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Abstract

Transverse-momentum (p) differential yields of electrons from semileptonic heavy-flavour hadron
decays have been measured in the most central (0—10%) and in semi-central (20-40%) Pb—Pb col-
lisions at \/syn = 2.76 TeV. The corresponding production cross section in pp collisions has been
measured at the same energy with substantially reduced systematic uncertainties with respect to pre-
viously published results. The modification of the yield in Pb—Pb collisions with respect to the expec-
tation from an incoherent superposition of nucleon-nucleon collisions is quantified at mid-rapidity
(ly] < 0.8) in the py interval 0.5-3 GeV/c via the nuclear modification factor, Ra 4. This paper extends
the pt reach of the Rap measurement towards significantly lower values with respect to a previous
publication. In Pb—Pb collisions the pr-differential measurements of yields at low pt are essential
to investigate the scaling of heavy-flavour production with the number of binary nucleon-nucleon
collisions. Heavy-quark hadronization, a collective expansion and even initial-state effects, such as
the nuclear modification of the Parton Distribution Function, are also expected to have a significant
effect on the measured distribution.
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1 Introduction

In ultra-relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and at the Large
Hadron Collider (LHC), strongly-interacting matter characterized by high energy density and temper-
ature is produced [IIHE] Under these conditions, the formation of a deconfined state of quarks and
gluons, called Quark-Gluon Plasma (QGP), is predicted by Quantum ChromoDynamic (QCD) calcula-
tions on the lattice ]. The production of heavy quarks, i.e. charm (c) and beauty (b), takes place
via initial partonic scattering processes with large momentum transfer (hard scattering) on a timescale of
h/(2mey c?), where m is the mass of the quark. This timescale (e.g. & 0.08 fm/c for charm) is smaller
than the QGP thermalization time (=~ 0.6—1 fm/c [@]). Additional thermal production as well as anni-
hilation rates of charm and beauty quarks in the strongly interacting medium are expected to be small
in Pb—Pb collisions even at LHC energies ]. Consequently, charm and beauty quarks are ideal
probes to investigate the properties of the QGP, since they experience the full evolution of the strongly
interacting medium produced in high-energy heavy-ion collisions.

In order to exploit the sensitivity of heavy-flavour observables to medium effects a precise reference
where such effects are not expected is needed and it is provided by pp collisions. In pp collisions, heavy-
quark production can be described theoretically via perturbative QCD calculations over the full quark
momentum range, while such a description does not hold for gluon and light-quark production [E].
Therefore, measurements of heavy-flavour production cross sections in pp collisions are used to test
perturbative QCD calculations and provide the necessary experimental reference for heavy-ion collisions.

The modification of the pr-differential yield in heavy-ion collisions with respect to pp collisions at the
same centre-of-mass energy is quantified by the nuclear modification factor Raa, defined as:

1 d2NAA/dedy
TAA> d2 Gpp/dedy

Raa(p1,y) = < (D

where dNaa/dprtdy is the yield measured in heavy-ion collisions in a given pr and y interval, and
dopp/dprdy is the corresponding production cross section in pp collisions. The average nuclear over-
lap function, (Txn), is given by the ratio of the average number of binary nucleon-nucleon collisions in
a centrality class and the inelastic nucleon-nucleon cross section, and it is determined via Glauber model
calculations [IE, @]. In the absence of medium effects, Raa is expected to be unity for hard probes such
as charm and beauty production.

For momenta larger than the masses of charm and beauty quarks, the dominant medium effect is the par-
tonic energy loss via radiative [IE, ] and collisional processes [@—@] when heavy quarks propagate
through the QGP. These processes are expected to cause a shift of the partonic momentum distribution
towards lower momenta and, therefore, to lead to a suppression of the yield of heavy-flavour hadrons
and their decay products at high pr (2 2 GeV/c) and, consequently, to Raa < 1. In the absence of
further processes that modify the total charm and/or beauty production cross section or the fragmenta-
tion/hadronization of heavy quarks, Raa is expected to increase again towards low pp to compensate the
suppression at high pr and, therefore, conserve the binary collision scaling. At RHIC, such a rise was
observed by the PHENIX and STAR experiments for leptons from semileptonic heavy-flavour hadron
decays in Au-Au and Cu-Cu collisions at /sy = 200 GeV [@—@] The STAR Collaboration also
measured the Raa of D? mesons in Au-Au collisions for pr <8 GeV/e [Iﬁ]. At pr =~ 5-6 GeV/c, Raa
reaches a value of ~ (.3, similar to that observed for electrons from heavy-flavour hadron decays. The
D% Ran increases towards low pr, reaching a maximum value of about 1.5 at pp ~ 1-2 GeV/c and
decreasing again towards lower pr.

This latter observation may point to additional medium effects, which are likely to be responsible for the
rise of Raa towards low pr. In particular, the interaction of charm and, to a lesser extent, beauty quarks of
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low transverse momentum with the medium may lead to the participation of heavy quarks in the collective
expansion of the hot and dense system [IE ] and, eventually, to a partial or complete thermalization of
heavy quarks in the system [30]. Moreover, while in pp collisions charm and beauty quarks hadronize via
fragmentation, in heavy-ion collisions a competing hadronization mechanism through the coalescence
with other quarks from the medium could become relevant and modify the phase-space distribution of
heavy-flavour hadrons up to transverse momenta of a few GeV/c ]. Finally, initial-state effects due
the presence of a heavy nucleus in the collision system can play a role. Atlow Bjorken-x (below 10~2) the
parton densities in nucleons bounded in nuclei are reduced with respect to those in free nucleons. This
so-called ”shadowing” leads to a reduction of heavy-flavour production, becoming more pronounced
with decreasing pr [@]. In addition, at lower collision energies, momentum (kr) broadening leads to an
enhancement of Raa at intermediate pr, the so-called Cronin effect [35].

At the LHC, open heavy-flavour production was measured in Pb—Pb collisions via exclusive hadron de-
cays of prompt D and B mesons and via leptons from heavy-flavour hadron decays [@—@] At high pr
(2 3 GeV/c), a substantial suppression with respect to the scaled reference cross section from pp colli-
sions is observed with Raa values similar to those measured at RHIC. At lower pr, the Raa of prompt D
mesons stays below unity down to transverse momenta as low as 1 GeV/c, in contrast to corresponding
measurements at RHIC where Raa reaches a maximum value of ~1.5 at pyr ~ 1-2 GeV/c. The dif-
ferent patterns observed at the LHC and at RHIC could be due to differences in the initial momentum
distributions of heavy quarks, the magnitude of parton energy loss in the medium, the impact of collec-
tive expansion, the relevance of coalescence as a hadronization mechanism, and the role of initial-state

effects ].

At the LHC, initial-state effects and their impact on the nuclear modification factor are investigated in
proton-lead (p—Pb) collisions. The nuclear modification factor Ryp, was measured at mid-rapidity for
prompt D and B mesons and for electrons from semileptonic heavy-flavour hadron decays @2’ —@].
The Rppy of electron from heavy-flavour hadron decay was observed to be consistent with unity within
uncertainties over the whole pr range of the measurements, as expected from binary-collision scaling of
heavy-flavour production.

This paper reports on measurements of electrons from semileptonic heavy-flavour hadron decays at mid-
rapidity (|y| < 0.8) in pp collisions at /s = 2.76 TeV and in Pb-Pb collisions in the two centrality
classes 0-10% and 20-40% at \/snn = 2.76 TeV. The pr-differential yields, cross sections and the
resulting nuclear modification factors are presented. Applying a data-driven background subtraction
technique [IE] allowed for a reduction of the systematic uncertainties of the pp reference cross section
by a factor of about 3 compared to the previously published reference [@], which is consistent within
uncertainties with the current measurement.

The results presented in this paper extend the previous measurements [@] of electrons from semilep-
tonic heavy-flavour hadron decays in Pb—Pb collisions from 3 GeV/c down to 0.5 GeV/c in pr. They
complement the measurements of muons from semileptonic heavy-flavour hadron decays at forward ra-
pidity and of the prompt D mesons at mid-rapidity reported by the ALICE Collaboration [@, M], as
well as of muons from semileptonic heavy-flavour hadron decays at mid-rapidity reported by the ATLAS
Collaboration [@]. The measured nuclear modification factor Ra is compared with model calculations
aiming at describing heavy-quark production and energy loss in heavy-ion collisions taking into account
also initial-state effects.

2 Experimental apparatus and data sample

The ALICE apparatus, described in detail in [@, @], consists mainly of a central barrel at mid-rapidity
(In] < 0.9) embedded in a solenoidal magnet, and a muon spectrometer at forward rapidity (4 < 1 <
—2.5). In the following, the subsystems which are used to perform the measurement of electrons from
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heavy-flavour hadron decays are described.

Charged-particle tracks are reconstructed at mid-rapidity (|n| < 0.9) with the Inner Tracking System
(ITS) and the Time Projection Chamber (TPC). The ITS ] consists of six cylindrical silicon layers
surrounding the beam vacuum pipe. The first two layers, made of Silicon Pixel Detectors (SPD) to cope
with the high particle density in the proximity of the interaction point, provide an excellent position
resolution of 12 um and 100 um in the r¢ and the beam direction (z-coordinate of the reference sys-
tem), respectively. The third and fourth layers consist of Silicon Drift Detectors (SDD), while the two
outermost layers are made of Silicon Strip Detectors (SSD). The SDD and SSD layers are also used for
charged-particle identification via specific ionization energy loss (dE/dx) measurements.

The TPC [@] is the main tracking detector in the central barrel and provides a charged-particle mo-
mentum measurement together with excellent two-track separation and particle identification via dE/dx
determination.

The Time-Of-Flight (TOF) detector [@] provides the measurement of the time-of-flight for charged
particles from the interaction point up to the detector radius of 3.8 m, with an overall resolution of about
80 ps. The measured time-of-flight of electrons is well separated from that of kaons and protons up to
pr =~ 2.5 GeV/c and pr >~ 4 GeV/c, respectively.

The VO detectors [@] consist of two arrays of 32 scintillator tiles covering the pseudorapidity ranges 2.8
<n <5.1(VOA)and —3.7 < n < —1.7 (VOC), respectively, and are used for triggering and for central-
ity estimation. The latter is performed through a Glauber Monte Carlo (MC) fit of the signal amplitude in
the two scintillator detectors [@—lﬁ] Together with the Zero Degree Calorimeters (ZDC) [58], located
on both sides of the interaction point at z ~ +114 m, they are used offline for event selection.

The pp results presented in this paper are based on the same minimum-bias (MB) data sample recorded
at \/s = 2.76 TeV as the previously published result [@]. The MB trigger required at least one hit in the
SPD or a signal (above threshold) in either of the two VO arrays, in temporal coincidence with a signal
from the beam position monitors [@]. Pile-up events are identified and rejected using the SPD [@, 1,
and they amount to about 0.7% of all events. During the pp run at 2.76 TeV, the information from the
SDD was read out only for a fraction of the recorded events to maximize the data acquisition speed. For
the current analysis all events have been reconstructed without the SDD information in order to obtain a
homogeneous sample over the full statistics.

For the Pb—Pb analysis, the same data sample recorded at \/syn = 2.76 TeV was used as for previous
publications [@, ]. The events were collected with a MB interaction trigger using information from the
coincidence of signals between the VOA and VOC detectors. Central and semi-central Pb—Pb collisions
were selected online by applying different thresholds on the VO signal amplitudes resulting in central (0—
10%) and semi-central (10-50%) trigger classes [@]. Events affected by pile-up from different bunch
crossings have been rejected offline [E%]. This selection removes up to 5% of the total number of events
depending on the centrality of the collisions.

For both collision systems, only events with a reconstructed interaction vertex (primary vertex) within
10 cm from the nominal interaction point along the beam direction are used in order to minimize edge
effects at the limit of the central barrel acceptance. The number of events analysed after applying the
event selection and the corresponding luminosities for the pp and the two Pb—Pb centrality classes are
listed in Table[Il The values of the average nuclear overlap function for the two Pb—Pb centrality classes
are listed as well.
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Collision system Nevents (Tap) mb~!
pp 38.9 x 10° -
Pb—Pb, 0-10% 15x10%  23.44 4 0.76
Pb-Pb, 20-40%  8x10°  6.85+0.23
Table 1: Number of events for the pp collisions and the two Pb—Pb centrality classes after applying the event

selection. In the right column the average nuclear overlap function is reported for the Pb—Pb samples.

3 Data analysis

The pr-differential yield of electrons from semileptonic heavy-flavour hadron decays is computed by
measuring the inclusive electron yield and subtracting the contribution of electrons that do not originate
from open heavy-flavour hadron decays. In the following, the inclusive electron identification strategy
and the subtraction of electrons originating from background sources are described for the analysis of pp
and Pb—Pb collisions.

3.1 Track selection and electron identification

Candidate electrons tracks are required to fulfil the criteria summarized in Table[2] similarly to what was
done in Refs. [IE, ], in order to select good quality tracks. The rapidity range used in the analyses is
restricted to |y| < 0.8 to exclude the edges of the detectors, where the systematic uncertainties related to
particle identification increase.

Data Sample Pb-Pb pp
pr range (GeV/c) 0.5-3 0.5-3
[y| < 0.8 < 0.8
Number of TPC clusters > 100 > 110
Number of TPC clusters in dE/dx calculation >90 >80
Ratio of found TPC clusters over findable > 0.6 > 0.6
x*/clusters of the momentum fit in the TPC <35 <4
DCA,, <24cm <lcm
DCA, <32cm <2cm
Number of ITS hits >5 >3
Number of hits in the SPD layers 2 2

Table 2: Track selection criteria used in the analyses. DCA is an abbreviation for the distance of closest approach
of a track to the primary vertex.

The electron identification is mainly based on the measurement of the specific ionization energy loss
in the TPC (dE/dx), similarly to the procedure followed in Refs. [IE ]. The discriminant variable is
the deviation of dE/dx from the parametrized electron Bethe-Bloch [@] expectation value, expressed in
units of the dE/dx resolution, n'F¢ 501.

In order to reduce the hadron contamination in Pb—Pb collisions, tracks with a time-of-flight differing
by more than twice the TOF resolution from the expected value for electrons (nL°F) are rejected. In pp

collisions, a nLOF > 3 rejection is applied due to the smaller hadron contamination.

In Pb-Pb collisions, in addition, the dE/dx in the ITS is used to further reject hadrons. To guarantee a
good Particle IDentification (PID) based on the dE/dx in the ITS, tracks are required to have at least three
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out of the four possible hits in the external layers of the ITS (SDD and SSD), which can provide dE/dx
measurements. Table 3] summarizes the PID selection criteria for electron identification.

pr range (GeV/c) TPC dE/dx ITS dE/dx TOF compatibility

selection selection  with e hypothesis
pp
0.5-3 —1<nlP€ <3 - |nTOF| < 3
Pb-Pb
0.5-1.5 —1<nlfC <3 |nI8 <1 [nTOF| < 2
1.5-3 0<naC <3 [aTS|<2  |aTF| <2

Table 3: Electron identification criteria used in the analyses (see text for more details).

The remaining hadron contamination is estimated by fitting in momentum slices the TPC dE/dx distri-
bution after the TOF (and ITS) PID selections [@, ]. The hadron contamination is negligible at the
lowest pr and it increases with pr, reaching about 5% at pt = 3 GeV/c in Pb—Pb collisions and about 1%
in pp collisions, with negligible dependence on centrality and pseudorapidity. In both collision systems
the hadron contamination is subtracted statistically from the inclusive electron candidate yield.

3.2 Subtraction of electrons from non heavy-flavour sources

The raw inclusive sample of electron candidates (pt < 3 GeV/c) consists of the signal, i.e. the electrons
from semileptonic heavy-flavour hadron decays, and four background components:

1. photonic electrons from Dalitz decays of light neutral mesons (predominantly 7° and 1 mesons)
and the conversion of their decay photons in the detector material, as well as from prompt virtual
and real photons from thermal and hard scattering processes;

2. electrons from weak K%+ — e=g¥/0 <\;e) (Ke3) decays;
3. dielectron decays of quarkonia;

4. dielectron decays of light vector mesons.

The photonic-electron tagging method [IE, @] is adopted for the subtraction of the first and main back-
ground component. For py < 1.5 GeV/c the inclusive electron yield is largely dominated by the contribu-
tion of photonic electrons. The ratio of the signal to the photonic electron background is measured to be
0.2 at pr = 0.5 GeV/c and it is observed to increase reaching a value of 3 at pt =3 GeV/c [@]. Photonic
electrons originate from electron-positron pairs with a small invariant mass (m.+.- ). They are tagged by
pairing an electron (positron) track with opposite charge tracks identified as positrons (electrons) from
the same event. The latter are called associated electrons in the following and they are selected with the
requirements listed in Table @ The combinatorial background from uncorrelated electron-positron pairs
is subtracted using as a proxy the like-sign invariant mass distribution in the same invariant mass interval.
A selection on the pair invariant mass is applied as listed in Table [4]

Due to detector acceptance and inefficiencies and because of the decay kinematics, not all photonic elec-
trons in the inclusive electron sample are tagged with this method. Therefore, the raw yield of tagged
photonic electrons is corrected for the efficiency to find the associated electron (positron), hereafter called
tagging efficiency. This efficiency is estimated with Monte Carlo (MC) simulations. In particular, HI-
JING v1.383 [62] was used to simulate Pb—Pb collisions, while the PYTHIA 6 (Perugia 2011 tune) [@]
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Associated electron Pb-Pb PP
pr (GeV/e) > 0.15 > 0.1
Iyl < 0.9 <0.8
Number of TPC clusters > 80 > 60
Number of ITS hits >2 >2
DCA,, < 24cm <l cm
DCA, <32cm <2cm
TPC dE/dx nIPC| <3 |nlPC <3
Electron-positron pair
Me+e- (MeV/c?) <170 < 140

Table 4: Selection criteria for tagging photonic electrons in Pb—Pb and pp collisions.

event generator was used for the simulation of pp events. The transport of particles in the detector is
performed using GEANT3 [IEAII]. In both analyses, the generated 7 pr distributions in MC are weighted
so as to match the measured pion pr spectra [@—@] In the pp analysis, the 7 pr spectra are weighted
using the corresponding measurement [6§], while for Pb—Pb collisions the 11 weights are determined
via mr-scaling of the measured 7° pr spectra [@, @]. The resulting i /7° ratios agree within uncer-
tainties with the ratios measured by ALICE in 0-10% and 20-50% central Pb—Pb collisions at \/snn =
2.76 TeV ]. The photonic electron tagging efficiency increases with the electron pr, starting from a
value of =~40% (~=30%) at pt = 0.5 GeV/c and reaching a value of ~70% (~60%) at pr = 3 GeV/c for
pp (Pb—Pb) collisions.

The background contribution of non-photonic electrons from K3 decays and the dielectron decay of J/y
mesons is subtracted from the fully corrected and normalized electron yield using the so-called cocktail
approach in both pp and Pb—Pb collisions [IE, @, , ]. Due to the requirement of hits in both pixel
layers, the relative contribution from K3 decays to the electron background is small and it decreases with
p1, with a maximum of about 0.5% at pt = 0.5 GeV/c for both the collision systems. For pp collisions,
the contribution of electrons from J/y decays is calculated based on a phenomenological interpolation of
the J/y production cross sections measured at various values of /s as described in [73], and as done in a
previous analysis [@]. For Pb-Pb collisions, the pr-differential J/y yield is calculated by multiplying
this reference J/y cross section in pp collisions with (Txs) and the measured nuclear modification factor
in Pb—Pb collisions [@, @]. The contribution of electrons from J/y decays is maximal in the interval
2.0 < pr < 3.0 GeV/c, with a value of ~ 3% in pp collisions and of ~ 5% in central Pb—Pb collisions. At
higher pr and in less central Pb—Pb collisions the background from J/y decays decreases. At lower pr it
is negligible. The background from dielectron decays of light vector mesons and other quarkonium states
as well as from Dalitz decays of higher mass mesons (®, ', @) is negligible as discussed in Ref. [@].

3.3 Correction and normalisation

After the statistical subtraction of the hadron contamination and the background from photonic electrons,
the raw yield of electrons and positrons is divided by the number of events analysed (NX/8), by the value
of pr at the centre of each bin and its width Apr, by the width Ay of the covered rapidity interval, by the
geometrical acceptance (£2°°) times the reconstruction (£°) and PID efficiencies (¢°!°) and a factor of
two to obtain the charge averaged invariant differential yield

+ +
1 d°N ] 1 11 N (pT) )

2npr dprdy ) 27 pTcentre NMB AyAp (€80 x greco x gelD)”
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The invariant production cross section in pp collisions is obtained by further multiplying with the minimum-
bias trigger cross section for pp collisions at v/s = 2.76 TeV, omp = (55.4+ 1.0) mb [76].

The efficiencies are determined using dedicated MC simulations. The reconstruction efficiencies are
computed using a heavy-flavour enriched PYTHIA 6 [Iﬂ] MC sample in which each simulated pp event
contains a c¢ or bb pair, and heavy-flavour hadrons are forced to decay semi-electronically. In the MC
production used for the Pb—Pb analysis the underlying events are simulated using the HIJING v1.383
generator [Ia] and the heavy-flavour signal from the PYTHIA 6 generator is added. Out of all produced
particles in these PYTHIA pp events, only the heavy-flavour decay products are kept and transported
through the detector together with the particles produced with HIJING. In order to better reproduce
the experimental conditions for the detector occupancy, the number of heavy quarks injected into each
HIJING event is adjusted according to the Pb—Pb collision centrality. In Pb—Pb collisions, the bin-wise
total reconstruction efficiencies (£28%° x £ x £°IP) do not show any significant pr dependence and are
about 8% (9%) in the 0-10% (20-40%) centrality class. Due to the less stringent selections applied for
pp collisions, the total electron reconstruction efficiency reaches a value of about 27% at pr =3 GeV/c in
this case. Finally, the remaining background contributions from weak K.3 decays and dielectron decays
of J/y mesons are subtracted from the fully corrected cross section (yield) for pp (Pb—Pb) collisions.

3.4 Systematic uncertainties

The overall systematic uncertainty on the pr spectra is calculated summing in quadrature the different
uncorrelated contributions, which are summarised in Table 5land discussed in the following.

The systematic uncertainties arising from the residual discrepancy between MC used to determine the
total reconstruction efficiency and data is estimated by systematically varying the track selection and
PID requirements around the default values chosen in the analysis. The systematic uncertainties are
determined as the root mean squared (RMS) of the distribution of the resulting corrected yields (or cross
sections in pp) obtained for different selections in each pr interval, considering also shifts of the mean
value with respect to the default selections. In the Pb—Pb analysis, this contribution is about 6% at low
pr (pr < 1 GeV/ce), and it decreases with increasing pr reaching about 3% at the highest pr. In the pp
case this contribution is about 4% without pt dependence.

In the pp analysis, a systematic uncertainty of about 2% (3%) is assigned due to the incomplete knowl-
edge of the efficiency in matching tracks reconstructed in the ITS and TPC (TPC and TOF) [@, ]. In
Pb—Pb collisions, the uncertainty assigned on the measurements coming from the track-reconstruction
procedure amounts to 5% for single tracks [@].

The solenoid polarity was changed during the Pb—Pb data taking period. From the comparison of the
fully corrected spectra of electrons from semileptonic heavy-flavour hadron decays measured in events
with the magnetic field oriented in the two opposite directions, a 2% systematic uncertainty is assigned
for pr < 1.25 GeV/c. To ensure that the results are not biased by tracks detected at the edges of
the detector, where the efficiencies are more difficult to be calculated, the measurements were re-done
restricting the rapidity window for the electrons down to |y| < 0.5. In addition, possible biases in
the efficiency determination are checked by performing the analyses only in the positive or the negative
rapidity region. A 5% systematic uncertainty has been estimated for pr < 1.5 GeV/c in both pp and
Pb—Pb collisions.

The systematic uncertainty arising from the photonic-electron subtraction technique is estimated simi-
larly as the RMS of the distribution of yields obtained by varying the selection criteria listed in Table [4
In the Pb—Pb analysis, because of the large combinatorial background of random pairs, this systematic
uncertainty is of the order of £30% in the 0—-10% most-central collisions and £18% in the centrality
class 20—40% for the pt interval 0.5-0.7 GeV/c. It is observed to decrease with increasing pr reaching
2% for pr = 2 GeV/c, where the contribution of background electrons starts to become negligible. In
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pp collisions, the uncertainty arising from the photonic-electron subtraction is estimated to be about 3%
with no pt dependence. In addition, the dependence of the photonic-electron tagging efficiency on the
spectral shape of the background sources is taken into account by recalculating the efficiency for different
7% and 1 pr spectra. The variation of the neutral-meson spectra is obtained by parameterising the mea-
sured spectra considering their systematic uncertainties. In particular, the measured yields at the lowest
transverse momenta are shifted up by their systematic uncertainties and the yields at the highest trans-
verse momenta are shifted down, and vice versa. The resulting systematic uncertainty on the spectra of
electrons from semileptonic heavy-flavour hadron decays is 1% for pr < 0.9 GeV/c in Pb—Pb collisions.
In pp collisions, the systematic uncertainty is about 5% in the pr interval 0.5-0.7 GeV/c, 2% in 0.7-0.9
GeV/c, 1% in 0.9-1.5 GeV/c and negligible for higher pr. It is worth noting that replacing the previous
approach to determine the photonic background via a cocktail calculation of the known sources [@] by
an actual measurement of this background component resulted in a reduction of the related systematic
uncertainties of the pp reference cross section by a factor of about 3.

In order to further test the robustness of the photonic-electron tagging, the number of clusters required for
electron candidates in the SPD has been released to a single hit in any of the two layers, increasing in this
way the fraction of electrons coming from photon conversions in the detector material. In the pp analysis,
a contribution to the systematic uncertainties of about 20% in the pr interval 0.5-0.7 GeV/c and 5% up
to pr = 1.3 GeV/c is assigned, while for higher pr this uncertainty is estimated to be negligible. In
the Pb—Pb case the systematic uncertainty is 3% with no pt and centrality dependence. This systematic
uncertainty is significantly larger for the pp sample because of the specific detector configuration. Due to
the lack of the SDD detector information at track reconstruction level, only a maximum of four hits in the
ITS can be expected instead of the usual six. Therefore, this sample is potentially affected by a higher
fraction of badly reconstructed tracks, particularly at the lowest transverse momenta. In addition to
releasing the condition on the SPD layers, the systematic uncertainty in the pp case has been determined
by comparing the measurement obtained from the analysis of a sub-set of events where all six ITS layers
are used for the tracks recontruction.

The subtraction of the background electron contribution from the J/y and K3 decays is affected by the
uncertainty on the input distribution used for the cocktail calculation. This results in an uncertainty of
4% and 2% in the lowest pr interval in pp and in Pb—Pb collisions, respectively. While for pp collisions
this contribution is negligible at higher pt, for Pb—Pb collisions it decreases slowly with increasing pr,
reaching a minimum of 1% at pr = 1.5 GeV/c before increasing again to 4% at pr = 3 GeV/c due to the
growing contribution from J/y decays.

Events with a primary vertex reconstructed using charged-particle tracks are used. For the pp analysis, the
resolution of the vertex is affected by the absence of the SDD information and by the lower multiplicity
of tracks compared to the Pb—Pb case. The associated uncertainty of 3% is estimated by comparing the
cross sections measured from events where the vertex was determined either with charged-particle tracks
or with the SPD information only.

4 Results
4.1 pr-differential invariant cross section in pp collisions

The measurement presented in this paper for pp collisions updates the pr-differential cross section pub-
lished previously [47] in the range pt < 3.0 GeV/c. The new pr-differential invariant cross section for
electrons from semileptonic heavy-flavour hadron decays measured at mid-rapidity in pp collisions at
/s =2.76 TeV is shown in[Fig. T} Results from a previous publication [47] (black squares in[Fig. 1)) are
plotted together with the new results from the TPC-TOF analysis (blue circles in [Fig. TJ) reported in the
current paper. Applying the photonic tagging background subtraction method [IE] allowed for a reduc-
tion of the systematic uncertainties of the pp reference cross section by a factor of about 3 compared to
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Collision system Pb-Pb (0-10%) Pb-Pb (20-40%) PP

pr interval (GeV/c) 0.5-0.7 23 05-07 2-3 05-07 23
Electron candidate selection 6% 3% 6% 3% 4%
Photonic electron subtraction  30% 2% 18% 2% 3%

7° and 1 Weights 1% - 1% - 5% -
SPD requirement 3% 3% 20% -
Track matching 5% 5% 4%
Magnet polarity 2% - 2% - -
Rapidity range 5% - 5% - 5% -
Event selection - - 3%
Subtraction of J/y and K3 2% 4% 2% 3% 4% -

Total systematic uncertainty 32% 8% 21% 7% 23% 7%

Table 5: Contributions to the systematic uncertainties on the yield of electrons from semileptonic heavy-flavour

hadron decays, quoted for the lowest and highest pt interval, respectively.

the previously published reference [@], which is consistent within uncertainties with the current mea-
surement. The cross section from a pQCD calculation employing the Fixed-Order-Next-to-Leading-Log
(FONLL) scheme [@] is compared with the data in The uncertainties of the FONLL calculations
(red dashed area) reflect different choices for the charm and beauty quark masses, the factorization and
renormalization scales as well as from the uncertainty on the set of parton distribution functions used
in the pQCD calculation (CTEQ6.6 [@]). The result from the FONLL calculation is consistent with
the measured production cross section of electrons from semileptonic heavy-flavour hadron decays. The
measured cross section is close to the upper edge of the FONLL uncertainty band, as it was observed
previously in pp collisions at the LHC ] and at RHIC, for pt > 1.5 GeV/c , ], as well as in
pp collisions at the Tevatron [@].

4.2 pr-differential invariant yields in Pb—Pb collisions

The pr-differential invariant yields of electrons from semileptonic heavy-flavour hadron decays mea-
sured in the range 0.5 < pr < 3 GeV/c at mid rapidity in 0-10% (black circles) and 20-40% (red squares)
central Pb—Pb collisions at \/syn = 2.76 TeV are depicted in[Fig. 2]

4.3 Nuclear modification factor R

Figure [3] shows the nuclear modification factor of electrons from semileptonic heavy-flavour hadron
decays at mid-rapidity as a function of prt in Pb—Pb collisions at \/syny = 2.76 TeV for the 0-10%
(left panel) and 20-40% (right panel) centrality classes. The low-pt data from the current analysis
(closed symbols) are shown together with the previously published [42] high-pt Raa (open symbols),
where the 20-30% and 30-40% centrality intervals from [42], in which electrons were identified using
the specific energy loss in the TPC and electromagnetic showers reconstructed in the electromagnetic
calorimeter (EMCal) of ALICE, have been combined. Statistical and systematic uncertainties of the
pr-differential yields and cross sections in Pb—Pb and pp collisions, respectively, are propagated as
uncorrelated uncertainties. The 1.9% normalization uncertainty on the pp measurement is included in
the systematic uncertainties of the invariant cross section, and summed in quadrature with the other
systematic uncertainties. The uncertainties of the average nuclear overlap function (Tx) in the 0-10%
and 20-40% centrality classes are represented by the boxes at Raa = 1. For pt > 3 GeV/c the yield
of electrons from heavy-flavour hadron decays is suppressed strongly which was interpreted as due to
partonic energy loss in the QGP produced in Pb—Pb collisions [@]. The current measurement provides an
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Fig. 1: The pr-differential invariant production cross section for electrons from semileptonic heavy-flavour hadron
decays measured at mid-rapidity in pp collisions at /s = 2.76 TeV in comparison with FONLL pQCD calcula-
tions [IE] (upper panel), and the ratio of the data to the FONLL calculation (lower panel). Statistical and systematic
uncertainties are shown as vertical bars and boxes, respectively.

(\Il L T T T L ‘ T T T ‘ L ‘ T T T L

g - —]
> 1E Pb-Pb, {5, = 2.76 TeV —=
) - —e— 0-10% ]
e - ] —=— 20-40% .
o [l -1 _
og 0t E
— Z°>J - = .
= B e T
—E 107 .- E
[qV} : -] -
10° e
= ALICE 3
B cb - e ly|<08 — | ]
10 & =
I | ‘ | ‘ | | ‘ | ‘ | | ‘ | ‘ L1111

0 0.5 1 15 2 2.5 3 3.5

P, (GeV/cj

Fig. 2: The pr-differential invariant yields of electrons from semileptonic heavy-flavour hadron decays measured
at mid-rapidity in 0—10% and 20—40% central Pb—Pb collisions at /sy = 2.76 TeV. Statistical uncertainties are
smaller than the symbol size and the systematic uncertainties are shown as boxes.
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extension of the pr coverage to lower values, i.e. from pr = 3 GeV/c down to 0.5 GeV/c. In this region,
the suppression of the yield of electrons from heavy-flavour hadron decays is expected to decrease with
decreasing pt as a consequence of the scaling of the total heavy-flavour yield with the number of binary
collisions in Pb—Pb collisions. This scaling, however can be broken due to the nuclear modification of
the parton distribution functions in Pb-nuclei, leading to pr-integrated Raa of less than one. Moreover,
further modifications of the pr distribution due to the radial flow can also play a role in this region.
The observed Raa in Fig. Blis consistent with the expectation of an increasing Raa with decreasing pr,
reaching values close to unity within uncertainties. However the current uncertainties are still too large
to quantify the different effects. Within the current statistical and systematic uncertainties, no significant
centrality dependence is observed in the pr-region below 3 GeV/c.
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1.4 Phys. Lett. B 771 (2017) 467-481 T Phys. Lett. B 771 (2017) 467-481 -
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Fig. 3: Nuclear modification factor Raa for electrons from semileptonic heavy-flavour hadron decays at mid-
rapidity as a function of pt in 0-10% (left panel) and 20-40% central (right panel) Pb—Pb collisions at \/s\n =
2.76 TeV. Error bars (open boxes) represent the statistical (systematic) uncertainties. The normalization uncertain-
ties are represented by the boxes at Raa = 1.

5 Comparison with model calculations

In results from model calculations including charm and beauty quark interactions with a QGP
medium [@—@] are compared with the measured Ras of electrons from semileptonic heavy-flavour
hadron decays for the 10% most central Pb—Pb collisions. The calculations differ in the modelling of
the initial conditions, the medium properties, the dynamics of the medium evolution, the interactions
of charm and beauty quarks with the QGP, and in the implementation of hadronisation and hadronic
interactions in the late stages of the heavy-ion collision. Furthermore, there are differences in the initial
pr-differential heavy-quark production cross section in nucleon-nucleon collisions used as input. Quali-
tatively, most models provide a good description of the heavy-flavour Rap measured in the most central
Pb—Pb collisions as already observed for D mesons [42].

The measurement presented in this paper shows for the first time electrons from heavy-flavour hadron
decays in the pr interval below 1 GeV/c, where decays of heavy-flavour hadrons down to zero pr con-
tribute. In this region, the nuclear modifications of the PDFs can play a significant role [@—@] This is
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Fig. 4: Raa of electrons from semileptonic heavy-flavour hadron decays at mid-rapidity as a function of pr in
0-10% Pb—Pb collisions at /snn = 2.76 TeV compared to model calculations [@—@].

addressed in[Fig. 5} which compares the measured nuclear modification factor with TAMU, POWLANG
and MC@sHQ+EPOS?2 model calculations with and without the inclusion of the EPS09 shadowing pa-
rameterisations [IZII]. The depletion of the parton densities at low x, resulting in a reduced heavy-flavour
production cross section per nucleon-nucleon pair in Pb—Pb collisions with respect to bare nucleon—
nucleon collisions, leads to a reduction of Raa of electrons from heavy-flavour hadron decays at low
pr. Data are better described when the nuclear PDFs are included in the theoretical calculation in both
centrality intervals. However, the experimental uncertainties are still too large to provide quantitative
constraints on the nuclear shadowing contribution. A similar conclusion arises from measurements of
D-meson production in Pb—Pb collisions ].

6 Conclusions

The production of electrons from semileptonic decays of heavy-flavour hadrons has been measured at
mid-rapidity (|y| < 0.8) in the pr interval 0.5-3 GeV/c in pp collisions and in 0-10% and 20-40% cen-
tral Pb—Pb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair. The dominant background
from photonic electron sources has been measured and subtracted via the photonic-electron tagging tech-
nique for the first time in pp and Pb—Pb collisions at the same energy. The systematic uncertainties have
been substantially reduced (up to a factor 3), and the pr coverage has been extended to lower values with
respect to previously published ALICE measurements.

The measured nuclear modification factor Ras of electrons from semileptonic heavy-flavour hadron
decays confirms the strong suppression of high-pr heavy-flavour hadrons in central Pb—Pb collisions
with respect to the binary-collision scaled pp reference, consistent with previous observations in various
heavy-flavour channels. With decreasing pt, Raa grows approaching values close to unity, as expected
from the hypothesis of the binary-collision scaling for the total heavy-quark yield. However, this kine-
matic region is sensitive to the effects of nuclear shadowing: the depletion of parton densities in nuclei at
low Bjorken x values can reduce the heavy-quark production cross section per binary collision in Pb—Pb
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Fig. 5: Raa of electrons from semileptonic heavy-flavour hadron decays at mid-rapidity as a function of pr in 0—
10% (left) and 20—40% central (right) Pb—Pb collisions at \/sny = 2.76 TeV compared to model calculations [@]
with and without EPS09 shadowing parameterisations [@].

with respect to the pp case. This initial-state effect is studied in p—Pb collisions [@]. However, the
present uncertainties on the R,pp, measurement do not allow quantitative conclusions on the modification
of the PDF in nuclei in the low pr region. With the improved precision of the results presented here,
the Pb—Pb data exhibit their sensitivity to the modification of the PDF in nuclei, like nuclear shadowing,
at low pr. The measured Ray is in better agreement with TAMU and POWLANG model calculations
when the nuclear modification of the PDF is included.
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