89].

Die Absenkung des dxy-Orbitals wurde auch für Ti-Positionen beobachtet, die

benachbart zu den Sauerstoffleerstellen lagen. In diesem Fall ist jedoch die en-

ergetische Verringerung der eg-Orbitale signifikanter. Es wurde deduziert, dass

diese Zustände zur Entstehung lokaler magnetischer Momente an der sauerstoffde-
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fizienten LAO/STO-Grenzfläche beitragen. Insgesamt wurden sechs verschiedene

Konfigurationen von Paaren von Leerstellen an der Grenzfläche untersucht. Unter

den sechs untersuchten Konfigurationen beinhaltete die energetisch stabilste Kon-

figuration Sauerstoffleerstellen, die gebenüber einem Ti-Platz linear angeordnet

waren.
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Abstract

First-principles modeling techniques offer the ability to simulate a wide range of

systems under different physical conditions, such as temperature, pressure, and

composition, without relying on empirical knowledge. Density functional theory

(DFT), a quantum mechanical method, has become an exceptionally successful

framework for materials science modeling. Employing DFT makes it possible to

gain valuable insights into the fundamental state of a system, enabling the reli-

able determination of equilibrium crystal structures. Over time, DFT has become

an essential tool that can be incorporated into various schemes for predicting

the properties of a material related to its structure, insulating/metallic behavior,

magnetism, and optics. DFT is regularly applied in numerous fields, spanning

from fundamental subjects in condensed matter physics to the study of large-

scale phenomena in geosciences. In the latter, the effectiveness of DFT stems

from its ability to simulate the properties found on the Earth, other planets, and

meteorites, which may pose challenges for their direct study or laboratory inves-

tigation.

In this thesis, a comprehensive examination of a family of monosulfides and a

perovskite heterostructure was conducted. These materials are relevant for their

potential applications in technology, energy harvesting, and in the case of mono-

sulfides, their speculated abundance on the planet Mercury.

Firstly, a DFT approach was used to analyze two non-magnetic monosulfides,

CaS and MgS. We determined their structural properties and then focused on

the modeling of their reflectivity in the infrared region. The calculation of the

reflectivity considered both harmonic and anharmonic contributions. In the har-

monic limit, the non-analytic correction was employed to accurately determine

the LO/TO splitting, which is necessary to delimit the retstrahlend band, that
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is, the maximum of the reflectivity. The anharmonic effects given by up to three-

phonon and isotopic scatterings, which were included using perturbation theory,

primarily smeared the reflectivity spectra edges in the high-wave region.

Secondly, four polymorphs of MnS were studied using a combination of first-

principles methods to simulate their antiferromagnetic (AFM) and paramagnetic

(PM) states. The integration of DFT+U with special quasirandom structures

(SQS) supercells, and occupation matrix control techniques was crucial for achiev-

ing convergence, structural optimization accuracy, and obtaining finite energy

band gaps and local magnetic moments in the PM phases. The addition of the

Hubbard U correction was necessary to treat the highly-correlated Mn d-electrons.

The success of our approach was clear based on our electronic structure predic-

tions for the PM rock-salt B1-MnS polymorph. Experimentally this phase has

been observed to be an insulator, but multiple ab initio works resulted previously

in metallic behavior. Our computations, on the other hand, predicted insulating

and magnetic properties that compare well with available measurements. Addi-

tionally, the pressure-field stability of the four MnS polymorphs was studied. In

the case of the PM phases, B1-MnS was identified to be the most stable up to

about 21 GPa, then transforming into the B31-MnS polymorph. This finding was

in close agreement with high-pressure experiments reporting a similar phase trans-

formation. The optical properties of B1-, B4-, and B31-MnS were also simulated.

The SQS technique was used to obtain soft-mode-free phonon band structures

within the harmonic approximation. Then, the anharmonic effects were included,

and the reflectivity was calculated for B1-MnS and B4-MnS. In both cases, a good

agreement for the LO/TO splitting was achieved in comparison to experimental

results.

Lastly, the oxygen-deficient heterostructure of LaAlO3−δ /SrTiO3−δ was investi-

xiv



gated also employing DFT+U , with a particular emphasis on the potential impact

of vacancy clustering at the interface. Six distinct configurations of pairs of va-

cancies were studied and their energies were compared to find the most stable one.

The orbital reconstruction of Ti orbitals was also examined based on their location

with respect to the vacancies and the local magnetic moments were calculated.

The final results showed that linearly arranged vacancies located opposite to Ti

ions give the most energetically stable configuration.

xv





Chapter 1

Introduction

First-principles modeling techniques allow the simulation of a variety of systems

under diverse physical conditions such as temperature, pressure, composition, etc.,

without resorting to any empirical knowledge. The bedrock for a considerable part

of modeling in materials science is given by density functional theory (DFT) [1,

2]. DFT provides insights into the ground state of a system, from which reliable

information about the crystal structure at equilibrium can be obtained. Over the

years, DFT has become an indispensable tool that can be integrated into various

frameworks for predicting structural, electronic, magnetic and optical properties.

There several fields where DFT has found its use ranging from fundamental top-

ics in condensed matter physics to large-scale phenomena in geosciences. In the

latter, the success of DFT is derived from simulating the properties of the con-

stituent materials of the Earth, other planets, and meteorites, which sometimes

are difficult to study directly or in the laboratory.

Various physical properties such as optical and thermal properties can be studied

through different types of excitations. For instance, atomic vibrations, or phonons,

can describe the optical response of a material in the infrared (IR) region, whereas

transition rates of different electronic states between the valence and conduction
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band determine the optical properties in the visible region. It is worth noticing

that although DFT does not allow direct access to the energy of excited states, it

can still provide useful information to understand such properties [3].

The family of sulfide materials plays a vital role in various industries and ap-

plications, making it an important subject of study in chemistry and materials

science. In addition to being one of the main sources of metals [4], various sulfide

compounds have been investigated for their potential use as catalysts [5], ther-

moelectrics [6], in solar cells [7] and energy storage materials [8]. In this thesis, a

series of binary non-magnetic and magnetic sulfides, specifically CaS, MgS, and

MnS are investigated.

Perovskites are another extremely important class of materials that depending on

the chemical composition can exhibit a great variety of physical properties. In

recent years, heterostructures of various perovskites have become a topic of enor-

mous interest [9, 10]. Such structures allow to create model systems with tailored

exchange interactions at the atomic length scale, leading, for instance, to unique

magnetic properties and potentially new applications [11]. A fascinating example

is the observation of robust magnetism at the interface of two non-magnetic ma-

terials [12], as in the case of LaAlO3/SrTiO3 (LAO/STO). LAO/STO has been

shown to exhibit coexistence of magnetism and superconductivity at the interface,

which are generally mutually exclusive phenomena [13, 14].

1.1 Non-magnetic sulfides: CaS and MgS

CaS and MgS crystallize into the rock-salt structure (B1), space group Fm3m,

Fig. 1.1. Naturally, CaS is present in the mineral known as oldhamite [15]. It is

found exclusively in enstatite-rich meteorites [15]. MgS is contained in the min-

eral niningerite [16]. This mineral is rare in the Earth and is usually found in

2



meteorites [16]. Both compounds are highly ionic, which determines their high

melting temperatures, 2797 K and 2,499 K for CaS and MgS, respectively [17].

At ambient pressure and increasing temperature, these sulfides do not undergo

any phase transitions and remain in the B1 structure up until their melting point.

On the other hand, it has been recently suggested that at room temperature,

CaS undergoes a pressure-induced structural transition from B1 to a CsCl-type

(B2) structure at about 40 GPa [18]. CaS-based compounds are known for their

Ca, Mg

S

c

a
b (b)(a)

Figure 1.1: (a) Crystal structure and (b) naturally occuring CaS and MgS [19].
The crystal structure was generated by VESTA [20].

extensive use as host materials for highly efficient photoluminescents, cathodo-

luminescents, and X-ray phosphors [21–29]. The most common dopant centers

include Sm3+ [21], Eu2+ [22], Ce3+ [25], Bi3+ [26] and Pb2+ [28, 29]. A recent

attempt to search for efficient phosphors involves reduced dimensionality, i.e.,

nanoparticles of various shapes and sizes. To this end, “simple sulfides” like CaS

have been considered [30–34].

MgS has been studied in the context of potential host materials for phosphors,

albeit to a lesser extent than CaS [23, 35–37]. Some of the popular dopant centers
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include Ce3+ [23], Sm3+ [35], Eu2+ [36], Bi3+ [37], etc. Finally, various composi-

tions of Ca1−xMgxS have been studied as the host to tune the color coordinates [24,

27]. Lately, MgS has also attracted attention in the context of rechargeable batter-

ies [38–44]. Reversible Mg batteries (RMB) are a promising substitute for Li-ion

batteries. They offer almost a twofold increase in volumetric capacity as well as

a dendrite-free Mg metal anode [38, 41]. However, the lack of high-performance

cathodes severely limits any practical application of RMB [41]. Various candidates

for cathode materials continue to be tested, one of which is S [41, 44]. Using S as a

cathode could potentially improve the kinetics of Mg intercalation [41]. However,

these systems (Mg/S) are plagued by the creation of electrochemically inactive

MgSx, and, up to now, no Mg/S batteries have been shown as fully reversible [39,

43]. Nevertheless, different strategies are being probed to enhance reversibility,

e.g., by reactivating MgSx with Li+ [39]. Overall, the advantage of developing

Mg-based rechargeable batteries is significant, thus reinforcing the need for MgS

studies, as this compound plays an important role in the chemistry of RMB can-

didates.

Aside from energy and technological applications, CaS and MgS are of interest

in the study of other planets. From 2011 to 2015, the MESSENGER mission

collected spectral data of Mercury to construct a comprehensive mineralogical

map of the planet’s surface [45–50]. Currently, it is speculated that Mercury was

created under extremely reduced conditions, which led to the planet’s enrichment

in S [47, 48]. The mineral oldhamite (CaS) is one of the bearers of S on Mer-

cury’s surface. MgS has also been identified as one of the sulfides present in

hollow regions on Mercury [51]. In 2018, the BepiColombo mission to Mercury

was launched, and it is due to enter Mercury’s orbit in 2025 [49, 50]. In contrast

to the spectrometers onboard the MESSENGER mission, which investigated the
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planet’s spectrum in the visible and X-ray range, the BepiColombo has also tools

to study the infrared (IR) range [52]. Investigating the spectral characteristics of

CaS and MgS in the IR region could complement the BepiColombo data to have

a thorough understanding of Mercury.

1.2 Magnetic sulfides: MnS polymorphs

MnS is known to exist in several structural modifications. It most commonly crys-

tallizes in the B1 structure, Fig. 1.2(a). Unlike CaS and MgS, MnS is mostly co-

valent [53], which determines its comparatively lower melting point of 1883 K [17].

In addition to the B1 structure, there are also zinc-blende (B3) and hexagonal

wurtzite (B4) polymorphs of MnS [54].

B1-MnS occurs naturally in the mineral alabandite, Fig. 1.2(a). It can be found

in various locations worldwide as a minor mineral, primarily in epithermal sulfide

veins for base metals, in low-temperature manganese deposits [55, 56], and in ma-

rine sediments [57, 58]. Alabandite is also present in certain kinds of meteorites

such as E chondrites [61, 62] and related achondritic aubrites [63]. Additionally,

it has been documented in some ureilites [64] and winonaites [65]. Alongside CaS

and MgS, MnS is another sulfide compound that is believed to be present on

the surface of Mercury [49, 50]. B4-MnS occurs in the mineral rambergite [66],

Fig. 1.2(b). B3-MnS does not exist naturally but can be grown in the labora-

tory [67].

MnS is a transition metal (TM) compound, therefore it exhibits different prop-

erties than both CaS and MgS. Mn unpaired d-electrons (d5 configuration) give

rise to local magnetic moments at Mn sites, which order according to the type of

the exchange interaction. The resulting magnetic ordering also affects the crystal

structure. MnS is an example of Anderson’s superexchange, similar to its TM
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Figure 1.2: Crystal structures of MnS polymorphs and naturally occurring (a)
B1-MnS [59] and (b) B4-MnS [60]. The crystal structures were generated by
VESTA [20].

oxides counterparts (MnO, NiO, etc.) [68–71]. This type of interaction results

in the antiferromagnetic order of the second type (AFM-II), i.e., sheets of ferro-

magnetically (FM) aligned moments couple antiferromagnetically along the [111]

direction [54]. This arrangement causes a trigonal distortion, known as a magne-

tostriction effect [72]. The distortion disappears above 150 K when the system
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undergoes a Neél transition from AFM to a paramagnetic (PM) state.

MnS is also considered a promising anode material in Li- and Na-ion batter-

ies [73–77]. The main disadvantages of MnS are unfavorable electrical properties,

a low rate of electron transfer, and significant changes in volume during Li+/Na+

uptake and release [76, 77]. However, these issues are not unique to MnS and

plague various metal sulfides. A possible solution to mitigate them is to construct

hollow/porous structures. Such structures contain numerous cavities, offering ad-

ditional room for Li+/Na+ storage, which in turn boosts the capacity of electrode

materials [78, 79]. In the case of MnS, coral-like MnS embedded in carbon and

hollow-structured MnS-carbon nanocomposite powders have demonstrated an in-

creased reversible capacity, good cycling stability as well as good specific capacity

and rate capability [73–75]. Overall, MnS is a promising material, but further

investigations about its properties are needed before it can emerge as a viable

candidate for anode materials.

Lastly, a series of possible structural transitions under pressure have been reported

for MnS [80–83]. X-ray diffraction and diamond-anvil cell (DAC) experiments de-

scribe a transition from the B1 to the orthorhombic GeS-type (B16) structure,

Fig. 1.2(c), at about 7.2 GPa [80]. However, subsequent independent DAC experi-

ments up to 21 GPa did not confirm this result [81], observing instead a transition

from B1 to an unknown phase at approximately 26 GPa, which remained stable

up to at least 46 GPa [82]. More recent DAC experiments reported the fabrica-

tion of MnS quenchable high-pressure nanostructures, identified as orthorhombic

MnP-type (B31), Fig. 1.2(d). These MnS nanostructures exhibited a B1 to B31

transformation at a pressure of approximately 22 GPa, in agreement with previ-

ous findings in bulk MnS [83]. However, while the study identified B31-MnS as a

stable nanostructure upon releasing pressure, it noted that in bulk, B31 returned
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to B1-MnS. Therefore, the phase transformation sequence and whether there is

another structural transition above 46 GPa need further investigation.

1.3 Perovskites: LaTiO3/SrTiO3 heterostructures

Perovskites are compounds with the general formula ABO3. The perovskite crys-

tal structure can be described as a network of corner-sharing octahedra BO2−
6

with the 12-coordinated A-cation [84], Fig. 1.3 (a). The A-cation is usually an

alkaline-earth metal (Sr, Ca, Mg, etc.) or rare-earth element (La, Eu, etc.). The

B-cation is often a TM element. The presence of d-electrons from TM elements,

f -electrons from rare-earth elements, or a combination of the two is what deter-

mines a vast spectrum of electronic features characterizing perovskites.

Pure LaAlO3 (LAO) and SrTiO3 (STO) are both band insulators with no local

(a) (b)

A
B

O
O

La

Ti

Sr

Al

Figure 1.3: (a) A conventional perovskite crystal structure; and (b) heterostruc-
ture of LaAlO3/SrTiO3. The crystal structures were generated by VESTA [20].

magnetic moments [9]. However, the LAO/STO heterostructure, Fig. 1.3 (b),

exhibits metallic behavior. This phenomenon is explained by the polar catas-

trophe mechanism [9, 10]. This catastrophe is characterized by an ionic polar
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discontinuity at the interface between LAO and STO, which is compensated by a

sudden electronic reconstruction at the interface, leading to unpaired d− electrons.

At the same time, experimentally LAO/STO heterostructures showed persistent

magnetic signals [85, 86]. A net magnetization of 0.3-0.4 µB per interface Ti was

determined from torque measurements in an external magnetic field [14]. How-

ever, measurements using superconducting quantum interference device (SQUID)

found a state of local magnetic moments with null net magnetization [87]. These

results were reconciled later by suggesting a model of a more complex spiral mag-

netic ordering [13].

Another crucial source of metallicity and magnetism in such TM perovskites is

given by oxygen deficiency. In SrTiO3−δ, the oxygen vacancies effectively free up

the Ti 3d-electrons. These electrons occupy the Ti 3dxy orbital, which is lowered

with respect to the other eg states because of the change in the local site symmetry

at the Ti site [88, 89]. Oxygen vacancies are also an important factor in the inter-

face physics of LAO/STO heterostructures. Here, they seem to stabilize the FM

ordering [90]. However, this effect strongly depends on the concentration of oxygen

vacancies. At low concentration, a Ruderman-Kittel-Kasuya-Yoshida (RKKY)

coupling leads to FM ordering. Then, a double-exchange mechanism produces

a different FM phase at larger concentrations. At intermediate concentrations,

local AFM pairs lead to nearly absent net magnetization [91]. Understanding the

intricate interplay of vacancy concentrations would allow the tailoring of magnetic

ordering by defect manipulation for future materials functionalization.

1.4 Scope of the thesis

In this work, a combination of ab initio methods was used to model the struc-

tural, magnetic, and optical properties of CaS, MgS, and MnS. Additionally, the
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effect of vacancy clustering in oxygen-deficient LaAlO3/SrTiO3 heterostructure

was studied. In the case of sulfides, the main goal was to simulate the optical

response in the infrared (IR) region. As a first step, the electronic structure of

these systems was computed using a conventional DFT approach [1, 2]. CaS and

MgS are relatively simple systems to model since they do not possess highly cor-

related d- or f -electrons. On the other hand, MnS has unpaired 3d-electrons in its

outer shell, which give rise to various magnetic properties. These 3d-electrons add

complexity to the modeling as various magnetic configurations have to be consid-

ered. DFT provides access to the ground state of the system, which is, strictly

speaking, at 0 K. Nevertheless, its AFM configuration, present below MnS Neél

temperature (TN), and its PM state, observed above TN , were both investigated.

This PM state can be simulated as an assembly of randomly distributed magnetic

moments, using the special quasirandom structure (SQS) technique [92].

In the IR region, the optical response is determined by atomic vibrations [93].

Atomic vibrational frequencies can be obtained using the finite displacement

method (FDM) [94]. In FDM, DFT is used to calculate the total energy of a

number of displaced configurations and then the forces acting on the atoms are

extracted. These forces are used to set up a system of equations of motion for the

atoms in the lattice to yield the resonance frequencies. However, in order to obtain

an accurate optical response, it is necessary to go beyond the harmonic approx-

imation and introduce various damping processes, i.e., phonon scatterings [93,

95, 96]. In this study, the three-phonon processes [95, 96] and scatterings due to

isotopic disorder [97] were considered. After obtaining the harmonic frequencies

as well as their dampings due to scattering processes, the dielectric function was

calculated according to the Lorentz model. Knowing the dielectric function, and

with it, various quantities that are directly measurable such as reflectivity, re-
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flectance, emissivity, etc., can be derived. These properties are of interest for the

upcoming BepiColombo mission [49, 50]. The interpretation of a planet’s surface

spectra that are detected remotely across a broad range of wavelengths is crucial

to elucidate its building components [49]. The cooperation and combined efforts

of simulations and experiments are imperative for a thorough understanding. For

MnS, the DFT-SQS combination was also employed to provide new insights into

the sequence of pressure-induced structural transitions observed at room temper-

ature.

Finally, the clustering of oxygen vacancies in oxygen-deficient LAO/STO het-

erostructures was investigated. Several configurations with a pair of vacancies

with varying distances between two vacancies were considered. The total energy

was calculated using DFT, and the effect of various placements of vacancies on

the local density of states (LDOS) and local magnetic moments at Ti ions was

studied.
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Chapter 2

Theoretical and computational

methods

In this chapter, a detailed explanation of the computational methods used in this

thesis is given. First, density functional theory (DFT) is explained in detail. This

includes the Hohenberg-Kohn (HK) theorems as well as the variational derivation

of the energy functional. Next, the Kohn-Sham (KS) equations are derived and

various methods for solving them are discussed. Additionally, a concept of special

quasirandom structures (SQS), which is used to model PM states of magnetic

compounds is introduced. Lastly, the methods for modeling optical properties in

different frequency regions are explained. The atomic units (h̄ = me = e = 1) are

used throughout Sec. 2.1.

2.1 Density Functional Theory

Density functional theory (DFT) has become one of the most popular and success-

ful quantum mechanical approaches in condensed matter. It has been employed

to calculate binding energies of molecules, energy bands in solids, superconductiv-
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ity, atoms in the focus of strong laser pulses, relativistic effects in materials with

heavy elements and in atomic nuclei, classical liquids, and magnetic properties of

alloys [98–100]. DFT applications in biology and geosciences have also become

common [99, 101–103].

2.1.1 Hohenberg-Kohn approach

DFT takes a whole new approach to dealing with many-particle systems. It

promotes the electron density from being just an observable to a key quantity in

calculating the ground-state properties of a system. The electron density ρ(r) is

formally defined as [98]:

ρ(r) = N

∫
Ψ(r, r1, . . . , rN)Ψ∗(r, r1, . . . , rN)dr1dr2...drN , (2.1)

where Ψ(r, r1, . . . , rN) is the true many-particle wave function, and N is the to-

tal number of particles. The foundations of DFT are the two Hohenberg-Kohn

theorems [1] stated below:

Theorem 1 The ground state density, ρGS(r), determines the external potential

v(r) uniquely. Hence, given the ground state density ρGS(r), it is possible, in prin-

ciple, to calculate the corresponding true ground-state many-body wave function

ΨGS(r1, . . . , rN).

Any observable Ô is a functional of the ground-state wave function Ô[Ψ]. The

HK theorem establishes a one-to-one correspondence between the ground-state

density ρGS(r) and true ground-state wave function ΨGS(r1, . . . , rN). Thus, any

observable is also a functional of the ground-state density Ô[ρGS(r)] [98].

Basically, the first HK theorem (HK-I) gives a new quantity, which depends only
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on three spatial coordinates, to calculate the ground-state properties, which is

much simpler than the real many-particle wave function. However, it does not

specify how exactly to do it in practice. A way to obtain some definite expressions

that can be used in the calculation is given by the second Hohenberg-Kohn (HK-

II) theorem [1]:

Theorem 2 The variational minimum of the energy of a system is the exact

ground-state energy, i.e., δE[ρ(r)]
δρGS(r)

= EGS

The HK-II restates a simple quantum mechanical variational principle with the

only difference that one is able to obtain the exact ground state.

The total energy of a system as a functional of the electron density can be written

as [1]:

E[ρ(r)] = T [ρ(r)] + U [ρ(r)], (2.2)

where T [ρ(r)] and U [ρ(r)] are the kinetic and potential energy of the system,

respectively. The term U [ρ(r)] contains both the electron-electron interaction

and the interaction with the external potential. The potential energy term can

be split into three terms [1]:

U [ρ(r)] = EH [ρ(r)] + Exc[ρ(r)] +

∫
vext(r)ρ(r)dr, (2.3)

with the Hartree energy EH given by:

EH =

∫
ρ(r)ρ(r′)

|r− r′|
drdr′, (2.4)

where the Hartree term is the classical Coulomb electron-electron repulsive in-

teraction. The exchange-correlation term Exc can be interpreted as all of the

higher-order perturbations to the electron-electron interactions. The general form
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of Exc does not exist, and further approximations are required. Working out the

exchange-correlation contributions is a highly non-trivial task [98–100]. The last

term in Eq. (2.3) is the potential energy due to the interaction of the electron

density with the external potential vext(r).

Using the variational principle (HK-II) and the method of Lagrange multipliers,

with the constraint of a constant particle number,

∫
ρ(r)dr = N, (2.5)

the variation of the energy functional in Eq. (2.2) with respect to ρ(r) gives [98]:

δE[ρ]

δρ(r)
=
δT [ρ]

δρ(r)
+

δ

δρ(r)

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

δ

δρ(r)

∫
vext(r)ρ(r)dr

+
δExc[ρ]

δρ(r)
− µ(

∫
ρ(r)dr−N) = 0;

δE[ρ]

δρ(r)
=
δT [ρ]

δρ(r)
+

∫
ρ(r′)

|r− r′|
dr′ + vext(r) +

δExc[ρ]

δρ(r)
− µ = 0,

(2.6)

where µ is the Lagrange multiplier. Eq. (2.6) states the general problem that

needs to be solved. However, T [ρ] and Exc[ρ] still need to be determined and

different schemes can be followed.

For example, in the Thomas-Fermi approach [104–106], one assumes that ρ(r)

corresponds to the density of an electron gas, and the kinetic energy T [ρ] is defined

by

T [ρ] = Ck

∫
[ρ(r)]5/3dr, (2.7)

where Ck is a normalization constant. Inserting (2.7) into (2.6) and ignoring the

exchange-correlation effects, one obtains:

5

3
Ckρ(r)2/3 +

∫
ρ(r′)

|r− r′|
dr′ + vext − µ = 0, (2.8)
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which is the well-known Thomas-Fermi (TF) equation. However, there are several

deficiencies in this model. Firstly, the charge density turns out to be infinite at

the nucleus. Secondly, the TF theory does not predict atoms binding to form

molecules or solids. Finally, another serious problem is the lack of a shell struc-

ture in the TF atom, which means that the periodic variation of many properties

with changing atomic numbers cannot be reproduced [98, 100].

2.1.2 The Kohn-Sham scheme

Although Eq. (2.6) is formally exact and should be able to yield the true ground

state of a system, it is not very practical. The main problem is the lack of a

general expression for the kinetic energy as a functional of the electron density.

Kohn and Sham suggested an elegant alternative route to search for the ground-

state density [2]. Their core idea was to assume that the ground state of the

interacting system can be described by that of some auxiliary system of non-

interacting particles. The KS energy functional is defined as1 [1, 2]:

EKS[ρ(r)] = T0[ρ(r)] + EH [ρ(r)] + Exc[ρ(r)] +

∫
vext(r)ρ(r)dr +

∑
A 6=B

ZAZB
|RA −RB|

,

(2.9)

where T0[ρ(r)] is the kinetic energy of the non-interacting particle system and

RA(B) denotes the position of atom A(B) with the respective nuclei charge ZA(B).

The last term in Eq.(2.9) is the nuclei-nuclei repulsion contribution to the total

1One can also think of it as a decomposition of the total kinetic energy into non-interacting
and correlated parts: Ttot[ρ] = T0[ρ]+Tc[ρ]. T0[ρ] corresponds to a non-interacting electron gas.
Tc[ρ] is a pure correlation effect that can be treated perturbatively together with vxc
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energy. The electron density in this case is given by [2]:

ρ(r) =
∑
j

|ψj(r)|2, (2.10)

where ψj are single-electron orbitals. The KS kinetic energy T0 is different from

the true kinetic energy, but it is of comparable magnitude [98] and is given by:

T0 = −1

2

∑
j

∫
ψ∗j (r)∇2ψj(r)dr. (2.11)

Here, the density dependence is implicit through Eq. (2.10), and the constant

particle number constraint is calculated as:

∑
j

∫
|ψj(r)|2dr = N. (2.12)

The variation of Eq. (2.9) with respect to single-electron orbitals ψj(r), under the

constraint in Eq. (2.12), produces [107]:

δEKS[ρ(r)]

δψ∗j (r)
=
δT0[ρ(r)]

δψ∗j (r)
+

[
δEH [ρ(r)]

δρ(r)
+
δExc[ρ(r)]

δρ(r)
+
δ
∫
vext(r)ρ(r)dr

δρ(r)

]
δρ(r)

δψ∗j (r)
−

− δ

δρ(r)

(∑
j

µj

∫
ρ(r)dr−N

) δρ(r)

δψ∗j (r)
+

δ

δρ(r)

∑
A 6=B

ZAZB
|RA −RB|

= 0.

(2.13)

The last term in Eq. (2.13) does not contain the electron density and its variation

is, therefore, equal to zero. Using the expressions

δT0[ρ(r)]

δψ∗j (r)
= −1

2

∑
j

∇2ψj(r), and
δρ(r)

δψ∗j (r)
= ψj(r), (2.14)
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Eq. (2.13) can be transformed into [107],

{
∇2 + VKS(r)

}
ψj(r) = µjψj(r), (2.15)

where the KS potential VKS(r) is defined as:

VKS(r) =

∫
ρ(r′)

|r− r′|
dr′ + vext(r) +

δExc[ρ(r)]

δρ(r)
. (2.16)

The Lagrange multipliers µ in Eq. (2.13) are now understood to be the eigenvalues

of the single-particle Schrödinger equation, Eq. (2.15). Renaming them by µj −→

εj, one finally obtains:

{
∇2 + VKS(r)

}
ψj(r) = εjψj(r). (2.17)

Eq. (2.17) is actually a system of equations for a set of single-particle orbitals

ψj(r). They are known as the Kohn-Sham equations, which replace the problem

of minimizing E[ρ(r)] by that of solving a system of single-particle Schrödinger

equations for an auxiliary system of non-interacting particles [2]. Treating the

kinetic energy exactly removes many of the deficiencies of the Thomas-Fermi ap-

proach, such as the lack of a shell structure of atoms or the absence of chemical

bonding in molecules and solids [98, 100].

Eq. (2.17) are solved self-consistently, Fig. 2.1 [107], starting with an appropriate

guess for the electron density ρ(r). The effective potential is constructed using

Eq. (2.16), and then used to compute a set of Kohn-Sham orbitals ψj(r) with

Eq. (2.10). A new density is calculated and the self-consistent cycle is repeated.

This process continues until convergence in energy and density is achieved. Nu-

merous convergence-accelerating algorithms (such as mixing of old and new effec-
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Initial guess
ρ(r)

Calculate effective potential

VKS (r) = Vext(r) + VHF(r) + Vxc(r)
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consistent?
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Solve KS equation
[ + VKS (r)] ψ𝑗 𝑟 = 𝜀𝑗ψ𝑗 𝑟

∆2

Calculate physical quantities

𝑂 = ψ 𝑂 ψ

Figure 2.1: DFT self-consistent loop [107]. The terms for the effective potential
VKS correspond to the respective terms in Eq. (2.16).

tive potentials) are used to solve the KS equations more efficiently [108].

Before proceeding with the approximations to describe the exchange-correlation

effects and methods for solving Kohn-Sham equations, a few remarks about DFT

and the Kohn-Sham scheme need to be stated. DFT gives access only to the

ground state of a system [1, 2, 98, 100]. Even though the HK theorem does not

exclude the possibility of mapping to excited states, in practice such a scheme

has not been developed yet. In the KS equations, the eigenenergies do not bear

any physical meaning in the sense that they are not the energies of the origi-

nal system [107]. The KS energies correspond to the eigenstates of the auxiliary
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non-interacting system, which can be used to construct physically valid quanti-

ties. Nevertheless, the KS approach has proven to be a quite good starting point,

owing its success to the possibility of the inclusion of correlation effects.

2.1.3 Exchange-correlation energy

The total energy within the KS scheme given by Eq. (2.9) can be written explicitly

as [1, 2]:

Etot = −1

2

∑
i

∫
ψi(r)∇2ψi(r)dr + Exc +

1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′

−
∑
A

∫
ZA

|r−RA|
ρ(r)dr +

∑
A 6=B

ZAZB
|RA −RB|

.

(2.18)

The only contribution which remains unknown is the exchange-correlation energy

Exc. The exchange-correlation term is generally unknown, but reasonable approx-

imations can be made as a local or semi-local functional of the density [109].

Local Spin Density Approximation

The simplest functionals are obtained within the local density approximation

(LDA) or more generally the local spin-density approximation (LSDA). The spin-

dependent exchange-correlation (XC) energy can be separated into exchange and

correlation parts [107]:

Exc[ρ↑, ρ↓] = Ex[ρ↑, ρ↓] + Ec[ρ↑, ρ↓] =

∫
εx[ρ↑, ρ↓]ρ(r)dr +

∫
εc[ρ↑, ρ↓]ρ(r)dr,

(2.19)

where εx and εc are the exchange and correlation energies per particle, respectively,

and the total density ρ is the sum of its spin-polarized ρ↑, ρ↓ parts. Assuming a

homogeneous unpolarized (ρ↑ = ρ↓) electron gas, the exchange energy per electron

20



is given by [110]:

εLDAx [ρ] = −3

2

( 3

π

)1/3
ρ4/3(r). (2.20)

For the correlation energy εc[ρ], a widely used approximation within LSDA, is the

parametrization given by Perdew and Zunger [111], using Monte Carlo simulation

data obtained for homogeneous electron gas by Ceperley and Adler [112]. Another

commonly used approximation for εc[ρ] is an analytic representation, which was

proposed by Perdew and Wang [113]. Despite its conceptual simplicity, LSDA suc-

cessfully describes the ground-state properties of multiple physical systems. For

example, it accurately predicts the ground-state geometries of various types of

molecules, from simple diatomic systems to infinite chains in polymers. LSDA is

also reliable in handling the equilibrium geometries of many extended systems [98].

However, its main drawback is the tendency to overestimate the bond strength in

solids. As a result, LSDA calculated lattice parameters are underestimated, cohe-

sive energies are overestimated and band gaps are narrower than their measured

counterparts [99].

Generalized Gradient Approximantion

A step further to improve LSDA is the generalized gradient approximation (GGA).

In this scheme, for a slowly varying density ρ(r), the exchange-correlation energy

depends on the gradient of ρ(r) [114–118]:

EGGA
xc =

∫
εxc(ρ(r),∇ρ(r))ρ(r)dr, (2.21)

where εxc(ρ(r),∇ρ(r)) is some general function. Many parameterizations for εxc

are known, but one of the most used was given by Perdew, Burke, and Ernzerhof

21



(PBE) [119]. In this PBE parameterization, the exchange energy is given by

εGGAx = εLDAx (ρ)FGGA
x (ρ,∇ρ), (2.22)

where, the function FGGA
x (ρ,∇ρ) is a dimensionless enhancement factor, that de-

pends on the density and its gradient, and effectively indicates how much exchange

is enhanced over LSDA value. Similarly, GGA correlation energy is expressed as

a sum of the LSDA correlation energy εLDAc and a function H(ρ,∇ρ) [119]:

εGGAc = εLDAc (ρ) +H(ρ,∇ρ). (2.23)

H is usually given by a gradient expansion, with the lowest terms being the most

significant. For large ∇ρ the magnitude of correlation decreases as large gradients

are connected to strong confining potentials that reduce the effect of interac-

tions [119].

The GGA method usually improves the overbinding produced by the LSDA ap-

proach. However, it can sometimes go too far in the other direction, resulting

in an overcorrection. For example, LDA lattice parameters tend to be under-

estimated by about 1%, while the PBE method usually overestimates them by

a similar amount [120]. Additionally, properties such as bulk moduli, phonon

frequencies, and magnetic moments, which are sensitive to the lattice constant,

might also be overcorrected by the GGA [99, 120, 121]. It should be noted that

LDA often fails to accurately predict the ground state of magnetic transition

metals, while the GGA succeeds in doing so [99]. For example, within LDA Fe

turns out to be hexagonal and nonmagnetic instead of body-centered cubic and

ferromagnetic [122], whereas Cr is predicted to be nonmagnetic instead of anti-

ferromagnetic [123]. An additional advancement in the accuracy of PBE is the
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revised version of GGA/PBE for solids, often referred to as PBEsol [124]. The

PBEsol exchange-correlation functional is conceptually identical to PBE, but the

enhancement in exchange Fx and the additional correlation H are modified to

describe solids more correctly.

Meta-GGA and Hybrid functionals

Next up the ladder of the hierarchy of the exchange-correlation functionals are

the Meta-GGA and hybrid functionals. In the meta-GGA, in addition to local

density and its gradient, the exchange-correlation functional depends also on the

local kinetic energy τ(r) [99]:

Emeta−GGA
xc =

∫
εmeta−GGAxc (ρ(r),∇ρ(r), τ(r))dr, (2.24)

with

τ(r) =
1

2

∑
i

|∇ψi(r)|2, (2.25)

and i running over all occupied KS orbitals. In general, meta-GGA schemes in

the literature can be divided into two categories [99]: semi-empirical parametrized

functionals [125] and those, that follow the GGA/PBE philosophy of eliminating

adjustable parameters [126–129]. Practically, the meta-GGA offers a significant

improvement for atomization energies in molecules [130], whilst for lattice con-

stants and bulk moduli in solids its performance is similar to GGA [128, 131].

The computational cost of meta-GGA is slightly higher than that of LSDA and

GGA.

Hybrid functionals combine nonlocal Hartree-Fock exchange with local or semilo-

cal DFT exchange in a specific ratio [99, 132, 133]:

Ehyb
xc = αEHF

x + (1− α)EGGA
x + EGGA

c , (2.26)

23



where α is the mixing ratio. The idea behind hybrid functionals is to address the

limitations of both DFT and HF methods. DFT tends to underestimate band

gaps, whereas HF overestimates them. By blending these two methods, it is

possible to obtain more accurate predictions for band gaps, as well as improved

total energies and geometries [99].

2.1.4 DFT+U

DFT+U is a scheme designed to address highly correlated d- and f -electrons in

systems by introducing the Hubbard interaction potential U . Similarly to hybrid

functionals, DFT+U aims to solve the underestimation of the DFT band gap but

at a lower computational cost than in a hybrid scheme.

As it was discussed before, the main issue is the exchange-correlation part of the

effective potential, which needs to be approximated. Unfortunately, none of the

known approximations (LSDA, GGA, etc.) seem to be able to fully resolve the

problem of localization of d- and f -electrons in solids. Well-known correlated

systems are the TM oxides (MnO, NiO, etc.) [134, 135] for which conventional

DFT theory predicts metallic behavior when in reality they are insulators. The

cause of the electron localization is known to be due to strong electron-electron

repulsion [134].

DFT+U can be understood in terms of the tight-binding (TB) model [136]. The

KS scheme recasts a many-body interacting problem onto a non-interacting single-

particle problem, with all interactions included in the effective potential VKS(r).

The Hamiltonian for this non-interacting system with the addition of a Hubbard

interaction can be written (using second quantization notation [137]) as [138]:

H =
∑

i,j,m,m′,σ

(
tm,m

′

ij,σ c†im,σcjm′,σ + h.c.
)

+ U
∑
i,m′′,σ

nσi,m′′n−σi,m′′ , (2.27)
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where c†im,σ(cjm′,σ) is an operator that creates (destroys) an electron at site i(j),

orbital m(m′) with spin σ, and tm,m
′

ij,σ are the hopping integrals. The spin index σ

takes on ↑ (spin up) and ↓ (spin down) values, i.e., σ = {↑, ↓}. U is the Hubbard-

like interaction [138], and nσi,m = c†i,m,σci,m,σ is the number operator. In this

Hubbard Hamiltonian given by Eq. (2.27), the hopping process from one atomic

site to the other has amplitude t in the single-particle term. The two-particle

Coulomb repulsion term is proportional to U , and occurs only on the same atomic

site. To obtain the total energy of the system using Eq. (2.27), the interaction

term needs to be decoupled using a mean-field (MF) approximation [137]. In this

approach, the density operators deviate only slightly from their average values:

〈nσi,m〉 and 〈n−σi,m〉. Defining the deviation operators as:

ñσi,m = nσi,m − 〈nσi,m〉, ñ−σi,m = n−σi,m − 〈n−σi,m〉, (2.28)

and then substituting them into Eq. (2.27), one obtains [137]:

HMF = H0 + VMF + U
∑
i,m′′,σ

ñσi,m′′ñ−σi,m′′ , (2.29)

where H0 is the single particle term of Eq. (2.27), and

VMF = U
∑
i,m′′,σ

(
nσi,m′′〈n−σi,m′′〉+ n−σi,m′′〈nσi,m′′〉 − 〈nσi,m′′〉〈n−σi,m′′〉

)
. (2.30)

For small deviations, the last term in Eq. (2.29) can be neglected. The product

〈nσi,m′′〉〈n−σi,m′′〉 in Eq. (2.30) is a constant, and can be set to zero by shifting the

energy. Therefore, the final form of the Hubbard Hamiltonian within the MF
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approximation is [137]:

HMF =
∑

i,j,m,m′,σ

(
tm,m

′

ij,σ c†im,σcjm′,σ + h.c.
)

+ U
∑
i,m′′,σ

(
nσi,m′′〈n−σi,m′′〉+ n−σi,m′′〈nσi,m′′〉

)
.

(2.31)

The MF-decoupled interaction adds U〈nσi,m′′〉 to the on-site energy, which is re-

flected in the shift of the corresponding bands of the opposite spin by the same

amount.

This effect of electron-electron interaction at the mean-field level on the band

structure was first introduced by Anisimov et al. [136]. Here, the single-band

Hamiltonian HMF for the interaction is slightly different than Eq. (2.31):

HMF
int =

1

2

∑
i

{
U [ni(n

↑
i + n↓i )−mi(n

↑
i − n

↓
i )]−

1

4
U(n2

i −m2
i )
}
, (2.32)

where the average occupancy and moment are defined as ni = 〈n↑i 〉 + 〈n↓i 〉 and

mi = 〈n↑i 〉 − 〈n
↓
i 〉, respectively. Then, the following multi-band energy functional

can be formulated [136]:

EU [ni] = EDFT [ρ(r)] +
1

2

∑
m,m′,σ

U(nσi,m − n0)(n−σi,m′ − n0)

+
1

2

∑
m,m′,σ

(U − J)(nσi,m − n0)(nσi,m′ − n0),

(2.33)

where J is the Hund’s coupling and n0 is the average occupancy of orbitalsm. This

expression provides a noteworthy enhancement over standard DFT calculations

for electron-electron correlations of localized orbitals within delocalized electron

systems. The DFT+U method is an upgraded approximation for electron-removal

and electron-addition spectra, and it is a crucial tool for interpreting many spec-

troscopy experiments [139]. Additionally, DFT+U requires only a minor increase

in computational effort in comparison to standard DFT. This feature is partic-
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ularly valuable in materials science where efficient formulations are essential for

handling increasingly complex systems [139, 140].

Rotational invariance

One significant drawback of Eq. (2.33) is the definition of EU [ni] with respect to

a particular single-particle basis set [136]. A more general and basis-independent

formulation of the DFT+U method was given by Lichtenstein [141, 142]. It

departs from the assumption that the electron-electron interaction mostly retains

its atomic nature. Therefore, one only needs to identify the regions of space where

the atomic characteristics of the electronic states are preserved, i.e., regions around

the atoms2. The generalized DFT+U functional can be formulated then in terms

of the elements of the on-site density matrix defined as [143]:

nσm,m′ =
∑
ν,k

fσν,k
〈
ψσν,k

∣∣φm〉 〈φm′
∣∣ψσν,k〉 , (2.34)

where
∣∣ψσν,k〉 are the KS orbitals with band index ν, wavevector k and spin σ with

occupation fσν,k, and {|φm〉} is a set of localized orbitals, e.g., atomic states. The

energy functional suggested by Lichtenstein is given by [141]:

E[ρ(r), {nσ}] = EDFT [ρ(r)] + EU [{nσ}]− Edc[nσtot]. (2.35)

Here, {nσ} denotes the elements of the on-site density matrix with spin σ, and

nσtot = Tr(nσm,m′). The first term in Eq. (2.35) corresponds to the energy func-

tional within conventional DFT approximations (LDA or GGA) as discussed in

2These regions are defined slightly differently depending on the basis set used to solve the
KS equations. In various muffin-tin orbital (LMTO, EMTO, etc.) methods, these regions are
referred to as atomic spheres. In plane-wave methods, these are known as augmentation regions.
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Sec. 2.1.3. The Hubbard term EU [{nσ}] is defined as [141]:

EU [{nσ}] =
1

2

∑
{nσ}

(
〈m,m′′|Vee |m′,m′′′〉nσm,m′n−σm′′,m′′′+

+
(
〈m,m′′|Vee |m′,m′′′〉 − 〈m,m′′|Vee |m′′′,m′〉

)
nσm,m′nσm′′,m′′′

)
.

(2.36)

The matrix elements in Eq. (2.36) are the screened Coulomb interactions among

electrons. They can be expressed in terms of complex spherical harmonics Y and

effective Slater integrals F k as [144]:

〈m,m′′|Vee |m′,m′′′〉 =
4π

2k + 1

∑
k

k∑
q=−k

〈lm|Ykq |km′〉 〈lm′′|Y ∗kq |km′′′〉F k, (2.37)

where 0 ≤ k ≤ 2l, with l being the orbital quantum number. The last term in

Eq. (2.35) corrects for double counting and is given by:

Edc[n
σ
tot] =

1

2
Un(n− 1)− 1

2
J [n↑tot(n

↑
tot − 1) + n↓tot(n

↓
tot − 1)], (2.38)

where n = n↑tot + n↓tot. Eq. (2.35) is rotationally invariant because the interaction

parameters (matrix elements) in Eq. (2.36) transform as quadruplets of localized

wavefunctions, which compensate any variations in the corresponding product of

occupations [143]. At the same time the double counting correction given by

Eq. (2.38) depends on the trace of the on-site density matrix, which is basis-

independent. In practical applications, the interaction parameters of Eq. (2.36)

are often treated as adjustable parameters to match experimental observations for

specific properties such as magnetic moment, equilibrium volume, or band gap.

The effective on-site Coulomb and exchange parameters denoted as U and J re-

spectively, are typically used to specify these parameters. Alternatively, U and J

can also be extracted from constrained-DFT calculations [145, 146].
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The rotationally invariant formulation given by Eq. (2.36) is the most com-

plete formulation of DFT+U , featuring electronically orbital-dependent interac-

tions [143]. However, a simplified version of the Hubbard correction, proposed by

Dudarev et al. [147], is also widely used in practice. This simpler form considers

only the lowest order Slater integrals (F 0) and neglects all higher-order terms

(F 2 = F 4 = F 6 = 0) [143]. Under these conditions the total energy functional

given by Eq. (2.36) becomes [143, 147]:

EDFT+U = EDFT +
Ueff

2

∑
σ

[(∑
m

nσm,m

)
−
(∑
m,m′

nσm,m′nσm′,m,

)]
,

=
Ueff

2

∑
σ

Tr
[
nσm,m′(1− nσm,m′)

]
,

= EDFT +
Ueff

2

∑
σ

nσtot(1− nσtot),

(2.39)

where Ueff = U − J . It should be noted that the functional of Eq. (2.39) de-

pends on the trace of the on-site density matrix, and, therefore, it is also basis-

independent. This formulation connects Lichtensten’s and Anisimov’s function-

als, Eq. (2.35) and Eq. (2.33), keeping the rotational invariance of the former and

the simplicity of the latter [147]. Several studies have successfully employed the

simplified form of the Hubbard correction, Eq. (2.39), which typically produces

comparable results to the fully rotationally invariant version, Eq (2.35) for many

materials [143]. However, some studies have shown that the explicit inclusion of

the Hund’s coupling J can be critical for describing systems with non-collinear

magnetism [148, 149], or capturing correlation effects in multi-band metals [150].

2.1.5 Methods for solving the Kohn-Sham equations

The Kohn-Sham equations, Eq. (2.17), are used to describe a system with multiple

electrons through a density built from independent-particle wave functions. These
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wave functions can be expressed as a linear combination of predetermined basis

functions, resulting in a matrix equation that, in principle, can be solved exactly.

Developing numerical methods that are both accurate and efficient for solving KS

equations is a major challenge in computational materials science. The solutions

derived from the KS equations should be the same, independently of the form

of the basis functions, as long as the basis set is complete [151]. The accuracy

is particularly important when comparing results from different approximations

used for the exchange-correlation functionals. Thus, the two main considerations

for solving the KS equations are: 1) the choice of basis functions for the expansion

of the KS orbitals ψj and 2) the approximation used for the effective potential,

VKS in Eq. (2.17). These two factors determine different implementations of DFT.

A short summary of existing methods is given below. The projector-augmented

wave method, which is used in this work, is explained in more detail.

Augmented plane waves (APW)

The central issue that all methods try to overcome is the different behavior of

the wave functions of real materials in different space regions. In the bonding

region, they show a rather smooth behavior, whereas close to the nuclei they

oscillate rapidly due to the large attractive potential [152]. A very natural basis for

calculating single-electron wave functions in solids is that of the plane waves (PW)

corresponding to Bloch functions labeled by the k-vector of the first Brillouin zone

(BZ) [153]. However, this basis is highly inefficient in describing rapidly varying

wave functions close to the nuclei [154]. Therefore, a strategy is to divide the space

into two distinct parts, namely the atom-centered sphere and the interstitial region

outside of the atomic sphere. The single-electron wave functions are constructed

separately for these regions and then matched at the boundary between them.
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As mentioned before, a PW basis is not particularly suitable due to its inability

to adequately describe rapid oscillations of the wave functions close to the nuclei.

A possible solution is to improve this basis set with modified plane waves. The

main idea, originally stated by Slater [155], is to keep the plane wave description

in the interstitial region but to augment the wave functions inside the atomic

sphere. In this augmented plane waves (APW) method, the basis functions are

given by [154]:

φG(r) =


∑

L a
αG
L uαl (r′, ε)YL(θ, ϕ), r′ < Rα,

Ω−1/2 exp(i(k + G)r), r ∈ I,
(2.40)

where uαl (r′, ε) is the numerical solution to the radial Schrödinger equation at en-

ergy ε, YL(θ, ϕ) is the spherical harmonic, L is short for orbital (l) and magnetic

(m) quantum numbers, Ω is the unit cell volume, k is a wave vector in the irre-

ducible Brillouin zone (IBZ) and G is a reciprocal lattice vector. The coefficients

aαGL are chosen in such a way that the atomic functions for all L components

match in value the PW at the boundary between the atomic sphere of radius Rα

and the interstitial region I. The KS orbitals are then expressed as linear com-

binations of APWs φG(r). Inside the atomic sphere, the KS orbital eigenvalue

εi in Eq. (2.17) has to be equal to the energy ε of the basis function [154]. This

means that for every KS eigenenergy εi a different energy-dependent basis set

must be found, leading to a non-linear eigenvalue problem. Because of its high

computational cost, the APW scheme is not very practical and it is usually used

only for small systems with a few eigenvalues [154].
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Linearized augmented plane waves (LAPW)

To solve the energy dependence problem of the basis set, a linearization of the

energy of each radial function inside the atomic sphere was suggested by An-

dersen [156]. The linearization is achieved by taking a linear combination of a

solution u at a fixed linearization energy and its energy derivative u̇ computed

at the same energy. This leads to the following linearized augmented plane wave

(LAPW) basis functions [154]:

φG(r) =


∑

L

[
aαGL uαl (r′) + bαGL u̇αl (r′)

]
YL(θ, ϕ), r′ < Rα,

Ω−1/2 exp(i(k + G)r), r ∈ I,
(2.41)

where, as before, the coefficients aαGL and bαGL are determined from the matching

conditions at the atomic sphere boundary. The LAPW method provides a flexi-

ble basis for an accurate description of eigenfunctions with eigenenergies near the

linearization energy that can be held constant. Unlike in the APW approach, the

computation of all eigenenergies can be accomplished with a single diagonaliza-

tion procedure [154]. To this day, LAPW remains one of the most accurate and

reliable schemes for solving the KS equations and is used widely [157, 158].

(Linear) Muffin-tin orbitals ((L)MTO)

Muffin-tin orbitals (MTO) are constructed similarly to APW. Inside the MT-

sphere, MTO are expressed as partial waves, analogously to Eq. (2.40). In

the interstitial region, instead of PW, screened spherical waves, solutions of the

Helmholtz wave equation, are used [159]:

{∇2 − κ2}φL(κ2, r) = 0, (2.42)
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where κ2 ≡ ε − v0, with v0 being a constant potential in the interstitial region.

This basis set composed of partial and screened spherical waves, connected by

matching conditions, suffers from the same energy-dependency problem as the

original APW methods. Andersen’s linearization procedure [156] can also be ap-

plied here to construct an energy-independent version of the MTO basis set, i.e.,

linearized muffin-tin orbitals (LMTO). LMTO methods in combination with the

spherical approximation for the potential are, in general, computationally less ex-

pensive than full-potential LAPW schemes, but also less accurate. Full-potential

and LMTO methods can be coupled (FP-LMTO), and a number of FP-LMTO

techniques have been developed [160, 161]. They, however, lack the efficiency

of the LMTO methods with the spherically symmetric potential. The non-MT

(non-spherical) contributions to the electron density can, in principle, be recov-

ered even from the spherically symmetric potential by the so-called full charge

density (FCD) technique [162, 163]. Results obtained with this technique com-

pare well to those of full-potential methods [110].

Full potentials (FP) and muffin-tin (MT) potentials

In full potential methods, the KS equations are solved for all electrons, including

the core states. This approach results in very high accuracy but consequently, all-

electron methods are the most computationally demanding [110]. The “muffin-

tin” term is used to describe both the approximation to the effective potential

and the basis set for the KS equations. Similarly to the space division described

above, the MT-potential approximation originates from the observation that the

one-electron potential is atomic-like close to the atomic sites and almost flat in

between [159]. One important distinction from the FP methods is that within
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the MT spheres, the potential is assumed to be spherically symmetric. More

specifically, the one-electron potential can be expanded in the form [154]:

V (r) =


∑

l,m Vl,m(r′)Yl,m(θ, ϕ), inside the sphere,∑
G V (G) exp(iGr), outside the sphere,

(2.43)

where Vl,m(r′) is the radial part of V (r). Then, the MT approximation for the

full potential corresponds to keeping only spherical components l = m = 0 [157].

The MT potential can be used with various basis sets. The FP methods can pro-

vide an exact local density or gradient-level description of solid materials [156].

The aforementioned techniques have been utilized to determine the physical char-

acteristics of ordered compounds and to investigate defects in these structures.

While these methods are capable of producing highly accurate results, they are

typically complex and have certain limitations owing to several numerical approx-

imations [110].

Pseudopotentials (PP)

Pseudopotentials were originally introduced to simplify electronic structure cal-

culations by eliminating the need to include atomic core states and the strong

potentials responsible for binding them [164]. Thus, the full-potential description

is kept only in the bonding (interstitial) region. Close to the nuclei, the true

Coulomb-like potential is replaced by a weak pseudopotential. The pseudopo-

tential corresponding to each atomic species is such that in a reference atomic

system (usually the isolated neutral atom), the valence pseudo wavefunctions co-

incide outside the atomic core with the all-electron valence wavefunctions [165].

Combined with a plane-wave basis set, the PP method offered the advantage of

formal simplicity. Unfortunately, this simplicity comes at a cost: first-row ele-
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ments, systems with d- or f -electrons are computationally demanding to treat

with standard PPs since a huge number of PWs is needed to correctly reproduce

the rapidly oscillating wave function close to the nuclei [166–168]. A significant

improvement in the performance of PPs came with the development of the ul-

trasoft PPs [169]. “Soft” PPs, as opposed to “hard” ones, require fewer Fourier

components, and, thus, are more efficient. The pseudopotential technique offers a

significant advantage over all electron DFT implementations in terms of transfer-

ability. By constructing PPs from a fixed electronic configuration of an isolated

atom or ion, these models can accurately reproduce the scattering properties of

a nucleus in that specific configuration, and be transferable to different atomic

configurations and solid-state environments [170]. Another great advantage of the

PP method is its ability to easily incorporate molecular dynamics [171].

Projector augmented-wave (PAW) method

The projector augmented-wave method was first derived by Blöchl [152]. The

PAW method can be considered a bridge between linear methods, namely LAPW,

and the pseudopotential approach. Indeed, the LAPW is a special case of the

PAW method, and the PP formalism can be obtained by a well-defined approxi-

mation [152]. The PAW method can be regarded as an all-electron method, and

its fundamentals are given below.

As before, the rapidly oscillating wave function in the core region is the primary

issue to be addressed. The usual PP formalism requires a large number of plane

waves to be included in the basis set. The main idea of PAW is to introduce a

set of fictitious pseudo (PS) wave functions ˜|Ψ〉, which do not carry any physical

meaning themselves, but are computationally convenient. If one can, then, estab-

lish a clear mapping between the two, various observables can be calculated using
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these computationally convenient PS wave functions and then transformed back

to the physically relevant all-electron (AE) wave function |Ψ〉. More specifically,

one seeks to construct a transformation as follows [152]:

|Ψ〉 = T ˜|Ψ〉, (2.44)

which should satisfy the following criterion: in the interstitial region the wave

function can be described well by plane waves and needs to be augmented only in

the core region. Such transformation can be shown to have the following form [152,

172]:

T = 1 +
∑
i

(
|φi〉 − ˜|φi〉

) ˜〈pi|,

|Ψn,k〉 =|Ψ̃n,k〉+
∑
i

(
|φi〉 − ˜|φi〉

) ˜〈pi|Ψ̃n,k〉,
(2.45)

where index i is a shorthand for the atomic site R, and quantum numbers l and

m. The PS orbitals |Ψ̃n,k〉 are identical to the AE |Ψn,k〉 outside the PAW spheres

(interstitial region), where they are expanded in PW as:

〈r|Ψ̃n,k〉 =
1

Ω1/2

∑
G

Cn,k,G exp(i(G + k)r), (2.46)

where Ω is the volume of the Wigner-Seitz cell, and Cn,k,G is the normalization

constant. The transformation inside the PAW sphere is determined by three

quantities, namely the AE partial waves |φi〉, PS partial waves ˜|φi〉 and projector

functions ˜|pi〉. In principle, there is an infinite number of ways to construct

them [152]. In this work, the AE partial waves are the solutions of the radial

Schrödinger equation for a non-spinpolarized reference atom at a specific energy
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εi and for a specific angular momentum li [172],

〈r |φi〉 =
1

r−Ri

uli,εi(|r−Ri|)Yli,mi(r−Ri). (2.47)

The PS partial waves are defined similarly, under the condition that they must

coincide with the AE partial waves outside the PAW sphere of radius, rc,

〈r ˜|φi〉 = φ̃i(|r−Ri|)Yli,mi(r−Ri), (2.48)

where [173]:

φ̃i(|r−Ri|) ≡ φ̃i(r) =


∑2

a=1 αaji(qar), r < ric,

uli,εi(r), r > ric,

(2.49)

where ji are spherical Bessel functions, and αa and qa are chosen such that the

PS partial wave is two times continuously differentiable. The projector functions

are dual to the PS partial waves,

〈p̃i ˜|φj〉 = δi,j. (2.50)

They are constructed using a two-step procedure [99, 172]. First, trial functions

|χi〉 are calculated via

|χi〉 =
(
εi +

∇2

2
− ṽeff

)
|φ̃i〉, (2.51)

where εi is the reference energy, ṽeff is the spherical component of the effective

PS potential, which can be chosen arbitrarily inside the augmentation region of

radius rc, but must match the exact effective potential veff outside. Next, the
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projector functions are taken to be linear combinations of |χi〉 under the constraint

of Eq. (2.50),

|p̃i〉 =
∑
j

〈φ̃i |χj〉 |χj〉 . (2.52)

Using Eq. (2.45), various observables can be calculated as expectation values of the

corresponding operators 〈Ψn|A |Ψn〉, or using the PS wave functions 〈Ψ̃n|A†|Ψ̃n〉,

with A† = T †AT . For example, the one-electron density that enters the HK

variational principle is given as the expectation value of the real-space projection

operator |r〉〈r| [152], i.e.,

ρ(r) = ρ̃(r) + ρ1(r) + ρ̃1(r), (2.53)

with

ρ̃(r) =
∑
n

fn〈Ψ̃n|r〉〈r|Ψ̃n〉,

ρ1(r) =
∑
n,i,j

fn〈Ψ̃n|p̃i〉〈φi|r〉〈r|φj〉〈p̃j|Ψ̃n〉, and

ρ̃1(r) =
∑
n,i,j

fn〈Ψ̃n|p̃i〉〈φ̃i|r〉〈r|φ̃j〉〈p̃j|Ψ̃n〉,

(2.54)

where fn is the occupation of the n-th KS state.

DFT+U can also be implemented within the PAW formalism [174, 175]. The

Hubbard U correction to the total energy is given by Eq. (2.39). This energy

functional depends on the occupation of the set of localized orbitals. The occu-

pations are defined as the elements of the on-site density matrix by projecting

the KS states onto a set of atomic-like orbitals in the region close to the nuclei,

Eq. (2.34). Within the PAW formalism, a convenient set of orbitals are the AE

partial waves, given by Eq. (2.47). Thus, the on-site density matrix is obtained
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by projecting the KS wave function onto the augmentation region [174]:

nσ,αm,m′ =
∑
ν,k

∑
l,l′,n,n′

fσν,k〈Ψσ
ν,k|φl,m,n〉〈φl′,m′,n′ |Ψσ

ν,k〉. (2.55)

In (2.55) the indices i and j are written explicitly as l,m, n and l′,m′, n′, respec-

tively, with n being the reference energy used in (2.47) to construct the partial

waves. The index α denotes the atomic site Rα, for which the on-site density

matrix is calculated. Computationally, it is more convenient to obtain the occu-

pancies directly from the PS wave function via [175]

nσ,αm,m′ =
∑
n,n′

ρPAW(lmn),(l′m′n′) 〈φl,m,n|φl′,m′,n′〉 , (2.56)

where the occupancies of the augmentation channels are defined as

ρPAW(lmn),(l′m′n′) =
∑
n

fn〈Ψ̃ν |p̃l,m,n〉〈p̃l′m′n′|Ψ̃ν〉. (2.57)

The occupancies in Eq. (2.56) can be obtained either self-consistently, recalcu-

lating the occupational matrix at each iteration, or they can be constrained to a

desired configuration [176].

2.1.6 Disorder, special quasirandom structures (SQS)

Many real systems do not possess a perfectly ordered crystalline structure. Exam-

ples include alloys, mixed crystals, doped semiconductors, liquid crystals, etc [177].

Unlike the perfect single crystals, these systems do not have periodic structures,

which poses a serious challenge in modeling them. The problem of the disorder
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can be modeled by a TB-Hamiltonian [177]:

H =
∑
i

εic
†
ici +

∑
i 6=j

tijc
†
icj, (2.58)

where the on-site and hopping terms are separated, and only one state (orbital)

per site is considered, i.e., a single-band model. Eq. (2.58) describes disorder

when the on-site energies εi, or the hopping integrals tij, or both are not fixed

values, but instead acquire values according to some probability distribution. For

example, in the simplest case of a binary alloy A1−xBx, the probability of the

on-site energy would take on the values [177]

P (εi) = (1− x)δ(εi − εA) + xδ(εi − εB), (2.59)

where εA and εB are the on-site energies if the site i is occupied by the element

A or B, respectively. This is a case of diagonal disorder, i.e., only on-site energies

are subjected to disorder, and the hopping integrals have fixed values. The case of

off-diagonal disorder as well as the combination of the two are also possible [177].

As in the case with the on-site interaction in Eq. (2.27), due to the presence

of disorder the Hamiltonian given by Eq. (2.58) cannot be diagonalized, since

the translation symmetry is broken, which makes the Bloch theorem inapplica-

ble. The equilibrium properties of such systems are usually discussed in terms of

the ensemble-averaged Green’s function G, which determines all the macroscopic

properties of interest [177]:

G(z) ≡ 〈G(z)〉 = 〈(z −H)−1〉, (2.60)
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where z is the complex energy, and H is given by Eq. (2.58). The averaged Green’s

function is usually found using perturbation theory; G(z) is determined as an ex-

pansion in powers of a perturbation parameter V and averaging each term of the

expanded series. In many cases, it is quite difficult to calculate G(z) exactly, and

further approximations are necessary to truncate the expansion [177].

An alternative approach is to consider a single realization of disorder, which ex-

hibits certain macroscopic properties of interest. In other words, instead of con-

sidering an ensemble average of a set of configurations, the aim is to design a single

configuration, which will exhibit the macroscopic properties of the ensemble av-

erage. Such an object is known as a special quasirandom structure (SQS) [92,

178]. To illustrate the method, consider a binary A1−xBx alloy (although it can

be formulated for more components [179]). The alloy is characterized by the mul-

tisite correlation function borrowed from statistical lattice theory [180]. Any given

arrangement of A and B atoms on a lattice (configuration σ) is discretized into

its “figures” f = (k,m), where k is the number of vertices in the figure (pairs,

triplets, etc.), and m is the interaction distance (nearest neighbor, next-nearest

neighbor, etc.). Fig. 2.2 shows different figures in a lattice of “up” and “down”

spins Si. This “spin” variable Si, assigned to each lattice site i, can take the value

-1 if this site is occupied by atom A and +1 if by atom B. The product of spin

variables for figure f at location l is defined as [92]

Πf (l, σ) =
∏
i

Si. (2.61)

A lattice average of the spin product over all locations of symmetry-related figures

of type f is [92]

Πf (σ) =
1

NDf

∑
l

Πf (l, σ), (2.62)
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Figure 2.2: Special quasirandom structure construction. Examples of figures f of
different order (k,m).

where N is the number of atoms, and Df is the number of figures per site. The

ensemble average of a physical property P over configurations is given as [180]:

〈P 〉 =
∑
k,m

Dk,m〈Πk,m〉pk,m, (2.63)

where pk,m are the “interaction parameters” of figures (k,m). For a perfectly

random configuration, the ensemble averages of the products Πf are known ana-

lytically [181]:

〈Πk,m〉R = (2x− 1)k. (2.64)

The core idea of the SQS approach is to design a special N -atom periodic structure

S whose correlation functions 〈Πk,m〉 best match the analytically known correla-
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tion functions of a perfectly random alloy 〈Πk,m〉R. Thus, the natural way to

select a special structure S is to minimize the following difference [92]:

〈P 〉R − P (S) =
′∑

k,m

Dk,m

[
(2x− 1)k − Πk,m

]
pk,m, (2.65)

where the prime sign in the summation means that the terms with k = 0 and

k = 1 are omitted.

The SQS method is easily incorporated with the known DFT methods and has

been used extensively in the study of random and disordered alloys [181–183]. It

has also been used to model PM systems [184–187]. A PM system is modeled as

an array of randomly placed “up” and “down” magnetic moments. This descrip-

tion has been shown to produce energy gaps in TM compounds, overcoming the

metallic behavior exhibited when they are modeled as non-magnetic systems [187,

188].

2.2 Optical properties

Optical spectra of materials provide a rich source of information on their elec-

tronic and atomic properties. Fig. (2.3) shows some of the processes that occur

when a system is subjected to incoming light. A fraction of the incident light is

reflected at the surface of the medium, while the remaining light is transmitted.

Within the medium, some of the radiation may undergo absorption or scattering,

while the rest continues its path through the sample. Absorbed electromagnetic

waves can either be dissipated as heat or reemitted at a different frequency. Typ-

ically, reflection and absorption are the most dominant optical phenomena since

they involve the simplest level of interaction between electromagnetic waves and

elementary excitations within the medium [93].
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In a dielectric medium an external electromagnetic wave E(r, t) will induce a

Incident

Reflected

Medium

Transmitted

(Absorbed)
Scattered

Luminescence

(Raman)

Figure 2.3: Optical processes that take place at the surface and in the interior of
a medium [93].

polarization P(r, t) [93]

Pα(r′, t′) =
∑
β

ε0

∫
χαβ(r, r′; t, t′)Eβ(r, t)drdt, (2.66)

where χαβ(r, r′; t, t′) is the complex electric susceptibility tensor and ε0 is the

vacuum permittivity. In the absence of time-dependent perturbations, time is

homogeneous, and the susceptibility depends only on the difference t− t′. In the

case of a periodic medium, such as crystals, the system is translation-invariant up

to the lattice vector. Thus, the polarization can be Fourier transformed in both

time and coordinate domains to give [93]:

Pi(q, ω) =
∑
j

ε0χij(q, ω)Ej(q, ω), (2.67)
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where q is the crystal wave vector belonging to the first BZ and ω is the light

frequency. In principle, all optical properties of a system are determined by its

susceptibility χij. It is often more convenient to work with the dielectric function

defined as [93]:

εij(q, ω) = 1 + χij(q, ω). (2.68)

In many cases, the wavelength of light is much larger than the relevant dimensions

of the crystal. In such cases the spatial dispersion, i.e., the q-dependence in

Eq. (2.68) can be suppressed. Knowing the dielectric function, Eq (2.68), allows

us to determine other optical functions that can be measured experimentally, such

as reflectivity [93]:

r(ω) =

∣∣∣∣∣
√
ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣
2

(2.69)

Other useful optical functions such as transmittance T and reflectance R can also

be obtained from the reflectivity as:

R(ω) = r(ω)[1 + τ(ω)T (ω)]; T (ω) =
τ(ω)[1− r(ω)]2

1− r2(ω)τ 2(ω)
, (2.70)

where the power-loss factor τ is defined as:

τ(ω) = exp
(
−2dIm(

√
ε)ω/c

)
, (2.71)

with d and c being the thickness of a slab and the speed of light, respectively.

2.2.1 Atomic contribution

In the infrared region, a crystal’s optical properties are mostly determined by its

atomic response to incident electromagnetic waves. The simplest form for the
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dielectric function is given by the Lorentz model:

ε(ω) = ε∞ +
∑
j

Sj
ω2
0,j − ω2 + iγ

, (2.72)

where ε∞ is the high-frequency dielectric constant, Sj and ω0,j are the strength

and frequency of the j-th oscillator, respectively. The damping constant γ is intro-

duced in order to achieve a better agreement with the experiment as depicted in

Fig. 2.4. Usually, all parameters in Eq. (2.72) are determined by fitting the mea-

Figure 2.4: Schematic reflectivity [93]. The damping coefficient γ lowers the
reflectivity in the reststrahlen band between the TO and LO frequencies, which
otherwise would be a plateau of maximum reflectivity of width proportional to
the oscillator strength Sj.

sured reflectivity to Eq. (2.69) with the dielectric function defined by Eq. (2.72).

The dielectric function in Eq. (2.72) can also be determined ab initio using DFT.

Essentially, it involves the calculation of the resonant frequencies ω0,j, which are

inferred from the atomic vibrations in the crystal. Whenever an atom is displaced

from its equilibrium position, there is an increase of potential energy, which in-

duces a restoration force that tries to bring the atom back to its equilibrium
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position. For small displacements u, the potential energy can be written as [94]:

V =
∑
l,l′,κ,κ′

∑
α,β

Φαβ(lκ, l′κ′)uα(lκ)uβ(l′κ′)+

+
∑
l,l′,κ,κ′

∑
α,β

Φαβγ(lκ, l
′κ′, l′′κ′′)uα(lκ)uβ(l′κ′)uγ(l

′′κ′′) + . . . ,

(2.73)

where Φαβ and Φαβγ are the second- and third-order interactomic force constants

(IFC), κ and κ′ are the atoms in the primitive cells (PC) l and l′, and α, β and γ are

the Cartesian indices. Keeping only the first term in Eq. (2.73) corresponds to the

harmonic approximation. To obtain the atomic vibrational frequencies, a system

of equations of motion for each atom in the unit cell needs to be solved, with the

periodic conditions determined by the translational symmetry of the underlying

primitive cell [153]. Finding the solution of the equations of motion implies the

determination of the IFCs and performing an FT to build the dynamical matrix,

which is then diagonalized to yield the vibrational frequencies. The dynamical

matrix is defined as [94]:

Dαβ(κκ′,q) =
1

√
mκmκ′

∑
l′

Φαβ(l1κ, l
′κ′) exp(iq[r(l′κ′)− r(l1κ)]), (2.74)

where r(l′κ′) denotes the position of the κ′-th atom in the l′-th primitive cell. In

Eq. (2.74) one primitive cell l1 is chosen among all PC comprising the unit cell,

with respect to which the dynamical matrix is defined. This cell is omitted from

the summation. The dynamical matrix in Eq. (2.74) is diagonalized to yield the

vibrational eigenfrequencies:

ω2
qjδjj′ =

∑
α,β,κ,κ′

e∗α(κ′,qj)Dαβ(κκ′,q)eβ(κ′,qj′), (2.75)
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where eα(κ,qj) and ω2
qj are the eigenvector and eigenfrequency, respectively,

which correspond to the phonon mode of the j-th branch with wavevector q.

As can be seen, the problem of determining the vibrational spectra of a crystal is

reduced to the evaluation of the IFCs. There are two main approaches to accom-

plishing this task. The IFCs can be obtained using density functional perturbation

theory (DFPT), and are expressed in terms of the changes in the electron density

ρ(r) [189]. Alternatively, the IFCs can be obtained using the finite displacement

method (FDM). The second-order IFCs are given by the second-order derivative

of the potential energy, Eq. (2.73), with respect to atomic displacements [94], i.e.:

Φαβ(lκ, l′κ′) =
∂2V

∂rα(lκ)∂rβ(l′κ′)
= −∂Fβ(l′κ′)

∂rα(lκ)
, (2.76)

where Fβ(l′κ′) is the β-th component of the force acting on the κ′-th atom in the

l′-th primitive cell, when the κ-th atom in the l-th primitive cell is displaced in

the direction α. The force gradient in Eq. (2.76) can be approximated by its finite

difference expression:

Φαβ(lκ, l′κ′) ≈ Fβ(l′κ′)

δrα(lκ)
. (2.77)

In the FDM approach, to construct the full IFC matrix, Eq. (2.77), each atom lκ

needs to be displaced. The forces acting on atoms l′κ′ are then extracted from

DFT calculation using the Hellmann-Feynman theorem [190]. To obtain accurate

IFCs supercells containing several PCs need to be checked for convergence with

respect to the supercell size. Depending on the size of the supercell, the calcu-

lation of the IFC might require a large number of displacement configurations to

construct the full IFC matrix, Eq. (2.77). This number can be greatly reduced

by using the site symmetries, which show that only the IFC between inequivalent

atoms in the PC need to be determined and the rest can be reconstructed by
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employing site symmetry operations [94, 191].

An accurate description of the optical response requires the knowledge of the

damping processes of atomic vibrations. In order to include these processes, it is

necessary to go beyond the harmonic approximation in Eq. (2.73). In order to

introduce anharmonic contributions, the dielectric function can be written in a

more general way using perturbation theory as [96, 192]:

ε(ω) = ε∞ +
∑
j

Sjω
2
0,j

ω2
0,j − ω2 + 2ω0,jΠj(ω)

, (2.78)

The oscillator strength is related to the Born effective charges Z, as Sj = 4πZ2/

(vµjω
2
0,j), where v is the unit-cell volume and µ is the reduced mass of the oscilla-

tor [193]. Here, unlike the constant damping factor γ in Eq. (2.72), the damping

is given by Πj(ω) which is the complex self-energy of the j-th vibrational mode.

This phonon self-energy can be expressed as a sum of different terms, each cor-

responding to a particular type of interaction that causes damping. The main

contributions are due to anharmonic phonon-phonon scattering processes. Gen-

erally, the anharmonic Hamiltonian can be expressed as [95]

H = H0 +HA = H0 +H(3) +H(4), (2.79)

with H0 as the harmonic part given by:

H0 =
∑
q,j

ω(q, j)a†q,jaq,j, (2.80)

where a†q,j and aq,j are the creation and destruction operators for the phonon mode

with wave vector q and branch j, ω(q, j) is the frequency of the phonon mode

(q, j). The anharmonic part HA corresponds to the phonon-phonon scattering
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processes. It can be split into different parts, each corresponding to the order of

the processes included. For example, three- and four-phonon processes are defined

as [95, 194]:

H(3) =
∑

q1,q2,q3

∑
j1,j2,j3

V (3)(q1j1; q2j2; q3j3)(a
†
−q1,j1

+ aq1,j1)(a
†
−q2,j2

+ aq2,j2)×

×(a†−q3,j3
+ aq3,j3),

(2.81)

and

H(4) =
∑

q1,q2,q3,q4

∑
j1,j2,j3,j4

V (4)(q1j1; q2j2; q3j3; q4j4)(a
†
−q1,j1

+ aq1,j1)×

×(a†−q2,j2
+ aq2,j2)(a

†
−q3,j3

+ aq3,j3)(a
†
−q4,j4

+ aq4,j4),

(2.82)

where V (n)(q1j1; . . . ; qnjn) is the n-th order interaction term involving n phonon

modes (q1j1), . . . , (qnjn). The interaction term V (n) is defined as the Fourier

transform of the interatomic force constants [194]:

V (n)(q1j1; . . . ; qnjn) =
1√
N

1

n!

∑
κ1,...,κn

∑
α1,...,αn

eα1(κ1,q1, j1) × . . .× eαn(κn,qn, jn)√
h̄

2mκ1ωq1,j1

× . . .×

√
h̄

2mκnωqn,jn

∑
l2,...,ln

Φα1,...,αn(l1κ1; . . . ; lnκn)×

× exp
(
iq1[r(l2κ2)− r(l1κ1)]

)
× . . .× exp

(
iqn[r(lnκn)− r(l1κ1)]

)
δ(q1 + · · ·+ qn).

(2.83)

Here, κ runs over all atoms in the primitive cell, summation l over all primi-

tive cells in the supercell except the central one l1, and α1 . . . αn are the Carte-

sian indices. Vector e(κn,qn, jn) is the eigenvector of the phonon mode (qn, jn).

Φα1,...,αn(l1κ1; . . . ; lnκn) are the interatomic force constants. The phonon self-
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energy for these processes can be obtained using perturbation theory. It involves

the calculation of Feynman diagrams such as the ones shown in Fig. 2.5(a)−(c).

These diagrams correspond to the lowest order of the perturbation expansion in

powers of HA [95, 96]. In this work, only the bubble diagram is taken into account.

The complex self-energy can be decomposed as:

Πq,j(ω) = ∆q,j(ω) + iΓq,j(ω), (2.84)

where ∆ and Γ are the real and imaginary parts of the phonon self-energy, re-

spectively. The imaginary part of the bubble diagram is given by [194]:

Γq,j(ω) = 18π
∑

q1j1,q2j2

∣∣V (−qj,q1j1,q2j2)
∣∣2{(nq1j1 + nq2j2 + 1)×

× δ(ω − ωq1j1 − ωq2j2) + (nq1j1 − nq2j2)
[
δ(ω + ωq1j1 − ωq2j2)−

− δ(ω − ωq1j1 + ωq2j2)
]}
,

(2.85)

where nqj is the Bose-Einstein function defined as:

nqj =
1

exp(ωqj/kBT )− 1
, (2.86)

with kB and T being the Boltzmann constant and the temperature. The real part

of the self-energy can be obtained using the Kramers-Kronigs relation [194]:

∆(ω) =
1

π

∫ +∞

−∞

Γ(ω′)

ω′ − ω
dω′. (2.87)

In addition to phonon-phonon processes, the isotope-disorder scattering is also

considered, Fig. 2.5(c). This contribution can be estimated by using perturbation

theory too, where the atomic mass deviation is treated as perturbation [97]. The

51



(a)

(d)

qj

q2j2 q1j1

qjʹ

qj

qj

qʹjʹ

Bubble

(b)

q1j1

qjʹ

qj q2j2
Tadpole

(c)
qj

qjʹ

q1j1

Loop Isotopic

Figure 2.5: Diagrammatic anharmonic contributions considered in this work. Dia-
grams (a) and (b) represent three-phonon scattering processes known as “bubble”
and “tadpole” contributions [95]. Diagram (c) shows a four-phonon scattering pro-
cess known as “loop” [95]. In our study, the only process entering in our model,
as explained in the main text, is the bubble contribution. Diagram (d) represents
isotope-disorder scattering, the dashed lines represent phonon scatterings by the
isotope shown here as the black dot [97].

self-energy of this contribution is given by [97, 194]:

Γiso(ω) =
π

2N
ω2
qj

∑
q1j1

δ(ω − ωq1j1)
∑
κ

gκ

∣∣∣∣∣∑
α

eα(κ1,q, j)e
∗
α(κ1,q1, j1)

∣∣∣∣∣
2

, (2.88)

where the mass parameter gκ is defined as:

gκ =
∑
i

fi(1−miκ/m̃κ)
2, (2.89)

with fi and miκ being the mole fraction and relative atomic mass of the i-th

isotope, respectively. m̃κ is the average mass given by: m̃κ =
∑

i fimiκ.
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High-frequency dielectric constant

The electronic contribution to the dielectric function of a system is usually cal-

culated using linear response theory [137]. The effect of the applied electric field

E(r, t) is treated as a perturbation. The response of the system is constructed

using perturbation theory with reference to a system for which the dielectric re-

sponse is known exactly, for instance, a system of non-interacting particles. The

electron polarizability of non-interacting electrons is known analytically [195–197]:

χ0(q+G,q+G′) = − 4

(2π)3

∑
v,c

∫
BZ

dk
〈k + q, c|ei(q+G)·r|k, v〉〈k, v|e−i(q+G′)·r|k + q, c〉

Ec(k + q)− Ev(k)
,

(2.90)

where the summation is taken over all Bloch states in the valence (v) and con-

duction (c) bands, with energies Ev and Ec, respectively. The integration runs

over the entire BZ. The simplest approximation for the dielectric function is given

within the random phase approximation (RPA) as [197, 198]:

εRPA(q + G,q + G′) = δG,G′ − 4π
χ0(q + G,q + G′)

|q + G|2
, (2.91)

where the term 1
|q+G|2 is the reciprocal space representation of the Coulomb inter-

action. In the context of DFT, Eq. (2.91) is equivalent to neglecting all exchange

effects, and it can be shown to be [197, 199]:

εDFT (q + G,q + G′) = 1− Vcχ̃(1− Vxχ̃)−1, (2.92)

where

Vc(q + G,q + G′) = δG,G′
1

Ω

∫
dr
e−i(q+G′)·r

|r− r′|
,

Vx(q + G,q + G′) =
1

Ω

∫
e−i(q+G′)·r δVxc[ρ]

δρ
e−i(q+G′)·r.

(2.93)
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The symbol χ̃ in Eq. (2.92) is used to indicate that the Bloch states are obtained

using the KS self-consistent method. The RPA limit is obtained from Eq. (2.93)

where the exchange term Vx is put equal to zero. Finally, the high-frequency

dielectric constant ε∞ is obtained as a long-wavelength limit of the G = G′ = 0

element of the inverse of the dielectric matrix in Eq. 2.92:

ε∞ = lim
q−→0

1

ε−1(q,q)
(2.94)

2.3 Hardware and software

For all computer simulations, the very well-established and widely-used electronic

structure VASP code in its latest version 5.4.4 is used [190, 200]. VASP is based

on density functional theory (DFT) [1, 2] using the projector-augmented wave

method [152] and a plane wave basis. SQS supercells were generated using the

Alloy Theoretic Automated Toolkit (ATAT) software package [201]. Additionally,

the Occupation matrix control algorithm was used to fix the issue of d-electrons

delocalization [176]. In addition, Phonopy version 2.9.1 and Phono3py version

1.22, open source codes [94, 194] written in Python, are used to prepare sets of

supercells with displaced atoms to be input to VASP for force computations of

second- and third-order. Phonopy and Phono3py make extensive use of symme-

try analysis, which allows for a reduction in the number of displacements needed.

Finally, also with Phonopy and Phono3py force sets are collected and phonon

frequencies and imaginary part of the self-energy are calculated.

All of the calculations were done on the GCS Supercomputer JUWELS at Jülich

Supercomputing Centre (JSC) under projects abinitiomodmatsgeo and geo-

pressmagphon, and on the GFZ Linux cluster GLIC. A standard compute node

on the GCS Supercomputer JUWELS consists of 2× Intel Xeon Platinum 8168
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CPU, 2× 24 cores, 2.7 GHz. VASP runs well on super-scalar processors, vector

computers, and parallel computers. In particular, it has support for MPI-based

parallelization with good scaling on multicore machines. To estimate resources

for a VASP run, three fundamental numbers have to be taken into account: 1)

number of k-points, 2) number of bands (determined indirectly by the number of

atoms and electrons) and 3) size of the basis set (i.e., number of plane waves, which

corresponds to the number of grid points in the fast Fourier transform (FFTs).

To find the most optimal values, test simulations for every system of interest were

performed with different tasks-per-node settings in the workload manager and

tuning the corresponding VASP parameters. In terms of the number of nodes,

in most cases, it was found that using 2 nodes (96 cores) for a job was the most

optimal solution.
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Chapter 3

Non-magnetic sulfides: CaS and

MgS

In this chapter, the topic of optical properties of CaS and MgS is investigated with

the main focus on calculating reflectivity in the IR region. The results presented

in this chapter have previously been published [202]. The content appears either

verbatim or slightly adjusted to this thesis.

There have been a few experimental and theoretical studies of the optical proper-

ties in the infrared region of CaS and MgS. From experimental investigations, data

obtained from absorption spectra are used to determine various physical quanti-

ties such as reflectivity, emissivity [203, 204], etc. On the other hand, theoretical

studies based on density functional theory (DFT) within the local density approx-

imation (LDA) [112] have only modeled the atomic dynamics of these systems in

the limit of the harmonic approximation [205, 206]. Unfortunately, the lack of

neutron scattering studies on these sulfides makes impossible a direct comparison

of the predicted phonon dispersions with their experimental counterparts. The

only physical quantity directly comparable between experimental and modeling

results is the splitting of the longitudinal and transverse optical modes, i.e., the
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LO/TO splitting. This mode separation originates from the degeneracy elimi-

nation between the LO and TO phonons at the Brillouin-zone center [207]. In

this regard, there is an overall reasonable agreement of reported measurements

with predicted data (Table 3.1). However, the harmonic approximation predicts

a reflectivity with a step-like behavior and sharp edges at both ends of the spec-

trum [93]. This predicted reflectivity is in drastic disagreement with experimental

spectra, which appear with smeared edges, especially at the high-wavenumber

tail. This inconsistency is a direct consequence of the simplifications made in

the harmonic approximation and can be remedied by the inclusion of anharmonic

effects. It has long been desired to introduce anharmonic effects in the first-

principles atomic and molecular dynamics (MD) simulations. However, due to

computational limitations, the explicit treatment of the phonon-phonon interac-

tions has been limited, even though the analytical base has been available for a

long time [95, 96]. But in the last decade, the significant increase in computational

power and efficiency has made it possible to include anharmonic effects explicitly

on a rigorous basis. One way to consider anharmonic effects in an MD simulation

is by coupling the system to a thermostat of a given temperature [208, 209]. The

consequent normal modes of motion contain the frequencies renormalized by the

temperature, i.e., anharmonic interactions. Such an approach has been shown

to remedy the negative frequencies persistent within the harmonic approximation

in a few elemental systems [209]. The vibrational eigenfrequencies calculated in

this way are “dressed” by anharmonic phonon-phonon interactions up to, formally

speaking, all orders. Therefore, to estimate individual contributions, a mapping

scheme onto an effective model, containing all the contributions separately needs

to be constructed [210]. Alternatively, one might wish to introduce anharmonicity

in a progressive and more controlled way. This implementation is achieved in a
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perturbative manner based on the Cowley expansion [96]. At the lowest order, one

obtains two three-phonon and one four-phonon contributions to the total energy

as shown in Fig. 2.5(a)-Fig. 2.5(c). The main computational challenge to evaluate

these Cowley diagrams is the calculation of their force constants of various or-

ders. Nowadays, it is possible to compute them completely ab intio using density

functional theory (DFT) [1, 2] by following one of two main approaches. The first

method employs density functional perturbation theory [189], and the FC are ex-

pressed directly in terms of the electron density and its derivatives [211]. In the

second one, the finite displacement method [191, 212], the FC are extracted by

performing a series of self-consistent calculations for different atomic displacement

patterns and using the Hellman-Feynman theorem. However, the main issue in

this approach is computations growing rapidly, as a large number of configura-

tions is needed for higher-order FC. The calculation of the FC of the m-th order

requires (6Nnb)
m configurations, where nb is the number of atoms in the lattice

basis, and N is the number of primitive cells in the supercell [213]. Although

this number can be substantially reduced by identifying equivalent displacement

patterns using crystal symmetries [213, 214], it is still quite large, especially for

the fourth-order FC.

In addition to the Cowley contributions to the anharmonicity, the effects derived

from isotope-disorder scatterings have been shown to play an important role at

low temperatures [193]. This isotopic scattering can also be formulated within

the second-order perturbation theory [97]. In this framework, the unperturbed

Hamiltonian, H0, for the crystal is defined in the harmonic approximation with

the atomic mass replaced by an averaged mass that depends on the number of unit

cells in the crystal and the fraction of a given atomic isotope. Then, the pertur-

bation, HI , which depends on the deviation of the isotope mass from the average
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mass, has its main contribution from the second-order term shown in Fig. 2.5(d).

The first-order and other higher-order diagrams derived from HI have either zero

contribution (due to the average mass definition) or are not significant in com-

parison to the second-order term [97]. Therefore, to study the most substantial

anharmonic effects in MgS and CaS, the FDM including only three-phonon pro-

cesses and the isotopic scattering shown is used.

The rest of this chapter is structured as follows. In Section 3.1 the necessary

elements to model the infrared response as well as the means to calculate them

are summarized. The results on optical properties are presented in Section 3.2

and compared to available theoretical and experimental findings. Finally, in Sec-

tion 3.3 the conclusions are made and the applicability of the approach used in

this work to model infrared optical properties of other materials is argued.

3.1 Computational details

The main goal is to calculate the optical response of MgS and CaS in the infrared

region using the generalized Lorentz model, with the dielectric function given by

Eq. (2.78). The self-energy Πj,0(ω) can be improved gradually according to the

Cowley perturbative approach [96]. In this work, its expansion is restricted to the

following form:

Πtot(ω) = Π3ph(ω) + Πisot(ω), (3.1)

where Π3ph is the anharmonic contribution to the total self-energy due to three-

phonon scattering processes, and Πisot is the isotope-disorder induced scattering

(Figs. 2.5(a)-(b) and 2.5(d)). The three-phonon part of the self-energy consists of

two terms known as the “bubble” and “tadpole” diagrams. The bubble term has

both real and imaginary parts whereas the tadpole has only the real part. Thus,
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the finite lifetime of the phonons due to the phonon-phonon interaction is solely

determined by the imaginary part of the bubble (B) diagram, Im
[
ΠB

3ph(ω)
]
, which

is the only term considered in our calculation. In general, the bubble diagram is

not diagonal in branch indices jj′, however, for the purpose of calculating optical

properties, it is sufficient to consider only the diagonal terms [95]. The second

term in Eq. (3.1) also contributes to the broadening of the harmonic frequencies.

Πisot(ω) is mostly visible at low frequencies and temperatures and, as shown in

the next section for the sulfide systems in question, it becomes smeared out by

the phonon-phonon interaction at high temperatures [97, 193].

The goal of this study is to model the reflectivity, which is characterized by a

frequency band of high reflectivity, i.e., the reststrahlen band [207]. The top and

bottom of this band are defined by the transverse (ωTO) and longitudinal (ωLO)

optical modes, respectively. These frequencies can be calculated from the har-

monic approximation alone by employing the non-analytical correction (NAC) at

almost zero q-vector [215]. It also means that the summation in Eq. (2.78) is

reduced to only those modes that fall within the reststrahlen band, i.e., the trans-

verse optical (TO) mode.

All calculations are performed using DFT and the projector-augmented plane

wave method (PAW) [152] as implemented in the VASP code (version 5.4.4) [190,

200]. The valence configurations are 3p64s2 for Ca, 2p63s2 for Mg, and 3s23p4

for S. The exchange-correlation (XC) term in the effective Kohn-Sham poten-

tial is approximated according to the Perdew-Burke-Ernzerhof parameterization

for solids (PBEsol) [216] of the generalized gradient approximation (GGA) [115].

This election is based on previous studies on MnS [217] for which, LDA and PBE

functionals were also tested but PBEsol was found to render the best structural

properties. Both CaS and MgS crystallize into rock-salt (RS) cubic structure, and
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their conventional unit-cells with 8 atoms are used. Integration in the Brillouin

zone is done on a Γ-centered grid of uniformly distributed k-points with a spacing

of 2π×0.3 Å−1. The selected plane-wave kinetic energy cutoff is 500 eV and con-

vergence of the structural optimizations is assumed when the total energy changes

are less than 10−8 eV and the forces on each atom smaller than 10−3 eV/Å. The

fully relaxed crystal structures (in unit-cell shape and ionic degrees of freedom)

are used as the underlying unit-cells for the generation of atomic displacements.

The displacement configurations are generated in accordance with the crystal

symmetry as implemented in the Phonopy code [94]. The 2×2×2 supercells are

used, which contain 64 atoms, and to obtain second-order FC, two displacement

configurations are sufficient. Then, the harmonic eigenfrequencies are calculated.

The NAC is employed to estimate the size of the reststrahlen band. To compute

the third-order FC necessary to calculate the self-energy, i.e., ΠB
3ph(ω) [95], the

FDM method is used as implemented in the Phono3py code [194]. Unlike for

the second-order FC, for the third-order case every pair of atoms in the super-

cell needs to be displaced, but in this instance, the crystal symmetry once again

helps reduce the overall number of required configurations. The phonon interac-

tion distance cutoff, i.e., the minimum distance allowed between displaced atoms

in the original configuration, is determined to be 9.8 Å and 9.0 Å for CaS and

MgS, respectively. These parameters allow us to achieve the maximum number

of displacement patterns possible, that is, 146 unique displacement configurations

for both systems. This condition of maximal displacement configurations is neces-

sary to converge the self-energy. Finally, the self-energy is computed on a uniform

12×12×12 q-point grid, resulting in the overall number of 720 q-points in the

first Brillouin zone.
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3.2 Optical properties

3.2.1 Harmonic approximation limit

Table 3.1: Lattice parameter (a), transverse and longitudinal optical modes (ωTO
and ωLO), Born effective charge (Z) and high frequency dielectric constant (ε∞)
calculated in this work [*]. Theoretical and experimental data available in the
literature are compared: †-Ref. [203], [-Ref. [204], ‡-Ref. [218], ?-Ref. [205], �-
Ref. [206], •-Ref. [219], /-Ref. [220], .-Ref. [221]. Note that in the Ref. [203],
the so-called Szigeti effective charge, ZS, is given instead of Z. The Born ef-
fective charge reported here can be obtained using the relationship [222, 223]

Z = (ε∞+2)
3

ZS. The high-frequency dielectric constant ε∞ used in Ref. [203] and
Ref. [205] was obtained from a semiempirical (SE) model in Ref. [220]. PP: Pseu-
dopotential.

System Method a(RS) ωLO ωTO ZCa,Mg ε∞
(Å) (cm−1) (cm−1) (e)

CaS PBEsol/FDM* 5.633* 341.6* 228.7* 2.350* 5.21*
LDA/PP/FDM?,SE/ 5.67? 354? 284? 1.802• 4.15/

EXP1[ 417[ 232[ 4.58.

EXP2† 5.697† 342† 229† 2.111† 4.15/

MgS PBEsol/FDM* 5.18* 393.0* 240.6* 2.314* 5.54*
LDA/PP/DFPT� 5.18� 397� 241� 2.35� 5.66�

EXP1[ 5.200‡ 435[ 240[ 4.80/

Firstly, the dynamical properties of CaS and MgS within the harmonic ap-

proximation are analyzed. As was discussed above, it is imperative to establish

correctly the bounds of the reststrahlen band needed subsequently to calculate

the reflectivity. In Table 3.1, the predicted values for the lattice parameter a, the

transverse ωTO and longitudinal ωLO optical modes, the Born effective charge Z,

and the high frequency dielectric constant ε∞ for CaS and MgS are summarized.

Their computed phonon band spectra are shown in Fig. 3.1(a) and Fig. 3.1(b),

respectively. The calculated phonon band structure for CaS is in good qualita-

tive agreement with a previous LDA/Pseudopotential/FDM study [205] using the

SIESTA implementation [224] as shown in Fig. 3.1(a). The main quantitative dif-
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Figure 3.1: Our simulated phonon bands within the harmonic approximation are
shown in solid lines for (a) CaS and (b) MgS. Different colors correspond to indi-
vidual normal modes of motion: three acoustic bands (red, orange, and blue), and
three optical bands (violet, brown, and green are the two TO and one LO mode,
respectively). Hollow squares [205] (CaS) and hollow circles (MgS) [206] represent
data taken from previous modeling studies. Experimental values shown in solid
symbols for the TO and LO modes are denoted by EXP1 [204] and EXP2 [203].
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ferences are due to lower frequencies predicted in our work for all phonon bands.

This inconsistency in frequency magnitudes could be partially attributed to our

slightly smaller lattice parameter aCaS = 5.633 Å with respect to aCaS = 5.67 Å

of Ref. [205], which is in slightly better agreement with single crystal measure-

ments [203] of aCaS = 5.697 Å. However, the calculated phonon band structure

seems to be more consistent with experimental data [203, 204], as our predicted

LO/TO splitting of 113 cm−1 agrees well with reported values of 113 cm−1 by

Ref. [203]. From Table 3.1, it can be noticed that the two experimental studies

find nearly the same value for ωTO, but they differ in the magnitude of ωLO. An

apparent reason for this discrepancy could be traced back to the method employed

to extract ωTO and ωLO from experiments. Both studies use a single oscillator

model in their dispersion analysis and adopt an expression virtually identical to

Eq. (3.1), but they treat the self-energy as frequency independent, giving it the

role of a damping constant. In EXP1 [203] (in combination with ε∞ taken from

Ref. [221], the real and imaginary parts of the dielectric function, Re(ε) and Im(ε),

are constructed from reflectivity data, then ωTO and ωLO are taken as the max-

ima of Re(ε) and Inv[Im(ε)], respectively. On the other hand, in EXP2 [204] the

TO and LO frequencies are treated as adjustable parameters to parameterize the

reflectivity and fit the data. Thus, although the resolution of ωTO seems to be

independent of the method, the latter seems to be in better agreement with the

current computation. Nevertheless, the calculated LO/TO splitting of 70 cm−1 by

Ref. [205] is underestimated by at least 38% with respect to both measurements.

This underestimation could be linked to their Born charge of ZCa = 1.802e and

high-frequency dielectric constant ε∞ = 4.15 taken from Ref. [219] and Ref. [220],

respectively. In contrast, the Born charge of this work ZCa = 2.350e, calculated

directly from the relaxed CaS structure, is much closer to the experimental value
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of 2.111e. Here, it is clearly observed that a self-consistency among the required

elements entering in the calculation of ωTO and ωLO is highly desirable, in par-

ticular, the LO/TO splitting is rather sensitive to the Born effective charge, as

it enters the NAC as Z2. An accurate determination of the TO mode is rather

significant for the modeling of the reflectivity as it controls the edge of the rest-

strahlen band [207].

In the case of MgS, the predicted lattice parameter aMgS = 5.180 Å (Table 3.1) and

phonon band spectrum, (Fig. 3.1(b)) are in excellent agreement with an earlier

LDA/Pseudopotential/DFPT study [206] as implemented in the quantum espresso

code [225]. The Born effective charge ZMg = 2.314e and high-frequency dielectric

constant ε∞ = 5.54 are also in close agreement with the values found in Ref. [206]

of ZMg = 2.35e and ε∞ = 5.66. These findings further support the idea that the

main reason for the significant difference between our results and Ref. [205] in

the case of CaS stemmed from the sizeable difference in the values of ZCa and

ε∞. However, the LO/TO splitting of 152 cm−1 obtained in this work, and the

other ab initio value of 156 cm−1 are both, about 20% smaller than absorption

spectra data [204] reporting a LO/TO splitting of 195 cm−1. But, as discussed

previously for the CaS system, the method used by Ref. [204] to determine ωTO

and ωLO seems to give an overestimated value for ωLO (Table 3.1), which could

be the main source of divergence between the calculated and the experimental

values.

3.2.2 Anharmonic effects

Next, the anharmonic effects and their role in the optical properties of CaS and

MgS are discussed. As explained in the previous section, the only contributions to

the self-energy that are considered are the three-phonon Π3ph scattering processes
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and the isotopic disorder Πisot.

It can be noticed that the Πisot contribution is only prominent at very low tem-

perature, and its effect can be seen clearly in the imaginary part of the dielec-

tric function, Im(ε), as shown in Fig. 3.2. More specifically, the isotope-disorder

scattering manifests itself as an oscillatory behavior of the imaginary part of the

dielectric constant, more prominently for MgS than for CaS, but distinctly evident

for both compounds in the region between 150 and 220 cm−1. Three-phonon pro-

cesses are essentially absent at low temperature and low wavenumbers, thus the

isotopic disorder is the leading term in this region. But as temperature increases,

the three-phonon processes become dominant and smear out the isotope-disorder

part. In addition, one can also observe the Im(ε) peak slightly shifting towards

lower wavenumbers. Higher-order scattering processes (e.g., four-phonon contri-

butions) are expected not to have a drastic effect on the computed Im(ε) of MgS

and CaS. This assumption is in line with modeling results for MgO [193], as it was

demonstrated that the four-phonon processes start being substantial at relatively

high wavenumbers when the three-phonon contributions vanish.

The calculated reflectivity at three different temperatures for CaS and MgS is

shown in Fig. 3.3. Here, one can immediately see the importance of the precise

prediction of the ωTO value, as it defines the reflectivity maximum. The width

of the plateau at low temperature is mostly determined by the high-frequency

dielectric constant ε∞ and the Born effective charge Z. As temperature increases,

both edges of the plateau smear out, although the change is much more obvious

at the higher-wavenumber end. This effect is due to the anharmonic interactions,

which become more notorious with increasing temperature. For MgS, Fig. 3.3(b),

characteristic shoulders are observed between ∼325 cm−1 and ∼425 cm−1. These

features appear in MgO [193, 207] as well. It can also be noticed that for MgS,
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these shoulders show a somewhat spiky structure. For CaS, these shoulders are

more prominent as temperature increases, that is, ≥ 300 K. The only available

experimental report is on the reflectivity of CaS [203] as shown in Fig. 3.3(a).

Compared to the reflectivity computed at 300 K, there is a good qualitative

agreement with some systematic quantitative deviation. The predicted position

of the TO peak is only 0.14% lower than the measured one at 229 cm−1. In

general, the experimental reflectivity values seem to be smaller than the simula-

tion results in the region considered. It is highly unlikely that the inclusion of

additional anharmonic terms in the Cowley expansion of Eq. (3.1) would reduce

the overall magnitude of our predicted reflectivity. Namely, it is possible that

the main cause for the overestimation of the reflectivity has its roots in the calcu-

lated force constants, and consequently, the estimated strength of the anharmonic

effects. Perhaps, larger supercells could improve the overall FC values because

they would allow for larger interaction distances between phonons, however, the

computational cost would increase significantly. The other peculiar feature of the

predicted reflectivity curves for CaS and MgS is the presence of several peaks in

the high-wavenumber shoulders. Such structures are not observed in the experi-

mental study on CaS [203], where all possible anharmonic effects are, of course,

present. It is conceivable that the inclusion of higher-order phonon processes

could remove these spiky structures in that region as it is shown in the case of

MgO [193], in which both three- and four-phonon processes were included and

a smooth computed reflectivity is achieved. Therefore, it can be argued that at

the level of present simulations, both CaS and MgS seem to be more anharmonic

in the sense that, more anharmonic terms are needed to be included in order to

reach a better agreement with the experimentally observed reflectivity, but such

studies are outside of our current resources and are left for future explorations.
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At this point, it is worth mentioning that the experimental results used for com-

parison in the previous discussion are from single-crystal measurements. However,

there are experiments in which, powdered (pressed pellets) samples are studied

also with the infrared spectroscopy technique. This experimental approach is

particularly relevant in planetary investigations, as dust is likely to be studied

directly on the planet’s surface thanks to spectrometers in missions or in simu-

lated conditions in the laboratory [226]. However, the use of pressed pellets leads

to scattering, and diffused reflection or refraction, resulting in an overall weaker

reflectivity measurement [227]. It has been also observed that, sometimes, reflec-

tivity spectra from powdered samples retain qualitative features of the reflectivity

of single crystals, that is, the measured peaks do not shift in wavenumber but only

decrease in magnitude [228]. In such a scenario, the harmonic modeling using the

generalized Lorentz model can still be expected to be applicable but adjusted to

measurements from sulfide powders, by modifying the number of oscillators and

the damping coefficient. Thus, the self-energy (which plays the role of the damp-

ing factor) in Eq. (3.1) would be dominated not by anharmonic contributions but

by processes specifically differentiating between single crystal and pressed pellets,

e.g., scatterings, grain sizes, etc.

In recent years, a spectral library of sulfide minerals was initiated to support

investigations of Mercury’s surface chemistry, a study [226] reported reflectance

(R) measurements of synthetic CaS and MgS powders in the range from far in-

frared (FIR) until visible (VIS), at Mercury’s day surface temperature (∼773 K).

Reflectance is related to reflectivity in that the latter is the reflectance of a semi-

infinite slab [193]. Therefore, a direct and straight comparison between their

reflectance magnitudes is not possible, nonetheless, the position of their maxima,

which should coincide, can still be investigated. The measured R maximum in

70



the FIR region for MgS (sample denoted “MgS-2” in Ref. [226]) occurs at the

wavelength of 40 µm, equivalent to a wavenumber of 250 cm−1. In comparison,

the predicted maximum of the reflectivity is at 240 cm−1 and 300 K. Finally,

for CaS, the reflectance measurements [226] position its peak at a wavelength of

about 8 µm, that is, a wavenumber of about 555 cm−1, this value is in drastic

disagreement with our calculated position for the reflectivity peak at 228.7 cm−1

and the single crystal measurements [203, 204] of 229 and 232 cm−1. This sharp

difference in the position of the maxima from reflectance and reflectivity could

be due to the use of CaS powder in the case of the reflectance experiment [226],

however, further experiments would be necessary to clarify the discrepancy.

3.3 Conclusions

In summary, a full first-principles study of the reflectivity of CaS and MgS in the

infrared region has been conducted. Both harmonic and anharmonic contributions

have been considered. Within the harmonic limit, the non-analytic correction was

used to obtain the correct LO/TO splitting. An accurate determination of the

TO and LO peaks is highly desirable as they provide the boundaries of the rest-

strahlen band, i.e., the low- and high-frequency edges of the maximum reflectivity.

The effects of the anharmonicity have been included by considering three-phonon

scatterings and isotope-disorder processes at the lowest perturbation level. The

anharmonic terms’ main influence occurred in the smear of the reflectivity spec-

tra’s edges, being more prominent in the higher-wavenumber region.

Although higher-order anharmonic terms have not been included, e.g., four-phonon

scatterings, it is reasonable to assume that these processes would be only no-

ticeable in the high-wavenumber region of our study, outside of the maximum

reflectivity peak, as it has been shown to be the case for MgO [193]. However,
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these higher-order anharmonic terms could eliminate the spiky structures in the

predicted reflectivities. Finally, it might be worthwhile to try to incorporate

the anharmonic terms into the modeling of the polycrystalline and powder sam-

ples. Although, in this case, they are expected to play a secondary role since the

self-energy, i.e, the damping constant would be dominated by processes that are

characteristic of powder pellets such as diffused reflection and refraction.
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Chapter 4

Magnetic sulfides: MnS

polymorphs

Some of the results presented in this chapter, in particular Sec. 4.2, have been

published [217].

The main goal of this chapter is to model the optical response of a series of PM

MnS polymorphs in the FIR region. As before, this requires the calculation of a set

of forces, which are extracted from DFT calculations for displaced configurations.

However, in the case of MnS the electronic structure modeling is complicated by

the presence of d−electrons, which give rise to local magnetic moments. As was

mentioned previously, modeling PM state as non-magnetic is often inadequate

and leads to qualitatively wrong behavior, e.g., a system exhibits metallic fea-

tures instead of insulating [187, 188]. An incorrect electronic ground state would

undoubtedly produce interatomic forces, which cannot be considered reliable. In

order to model the PM state of MnS polymorphs, a combination of DFT and

SQS is employed. The goal here is to show that without resorting to specialized

theories of highly correlated materials beyond on-site corrections (DFT+U), the

insulating PM phase of MnS can be achieved by introducing magnetic disorder
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using SQS. Also, occupation matrix control methodology to handle localization

of Mn d-states is used [176]. In this way, comparable physical properties such

as lattice parameter, energy gap, and local magnetic moment to those observed

experimentally are produced. Additionally, using different PM MnS polymorphs’

ground states as candidates for high-pressure phases, their enthalpies as a function

of pressure are calculated in order to pinpoint possible structural transformations

of B1-MnS. The PM MnS polymorphs’ structures are constructed and optimized

following the SQS formalism previously described.

Having confirmed that DFT+SQS method is able to produce PM states with

physical properties comparable to those measured in the experiment, this method

can be used to calculate interatomic forces for displaced atomic configurations,

which are then used to calculate the phonon band structure. The main difficulty

here is that the phonon bands can be very sensitive to various magnetic orderings,

and might produce soft modes. This issue can be overcome by considering pro-

gressively more complex SQS constructs, i.e., structures with higher-order figures

and larger interaction distances, Fig. 2.2. This procedure is explained in great

detail in Sec. 4.3. After finding stable SQS for each of the polymorphs of interest,

the anharmonic effects can be introduced in the same fashion as in the previous

chapter for CaS and MgS.

The remainder of this chapter is structured as follows. The computational details

regarding both the electronic structure calculations, phonon bands, and reflectiv-

ity are given in Sec. 4.1. In Sec. 4.2, the electronic structure of MnS polymorphs

is discussed. Finally, the optical properties of B1-, B4 and B31-MnS are presented

in Sec. 4.3.
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4.1 Computational details

All of the calculations were performed within DFT+U , using the projector-augmented

plane wave method (PAW) [152] as implemented in the VASP (version 5.4.4) code

[190, 200]. The valence configurations were 4s13d6 for Mn, and 3s23p4 for S, respec-

tively. The exchange-correlation (XC) term in the effective Kohn-Sham potential

was approximated according to the Perdew-Burke-Ernzerhof parameterization for

solids (PBEsol) of the generalized gradient approximation (GGA) [216]. To treat

the Coulomb repulsion of the Mn d-electrons, the Hubbard-U correction [136] was

added within the rotationally invariant Dudarev prescription, Eq. (2.39), which

can also be written as [147]:

EU =
U

2

∑
I,σ

∑
i

λI,σi (1− λI,σi ). (4.1)

As it is well known, EU represents a penalty energy proportional to U (here U

represents the effective difference between the on-site Coulomb and exchange in-

teractions) for atom I and spin channel σ. λI,σi are the eigenvalues (with values

between 0 and 1) of the occupation matrix (OM) nI,σm,m′ for an orthogonal set of

localized orbitals i, which, in general, are the linear combinations of the atomic

d-orbitals m. For all simulations a value of U = 3 eV was chosen, as it was already

tested for the AFM B1-MnS phase at 0 GPa [175]. The local density approxi-

mation (LDA) [112] and the standard PBE [119] XC functionals +U were also

assessed, but it was found that PBEsol+U produced structural parameters that

were in better agreement with available experimental values for both AFM and

PM phases of MnS. Therefore, only results within this scheme are presented in

the remaining sections.

Integration in the Brillouin zone was done on a Γ-centered grid of uniformly dis-
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tributed k-points with a spacing of 2π×0.3 Å−1. The selected plane-wave kinetic

energy cutoff was 500 eV and convergence of the structural optimizations was

assumed when the total energy changes were less than 10−8 eV and the forces on

each atom smaller than 10−3 eV/Å.

To simulate magnetic ordering (AFM below TN) and disordering (in PM phases

at TR) large enough supercells have to be built in order to accommodate the

appropriate AFM orderings as well as to allow for multiple relaxation patterns.

These two features have been shown to lead to gap opening in TM oxides and

perovskites [187, 188]. Overall, four MnS polymorphs were considered, namely,

RS (B1, Fm3m), wurtzite (WZ or B4, P63mc), GeS-type (B16, Pnma) and MnP-

type (B31, Pnma).

To model the structures below TN , the AFM-II and AFM-III orderings observed

experimentally in the B1 and B4 polymorphs, respectively, were imposed [54]. For

the B16- and B31-MnS structures there is no experimental or computational data

on their precise magnetic ordering, except for one report stating that the B31

polymorph is PM above 5 K [83]. Consequently, several possible AFM arrange-

ments were tested and the lowest energy configurations were adopted. All MnS

polymorphs structures were optimized using 64-atom 2×2×2 supercells, except

for B4-MnS, for which a 36-atom 3×3×1 supercell was sufficient to realize the

experimentally observed AFM-III ordering.

On the other hand, to model the PM MnS polymorphs, SQS supercells were con-

structed using the ATAT software package [201]. Under this scheme, the PM state

is created as a disordered alloy of up ↑ and down ↓ moments located at different

sites. As the construction of an SQS is based on the computation of the correla-

tion function between the species that constitute the alloy (↑ and ↓ moments in

this case), the size of the supercell (number of atoms) used is vitally important
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to obtain magnetic configurations whose components are not spatially correlated

among themselves. The SQS degree of randomness is improved by the number

of atomic figures (pairs, triplets, quadruplets, etc.) included in the calculation of

the correlation function and by the interaction distance between the atoms in a

given figure. For example, one could start by only considering nearest neighbors

for atomic pairs, then gradually add more pairs (increasing the interaction dis-

tance), and/or higher order figures into consideration. The larger the interaction

distance and the more figures are considered, the larger the supercell becomes

to achieve total randomness, and the SQS generation quickly becomes computa-

tionally demanding. Because the creation of an SQS is purely configurational, in

order to save resources, for this study a previously produced SQS supercell for

the B1 structure of TM oxides [187] with 64 atoms was used. For the B16- and

B31-MnS polymorphs, pairs and triplets were included to obtain 64-atom 2×2×2

SQS’s supercells. Similarly, for the B4 structure, 2×2×2, 3×3×2 and 4×4×1

supercells with 32, 72 and 64 atoms, respectively, were tested resulting in ground

state energy differences among them of less than 10−3 eV per formula unit (f.u.),

thus, the 32-atom supercell was taken.

Finally, under pressure (P ) it turned out to be impossible to converge some PM

MnS structures to stable ground states. In order to deal with this obstacle, it has

been noticed that non-integer occupancies in Eq. 4.1 may lead to local minima

and not allow a system to achieve its true ground state. Thus, by controlling

orbital filling explicitly in nI,σm,m′ , one can help a non-converging trapped system

circumvent a metastable OM ill-setup. This method was shown to find stable

states, previously inaccessible, for d and f oxides [176]. Therefore, in the current

collinear magnetism approach, to keep the magnetic ordering as determined at

0 GPa, and at the same time isolate energy changes due only to structural trans-
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formations for P > 0 GPa, for a given Mn ion in all polymorphs the same diagonal

unitary occupation of its dm orbitals (m = −2,−1, . . . , 2 ⇒ 5×5 matrices) was

specified using the “occupation-matrix-control-in-VASP” algorithm [176]. In this

way, the formerly problematic cases were able to converge.

4.2 Electronic structure

4.2.1 AFM ordering in MnS

First, DFT+U optimized MnS polymorphs with the AFM ordering considered

for each structure are shown in Fig. 4.1. The predicted lattice parameter a0 =

5.172 Å for B1-MnS (Fig. 4.1(a)) is only ∼0.8% smaller than its experimental

counterpart of 5.212 Å [54]. As it was mentioned in Chapter 1, the AFM-II onset

in the B1-MnS structure leads to a trigonal distortion, the degree of this distortion

can be estimated by the magnitude of the cube corner angle given by π
2

+∆, where

∆ measures the deviation from the ideal cubic symmetry. For the relaxed B1-MnS

polymorph the distortion was found to be ∆ ≈ 0.095◦, which is in good agreement

with the observed deviation of 0.099◦ ± 0.015◦ [72]. For the hexagonal B4-MnS

polymorph the lattice parameters a0 = 3.963 Å and c0 = 6.437 Å were obtained,

which are in excellent agreement with experimental values of a0 = 3.987 Å and

c0 = 6.438 Å [54]. The optimized volumes per f.u. for each MnS polymorph are

listed in Table 4.1 for comparison and show that B4-MnS is the least dense.

As it is well known, computed DFT band gap energies (Eg) are ordinarily un-

derestimated, but from the simulations in this work it was found that all MnS

polymorphs are clearly insulating, as can be seen from Eg values in Table 4.1. For

B1-MnS a band gap value of Eg = 2.0 eV was obtained, which is to some extent, in

better agreement with the experimental value of about 3.1 eV [229], than reports
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Table 4.1: Computed volume V per formula unit (f.u.), energy gap Eg, and local
magnetic moment mloc of MnS polymorphs with AFM configurations.

Magnetic Polymorph V /f.u. Eg mloc

Ordering (Å3) (eV) (µB)
AFM-II RS B1 34.58 2.0 4.45
AFM-III WZ B4 43.76 2.4 4.43
AFM GeS B16 34.66 2.1 4.45
AFM MnP B31 34.38 1.6 4.42

of Eg = 1.36 eV as predicted from KKR-CPA [230], ∼1 eV from Perdew-Wang

(PW) GGA without U [231], and ∼1.5 eV from GGA-PW+U , with U = 3 eV

[175]. Overall, these findings imply that the magnitude of Eg increases with

V/f.u., with the hexagonal B4-MnS polymorph having the largest energy band

gap, while the orthorhombic B31-MnS structure the most narrow (Table 4.1).

The projected density of states of Mn s and d orbitals for all MnS polymorphs

are shown in Fig. 4.2. The band characters are assigned roughly by looking at the

m, l orbital quantum numbers and considering the crystal-field splitting observed

for the point group symmetries of the respective structures. For simplicity in this

symmetry analysis, spin and magnetic anti-unitary operators are not considered.

Of course, one could do a complete formal analysis using magnetic point groups

and magnetic irreducible co-representations [232] if one were after a thorough un-

derstanding of the bands, but for the purpose of this study it is not necessary.

It should be noted, however, that the onset of the AFM ordering lowers the site

symmetry, leading to additional lifting of orbital degeneracies. For example, the

d-states of octahedrally coordinated Mn2+ in B1-MnS split into two levels, a high

energy doublet (e2g) and a low energy triplet (t32g). Here, the band gap is opened

between eg–majority and t2g–minority bands, Fig. 2(a). However, the onset of

AFM-II ordering lowers the symmetry from octahedral Oh to rhombohedral D3d,

resulting in the additional splitting of the t2g states into a singlet and a doublet.
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Figure 4.1: AFM arrangements in the MnS polymorphs investigated in this work.
(a) B1 with AFM-II ordering and (b) B4 with AFM-III ordering were observed
experimentally [54]; AFM configurations for the (c) B16 and (d) B31 polymorphs
were generated in this study for comparison. S atoms are not shown for simplifi-
cation. Structures are visualized using VESTA [20]
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Figure 4.2: DFT+U local density of states (LDOS) for an Mn ion projected
on the majority spin (positive) and minority spin (negative) channels with U =
3 eV within AFM configurations for (a) B1, (b) B4, (c) B16 and (d) B31 MnS
polymorphs. The Fermi energy (EF ) level is represented by the dashed line at zero.
The characters of the d-states are interpreted through group theory analysis of the
corresponding crystal-field surroundings before the onset of the AFM order. This
is done for the purpose of comparison with the PM case. AFM ordering lowers
the symmetry as follows: in B1 Oh → D3d, in B4 C6v → C1h, in B16 D2h → C2h,
and in B31 D2h → C2h.
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In B4-MnS the hexagonal crystal field splits the d-shell into a singlet A1 and two

doublets E1 and E2. According to the calculation, in this structure the band gap is

opened between the A1–majority singlet and the E2–minority doublet, Fig. 2(b),

while the AFM-III ordering lowers the original C6v site symmetry to C1h. Lastly,

both B16- and B31-MnS structures belong to the same D2h point group. The

orthorhombic crystal field of this symmetry lifts the five-fold degeneracy of the

spherical d-shell leading to five singlets. Fig. 4.2(c) and (d) show that the band

gap is opened between B1g–majority and Ag–minority bands in both phases.

As can be seen from Table 4.1, the calculated local magnetic moments of the

four AFM-MnS polymorphs are very similar in magnitude. For B1-MnS we find

a mloc = 4.45 µB, which is in much better agreement with experimental observa-

tions of 4.54 µB [53] than earlier calculations of 4.92 µB under a Hartree-Fock

scheme [233], 4.39 µB from KKR-CPA [230], and 4.082 µB within GGA-PW

[231].

4.2.2 Magnetically disordered PM MnS

The calculated MnS polymorphs in PM states as modeled by the construction of

SQS are shown in Fig. 4.3. It is worth emphasizing the fact that in the calcula-

tions all degrees of freedom (lattice parameters and ionic positions) were allowed

to relax, unlike other studies using SQS structures for TM oxides in which the

symmetry and volume were kept fixed [187]. At first sight, these constrictions

may appear reasonable to apply, as experimentally, there is no observable distor-

tion from the cubic symmetry of the PM B1-MnS polymorph. Yet, allowing full

relaxations in ionic coordinates and lattice parameters of the SQS structures and

comparing them to their respective ideal symmetry could be a criterion to judge

how well the created SQS represents its polymorph. For example, for PM B1-
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Figure 4.3: Generated SQS supercells representing the PM state of MnS poly-
morphs as an alloy of randomly distributed Mn ↑ and ↓ magnetic moments for (a)
cubic B1, (b) hexagonal B4, and orthorhombic (c) B16 and (d) B31 structures.
S atoms are not shown for simplification. Structures are visualized using VESTA
[20].
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Figure 4.4: DFT+U partial density of states (DOS) for a Mn ion projected on
the majority spin (positive) and minority spin (negative) channels with U = 3 eV
within PM SQS’s for (a) B1, (b) B4, (c) B16 and (d) B31 MnS polymorphs. The
Fermi energy (EF ) level is represented by the dashed line at zero.

MnS (Fig. 4.3(a)) it was found that, as in the case of AFM order, there is a small

trigonal distortion. The computed deviation from the ideal cubic angle for the

used 64-atom SQS supercell is ∆ ≈ 0.024◦, whereas for a 216-atom SQS supercell

the deviation with ∆ ≈ 0.003◦ was obtained, one order of magnitude smaller than

for the 64-atom SQS supercell. Using the B1 64-atom and 216-atom SQS’s the

lattice parameters of a0 = 5.181 Å and 5.1807 Å were found, respectively. These

values are somewhat underestimated, but still in good agreement, with respect

to measurements of 5.225 Å [81], 5.225 Å [82], and 5.29 Å [83]. Similarly to the

AFM-ordered MnS phases, all PM MnS polymorphs were found to be insulators,
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although with smaller energy band gaps (Table 4.2) than their AFM counterparts

(Table 4.1). The PM Eg values (Table 4.2) suggest, however, that magnetic dis-

order affects the least the energy band gap of the hexagonal B4-MnS polymorph

in comparison to its AFM analog, while B16-MnS shows the largest Eg reduction.

It should be highlighted that even though for B1-MnS the predicted Eg = 1.4 eV

is fairly underestimated as compared to the observed values of 2.7 eV [234] and

2.8 eV [229], PM B1-MnS phase is insulating, unlike other calculations in which

it was found to be metallic [230, 235].

Finally, examining the calculated local magnetic moments in the PM phases listed

in Table 4.2, a slight increase in magnitude can be seen when compared to the

results in the AFM structures (Table 4.1). For the PM B1-MnS, the predicted

value is 4.50 µB.

Table 4.2: Computed volume V per formula unit (f.u.), energy gap Eg, and local
magnetic moment mloc of MnS polymorphs in PM state.

Magnetic Polymorph V /f.u Eg mloc

Ordering (Å3) (eV) (µB)
PM RS B1 34.76 1.4 4.50

WZ B4 44.06 2.3 4.44
GeS B16 36.94 1.2 4.50
MnP B31 34.94 0.9 4.46

To understand better the decrease in the magnitude of the PM energy band gaps

with respect to the AFM cases, the projected density of states of an Mn ion in

the PM state of the four MnS polymorphs are shown in Fig. 4.4. The calculations

show that the introduction of magnetic disorder in the MnS polymorphs spreads

and produces new spin-majority and spin-minority states in the Eg range of the

AFM ordered phases (Fig. 4.2). Consequently, magnetic disorder exclusively (as

the occupation matrix is constrained) forces a shift of the Fermi energy level in

reference to the ordered AFM cases, but in such a way that the resulting PM MnS
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phases remain insulating and hence with smaller energy band gaps. In principle,

different magnetic disorder given by distinct SQS’s would give rise to different

energy band gap openings. This effect was reported in the context of NbMnSb

by disordering Mn and Ni with respect to the sites they occupy in the ordered

phase [236]. Additionally, in Fig. 4.4(a) and (c) one can see that for PM B1- and

B31-MnS phases, the energy band gap opens, as in their AFM analogs, between

the eg–majority and the t2g–minority bands, and between B1g–majority and Ag–

minority, respectively. However, for PM B4- and B16-MnS phases, magnetic

disorder changes the character of the band gap openings in reference to their

AFM counterparts, to be between A1–majority and A1–minority (Fig. 4.4(b)),

and Ag–majority and B1–minority (Fig. 4.4(d)), respectively.

4.2.3 AFM to PM evolution of the band gap

More insights into the narrowing of the band gap of PM MnS can be gained

by introducing the magnetic disorder gradually. This task is accomplished by

studying in more detail the projected Mn DOS for a couple of configurations

slightly departing from the original AFM ordering.

Below, the results focusing solely on the B1-MnS structure are presented, although

for the other three polymorphs a similar analysis would also apply. Two cases of

slight disorder in the AFM-II 64-atom supercell of B1-MnS are investigated before

achieving a fully disordered PM structure. First, a structure in which a couple

of Mn atoms with antiparallel magnetic moments (D1-disorder) are swapped in a

180o chain is considered, and then a structure with two of such swaps (D2-disorder)

is studied, as shown in Fig. 4.5. For simplification, long-range interaction effects

between neighboring unit cells are excluded. To isolate the system’s reaction to

disorder, all relaxation effects are also suppressed and only the Γ-point is used
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Figure 4.5: Representation of slight deviations from the AFM-II ordering. Blue-up
and red-down arrows are Mn atoms with ↑- or ↓-magnetic moment, yellow balls
are S atoms. The violet lines indicate two cases of introducing “magnetic disorder”
by swapping Mn atoms of opposite magnetic moments. In the text, a structure
with D1-disorder corresponds to having only one pair of Mn-↑ and Mn-↓ swapped
(S1), whereas a structure with D2-disorder has swaps S1 and S2 as indicated.
Half-solid-half-dashed loops depict p-d hybridized orbitals. When two Mn atoms
with parallel magnetic moments are coupled through a 180o Mn↑-S-Mn↑ bond,
an additional coupling between d-derived orbitals also occurs d̃†i↑d̃j↑.

in the self-consistent calculation cycle. Taking the converged ground state for

the AFM-II B1-MnS phase as the reference state, in which the largest non-zero

hybridization integrals in Eq. 2.31 arise between Mn d-orbitals, and s- and p-

orbitals of S (Fig. 4.6(a)), it is observed that upon introducing D1-disorder (i.e.,

after the creation of an FM coupling in one of the 180o chains, Fig. 4.5), there
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Figure 4.6: Orbital-projected density of states on the majority spin (positive) and
minority spin (negative) channels with U = 3 eV of four different configurations
of the B1-MnS with increasing level of disorder. The magnitude of the p-states
is magnified by a factor of three for visibility. (a) The DOS of the AFM state is
largely determined by the p-d and s-d hybridizations between S and Mn-centered
orbitals. (b) and (c) The shrinkage of the band gap in the spin-majority channel
is mainly caused by the formation of a 180o Mn-↑-S-Mn-↑ chain that is absent in
the AFM case. Additionally, there is also splitting in the t2g-derived states. This
is mostly determined by the overall number of Mn atoms with parallel magnetic
moments in a given plane. For example, the structure D2 has the same number
of Mn-↑ atoms in xy and yz planes which is why degeneracy in these states is
observed, whilst this number is different in all planes in D1. (d) The fully random
SQS structure exhibits the features of D1 in the eg splitting whilst retaining the
xy + yz degeneracy shown in D2.

is now a possibility of additional combination between p-d hybridized orbitals

of neighboring Mn sites with parallel magnetic moments. This re-hybridization

seems to greatly contribute to the lift of the degeneracy of the t2g- and eg-derived
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states and the spreading and pushing of the latter at the top of the valence band,

effectively shrinking the energy gap as shown in Fig. 4.6(b). The effect of this

re-hybridization in the shift of eg states is more pronounced when D2-disorder

(with S1 and S2 swaps) is considered (Fig. 4.6(c)). However, once that a number

of swaps occur randomly and the PM state is reached in the SQS of B1-MnS,

the energy band gap reaches its final magnitude. Another possible mechanism of

re-hybridization, also partially responsible for the lift of the t2g degeneracy, can

take place within planes. In the AFM-II Mn d-orbitals hybridize with p-orbitals of

S ions located at 90o. That is, according to SK rules, in octahedral geometry dxy

orbitals hybridize only with px and py in the (010) and (100) directions, as shown

in Fig. 4.7(a). However, when the nearest Mn neighbors have parallel magnetic

moments, there is an additional coupling between the p-d hybridized orbitals

as depicted in Fig. 4.7(b). Such re-hybridization is made possible through the

admixture of p-states that provide the necessary spatial extension of the otherwise

highly localized d-states. These re-hybridized d̃-orbitals centered on the Mn atoms

can further mix with each other provided there is enough spatial overlap between

them. In such a case, the t2g degeneracy is predominantly determined by the

number of Mn atoms with parallel magnetic moments in xy, yz, and xz planes,

i.e., if this number is different for two given planes the degeneracy between the

respective orbitals is lifted, Fig. 4.6(b)-(c).

4.2.4 High-pressure landscape of MnS polymorphs

As discussed before, room-temperature experimental studies of the stability of the

B1-MnS polymorph under pressure, have reported a structural change to a new

phase. However, the results were not conclusive as the transition pressure and the

new phase were not uniquely determined [80–82]. Therefore, in order to examine
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the likelihood of a pressure-induced structural phase transformation of B1-MnS,

for each MnS polymorph the enthalpy (H) as a function of pressure (P ), volume

(V ), and internal energy (E) were computed, namely:

H(P ) = E[V (P )] + PV (P ). (4.2)

The relative enthalpy ∆H per f.u. of the MnS polymorphs studied here with re-

spect to the B1-MnS structure, i.e., ∆H = H(MnS-phase)−H(B1), as a function

of pressure between 0 and 60 GPa is shown in Fig. 4.8. Although high-pressure

experiments at TR deal with the PM phases of MnS results for both AFM and

PM polymorphs are presented. On one hand, the computed static ∆H values

suggest that if we were at a sufficiently low temperature to achieve AFM ordering

for all MnS polymorphs, B31-MnS would be the most stable phase at 0 GPa, and
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PT = 21 GPa

Figure 4.8: Static PBE+U relative enthalpy ∆H per f.u. between different (a)
AFM and (b) PM states of MnS polymorphs. All results are given in reference to
the B1 structure.

it would remain so up to 60 GPa, Fig. 4.8(a). On the other hand, from our static

calculations of the enthalpy in PM phases of MnS, Fig. 4.8(b), it can be concluded

that the RS structure B1-MnS is the most stable phase at ambient conditions, but

as pressure increases, it undergoes a transformation to the orthorhombic B31-MnS

polymorph at PT ≈ 21 GPa, as illustrated for clarity by the inset in Fig. 4.8(b).

The predicted PT in bulk B1-MnS is in close agreement with the experimentally

observed structural transformation of B1-MnS to an unidentified phase with lower

symmetry than hexagonal (B4-MnS) at ∼26 GPa [82]. Our determined B1→B31
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PT = 21 GPa

Figure 4.9: Pressure dependence of volume per f.u. for all PM MnS polymorphs
as predicted by the computations. The PM MnS results [?] are compared to
experimental values: EXP91 [81], EXP93 [82], and EXP15 [83]. The dashed line
indicates the predicted transition pressure (PT = 21 GPa) at which B1→B31.
Solid lines are fits of the 3rd order Birch-Murnaghan’s equation of state to the
calculated volumes.

transformation was also established at about 22.3 GPa in experiments synthesizing

high-pressure MnS nanorods [83], in which these B31-MnS nanorods were quench-

able to 0 GPa. Furthermore, static LDA+U DFT calculations (with an effective

U = 5.13 eV) performed alongside the experimental study found that, although

the B1- and B31-MnS polymorphs are energetically very close below 8 GPa, B31

is the most stable at all pressures between 0 and 40 GPa. However, unlike in our
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PT = 21 GPa

Figure 4.10: Lattice parameters as a function of pressure for cubic B1- and or-
thorhombic B31-MnS structures. Static PBE+U results [?] of our magnetically
disordered PM polymorphs are compared to experimental values: EXP91 [81],
EXP93 [82], and EXP15 [83]. The dashed line indicates our predicted transition
pressure (PT = 21 GPa) at which B1→B31.

static PBEsol calculations using the constructed magnetically disorder SQS PM

states of MnS, the former LDA+U modeling [83] does not specify how the PM was

simulated. It should be noticed as well, that the four PM polymorphs considered

here, at the level of current calculations, are remarkably close in energy at 0 GPa,

but the B1 possesses the absolute lowest energy per f.u., and as pressure increases,

B16 and B31 enthalpies increase slightly and then decrease to start competing for

stability against the B1-MnS structure, with B31-MnS eventually becoming more

stable at PT ≈ 21 GPa. The predicted behavior from the computations for the
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AFM MnS polymorphs’ enthalpy trends are surprisingly in qualitative agreement

with the LDA+U modeling of the B1- and B31-MnS phases [83]. The predicted

change in volume per f.u. with increasing pressure for the PM MnS structures

modeled in this study is shown in Fig. 4.9. As can be seen, the experimental

volumes for cubic B1-MnS [81, 82] are exceptionally consistent with the findings

of this work. The largest deviation from the computed V/f.u. occurs for B31-MnS

with respect to measurements provided from high-pressure experiments on MnS

nanorods [83]. As a consequence of the B1→B31 structural transformation, from

the calculated trends a decrease in volume of MnS of only approximately 2% at PT

is obtained. This volume reduction, however, is one order of magnitude smaller

in contrast to the one observed in the B31 nanorods [83].

A closer look at the pressure dependence of the predicted lattice parameters for

the B1-MnS shows that the values calculated in this work are in excellent agree-

ment with available experimental data [81–83], as can be seen in Fig. 4.10. In the

case of B31-MnS, the calculated a, b, and c lattice constants are systematically

overestimated by about ∼10%, ∼5% and ∼4%, respectively, in comparison to ex-

perimental values at high pressures [83]. At 0 GPa, the agreement between the

results obtained in this work and the experimental values becomes much better

for a0 and b0, but curiously the calculated value of c0 is ∼8% larger than the only

measurement reported up to date [83].

Lastly, the bulk modulus at 0 GPa (K0) was obtained from Birch-Murnaghan’s

third-order equation of state (EOS) fittings to the P − V data between 0 and

60 GPa. The predicted K0 ≈ 92 GPa (with its pressure derivative K ′0 = 3) for

PM B1-MnS is in reasonable agreement with the experimental value reported of

88±6 GPa as fit with a variable K ′0 [82]. Our result is, however, overestimated

by almost 20%, when the experimental data is fit using a constant K ′0 = 4. A
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comparison between the computed bulk moduli indicates that B1-, B16-, and

B31-MnS polymorphs oppose almost indistinguishable resistance against volume

compression under hydrostatic pressure, while B4 is the easiest to compress with

a K0 ≈ 57 GPa.

4.3 Optical properties

In this section, the results on the optical properties of the B1-, B4-, and B31-MnS

polymorphs are presented. Firstly, the vibrational properties are studied within

the harmonic approximation, to investigate the dynamical stability of various SQS

supercells. It is imperative for the modeling of the anharmonic effects that the

constructed SQS supercells do not contain soft modes. To this end, different SQS

configurations with increasing complexity, i.e., with higher-order figures of larger

orders are examined. After stable SQS supercells are found, the anharmonic

effects are introduced to compute the dielectric function and reflectivity of the

selected PM MnS polymorphs.

4.3.1 Harmonic approximation

As previously stated, an accurate calculation of the phonon self-energy requires

a soft-mode-free band structure, since the presence of negative frequencies would

indicate dynamical instabilities and lead to erroneous results for the dielectric

function, reflectivity, etc. Systems with local magnetic moments can be rather sen-

sitive to different magnetic configurations and might produce fictitious soft modes.

Considering that the systems of interest are known to be stable structures at room

temperature, it is reasonable to expect that there exists at least one magnetic con-

figuration that yields a phonon band structure without soft modes. However, the

number of possible arrangements of local magnetic moments is practically infi-
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nite, therefore, a consistent search scheme for stable magnetic configurations is

necessary.

As before, the PM state of all systems of interest is modeled as an alloy of ran-

domly distributed “up” and “down” local magnetic moments. This distribution

is achieved by using the SQS method. Increasingly more complex SQS supercells

need to be considered until a stable configuration is found. The complexity of a

given SQS structure is determined by the type of figures f(k,m), Fig. 2.2, which

are used to generate the cell. The search scheme can be summarized as follows:

1. An SQS configuration is generated for a given size supercell and figure type

f(k,m).

2. The phonon band structure for this configuration is calculated within the

harmonic approximation and checked against the presence of the soft modes.

3. If soft modes are present, a more complex SQS structure is generated. As a

general rule, the order k from the previous run is kept, and the interaction

distance m is increased. Only the “perfect” SQS configurations are consid-

ered. Thus, if a critical value for m is reached for a given vertex k, for which

it is no longer possible to generate a “perfect” SQS, then the next vertex k

is introduced.

4. Alternatively, going beyond a critical m value for a given vertex k, would

need larger size of the SQS supercell.

5. Steps 1-3, or if needed step 4, are repeated until a soft-mode-free SQS is

found.

Another important feature of the phonon band structure calculation in magnetic

systems is the aspect of the symmetry of the underlying lattice. Generally, an SQS
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cell of randomly distributed magnetic atoms will have a lower symmetry than the

non-magnetic primitive cell. In this case, a larger number of displacements is

needed to construct the interatomic force constant matrix. The SQS supercell

also contains a larger number of atoms, which leads to more modes of motion,

i.e., more phonon bands. On the other hand, experimental studies of vibrational

frequencies of magnetic systems using, for example, neutron scattering reveal the

phonon bands that correspond to the non-magnetic primitive cell. Therefore, it is

clear that the dynamical matrix should be diagonalized for the underlying prim-

itive cell with the inclusion of the effects of local magnetic moments. Here, this

condition is satisfied by generating displaced configurations for the non-magnetic

primitive cell. The distribution of local magnetic moments, as determined by SQS

method, is then included in the displaced configurations for the calculation of the

interatomic forces. This approach allows to preserve the underlying symmetry of

the primitive cell and includes the effect of magnetism. The physical justifica-

tion for such a method lies in the different time scales of atomic vibrations and

spin flips [185, 237]. Spin flips, which govern the fluctuation of local magnetic

moments, happen much faster than atomic vibrations. In other words, by the

time an atom completes one period of oscillations, it will have undergone several

magnetic configurations. Therefore, an atom would “see” the average effect of

all possible arrangements of local magnetic moments, resulting in the symmetry

preservation of the underlying non-magnetic primitive cell. This approximation

is similar in spirit to the Born-Oppenheimer approximation, in which the same

argument is used for decoupling electronic and atomic degrees of freedom.

97



Table 4.3: Parameters used for SQS construction

Structure Size Type of figure f(k,m) Soft modes
k=2 k=3 k=4 k=5

B1 SQS-1 4×4×4 m = 7.00 − − − B point
SQS-2 4×4×4 m = 7.00 m = 5.00 m = 5.00 − Γ point
SQS-3 4×4×4 m = 7.00 m = 5.00 m = 5.00 m = 5.00 None

B4 SQS-1 2×2×2 m = 5.00 m = 12.00 − − Γ point
SQS-2 4×4×1 m = 6.20 − − − None

B31 SQS-1 2×2×2 m = 4.00 m = 6.00 − m = 4.23 Γ point
SQS-2 2×2×2 m = 4.00 m = 6.00 − m = 5.30 Γ point
SQS-3 2×2×2 m = 4.00 m = 6.00 − m = 6.00 Γ point
SQS-4 2×2×2 m = 4.00 m = 6.00 − m = 5.30 None

B1-MnS polymorph

The SQS structures tested for the B1-MnS polymorph, as well as their calculated

phonon band dispersions, are shown in Fig. 4.11. The face-centered cubic lattice

(FCC) was used as the underlying primitive cell with two atoms instead of the

conventional simple cubic lattice used in the study of pressure-induced phase tran-

sitions. The choice of the FCC lattice is purely for technical reasons as it makes

the introduction of the anharmonic effects more convenient. The optimal soft-

mode-free structure for the B1-MnS phase was found by progressively increasing

the type of figures (parameter k in f(k,m)) to generate the SQS configurations,

Table 4.3. The SQS-1 structure, which was obtained considering only pairs of

atoms (k = 2), displays soft modes of large magnitude around point B in the BZ,

Fig. 4.11(a). Including more complex figures such as triplets (k = 3) and quadru-

plets (k = 4) almost eliminated all negative frequencies, Fig. 4.11(b). However,

there are still some soft modes of low magnitude at the Γ-point. This case is

quite typical for the phonon bands of magnetic systems which are modeled using

the SQS technique and have been also observed in other systems. Finally, with

the inclusion of k = 5 figures, it was possible to obtain a phonon band structure
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Figure 4.11: B1-SQS and phonon bands. BZ corresponds to the first BZ of the
primitive cell of B1-MnS. Different colors are applied to distinguish the bands
crossings [94]. This is done independently for each segment, i.e., specific colors
in one segment do not correspond to the same bands in the other segment. The
NAC correction was applied only to the soft-mode-free SQS-3.
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without any negative modes, Fig. 4.11(c).

B4-MnS polymorph
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Figure 4.12: B4-SQS and phonon bands. BZ corresponds to the first BZ of the
primitive cell of B4-MnS. Different sizes of SQS were tested. (a) 2×2×2 SQS
supercell kept producing soft modes in the vicinity of Γ point for various values of
k and m. (b) Using 4×4×1 SQS supercell, it was possible to obtain a soft-mode-
free phonon band structure.

The search for a stable PM B4-MnS SQS configuration was slightly different from

the B1-MnS case. Initially, a 2×2×2 SQS supercell was tested. For this size,

only the inclusion of pairs and triplets allowed the generation of a “perfect” SQS,
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Table 4.3. The figures of higher orders did not produce perfectly disordered struc-

tures. The investigation of the 2×2×2 SQS supercell with pairs and triplets re-

vealed soft modes around the Γ-point, Fig. 4.12(a). As previously discussed, if

figures of higher order for a given supercell size do not produce an SQS configura-

tion without soft modes then a different size must be tested. Therefore, a 4×4×1

SQS supercell was generated. This size allowed us to increase the pair interaction

distance and still obtain a “perfect” SQS. Such structure immediately created

a soft-mode-free phonon band dispersion without having to include higher order

figures, Fig. 4.12(b).

B31-MnS polymorph

All tested B31-MnS SQS configurations are shown in Fig. 4.13−4.14. Configu-

rations SQS-1, SQS-2, and SQS-3 exhibited similar instabilities at the Γ point.

Increasing the number of figures did not resolve the issue, leading only to slight

changes in the magnitude of the soft modes. Normally, at this point, the size

of the supercell should be increased in order to accommodate higher interaction

distance m within figures of order k. However, this step would need a significant

increase in the computational cost. Thus, a slightly different approach was tried

in this case. From Fig. 4.14(a), it is noticed that the soft modes appear only

in one acoustic band, whereas the other two appear stable. In other words, the

vibrational instabilities are only observed in one direction, which is given by the

eigenvector of the acoustic band that possesses those soft modes. Therefore, in-

stead of constructing a new SQS configuration, the magnetic configuration could

be altered only in the direction of instability. The direction of atomic oscillations

is a linear combination of the three basis lattice vectors, therefore, the magnetic

ordering along these vectors could be modified. In this case, a natural choice
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Figure 4.13: B31-SQS and phonon bands. BZ corresponds to the first BZ of the
primitive cell of B31-MnS. Various values of k and m were not able to completely
remove negative frequencies at the Γ point.

would be the b-direction since this lattice parameter is almost twice shorter than

the other two, Fig. 4.10. A portion of the SQS-3 configuration is taken, namely

the 2×1×2 part, and then repeated along the b-direction. The resulting structure

and its phonon bands are shown in Fig. 4.14(b). As can be seen, such construc-
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cell possessed soft modes only in one acoustic band, the 2×1×2 part of SQS-3
was doubled in the b-direction. (b) A supercell thus obtained, SQS-4, produced
phonon band structure without negative frequencies.

tion completely removed the soft modes that were present in one of the acoustic

bands of an initial SQS-3 configuration. However, the SQS-4 configuration is not,

strictly speaking, an SQS construct, since the correlation function does not match

that of a perfectly random alloy.
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4.3.2 Anharmonic effects, reflectivity

B1-MnS polymorph

The dielectric function used here was modeled based on a slightly modified form

of the Lorentz model [238]:

ε(ω) = ε∞ +
ε∞(ω2

LO − ω2
TO)

ω2
TO − ω2 − iωΓ(ω)

, (4.3)

where Γ(ω) is the imaginary part of the phonon self-energy. The main difference

from Eq.(2.78) is that the oscillator strength is expressed directly in terms of the

difference between the LO and TO modes. The third-order force constants were

calculated using 4×4×4 supercells constructed from the FCC primitive cell. This

supercell size resulted in the overall number of 442 displacement configurations,

which corresponds to the phonon interaction distance of 10.44 Å. The local mag-

netic moments in the displaced configurations were distributed according to the

stable SQS cell found in the previous section, i.e., SQS-3 in Fig. 4.11(c). The

imaginary part of the self-energy was calculated on a 12×12×12 q-grid in re-

ciprocal space. Since the main interest is to study the room/high temperature

paramagnetic state of MnS, the isotope-disorder scattering effects were ignored

as it was shown in the previous chapter that they are mostly visible only at low

temperatures.

The calculated optical parameters are summarized in Table 4.4. As can be seen,

there is a good agreement between the calculated and reported TO and LO modes.

The imaginary part of the dielectric function together with the reflectivity is shown

in Fig. 4.15, and the calculated optical parameters together with the experimen-

tal ones are summarized in Table 4.4. As can be seen from Fig. 4.15(a), the

imaginary part of the dielectric function broadens as temperature increases. The
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Figure 4.15: (a) Imaginary part of the predicted dielectric function for B1-MnS.
(b) Computed reflectivity (solid lines) is compared to the experimental reflectivity
of B1-MnS on a glass substrate. (c) Calculated reflectance of bulk B1-MnS is
compared to measurements of pressed MnS powder.

same behavior was observed in CaS and MgS in Chapter 3. However, unlike in

the case of CaS and MgS, the imaginary part of the dielectric function of the

B1-MnS phase seems to deviate from the δ-peak behavior more strongly. In the

105



Table 4.4: Optical parameters of B1- and B4-MnS polymorphs. The calculated
values are denoted by “DFT”. “EXP1” and “EXP2” correspond to experimentally
determined values.

System Method ε∞ ωTO (cm−1) ωLO (cm−1) Ref.

B1-MnS DFT 7.85 184.5 302.8 This work
EXP1 − 185 330 [238]
EXP2 6.80 185 320 [229]

B4-MnS DFT 6.84 284.5 320.8 This work
EXP1 − 286 324 [238]

case of both CaS and MgS, the Im(ε) displayed a rather sharp peak of magnitude

at least two orders higher than the tail values, Fig. 3.2. This peak is preserved

for the B1-MnS, however, it is spread over a wider range of wavenumbers. This

broadening becomes slightly stronger as temperature increases. The predicted

reflectivity is shown in Fig. 4.15(b), where it is also compared to available experi-

mental measurements [238]. It can be seen that both calculated and experimental

curves at 300 K reach their maximum at about the same wavenumber, which

corresponds to the outer edge of the reststrahlen band. The main differences

between the calculated and experimental trends originate from several sources.

Firstly, the reflectivity obtained in the experiment of Ref. [238] is the result of

B1-MnS grown on a glass substrate. Therefore, the reported reflectivity was fitted

using a two-layer Lorentz model to treat the system as a sum of two oscillators:

one corresponding to MnS (polycrystalline thin film) and the other corresponding

to the glass substrate, i.e.:

ε(ω) = ε∞ +
ε∞(ω2

LO − ω2
TO)

ω2
TO − ω2 − iωΓ(ω)

+
S0

ω2
0 − ω2 − iωΓ0

, (4.4)

where S0, ω0, and Γ0 are the oscillator strength, resonant frequency, and damping

constant of the glass substrate. These parameters were obtained from the reflec-

tivity measurements of the pure substrate without MnS thin film [238]. Then, the
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overall dielectric function ε(ω) given by Eq. (4.4) was determined from reflectivity

measurements of the MnS-substrate system. Thus, comparing the calculated re-

flectivity of bulk Pm B1-MnS to the one fitted from the MnS-substrate system is

not entirely straightforward. The presence of the glass substrate could explain par-

tially why the experimental reflectivity is lower in magnitude than the predicted

one in the region from∼90 cm−1 until 160 cm−1. Secondly, the calculated reflectiv-

ity is higher than the experimental one inside the reststrahlen band. This behavior

is similar to the case of CaS and MgS, and it could be probably attributed to the

lack of additional damping effects, such as four-phonon interactions. The addition

of four-phonon scattering processes might produce enough damping to be closer

to the experimental reflectivity. These higher-order scatterings could also smooth

the peaky structure observed in the calculated curve. Finally, the calculated reflec-

tivity exhibits a characteristic dip around the wavenumber corresponding to the

LO mode. Such dip is absent from the measured reflectivity of the MnS-substrate

system [238]. However, it is present in the reflectance spectrum of pressed pow-

der MnS samples [229]. The calculated reflectance is shown in Fig. 4.15(c) and

is compared to the fitted one (“EXP2” [229]) from reflectivity measurements of

pressed powder samples. As discussed in Chapter 3, measurements of pressed

pellets can deviate significantly from single-crystal results. However, some optical

parameters, such as the LO/TO splitting can still be expected to correlate closely.

In general, there is a better agreement between the calculated and experimental

reflectance of Ref. [229] than between the predicted and measured reflectivity of

Ref. [238]. In the reflectance case, Fig. 4.15, the agreement between ab initio

trend and the experimental one within the reststrahlen band (∼184−320 cm−1)

is quite remarkable. The largest deviation appears in the low-wavenumber region

(from 0 cm−1 until ∼184 cm−1). This disagreement is typical for DFT predictions
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Figure 4.16: (a) B4-MnS imaginary part of the dielectric function. (b) Calculated
reflectivity is compared to experimental values [238].

and is due to the overestimation of the high-frequency dielectric constant [193].

Lastly, the overestimation of the reflectance in the high-wavenumber tail could be

due to the lack of four-phonon scattering processes.

B4-MnS polymorph

For this polymorph, the third-order force constants were calculated using 4×4×1

supercells of the B4 primitive cell. The local magnetic moments in the displaced

configurations were distributed according to the stable SQS supercell found in the
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previous section, SQS-2 in Fig. 4.12(b). This size resulted in the overall number

of 1048 possible displacement configurations. Due to our computational resources

coming to an end, it was not possible to calculate the full third-order IFC matrix.

One possible way to reduce the number of necessary displaced configurations is

to introduce a cutoff radius for the phonon-phonon interaction distance as was

explained in Chapter 3. With a cutoff radius of 4 Å, 152 displacement configu-

rations were obtained. The imaginary part of the self-energy was calculated on a

12×12×12 q-grid in the reciprocal space. The isotope-disorder scattering effects

were ignored as in the case of the B1-MnS polymorph.

The calculated imaginary part of the dielectric function and reflectivity are shown

in Fig. 4.16. It can be seen that the Im(ε) deviates only slightly from δ-peak,

Fig. 4.16(a). This behavior is a direct consequence of not using the full third-

order IFC matrix. Evidently, the amount of phonon-phonon scatterings provided

by the chosen cutoff radius is not enough to produce significant damping. This

response is further seen from the calculated reflectivity in Fig. 4.16(b), which is

only slightly different from the case of an undamped oscillator, Fig. 2.4. Never-

theless, there is a rather close agreement in the low-wavenumber region, which

was significantly overestimated in the case of CaS, MgS, and B1-MnS. Addition-

ally, there is also a good agreement between the calculated and experimentally

determined optical parameters, Table 4.4. This outcome suggests that the overall

agreement between reflectivities could be improved by calculating additional IFC

that reach beyond 4 Å, which are, apparently, the main source of damping for the

B4-MnS polymorph.
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4.4 Conclusions

In summary, static first-principles calculations to model the AFM and PM states

of four MnS polymorphs were carried out. It was demonstrated that the combi-

nation of PBE+U with the construction of SQS supercells and localization of the

Mn d-electrons through occupation matrix control methods allowed to achieve not

only convergence and accuracy of structural optimizations but was vitally crucial

to obtain finite energy band gaps and local magnetic moments in the PM phases.

This result was particularly important in the case of the PM rock-salt B1-MnS

polymorph, which experimentally has been observed to be an insulator, but was

predicted to be metallic by multiple simulations. In this study, it was also shown

that with this approach, it was possible to isolate energy changes as a function of

pressure due purely to ionic and lattice parameters relaxation under hydrostatic

compression. In this manner, the enthalpies of the PM MnS polymorphs were

computed in order to explore their high-pressure landscape to detect structural

transformations, and indeed, the cubic B1-MnS structure was determined to be

the most stable at ambient pressure and up to approximately 21 GPa, pressure

at which B1 undergoes a structural transformation to the orthorhombic B31-MnS

phase. The overall trends in the electronic structure as well as phase transitions

are expected to hold for different U values. The increase (decrease) of the U value

will result in the increase (decrease) of the structural parameters and, therefore,

in the change of magnitude of the transition pressure. The chosen value in this

work was supported by the close agreement to experimental structural parameters.

The predicted B1→B31 transformation, in the context of all modeling considera-

tions made in this work, is rather meaningful as it closely resembles a structural

phase transition observed from X-ray diffraction and high-pressure experiments

performed on B1-MnS, in which the new but unidentified phase was reported at
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about 26 GPa. Overall, the approach used in this work proved to be accurate in

the modeling of manganese sulfide polymorphs and thus can be extended in the

future to the investigation of other TM compounds.

Atomic vibrations of PM B1-, B4-, and B31-MnS within the harmonic approx-

imation were also modeled. The main focus was on obtaining soft-mode-free

configurations of local magnetic moments using the SQS technique. Slightly dif-

ferent strategies for the search of stable SQS configurations were employed for

each polymorph. In the case of B1-MnS it was possible to find an SQS supercell

without soft modes by progressively increasing the complexity of figures involved

in the SQS generation. However, this approach was not enough to obtain a soft-

mode-free B4-MnS structure. Here, it was necessary to test different SQS sizes

to find stable configurations. Lastly, B31-MnS required an even more specific ap-

proach. After examining the specifics of soft modes in several SQS candidates, it

was noticed that one structure contained soft modes only in one acoustic branch.

Therefore, a part of this 2×2×2 SQS supercell, specifically the 2×1×2 part, was

taken and repeated along the b−direction. Such a strategy was successful in com-

pletely removing all soft modes previously present.

Finally, the optical properties of the B1- and B4-MnS polymorphs were investi-

gated beyond the harmonic approximation. Due to its significance, the B1-MnS

was studied thoroughly by calculating the full third-order IFC, which included

442 displacement configurations. The results showed an overall good agreement

with available experimental data, especially in the values of the LO/TO splitting.

Some of the deviations could be attributed to specifics in fitting procedures used

in the corresponding experiments. Also, it is important to note that the experi-

ments were conducted on polycrystalline thin films (“EXP1”) and pressed powder

samples (“EXP2”). The reflectivity and reflectance obtained from such experi-
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ments differ, in general, from single-crystal experiments, which are much closer

to the modeling technique used in this work. Nevertheless, it was found that

the optical parameters can still be reliably obtained from this single-crystal-like

simulation. The B4-MnS and B31-MnS polymorphs have lower symmetry than

B1-MnS. Therefore, a significantly larger number of displacement configurations

was required to construct the full IFC matrix for these systems. Due to the end

of our allocated time, only the B4-MnS polymorph was modeled. This system

was chosen because there is available experimental data, which allows us to di-

rectly estimate the accuracy of the method used in this work. Unfortunately, it

was not possible to calculate the full IFC matrix, which required 1048 displace-

ment configurations. A cutoff radius for phonon-phonon interaction was imposed

to reduce the overall number to 152. Consequently, the calculated reflectivity

deviated slightly from the idealized undamped case. This trend suggests that a

significant amount of damping processes come from beyond the considered cutoff

distance. Yet, the calculated optical parameters showed a good agreement with

the experimental data. Hence, it is reasonable to expect that using the full IFC

matrix could lead to a much better reconciliation between the calculated and

experimental results for B4-MnS.
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Chapter 5

LaTiO3−δ/SrTiO3−δ

heterostructures

In this chapter, the topic of oxygen deficiency of LAO/STO heterostructures is

investigated. In particular, the goal is to examine whether or not there is an effect

of vacancy clustering at the interface.

5.1 Computational details

Electronic structure

All calculations were performed using VASP [190, 200] and the projector-augmented

plane wave basis [152]. The core electrons were kept frozen, and the valence con-

figurations were 5p65d16s2 for La, 3s23p1 for Al, 4s24p65s2 for Sr, 3p63d34s1 for Ti

and 2s22p4 for O, respectively. The exchange-correlation (XC) term in the effective

Kohn–Sham potential was approximated according to the Perdew–Burke–Ernzerhof

parameterization for solids (PBEsol) [216] of the generalized gradient approxi-

mation (GGA) [115]. A 3×3×4 LaTiO3−δ/SrTiO3−δ supercell consisting of 180

atomic sites was used, Fig. 5.1. Pairs of oxygen vacancies were modeled by man-
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Figure 5.1: (a) 180-atomic site (178 atoms + 2 vacancies) LaTiO3/SrTiO3 su-
percell used in the calculations of this work. (b) The interface between LAO and
STO layers. The “+U” correction is only applied to the Ti sites at the interface as
it is effectively a La0.5Sr0.5TiO3 system. The crystal structure is visualized using
VESTA [20]

ually removing two oxygen atoms, corresponding to a vacancy concentration of

1.852% (δ =0.0556). Six different vacancy configurations were tested with var-

ious separations between O vacancies. The vacancy arrangements are shown in

Fig. 5.2− 5.4. The k-space integration was done on a Γ-centered grid of uniformly

distributed k-points with a spacing of 2π×0.3 Å−1, resulting in a total of six k-

points. The selected plane-wave kinetic energy cutoff was 500 eV and convergence

of the structural optimizations was assumed when the total energy changes were

less than 10−8 eV and the forces on each atom smaller than 10−3 eV/Å. The total

energy for all configurations is shown in Fig. 5.6.

There are two points to which especial attention should be paid. First of all, the

presence of La requires the additional care of the f -orbitals. These orbitals can

sometimes end up close to or exactly at the Fermi level, although in reality are

well above it. Therefore, the soft version of the La potential available in VASP

was employed in this calculation. After checking the f -projected DOS for the
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LAO/STO (without the vacancies), the f -states were found to be 3-4 eV above

the Fermi level, which should be sufficient. Second of all, the interface couples to

Sr and La atomic planes, making it effectively a La0.5Sr0.5TiO3 system, Fig. 5.1.

Bulk LaTiO3 is a well-known Mott insulator [239]. Within the DFT framework,

the electronic correlation effects can only be treated in a mean-field-like fashion

through the DFT+U scheme. Therefore, the Hubbard “+U” correction of 3 eV

was added to the Ti d-states at the interface. The next Ti layer did not require

the “+U” term, since it effectively belongs to bulk SrTiO3, which is a d(0) band-

insulator.

Ionic relaxation

The full structural relaxation of the configurations considered turned out to be

quite challenging. It was possible to fully relax (unit cell and ionic degrees of

freedom) only two configurations, namely configurations “b” and “e”, Fig. 5.2(b)

and Fig. 5.4(e), respectively. Configuration “a”, Fig. 5.2(a), which had the lowest

energy before relaxation was impossible to be fully relaxed. The system seemed to

be hitting a number of local minima and after trying distinct initialization paths

and algorithms, it was still impossible to overcome the system being trapped in

a local minimum. The rest of the configurations (“c”, “d” and “e”, Fig. 5.3(c),

(d) and Fig. 5.4(e)) showed extremely slow convergence in interatomic forces.

However, it seemed possible that they could eventually converge. Lastly, it was

observed that without relaxing the structures, no finite local magnetic moments

on any site were detected. After several iterations in the relaxation process,

finite magnetic moments appeared and remained stable throughout the rest of

the relaxation.
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Figure 5.2: Configurations “a” and “b”. The right-hand side shows the asso-
ciated local magnetic moments. The moments appeared after several iterations
of atomic relaxation and remained unchanged regardless of whether or not the
structure was fully relaxed. It turned out impossible to fully relax configuration
“a”, configuration “b” was fully relaxed.

5.2 Orbital reconstruction

The orbital reconstruction that takes place at the LAO/STO interface can be

qualitatively understood in terms of the surrounding crystal field change. In

the bulk SrTiO3−δ the orbital reconstruction due to the presence of the oxygen
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Figure 5.3: Configurations “c” and “d”. Neither of these configurations was
fully relaxed. However, the magnitude of the local magnetic moments remained
unchanged after several iterations in the ionic relaxation.

vacancy has been explained with first- and second-order perturbation theory [88,

89]. Removing one oxygen atom lowers the corresponding Ti-ion symmetry from

Oh to C4v. In the case of a low vacancy concentration, this change in the crystal

field symmetry can be treated as a perturbation. At first order, the C4v crystal

field lifts both the t2g and eg degeneracies. The lifting of the t2g produces a

singlet dxy, which is lower in energy than the remaining doublet dxz and dyz.
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Figure 5.4: Configurations “e” and “f”. Configuration “e” was fully relaxed,
whereas configuration “f” was not. As in the previous cases, the magnitude of the
moments saturated after several iterations and remained unchanged throughout
the ionic relaxation for both configurations.

However, it has been argued that this effect might not be significant [88]. The

second-order perturbation theory allows the coupling of Ti 3d with Ti 4s and 4p

orbitals. In particular, this coupling pushes the dz2 orbital below the t2g orbitals.

This mechanism does not, however, explain the lowering of the dx2−y2 orbital. An

alternative process postulated that the presence of the oxygen vacancy leads to the
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Table 5.1: Total magnetization Mtot and distance between the vacancies ∆vv for
various configurations considered in this study

Configuration a b c d e f
Mtot (µB) 0.630 0.629 0.571 0.670 0.742 0.309
∆vv (Å) 3.905 3.905 5.522 2.761 6.174 8.284
Fully relaxed No Yes No No Yes No

lowering of the dy2 state, which has contributions from both dz2 and dx2−y2 [240].

The local density of states (LDOS) projected at selected Ti sites are shown in

Fig. 5.5. As can be seen, the Ti sites in the immediate vicinity of the oxygen

vacancy show the in-gap states, which have dz2 and dx2−y2 character, Fig 5.5(a),(c)

and (d). This observation is consistent with previous DFT studies [90, 91, 240]. Of

particular interest is the Ti site neighboring both oxygen vacancies, Fig. 5.5(c).

The in-gap states here have significantly higher populations than the other Ti

sites. At the same time, the local magnetic moment of 0.082 µB associated with

this site is more than twice lower than the value of 0.188 µB at the sites with

only one vacancy next to them. This observation is indicative of the fact that

the surrounding crystal field is stronger than the exchange interaction since the

electrons prefer to occupy both spin channels of the low-lying in-gap states. The

LDOS projected at the Ti site further away from the vacancies, Fig. 5.5(b) and

(e), is in agreement with the model suggested in Ref. [88], i.e., these sites mostly

preserve the Oh symmetry. However, due to the polar catastrophe at the interface,

these orbitals receive a d-electron, which occupies t2g manifold, particularly the

dxy orbital. The lowering of the dxy orbital is due to the effect of oxygen vacancies,

which in this case can be treated as a perturbation in the crystal field. A similar

effect was also found in the defect-free LAO/STO interface [90]. The same crystal

field argument applies in this case too, since at the defect-free LAO/STO interface

Ti sites possess C4v point symmetry. Therefore, the lifting of the t2g degeneracy

can be understood as the result of both oxygen vacancy and lower symmetry of
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Figure 5.5: Ti-ion projected LDOS of configuration “a”.There are two qualita-
tively distinct local magnetic moments. The ones (pink) that are centered at Ti
sites in the immediate vicinity of the vacancies. These are made up of unequal
filling of the eg orbitals, mostly dx2−y2 . These moments are of the highest magni-
tude. The others (dark blue) are made up of dxy orbitals. These are of 1-2 orders
lower in magnitude.

the interface as compared to bulk STO.
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5.3 Vacancy clustering

The total energy of all configurations considered is shown in Fig. 5.6. Clustering

seems to be preferable in all cases except for configuration “d” which has the

smallest separation between oxygen vacancies yet turns out to have the highest

energy, although it is extremely close to configurations “c” and “e”. It is also

worth noting that configuration “a” has significantly lower energy than the other

configurations. To better understand the difference between configurations “a”

and “d”, the LDOS of configuration “d” is plotted in Fig. 5.7. Comparing it to

Fig. 5.5, the main difference is observed at the Ti site, which is positioned directly

next to both vacancies. Unlike the linear clustering in configuration “a”, which

was characterized by highly populated in-gap states comprised of the dx2−y2 and

dz2 orbitals, a much higher contribution from the dxy orbitals can be seen in con-

figuration “d”. Following the mechanism previously explained, further lowering

of the dxy orbital signals the increase of the C4v contribution to the surrounding

crystal field. At the same time, this configuration seems to be less energetically

favorable. Hence, it can be concluded that the system prefers to have the eg states

occupied.

The effect of vacancy clustering has also been found previously in bulk STO [241].

The effect of oxygen vacancy clustering has been confirmed experimentally in

SrTiO3−δ [242]. The authors found that the vacancies tend to arrange in a linear

fashion analogous to configuration “a”, Fig 5.2(a). Another DFT study found

a similar tendency, although the authors concluded that the vacancy prefers to

cluster vertically [243].
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Figure 5.6: The total energy of LAO/STO with a pair of oxygen vacancies at the
interface.

5.4 Conclusions

An oxygen-deficient heterostructure of LaAlO3−δ/SrTiO3−δ was investigated using

DFT with the main goal of clarifying the potential clustering of oxygen vacancies
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Figure 5.7: Ti-ion projected LDOS of configuration “d”. The main difference with
respect to configuration “a”, Fig. 5.5, is the additional lowering of the dxy states,
which indicates a higher C4v contribution to the crystal field.

at the interface. Oxygen vacancies were modeled by manually removing two oxy-

gen atoms, and a total of six distinct configurations of a pair of vacancies at the

interface were considered. Different mechanisms of orbital reconstruction for Ti

ions can take place depending on the distance between the Ti ion and vacancies.
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If a Ti ion is not situated directly next to an oxygen vacancy, then there is a lift

of the t2g symmetry, which results in the energy lowering of the dxy orbital. This

effect is also observed in stoichiometric LAO/STO heterostructures, where the re-

distribution of valence electrons takes place due to polar catastrophe phenomena.

Specifically, the energy lowering of the dxy orbital can be explained by considering

the change in the surrounding crystal field as a perturbation. This energy lowering

of the dxy orbital is also present for Ti ions neighboring the oxygen vacancies, but

in this case, the energy lowering of the eg orbitals is more prominent. This study

demonstrated that these states are responsible for finite local magnetic moments

appearing at the oxygen-deficient LAO/STO interface. It was observed that out

of the six configurations considered, the most energetically stable was the config-

uration with the oxygen vacancies arranged linearly at the opposite sites from the

Ti ion.
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Summary and outlook

First-principles investigations of structural, magnetic, and optical properties of

CaS, MgS, and MnS, as well as the effect of vacancy clustering in LaAlO3−δ/SrTiO3−δ

were conducted using DFT [1, 2].

The optical properties of non-magnetic sulfides (CaS and MgS) were studied by a

combination of DFT and FDM [94] techniques. To simulate the damping (anhar-

monicity), three-phonon scatterings together with the isotope-disorder scattering

effect were included using perturbation theory [95, 96]. Overall, a satisfactory

agreement with experimental and previous theoretical results was achieved. For

CaS, the predicted LO/TO splitting of ∼113 cm−1 was a match to the exper-

imental value of 113 cm−1 taken from single-crystal absorption data [203], but

not to another measurement of 185 cm−1 also from absorption experiments [204].

The harsh difference in experimental values of the LO/TO splitting could be at-

tributed to using two distinct methods to determine the LO/TO splitting from

the respective raw data. On the other hand, a previous DFT study found a value

of 70 cm−1 for the LO/TO splitting [205] in CaS, which is grossly underestimated

in comparison to both LO/TO splitting reported measurements. The disparity

between the DFT result in this study and the previously calculated one can be

linked mainly to the fact that the Born effective charges and high-frequency di-

electric constant were not fully found ab initio for the value of 70 cm−1, but

taken from other studies [219, 220]. The predicted reflectivity for CaS compared

125



well with the single-crystal absorption spectrum [203]. The main difference was

the presence of a peaky structure in the high-wavenumber tail of the simulated

reflectivity, which was absent in the experimental data [203]. A possible expla-

nation for this discrepancy could be the lack of four-phonon scattering processes

in the calculation of the self-energy (damping constant). In the case of MgS,

the calculated LO/TO splitting of ∼152 cm−1 was in excellent agreement with

another DFT value of 156 cm−1 [206]. Unlike in the case of CaS, for MgS both

DFT results were obtained from fully calculating by first-principles all parame-

ters necessary for the computation of phonon frequencies. The small difference in

the predicted values could be explained by the particular choice of potentials and

exchange-correlation functionals (PAW + PBEsol in this work and PP + LDA in

Ref. [206]). Thus, both ab initio LO/TO splitting values were about 20% smaller

than their experimental counterpart derived from absorption measurements of

MgS thin films [204]. The underestimation of the DFT results could be asso-

ciated to the method used to extract the experimental magnitudes of ωTO and

ωLO [204]. The computed reflectivity for MgS also showed a similar peaky struc-

ture to that observed in CaS. Unfortunately, no reflectivity measurements were

available for MgS to have a direct comparison with the DFT computations. Then,

four MnS polymorphs were investigated with the main goal of calculating their

optimal structures and reflectivity and reflectance spectra. PM states of each

polymorph were modeled as disordered arrays of local magnetic moments using

the SQS technique [92]. The analysis of the DOS showed that all polymorphs were

insulating. This result was particularly important for the B1-MnS phase, as pre-

vious DFT simulations [230, 235] found it to be metallic, but experimentally has

been observed to be insulating [229, 234]. Although, the predicted Eg = 1.4 eV for

PM B1-MnS was fairly underestimated in comparison to the experimental values
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of 2.7 eV [234] and 2.8 eV [229]. A scheme based on the idea of rehybridization

of d and p orbitals was suggested to explain the shrinkage of the band gap in the

transition from the AFM to the PM state. Additionally, the high-pressure land-

scape of the four MnS polymorphs was investigated by computing their enthalpies.

The results showed a structural transition from the cubic B1-MnS phase to the

orthorhombic B31-MnS polymorph at about 21 GPa. These findings shed a new

light onto reported high-pressure transitions observed in DAC experiments [80–

83]. Vibrational properties of MnS polymorphs were studied using a combination

of DFT and FDM methods. First, using SQS constructions for each polymorph,

a systematic study within the harmonic approximation was followed to obtain

soft-mode-free SQS supercells. Slightly different strategies in the SQS generation

were employed in each case. The reflectivity and reflectance were calculated for

the B1- and B4-MnS polymorphs. In these cases, only three-phonon scattering

processes were included in the calculation of the phonon self-energy. For the B1-

MnS polymorph, an overall reasonable agreement with experimental results was

achieved [229, 238]. The calculated LO/TO splitting of 118.3 cm−1 was slightly

lower in comparison to experimentally determined values of 135 cm−1 (B1-MnS

grown on a glass substrate) [238] and 145 cm−1 (B1-MnS powder pellets) [229].

Additionally, the calculated reflectivity and reflectance were in fairly good agree-

ment with experimental spectra. In the case of the B4-MnS polymorph, a close

match between the calculated and the experimental LO/TO splitting values of

∼36 cm−1 and 38 cm−1 [238], respectively, was achieved. However, the predicted

reflectivity was about 60% larger within the reststrahlen band. The reason for

this overestimation could be connected to the phonon-phonon interaction cutoff

distance of 4 Å, which was used in the calculation of the self-energy. Increasing

this radius could help reach a much better agreement with the experimental spec-
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trum.

Lastly, the phenomenon of vacancy clustering in the LaAlO3−δ/SrTiO3−δ het-

erostructure was investigated. Six different vacancy configurations with varying

distance between two vacancies were analyzed. The most energetically stable

vacancy configuration was found to be the one in which the vacancies were ar-

ranged linearly at the opposite sites from the Ti ion, this result was consistent

with previous findings [243]. General trends of orbital reconstruction previously

observed by other DFT studies [88–91, 240, 243] were also found in this work. In

particular, two mechanisms of orbital reconstruction were recognized. The first

one is characteristic of Ti ions located further away from vacancy sites, and it is

realized by lifting the t2g degeneracy and lowering the dxy orbital. This effect can

be described within the framework of perturbation theory [88, 89]. The second

mechanism is realized at Ti ions that neighbor the vacancies directly. In this case,

the eg orbitals are lowered in energy.

The results obtained in this work can be further improved and serve as a basis for

future developments. The simulated optical properties of CaS, MgS and B1-MnS

could describe better experimental results by the inclusion of four-phonon scat-

tering processes [95, 96]. A DFT study on MgO [193] showed that this inclusion

resulted in a much better agreement between predicted and experimental reflec-

tivities, reflectances, etc. Therefore, CaS, MgS and B1-MnS could also benefit

from higher-order scattering processes. Also, it is possible that the four-phonon

part of the self-energy (the “Loop” diagram) could smooth the simulated reflec-

tivity in the high-wavenumber region. In the case of the B4-MnS polymorph, an

obvious continuation would be to extend the phonon-phonon interaction cutoff

radius to include larger number of displacement configurations. Considering the

excellent agreement already obtained between the calculated LO/TO splitting
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and the experimental value, it is reasonable to expect a much better match of the

reflectivities too. Moreover, the data obtained for CaS, MgS and B1-MnS could

be used in the calculation of transport properties, such as the thermal conductiv-

ity, which can be important in the study of Mercury formation. In this context,

the four-phonon scatterings are highly relevant as it has been shown that their

contribution to the reduction of the thermal conductivity could be of the same

order as the three-phonon processes [244]. Also, the next natural consideration

would be the study of alloys, e.g., Ca1−xMgxS. In this case, the calculation of op-

tical properties becomes more complex as, in principle, fully disordered supercells

would be necessary to model Ca1−xMgxS alloy. These disordered alloys, however,

could also be constructed using the SQS technique [92]. Their phonon bands can

then be obtained from their supercells following an unfolding procedure [245], in

which the spectral weights would be interpreted as part of the self-energy. Fi-

nally, further investigations on oxygen deficient LAO/STO heterostructures could

be designed. The results of this and previous works [243] suggest the linear or-

dering of oxygen vacancies. It would be extremely interesting to see what effect

completely disordered vacancies could have on the system. Such disordered state

could also be constructed employing the SQS method.
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[202] A. Chmeruk, M. Núñez-Valdez, Appl. Phys. A 2023, 129, 477.

[203] Y. Kaneko, K. Morimoto, T. Koda, J. Phys. Soc. Jpn. 1982, 51, 2247–

2254.

[204] A. Hofmeister, E. Keppel, A. Speck, Mon. Not. R. Astron. Soc. 2003, 345,

16–38.

[205] M. Bayrakci, K. Colakoglu, E. Deligoz, Y. O. Ciftci, High Press. Res. 2009,

29, 187–203.
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