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Summary
Today’s climate is changing at rates unprecedented in recent human history and it is unequi-

vocal that anthropogenic greenhouse gas emissions such as CO2 largely drive this change. Ter-

restrial ecosystems are an important sink of atmospheric CO2 and savannas and other semi-arid

ecosystems, which cover large parts of Africa, drive trends and variability of global, terrestrial

carbon dynamics. Yet, uncertainties in modelling dryland vegetation and carbon cycle dynam-

ics remain and our ability to simulate future climate change effects on dryland ecosystems lags

behind more mesic systems. Southern Africa’s Nama Karoo dwarf shrubland is an example for

a semi-arid ecosystem where large uncertainties on ecosystem processes, carbon dynamics and

climate change impacts persist.

In African ecosystems, climate-change driven changes have already been observed with re-

gionally varying effects. For example, woody encroachment into savannas as well as expan-

sion of savannas have been described. African ecosystems provide the habitat for a unique

biodiversity and the livelihoods and ecosystem services for approximately 1.4 billion people.

The population in Africa is projected to grow and potentially double until the end of the 21st

century. This population growth and the associated changes in land use and land cover are

challenges for the conservation of Africa’s biodiversity. Understanding the dynamics of eco-

systems and their carbon cycles as well as potential climate change impacts in Africa and un-

certainties associated with vegetation projections is critical for the planning of climate change

adaptation measures. These prospects motivated the research in this thesis with a focus on fu-

ture climate change impacts on African ecosystems and carbon dynamics and where they may

co-occur with the global change drivers population and land use for African protected areas

until the end of the 21st century. An additional focus lay on uncertainties associated with future

projections for African ecosystems and challenges associated with modelling the Nama Karoo

as an example for a semi-arid niche ecosystem and its carbon cycle.

Dynamic vegetation models (DVMs) are a widely used tool deployed to improve our under-

standing of ecosystem processes, attribute ongoing ecosystem changes to different drivers and
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mechanisms, and project future ecosystem changes. They simulate ecophysiological processes,

such as photosynthesis and plant growth, vegetation dynamics and structure, geographical

distribution of plant biomes, and biogeochemical cycles (e.g. water and carbon), in particular

in response to climate change. DVMs are therefore the main tool applied in this thesis. For fu-

ture projections, we used the adaptive dynamic global vegetation model (aDGVM), which was

originally developed particularly for African ecosystems and is well tested. We simulated po-

tential natural vegetation until the end of the 21st century. For simulations of the Nama Karoo

dwarf shrubland, I applied the adaptive dynamic global vegetation model 2 (aDGVM2) which

includes a shrub sub-module. The aDGVM2 is based on the aDGVM but implements a more

flexible, plant-trait based approach.

In Chapter 2, the focus lay on the impact of climate change on African ecosystems and car-

bon stocks until the end of the 21st century. We forced the aDGVM with regionally downscaled

climate scenarios at 0.5° resolution based on an ensemble of climate data from six general circu-

lation models (GCMs) for two representative greenhouse gas concentration pathways (RCPs):

RCP4.5, a medium emissions and mitigation scenario and RCP8.5, a high emissions, low mitig-

ation scenario. We also assessed the effects of elevated atmospheric CO2 on vegetation change

and its plant-physiological drivers. In the so-called CO2 fertilisation effect, increases in at-

mospheric CO2 concentration stimulate photosynthesis, which potentially drives increases in

vegetation biomass. We investigated uncertainties associated with the choice of climate model

that produced climate input data, chosen climate change scenario, and the CO2 effect. The

analysis was focused on biome changes and changes in the water use efficiency of simulated

vegetation.

For carbon in aboveground biomass in Africa, the aDGVM projected an increase until the end

of the century for both climate scenarios (18-43% for RCP4.5 and 37-61% for RCP8.5). This was

associated with woody encroachment into grasslands and increased woody cover in savannas.

In simulations where we omitted the direct effects of CO2 on plants, woody encroachment was

muted. In these simulations without CO2 effects, carbon in aboveground vegetation changed

between (–8)-11% for RCP4.5 and (–22)-(–6)% for RCP8.5. Overall, simulated changes in biomes
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lacked consistent large-scale geographical patterns of change across scenarios. In Ethiopia and

the Sahara/Sahel transition zone, the biome changes forecast by the aDGVM were consistent

across GCMs and RCPs. Projected change in aboveground biomass was driven primarily by

CO2 increases and showed that assumptions concerning CO2 effects caused the strongest vari-

ability in future projections. Direct effects from elevated CO2 were associated with substan-

tial increases in water use efficiency, primarily driven by photosynthesis enhancement. This

increase may relieve soil moisture limitations to plant productivity. At the ecosystem level, in-

teractions between fire and woody plant demography further promoted woody encroachment.

Even medium-impact scenarios (RCP4.5), irrespective of simulated CO2 effects on plants, sug-

gested considerable ecosystem change.

We concluded that substantial future biome changes due to climate and CO2 changes are likely

across Africa. The simulations with and without direct effects of CO2 concentration give an

idea of the range of the potential impact of CO2 fertilisation and future climate change on

ecosystems. It is, however, unlikely that CO2 effects on plants will be negligible in systems such

as savannas, where feedbacks between CO2 effects and fire disturbance affect the competitive

balance between trees and grasses. To reduce uncertainties associated with CO2 effects on

ecosystems, focused research and improved model representation of these CO2 effects will be

necessary. In further aDGVM development, the inclusion of nutrient cycles into vegetation

dynamics is key to account for nutrient limitation of the CO2 fertilisation effect. Because of the

large uncertainties in future projections, climate change adaptation policies and strategies must

be highly flexible.

The simulated vegetation in Chapter 2 represents potential natural vegetation. Simulations of

potential natural vegetation are particularly suitable to investigate protected areas with their, in

ideal circumstances, anthropogenically undisturbed ecosystems and potential climate change

impacts on conservation efforts. However, protected areas do not exist isolated from their en-

vironments and societal developments. Africa’s protected areas appear increasingly threatened

by climate change, substantial human population growth, and land-use change and are at the

same time the last stronghold of the continent’s unique biodiversity. Conservation planning
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is challenged by uncertainty about how strongly and where these drivers will interact over

the next few decades. In Chapter 3, we therefore combined the vegetation projections from

Chapter 2 inside African protected areas with projections for human population densities and

land use in their surroundings. We thus investigated the intersection of climate change impacts

and socioeconomic factors for African protected areas until the end of the 21st century. For cli-

mate change impact simulations, we used only the simulations that included CO2 effects from

Chapter 2, because some effects of atmospheric CO2 on ecosystems are likely. We analysed pro-

tected areas for two future scenarios that are combinations of shared socioeconomic pathways

(SSPs) and RCPs. The SSP2–RCP4.5 is the “middle-of-the-road” scenario in which global in-

equalities in development and income growth continue with some regional improvements and

medium climatic changes. In SSP5-RCP8.5, rapid economic and social development is driven

by fossil fuel exploitation and associated strong climate change and technological development

(“fossil-fueled development”).

Under both scenarios, most protected areas were adversely affected by at least one of the

drivers by the end of the 21st century, but the co-occurrence of drivers was largely region

and scenario specific. The vegetation projections suggested considerable climate-driven tree

cover increases and habitat loss in the majority of protected areas in today’s grasslands and

savannas. For protected areas in West Africa, the analysis revealed climate-driven vegetation

changes combined with hotspots of high future population and land-use pressure. Except for

many protected areas in North Africa, protected areas across Africa were generally projected to

experience increasing pressure from at least one of the investigated global change pressures un-

der both SSP–RCP scenarios. Future decreases in population and land-use pressures were rare

for protected areas outside of North Africa. At the continental scale, SSP5–RCP8.5 led to higher

climate-driven changes in tree cover and higher land-use pressure, whereas SSP2–RCP4.5 was

characterised by higher future population pressure. Both SSP–RCP scenarios implied increas-

ing challenges for conserving Africa’s biodiversity in protected areas.

Despite the large variation between scenarios and regions, it can be concluded that climate-

change impacts on vegetation will likely be exacerbated by socioeconomic pressures for most
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protected areas and regions in Africa. This combination of pressures challenges conservation

targets of protecting 30% of land areas under the Convention on Biological Diversity. Our find-

ings underline the importance of developing and implementing region-specific conservation

responses. Strong mitigation of future climate change and equitable development scenarios

could reduce impacts on ecosystems and sustain the effectiveness of conservation in Africa.

The continental scale vegetation simulations and analyses in Chapters 2 and 3 indicate broad

patterns of vegetation change under climate change. The resolution of these simulations make

them unsuitable for local analyses. In addition, smaller scale ecosystems such as the Nama

Karoo dwarf shrubland in southern Africa, an ecosystem which is not found on the grassland-

savanna-forest spectrum, are not represented well by plant types implemented in many DVMs.

At the same time, the contribution of the Nama Karoo to the variability of the global carbon sink

is not clear. Likewise, potential climate change impacts on the Nama Karoo carbon dynamics

and the balance of its dwarf shrubs and grasses are uncertain. In Chapter 4, I demonstrated the

challenges of simulating the plants and the carbon cycle of the Nama Karoo with the aDGVM2

and its shrub module. I evaluated the simulated carbon fluxes from photosynthesis, respiration

and decomposition against recent carbon flux measurements from an eddy covariance flux

tower and compared simulated and observed vegetation structure. With reparametrisation of

soil water access, soil depth, and photosynthesis modules in aDGVM2, I tested which model

setups improve simulation results.

In all simulation setups, simulated carbon fluxes and biomass for the Nama Karoo were vastly

overestimated. None of the implemented reparametrisations of the model was able to represent

dwarf shrub morphology and carbon fluxes and their intra- and interannual dynamics. Com-

pared to an aDGVM2 base version, the different simulation setups improved the agreement for

individual flux components or for biomass. Simulations with limited soil water access led to

the extinction of shrubs. In simulations without limitations of soil water access where shrubs

established, they grew too tall with heights of 1.5-3.2 m. These heights are common for savanna

shrubs, but not for Nama Karoo dwarf shrubs which had an average height of ∼0.25 m at the

research site. The simulations also showed challenges in simulating below-ground water and
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carbon processes in semi-arid ecosystems. Simulated soil moisture did not drop to observed

levels and heterotrophic respiration was overestimated. In semi-arid ecosystems such as the

Nama Karoo, water availability limits plant growth and drives carbon release from decompos-

ition processes. An appropriate model representation of soil moisture dynamics is key for plant

growth and simulated carbon balance.

These differences between aDGVM2 simulations and measurements highlighted that dwarf

shrub ecology is not represented by the existing shrub-module in aDGVM2. Coping mechan-

isms of dwarf shrubs in semi-arid regions for dry stress are not reflected well in the aDGVM2

implementation of shrubs and woody vegetation. Further field research on the ecophysiology

and processes driving the dynamics of Nama Karoo vegetation and soil water is required to

parameterise the aDGVM2 for the Nama Karoo. If this reparametrisation does not lead to an

adequate representation, an implementation of dwarf shrubs as a distinct plant functional type

may be necessary. Once Nama Karoo vegetation dynamics are improved, including herbivory

in aDGVM2 simulations would be an important next step to reflect widespread livestock farm-

ing with sheep in the Nama Karoo. Given that these challenges are overcome, DVMs can be

a powerful tool for much needed research on climate-change impacts on the ecology but also

regional livelihoods in the Nama Karoo.

In this thesis, I showed opportunities but also limitations and uncertainties of simulations and

climate change projections with the DVMs aDGVM and aDGVM2 for African ecosystems and

their carbon balance as well as the combination of DVM projections with global change projec-

tions for African protected areas. The analyses indicated that climate change under medium to

high emission scenarios will likely result in large scale ecosystem and carbon balance changes

in Africa. The presented uncertainties in the representation of the CO2 fertilisation effect, of

semi-arid soil moisture dynamics, of carbon fluxes, and of vegetation types in more niche eco-

systems such as the Nama Karoo highlight the importance of further field research and DVM

development. For the medium emission scenario, uncertainties in the CO2 fertilisation effect

resulted in a smaller range of potential future ecosystem states compared to the high emission

scenario. This entails that adaptation strategies and measures likely need to be less complex
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or extensive, when climate change is minimised. For African protected areas, climate change

challenges may be exacerbated by socioeconomic factors to a regionally varying extent. This

analysis pointed towards the importance of not only taking climate action but also ensuring

equitable, sustainable development to facilitate successful ecosystem conservation.

Overall, this thesis contributed to research on possible climate change impacts on African eco-

systems and conservation, the complex links with other global change factors, and research

gaps in the representation of African ecosystems in DVMs. Avenues of future research could

include the application of DVMs in attribution research by analysing the likelihood of anthro-

pogenic climate change as driver of observed vegetation change. If research finds that anthro-

pogenic climate forcing can likely be attributed as driver of recent vegetation changes, this

could be powerful information for the communication on the impacts of climate change and

awareness raising. In addition, simulations with DVMs could support the planning of nature-

based solutions in terrestrial ecosystems to investigate their potential and to ensure resilient

responses to climate change and prevent biodiversity loss.
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Zusammenfassung
Das aktuelle Erdklima wandelt sich in einem Tempo, das beispiellos ist für die jüngste Vergan-

genheit der Menscheitsgeschichte. Es ist erwiesen, das insbesondere anthropogene Treibhaus-

gasemissionen von beispielsweise CO2 diese Veränderungen antreiben. Terrestrische Ökosyste-

me sind gleichzeitig ein wichtiger Speicher für CO2 aus der Atmosphäre. Savannen und andere

semiaride Ökosysteme, die einen großen Teil von Afrika bedecken, bestimmen Trends und Va-

riabilität der globalen, terrestrischen Kohlenstoffdynamik. Es bestehen jedoch weiterhin Unsi-

cherheiten in der Modellierung von Dynamiken der Vegetation und des Kohlenstoffkreislaufs

in Trockengebieten. Unsere Fähigkeiten, Auswirkungen von zukünftigen Klimaveränderun-

gen auf Ökosysteme in Trockengebieten zu modellieren, bleiben hinter denen für gemäßigtere

Ökosysteme zurück. Die Zwergstrauchlandschaft der Nama-Karoo im südlichen Afrika ist ein

Beispiel für ein semiarides Ökosystem, für das große Unsicherheiten zu Ökosystemprozessen,

Kohlenstoffdynamiken und Auswirkungen des Klimawandels bestehen.

Auswirkungen des Klimawandels wurden für afrikanische Ökosysteme bereits mit regional

unterschiedlichen Effekten beschrieben. So wurden für Savannen beispielsweise einerseits Ver-

buschung und andererseits Gebietsausdehnung beobachtet. Afrikanische Ökosysteme bieten

Lebensräume für eine einzigartige Biodiversität und stellen die Lebensgrundlagen und Öko-

systemdienstleistungen für etwa 1,4 Milliarden Menschen bereit. Für die Bevölkerung Afrikas

wird bis zum Ende des 21. Jahrhunderts ein Wachstum mit einer möglichen Verdopplung pro-

gnostiziert. Dieses Bevölkerungswachstum und die damit einhergehenden Veränderungen von

Landnutzung und Landbedeckung stellen eine Herausforderung für den Schutz der afrikani-

schen Biodiversität dar. Für die Planung von Maßnahmen zur Anpassung an den Klimawandel

ist ein Verständnis für Dynamiken von Ökosystemen und ihren Kohlenstoffkreisläufen sowie

für mögliche Auswirkungen des Klimawandels in Afrika und Unsicherheiten im Zusammen-

hang mit Vegetationsprojektionen entscheidend. Dieser Hintergrund diente als Motivation für

diese Forschungsarbeit mit dem Fokus auf zukünftige Auswirkungen des Klimawandels auf

afrikanische Ökosysteme und Kohlenstoffdynamiken bis zum Ende des 21. Jahrhunderts und

wo diese für afrikanische Schutzgebiete zusammen mit den weiteren Faktoren des globalen
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Wandels Bevölkerung und Landnutzung auftreten könnten. Darüber hinaus lag ein weiterer

Fokus dieser Arbeit auf Unsicherheiten bei Zukunftsprojektionen für afrikanische Ökosyste-

me und Herausforderungen im Zusammenhang mit der Modellierung der Nama-Karoo, als

Beispiel für ein semiarides Nischenökosystem, und ihres Kohlenstoffkreislaufs.

Dynamische Vegetationsmodelle (DVMs) sind ein weit verbreitetes Instrument in der Untersu-

chung von Ökosystemprozessen, der Identifizierung von Antriebsfaktoren und Mechanismen

hinter aktuellen Veränderungen in Ökosystemen und für Zukunftsprojektionen von Ökosys-

temveränderungen. Mit DVMs können ökophysiologische Prozesse wie Photosynthese und

Pflanzenwachstum, Vegetationsdynamiken und -strukturen, geographische Verbreitungen von

Pflanzenbiomen sowie biogeochemischen Kreisläufen (z.B. Wasser und Kohlenstoff) insbeson-

dere im Zusammenhang mit dem Klimawandel, untersucht werden. DVMs sind daher das

Hauptwerkzeug in dieser Arbeit. Für Zukunftsprojektionen haben wir das adaptive dynamic

global vegetation model (aDGVM), welches ursprünglich insbesondere für afrikanische Öko-

systeme entwickelt wurde und sich bewährt hat, verwendet. Mit dem aDGVM haben wir die

potentielle, natürliche Vegetation bis zum Ende des 21. Jahrhunderts simuliert. In Simulationen

für die Zwergstrauchlandschaft der Nama-Karoo habe ich das adaptive dynamic global vege-

tation model 2 (aDGVM2), für das ein Modul für Strauchpflanzen existiert, angewendet. Das

aDGVM2 wurde basierend auf dem aDGVM entwickelt, verfügt aber über einen flexibleren

Ansatz basierend auf variablen Pflanzenmerkmalen.

In Kapitel 2 lag der Fokus auf den Auswirkungen des Klimawandels auf afrikanische Ökosys-

teme und Kohlenstoffspeicher bis zum Ende des 21. Jahrhunderts. Dafür haben wir aDGVM-

Simulationen mit regional herunterskalierten Klimadaten aus einem Ensemble von sechs glo-

balen Zirkulationsmodellen (general circulation models, GCMs) für zwei repräsentativer Kon-

zentrationspfade (representative concentration pathways, RCPs) mit einer Auflösung von 0.5°

als Eingabedaten durchgeführt: RCP4.5, ein Klimawandelszenario mit mittleren Emissionen

und mittlerer Eindämmung und RCP8.5, ein Szenario mit hohen Emissionen und niedriger
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Minderung des Klimawandels. Darüber hinaus haben wir den Einfluss von erhöhten CO2-

Konzentrationen in der Atmosphäre auf Vegetationsveränderungen und pflanzenphysiologi-

sche Antriebskräfte untersucht. Im sogenannten CO2-Düngeeffekt regen erhöhte CO2-Konzen-

trationen die Photosynthese an, was möglicherweise in einer Zunahme von Pflanzenbiomasse

resultiert. Wir haben Unsicherheiten im Zusammenhang mit der Wahl des den Klimaeingabe-

daten zugrundeliegenden Klimamodells, dem gewählten Klimawandelszenario und dem CO2-

Düngeeffekt untersucht. Die Analyse war dabei auf Biomveränderungen und Veränderungen

der Wassernutzungseffizienz der simulierten Vegetation fokussiert.

Für Kohlenstoff, der in oberirdischer Biomasse gespeichert ist, hat das aDGVM eine Zunahme

von 18-43% unter RCP4.5 und von 37-61% unter RCP8.5 bis Ende des Jahrhunderts projiziert.

Damit einher ging eine Verbuschung von Grasländern und Savannen. In Simulationen, in de-

nen der direkte Einfluss von CO2 auf Pflanzen ausgeschaltet war, fand kaum Verbuschung

statt. In diesen Simulationen ohne CO2-Effekt änderte sich der Kohlenstoff in der oberirdi-

schen Biomasse zwischen (–8)-11% unter RCP4.5 und (–22)-(–6)% unter RCP8.5. Insgesamt

ergaben sich über die verschiedenen Szenarien hinweg keine großräumig übereinstimmen-

den geographische Muster der Vegetationsveränderung. Für Äthiopien und die Sahara/Sahel-

Übergangszone stimmten die Projektionen über GCMs und RCPs hinweg jedoch überein. Die

simulierten Veränderungen der oberirdischen Biomasse wurden in erster Linie durch den An-

stieg von CO2 angetrieben und Annahmen zum CO2-Effekt verursachten die größte Variabili-

tät in den Zukunftsprojektionen. Erhöhte CO2-Konzentrationen bewirkten ebenfalls eine Erhö-

hung der Wassernutzungseffizienz, insbesondere aufgrund einer Erhöhung der Photosynthese.

Die größere Wassernutzungseffizienz stellt möglicherweise eine Entlastung bei Einschränkun-

gen der Pflanzenproduktivität durch limitierte Bodenwasserresourcen dar. Auf der Ebene der

Ökosysteme beförderten Interaktionen zwischen Feuer und Demographieprozessen der höl-

zernen Vegetation die Verbuschung zusätzlich. Insgesamt wiesen auch die Simulationen mit

mittleren Auswirkungen des Klimawandels (RCP4.5) auf beträchtliche Ökosystemveränderun-

gen, unabhängig vom CO2-Effekt auf Pflanzen, hin.
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Basierend auf diesen Ergebnissen schlossen wir, dass in Afrika in der Zukunft erhebliche Biom-

veränderungen durch den Klimawandel und erhöhte CO2-Konzentrationen wahrscheinlich

sind. Von den Simulationen mit und ohne direkte CO2-Effekte können wir für Ökosysteme

eine Spanne potenzieller Einflüsse des CO2-Düngeeffekts im Zusammenspiel mit zukünftigem

Klimawandel ableiten. Es ist jedoch unwahrscheinlich, dass CO2-Effekte auf Pflanzen in Sa-

vannenökosystemen vernachlässigbar sind, da in diesen Ökosystemen Rückkoppelungseffekte

zwischen CO2-Effekt und Feuerdynamiken das Gleichgewicht zwischen Bäumen und Gräsern

verschieben. Um die Unsicherheiten im Zusammenhang mit den CO2-Effekten auf Ökosysteme

abzubauen, ist eine verbesserte Implementierung in Modellen und gezielte Forschung zu den

CO2-Effekten notwendig. Der Einbau von Nährstoffkreisläufen ist wichtig für die Weiterent-

wicklung des aDGVM, um eine Einschränkung der CO2-Effekte durch Nährstofflimitierungen

abbilden zu können. Aufgrund der großen Unsicherheiten der Zukunftsprojektionen ist es un-

erlässlich, dass Strategien und Maßnahmen zur Anpassung an den Klimawandel höchstflexibel

sind.

Die simulierte Vegetation in Kapitel 2 stellt potenzielle, natürliche Vegetation dar. Simulationen

der potenziellen, natürlichen Vegetation eignen sich besonders gut für die Untersuchung von

Schutzgebieten mit ihren, im Idealfall vom Menschen ungestörten, Ökosystemen und mög-

lichen Auswirkungen des Klimawandels auf die Schutzgebiete. Schutzgebiete existieren je-

doch nicht isoliert von ihrer räumlichen Umwelt und gesellschaftlichen Entwicklungen. Afri-

kas Schutzgebiete stehen zunehmend durch Faktoren des globalen Wandels, wie beispielsweise

Klimawandel, Bevölkerungswachstum und Veränderungen in der Landnutzung, unter Druck

und sind gleichzeitig die letzte Hochburg der einzigartigen biologischen Vielfalt des Kontin-

ents. Planungen für den Naturschutz werden dadurch erschwert, dass unklar ist, wie stark und

wo diese Einflussfaktoren in den nächsten Jahrzehnten zusammenwirken werden. Deshalb ha-

ben wir in Kapitel 3 die Vegetationsprojektionen aus Kapitel 2 für afrikanische Schutzgebiete

mit Projektionen für Bevölkerungsdichte und Landnutzung in der Umgebung der Schutzge-

biete kombiniert. So konnten wir die Überschneidung von Auswirkungen des Klimawandels
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mit sozioökonomischen Faktoren für afrikanische Schutzgebiete bis zum Ende des 21. Jahr-

hunderts analysieren. Für diese Analyse wurden von den Vegetationssimulationen zu Klima-

wandelszenarien aus Kapitel 2 nur Simulationen mit CO2-Effekten verwendet, da ein gewisser

Einfluss des atmosphärischen CO2 auf die Ökosysteme wahrscheinlich ist. Zwei Zukunftssze-

narien, die eine Kombination aus gemeinsam genutzten sozioökonomischen Pfaden (shared

socioeconomic pathways, SSPs) und RCPs sind, wurden untersucht. SSP2-RCP4.5 ist das “Mit-

te des Weges”-Szenario mit mittleren klimatischen Veränderungen und einer Fortsetzung der

generellen Entwicklung und globaler Ungleichheiten beim Einkommenswachstum mit einigen

regionalen Verbesserungen. Im Szenario SSP5-RCP8.5 basiert eine rasche wirtschaftliche und

soziale Entwicklung auf technologischen Entwicklungen und der Nutzung fossiler Brennstoffe,

womit ein starker Klimawandel einhergeht ("Fossil befeuerte Entwicklung").

Bei beiden Szenarien wurde für die meisten Schutzgebiete für mindestens einen der drei Ein-

flussfaktoren eine ungünstige Entwicklung bis zum Ende des 21. Jahrhunderts projiziert. Das

gemeinsame Auftreten der Faktoren bei Schutzgebieten war von Region zu Region und Szena-

rio zu Szenario unterschiedlich. Die Vegetationsprojektionen wiesen auf eine erhebliche klima-

bedingte Zunahme der Baumbedeckung und einen Lebensraumverlust in den meisten Schutz-

gebieten in den heutigen Grasländern und Savannen hin. Für Schutzgebiete in Westafrika ergab

die Analyse klimabedingte Vegetationsveränderungen in Kombination mit Hotspots mit ho-

hem zukünftigen Bevölkerungs- und Landnutzungsdruck. Mit Ausnahme vieler Schutzgebiete

in Nordafrika wurde für Schutzgebiete in ganz Afrika in beiden SSP-RCP-Szenarien im Allge-

meinen eine zunehmende Belastung durch mindestens einen der drei untersuchten Faktoren

des globalen Wandels prognostiziert. Zukünftige Abnahmen des Bevölkerungs- und Landnut-

zungsdrucks waren für Schutzgebiete außerhalb Nordafrikas selten. Auf kontinentaler Ebene

führte SSP5-RCP8.5 zu stärkeren klimabedingten Veränderungen der Baumbedeckung und hö-

herem Landnutzungsdruck, während SSP2-RCP4.5 mit einem höheren, zukünftigen Bevölke-

rungsdruck einherging. Beide SSP-RCP-Szenarien bedeuten zunehmende Herausforderungen

für den Erhalt der afrikanischen Biodiversität in Schutzgebieten.
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Trotz Unterschieden zwischen den Regionen und Szenarien lassen die Ergebnisse darauf schlie-

ßen, dass die Auswirkungen des Klimawandels auf die Vegetation in den meisten Schutzgebie-

ten und Regionen Afrikas wahrscheinlich durch sozioökonomischen Wandel noch verschärft

werden. Diese Belastungen stellen eine Herausforderung für die Schutzziele des Übereinkom-

mens über die biologische Vielfalt (Convention on Biological Diversity), wonach 30% der Land-

flächen geschützt werden sollen, dar. Unsere Ergebnisse zeigen, dass es notwendig ist Schutz-

maßnahmen regional angepasst zu entwickeln und umzusetzen. Eine starke Eindämmung des

zukünftigen Klimawandels zusammen mit gerechten, gesellschaftlichen Entwicklungsszenari-

en könnten dazu beitragen, die Auswirkungen auf Ökosysteme zu verringern und die Wirk-

samkeit des Naturschutzes in Afrika zu erhalten.

Die Vegetationssimulationen und -analysen auf kontinentaler Ebene in den Kapiteln 2 und 3

zeigen großräumige Muster für Vegetationsveränderungen unter dem Klimawandel auf. Auf-

grund der geringen räumliche Auflösung dieser Simulationen sind sie für lokale Analysen je-

doch ungeeignet. Darüber hinaus werden kleinräumigere Ökosysteme wie das Zwergstrauch-

land der Nama-Karoo im südlichen Afrika, welches nicht auf dem Grasland-Savanne-Wald-

Spektrum liegt, durch die in vielen DVMs implementierten Pflanzentypen nicht gut repräsen-

tiert. Gleichzeitig ist der Beitrag der Nama-Karoo zur Variabilität der globalen Kohlenstoff-

senke unklar. Mögliche Auswirkungen des Klimawandels auf die Kohlenstoffdynamik der

Nama-Karoo und das Gleichgewicht ihrer Zwergstrauch- und Grasvegetation sind ebenso un-

gewiss. In Kapitel 4 habe ich daher die Herausforderungen bei der Simulation der Pflanzen

und des Kohlenstoffkreislaufs der Nama-Karoo mit dem aDGVM2 und seinem Strauchmodul

herausgearbeitet. Mithilfe von aktuellen Kohlenstoffflussmessungen eines Eddy-Kovarianz-

Turms konnten lokal simulierte Kohlenstoffflüsse, wie Photosynthese, Respiration und bioti-

scher Abbau, eingeordnet werden. Die simulierte Vegetation habe ich darüber hinaus mit der

Struktur beobachteter Vegetation verglichen. Für diese Analyse habe ich Module der Boden-

wasserverfügbarkeit, Bodentiefe und Photosynthese in aDGVM2 reparametrisiert und getestet,

mit welchen Modellkonfigurationen die Simulationsergebnisse verbessert werden.
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In allen getesten Konfigurationen des aDGVM2 wurden in den Simulationen sowohl die Koh-

lenstoffflüsse als auch die Biomasse für den Standort in der Nama-Karoo deutlich überschätzt.

Mit keiner der implementierten Modellkonfigurationen konnten die Morphologie der Zwerg-

sträucher und die Kohlenstoffflüsse sowie deren intra- und interannuelle Dynamik reprodu-

ziert werden. Im Vergleich zu einer aDGVM2-Basisversion verbesserten die verschiedenen

Konfigurationen die Übereinstimmung für einzelne Komponenten der Kohlenstoffdynamik

oder für die Biomasse. Bei Simulationen mit eingeschränkter Bodenwasserverfügbarkeit über-

lebte die Strauchvegetation nicht. In Simulationen ohne die Einschränkung der Bodenwasser-

verfügbarkeit überlebten Sträucher, wurden aber mit Wuchshöhen von 1,5-3,2 m zu groß. Diese

Wuchshöhen sind für Savannensträucher üblich, nicht aber für Nama-Karoo-Zwergsträucher

mit einer Durchschnittshöhe von ∼0,25 m am Untersuchungsstandort. In den Simulationen

zeigte sich auch, dass die Simulation von Wasser- und Kohlenstoffprozessen im Boden von

semiariden Ökosystemen eine Herausforderung darstellt. Die simulierte Bodenfeuchte senkte

sich nicht auf den gemessenen Bereich ab und die heterotrophe Respiration wurde überschätzt.

In semiariden Ökosystemen wie der Nama-Karoo begrenzt die Wasserverfügbarkeit einerseits

das Pflanzenwachstum und bestimmt andererseits Abbauprozesse, bei denen Kohlenstoff frei

gesetzt wird. Eine adequate Umsetzung der Bodenfeuchtedynamik im Modell ist entscheidend

für die Simulation von Pflanzenwachstum und der Kohlenstoffdynamik.

Diese Unterschiede zwischen den aDGVM2-Simulationen und den Messungen verdeutlichen,

dass die Ökologie von Zwergsträuchern durch das bestehende Strauch-Modul im aDGVM2

nicht abgebildet wird. Die Bewältigungsstrategien von Zwergsträuchern in semiariden Ge-

bieten bei Trockenstress werden in der aktuellen aDGVM2-Implementierung von Sträuchern

und holzigen Pflanzen nicht angemessen umgesetzt. Weitere Feldforschung zur Ökophysio-

logie und zu den Prozessen, die die Dynamik der Vegetation und der Bodenfeuchte in der

Nama-Karoo bestimmen, ist notwendig, um das aDGVM2 für die Nama-Karoo zu parametri-

sieren. Falls eine solche Reparametrisierung nicht zu einer angemessenen Modellierung der

Zwergsträucher führt, ist gegebenenfalls eine Implementierung von Zwergsträuchern als eige-

ner funktionaler Pflanzentyp im aDGVM2 erforderlich. Wenn die Vegetationsdynamiken der
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Nama-Karoo zufriedenstellend umgesetzt sind, ist die Einbindung von Herbivorie in aDGVM2-

Simulationen ein wichtiger nächster Schritt, um so die in der Nama-Karoo weit verbreitete

Bewirtschaftung mit Schafen zu berücksichtigen. Wenn diese Herausforderungen bewältigt

werden, können DVMs ein mächtiges Instrument für die dringend benötigte Forschung zu

den Auswirkungen des Klimawandels auf die Ökologie, aber auch auf die regionalen Lebens-

grundlagen in der Nama-Karoo sein.

In dieser Arbeit habe ich Möglichkeiten, aber auch Grenzen und Unsicherheiten, von Simula-

tionen und Klimawandelprojektionen mit den DVMs aDGVM und aDGVM2 für afrikanische

Ökosysteme und deren Kohlenstoffbilanz sowie von der Kombination von DVM-Projektionen

mit Projektionen zum globalen Wandel für afrikanische Schutzgebiete aufgezeigt. Die Analy-

sen haben gezeigt, dass der Klimawandel unter mittleren bis hohen Emissionsszenarien wahr-

scheinlich zu großflächigen Veränderungen der Ökosysteme und der Kohlenstoffbilanz in Afri-

ka führen wird. Die gezeigten Unsicherheiten bei der Implementierung des CO2-Düngeeffekts,

der Dynamik von Bodenfeuchte in semiariden Gebieten, der Kohlenstoffflüsse und der Vege-

tationstypen in eher nischenartigen Ökosystemen wie der Nama-Karoo unterstreichen die Be-

deutung weiterer Feldforschung und der Entwicklung von DVMs. Unsicherheiten beim CO2-

Düngeeffekt führten für das mittlere Emissionsszenario zu einer kleineren Spanne potenziel-

ler, zukünftiger Ökosystemzustände als beim Szenario mit hohen Emissionen. Dies bedeutet,

dass Strategien und Maßnahmen zur Anpassung an den Klimawandel wahrscheinlich weniger

komplex oder umfangreich sein müssen, wenn der Klimawandel minimiert wird. Für afrikani-

sche Schutzgebiete könnten die Herausforderungen des Klimawandels durch sozioökonomi-

sche Faktoren in regional unterschiedlichem Ausmaß verschärft werden. Diese Analyse deutet

darauf hin, dass für den erfolgreichen Schutz von Ökosystemen nicht nur Klimaschutzmaß-

nahmen entscheidend sind, sondern auch die Gewährleistung einer gerechten, nachhaltigen

Entwicklung.

Insgesamt leistete diese Arbeit einen Forschungsbeitrag zu möglichen Auswirkungen des Kli-

mawandels auf afrikanische Ökosysteme und deren Erhaltung, zu komplexen Zusammenhän-

gen mit anderen Faktoren des globalen Wandels und zu Forschungslücken bei der Darstellung
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afrikanischer Ökosysteme in DVMs. Zukünftige Forschungsansätze könnten die Anwendung

von DVMs in der Attributionsforschung umfassen. Dabei könnte die Wahrscheinlichkeit des

anthropogenen Klimawandels als Ursache von heute beobachteten Vegetationsveränderungen

analysiert werden. Wenn dabei der anthropogene Klimawandel als wahrscheinliche Ursache

für heutige Vegetationsveränderungen identifiziert werden sollte, könnten dies hilfreiche In-

formationen in der Kommunikation über die Auswirkungen des Klimawandels und der Sen-

sibilisierung dafür sein. Darüber hinaus könnten Simulationen mit DVMs die Planung natur-

basierter Lösungen (nature-based solutions) in terrestrischen Ökosystemen unterstützen. So

könnte untersucht werden, inwiefern bei bestimmten naturbasierten Lösungen eine robuste

Reaktion auf den Klimawandel zu erwarten ist oder der Verlust von Biodiversität verhindert

werden kann.
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2 Chapter 1. Introduction

It is a truth, though not universally but widely acknowledged, that a single species, homo sapi-

ens, in possession of good rationality must be in want of climate action today.* This statement

and this thesis is motivated by the fact that today’s climate is changing at rates unprecedented

in recent human history. Global surface temperature increased over the last 50 years at a rate

not seen over the last 2000 years and the global mean temperature from 2011-2020 was warmer

than any multi-century period since the last interglacial 125 000 years ago. As consolidated by

the Intergovernmental Panel on Climate Change (IPCC), it is unequivocal that this change is

largely driven by anthropogenic greenhouse gas emissions such as CO2. In Africa, increases in

hot temperature extremes have been observed across the whole continent with high confidence

in human contribution to these changes. Heavy precipitation events as well as agricultural and

ecological drought have been observed especially in southern Africa (Arias et al., 2022).

Terrestrial ecosystems are an important sink of atmospheric CO2 and remove part of the anthro-

pogenic CO2 emissions from the atmosphere (Friedlingstein et al., 2022). Dryland ecosystems

have been found to be the key driver of the interannual variability and the trend of this global

terrestrial carbon sink. However, the contribution of dryland ecosystems to driving the global

variability vary. In Africa, savannas drove this variability whereas other African semi-arid eco-

systems, such as the Nama Karoo in southern Africa, contributed less to the global variability

(Ahlström et al., 2015). Yet, uncertainties in modelling dryland vegetation and carbon cycle dy-

namics remain (Wang et al., 2022) and our ability to simulate future climate change effects on

dryland ecosystems lags behind more mesic systems (Osborne et al., 2022). Understanding the

response of land ecosystems and their carbon sink and source dynamics under climate change

and increasing atmospheric CO2 concentrations, including the antagonistic processes of carbon

assimilation and heterotrophic respiration from decomposition (Prentice et al., 2000), is key to

understanding the potential buffering effects of ecosystems on the climate system by removing

CO2 from the atmosphere (Canadell et al., 2007). A good grasp of dryland ecosystem responses

to climate change is all the more critical, as many people’s livelihoods depend on drylands and

their ecosystem services (EMG, 2011).

*Adapted from the first sentence in Austen (1813): “It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.”
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Anthropogenic climate change already degraded ∼13% of global dryland, which affects 213

million people who live mostly in low to middle income countries (Burrell et al., 2020). The vast

majority of Africa is covered by drylands (Wang et al., 2022) and savannas are the dominant

ecosystem on the continent (Scholes & Walker, 1993). Savannas are highly dynamic systems

in which fire and herbivory are important ecosystem-shaping disturbances (Sankaran et al.,

2005). Links and feedbacks between vegetation, fire, climate, and atmospheric CO2 may result

in regionally varying climate change impacts in savannas (IPBES, 2019a). In the past, African

savannas have already experienced both expansion (Gonzalez et al., 2012) into previously more

humid regions and increased woody cover in existing savanna ecosystems (Stevens et al., 2017).

However, ancient savannas and grasslands with their rich biodiversity (Bond, 2016) are slow

to establish (Veldman et al., 2015a). Thus, biome changes due to climate change may lead to

loss of biodiversity and communities, which cannot easily be replaced by newly established

savannas under climate change.

For southern Africa’s semi-arid Nama Karoo, large uncertainties on ecosystem processes such

as carbon dynamics (Rybchak et al., 2023) and climate change impacts on ecosystem function-

ing (Henschel et al., 2018) persist. At the same time, most parts of the Nama Karoo, which is

a mixture of dwarf shrubs and grasses, is used for livestock production (du Toit et al., 2018).

Therefore, a good understanding of feedbacks between ecosystem dynamics, herbivory and

climate in the Nama Karoo are also important for land use planning. The naturally high vari-

ability of environmental conditions and particularly of precipitation in semi-arid ecosystems

(e.g., Kew et al., 2021 for eastern Africa and du Toit & O’Connor, 2014 for precipitation vari-

ability in the eastern Nama Karoo) complicates the development of a good understanding for

the Nama Karoo and potential climate-change impacts. These uncertainties are also reflected

in the difficulties of modelling the Nama Karoo and other Southern African biomes, that are

not represented on the forest-savanna-grassland spectrum, and potential biome transitions and

shifts under climate change with dynamic vegetation models (DVMs, Moncrieff et al., 2015).

Soil moisture was found to be the main driving force of vegetation changes (Higgins et al.,

2023b) and carbon dynamics for semi-arid ecosystems (Liu et al., 2023). In these ecosystems,
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water availability limits plant growth (Venter, 2001) and drives carbon release from decompos-

ition processes in the soil (Zhou et al., 2021). However in semi-arid regions, response times

and strengths differ for assimilation through photosynthesis (gross primary production, GPP)

and carbon release through respiration from both above and below-ground processes (Poulter

et al., 2014). The net carbon balance, measured as net ecosystem exchange (NEE), is often close

to zero and can switch between being a carbon source or sink from one year to the next in

semi-arid ecosystems (Dannenberg et al., 2023). At local scale, eddy covariance flux towers

improve our understanding of spatial and temporal ecosystem carbon dynamics by measuring

NEE and thus recording carbon exchange dynamics between the atmosphere and the local eco-

system (Chapin III et al., 2011, p.208). However, only few eddy covariance measurement sites

across Africa and its semi-arid ecosystems are available (Abdi et al., 2019; Valentini et al., 2014).

In addition, this data is rarely used for testing and benchmarking of modelled carbon fluxes in

process-oriented modelling studies for Africa (Valentini et al., 2014) or dryland regions (Mac-

Bean et al., 2021). In Middelburg, Eastern Cape, South Africa in the Nama Karoo, two eddy

covariance flux towers were installed in October 2015. These measurements can contribute to

an improved understanding of carbon and ecosystem dynamics in the Nama Karoo (Rybchak

et al., 2023) and climate change impacts.

Brook et al. (2008) highlighted the importance of investigating climate change in combination

with other factors threatening biodiversity. Land use change, resource exploitation, pollution

and invasion of alien species are other important components of global change that drive large

changes in biodiversity (Brook et al., 2008). A combination of these drivers can reinforce each

other’s effects (IPBES, 2019b). For sub-Saharan Africa, Leisher et al. (2022) found crops, log-

ging and wood harvesting, and hunting as main threats to biodiversity conservation, currently

outranking the threats from climate change. Conversion and degradation of habitats due to

land use have caused global declines in biodiversity with major declines in the Sahel, the west

African coast, east Africa, and southern Africa (Newbold et al., 2015). In consequence, Africa’s

biodiversity is increasingly restricted to protected areas (e.g., Pacifici et al., 2020, for mammal

species). The pressure on biodiversity is expected to intensify with a growing, more affluent
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human population in the future (Powers & Jetz, 2019). These developments and prognoses

motivated the adoption of the target to protect at least 30% of both land and sea areas by 2030

under the Kunming-Montreal global biodiversity framework of the Convention on Biological

Diversity (CBD COP, 2022).

In this thesis, I used DVMs to investigate future scenarios of climate change impacts on eco-

systems and carbon cycles in Africa and uncertainties associated with these DVM simulations

and projections. In combination with projections for human population and land use, I used

DVM projections to analyse the co-occurrence of potential future global change pressures on

African protected areas. I investigated challenges associated with simulating a semi-arid niche

ecosystem and its carbon cycle with a DVM using the example of the Nama Karoo. To provide

thematic background for my thesis, I present introductions to key cross-cutting topics in the

following sections. This includes information on the CO2 fertilisation effects and ecosystem

dynamics in savannas (Section 1.1.1), on DVMs (Section 1.1.2), and on scenarios for future cli-

mate change and societal developments (1.1.3). Finally, I present the main research questions

and a short overview of this thesis (Section 1.2).

1.1 Background

1.1.1 CO2 fertilisation and ecosystem-fire dynamics in African savannas

Rising atmospheric CO2 concentrations are a main driver of climatic and environmental changes.

The role of CO2 as a greenhouse gas that drives climate change is well established and high-

lighted in assessment reports of the IPCC (Arias et al., 2022). Apart from the indirect effect

of greenhouse-gas-driven impacts of climate change on ecosystems, changes in CO2 concen-

trations also have a direct impact on plant physiology stimulating plant photosynthesis and

carbon assimilation (De Kauwe et al., 2014), especially in plants with the C3 photosynthetic

pathway. In the associated, so-called CO2 fertilisation effect, it is assumed that increased assim-

ilation rates drive increases in vegetation biomass. However, it is unclear if and under which

conditions the increased assimilation translates into increased biomass production (e.g., Körner
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et al., 2007). Tissue growth rather than assimilation may be the limiting factor of biomass pro-

duction (Körner, 2015). Limited availability of nutrients such as nitrogen or phosphorus was

found to attenuate the effect of elevated CO2 concentrations on plant growth (e.g., Jiang et al.,

2020a; Luo et al., 2004).

CO2 is an essential substrate required for photosynthesis and the current atmospheric CO2

concentration remains below saturation levels of the photosynthetic reaction for C3 plants (Fig.

1.1). For plants with C4 photosynthetic pathway, photosynthesis levels have already plateaued

at current atmospheric CO2 concentrations, but for C4 crops some stimulating effects of elev-

ated CO2 have also been found (Körner et al., 2007). In experimental setups that tested in-

dividual plant responses to elevated CO2, generally the response of C3 plants was stronger

than that of C4 plants, fast-growing plants were stimulated more than slow-growing plants,

and nitrogen-fixing plants responded more than non-fixing plants. However, these responses

are weakened in multi-species communities (Potvin et al., 2007). For example, the presence of

C4 grass competition but also simulated herbivory reduced growth responses of seedlings of

the prolific C3 tree Vachellia karoo, a common encroaching species in southern African savanna

(Raubenheimer & Ripley, 2022).

In addition to increasing assimilation rates, elevated CO2 reduces stomatal conductance (Eamus,

1991). Variations in the level of reduction of stomatal conductance under elevated CO2 con-

centrations are driven by soil moisture availability (De Kauwe et al., 2021). Decreased stomatal

conductance rates in combination with increased assimilation rates result in an increased water

use efficiency of plants (De Kauwe et al., 2021), where water use efficiency reflects the trade-off

between carbon uptake and water loss for vegetation (Liu et al., 2020). In line with this in Aus-

tralian savanna, increases in ambient CO2 concentrations over a 33 year measurement period

from 1982 to 2014 have led to an increased water use efficiency. Precipitation trend was an

important additional driver and droughts led to declines in water use efficiency in forests in

southern Australia (Liu et al., 2020). It is not clear yet if rising CO2 concentrations can amelior-

ate plant water stress in water-limited conditions (De Kauwe et al., 2021; Wang et al., 2022).
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FIGURE 1.1: Schematic response of C3 and C4 photosynthesis to atmospheric CO2 concentrations, ad-
apted from Newman (2011, p. 76). The vertical grey line marks atmospheric CO2 concentrations
at 420 ppm, the approximate concentration measured in Mauna Loa, Hawaii, in March 2023 (ht-
tps://gml.noaa.gov/ccgg/trends/mlo.html, accessed on March 17, 2023).

Seedlings of woody C3 species grow faster under elevated atmospheric CO2 concentrations.

This does not necessarily mean that the plants will accumulate more biomass in their lifespan

(Körner et al., 2007). However, faster growth can provide woody plants with a critical ad-

vantage in African grassy ecosystems with fire disturbance, such as savannas (Fig. 1.2). Fires

can lead to the death of aboveground biomass including stem biomass for trees, the so-called

topkill (Higgins et al., 2000), keeping the ecosystem open (Bond, 2008). With CO2-stimulated

growth, C3 trees can grow taller than the fire zone more quickly. Thus, the likelihood that they

escape the fire trap increases (Kgope et al., 2010). When more trees are alive with aboveground

biomass after a fire, tree canopy cover increases. Light availability for grasses decreases with

increased tree canopy cover suppressing grass growth, because of the high shade intolerance

of C4 grasses (Lehmann et al., 2011). In Africa these feedback loops are especially relevant in

regions with mean annual precipitation between 1000 mm and ∼2500 mm, where fire differen-

tiates between savanna and forest as alternative stable states (Staver et al., 2011b).

https://gml.noaa.gov/ccgg/trends/mlo.html
https://gml.noaa.gov/ccgg/trends/mlo.html
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FIGURE 1.2: Interactions and feedbacks of atmospheric CO2 concentration, growth of C4 grasses and
C3 trees, and fire, adapted from Midgley & Bond (2015). ‘+’, ‘0’, and ‘-’ signify enhancing, neutral,
and inhibiting effects, respectively. Climate consists of multiple components such as temperature and
precipitation that also drive these dynamics, but that are not elaborated here.

Africa’s savanna fires are mostly characterised by small, frequent, low-intensity fires that are

grass-fuelled (Archibald et al., 2013). Therefore, less grass biomass implies less fuel biomass

for fires and thus a lower fire occurrence. Less fire additionally promotes the establishment of

trees (Midgley & Bond, 2015). This feedback loop with demographic changes towards more

tree-dominated ecosystems leads to biomass increases (Bond & Midgley, 2012). This is in line

with findings that rising CO2 may lead to changes in plant community structure, especially

in highly dynamic ecosystems, which may lead to changes in ecosystem biomass. Species

composition and climate variables, e.g., precipitation, are critical factors influencing whether

ecosystem biomass increases under elevated CO2 (Potvin et al., 2007). Herbivory is another

major ecosystem-shaping disturbance in African savanna limiting tree cover (Midgley & Bond,

2015) but is not a main focus in this thesis. It is therefore not described in detail here.
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1.1.2 Dynamic vegetation models

Observations of ecosystems and experimental manipulations are valuable methods that in-

crease the understanding of ecosystem functioning and key processes, but their scope is limited

in time and space. Modelling approaches help to combine and integrate ecological information

from different sources (Prentice et al., 2007) and to test derived hypotheses and our understand-

ing of ecosystem components (Schulze et al., 2019, p. 514). Approaches of vegetation models

range from, e.g., empirical to mechanistic and stochastic to deterministic and vary in their spa-

tial and temporal scale. Dynamic vegetation models (DVMs) are suitable when investigating

climate change impacts on ecosystems, because they allow studying dynamic, transient beha-

viour of ecosystems to external drivers. As mechanistic models, they try to emulate ecosystem

processes and interactions between different ecosystem components (Schulze et al., 2019, p.

514-515). Simulated processes range from photosynthesis at leaf level, to plant phenology and

demographic processes such as mortality at plant level, to competition at stand level. Envir-

onmental input data such as meteorological variables, atmospheric CO2 concentrations, or soil

physical properties drive processes in DVMs. Provided projections of climate variables are

available, DVMs can be used to investigate future climate change impacts on vegetation under

different climate change scenarios (Prentice et al., 2007).

DVM developers typically make use of so-called plant functional types (PFTs) to represent

main growth forms and plant functions of ecosystems (Prentice et al., 2007). PFTs are artificial

constructs that are based on functional plant traits that are linked to plant functions. These

functional traits can be morphological, ecophysiological, biochemical, demographical or phe-

nomenological. They are considered to reflect adaptations to environmental conditions and

tradeoffs between different plant functions such as acquisition of light versus acquisition of

water. Growth forms represent many tradeoffs in functional traits and have been used as basis

for creating PFT classifications in DVMs (Lavorel et al., 2007). State variables of a PFT or its

simulated individuals such as size of plant biomass compartments, leaf area index, or plant

height change dynamically throughout a simulation. In DVMs, different PFTs usually co-occur

and compete with each other (Prentice et al., 2007).
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The adaptive dynamic global vegetation model (aDGVM) is an individual-based DVM. It was

originally developed for tropical vegetation with a focus on Africa (Scheiter & Higgins, 2009),

but was also applied to other tropical regions such as parts of Australia, South America and

South Asia (Kumar & Scheiter, 2019; Moncrieff et al., 2016; Scheiter et al., 2015). Next to well-

established implementations for photosynthesis, respiration, and evapotranspiration (Arora,

2002; Ball et al., 1987; Collatz et al., 1991, 1992; Farquhar et al., 1980; Ronda et al., 2001; Schulze

et al., 1994), the aDGVM includes modules for phenology and carbon allocation that adapt

to changing environmental conditions for simulated plant individuals. The implemented fire

model (Higgins et al., 2000, 2008) simulates the effect of fire on individual trees (Scheiter &

Higgins, 2009).

In aDGVM, vegetation is represented by two growth forms, grasses and trees. Trees can either

grow as fire-resistant, shade-intolerant savanna trees or fire-sensitive, shade-tolerant forest

trees. Grasses can have C3 or C4 photosynthetic pathways (Scheiter et al., 2012). Trees are sim-

ulated as plant individuals, while grasses are simulated as superindividuals that either grow

under or between tree canopies (Scheiter & Higgins, 2009). Thus, 4 different PFTs (2 grass types

each represented by 2 superindividuals and 2 tree types) are simulated in aDGVM.

Fire is an important ecosystem-shaping disturbance in tropical grass-tree ecosystems such as

savannas and keeps them open (Bond et al., 2005). The implementation in aDGVM was spe-

cifically developed to account for these dynamics and simulates fire effects for individual trees

(Scheiter & Higgins, 2009). In observations of the topkill effect, trees shorter than a certain

height, with smaller stem diameters and bark thicknesses die, whereas taller trees are usually

not affected (Hoffmann & Solbrig, 2003). In aDGVM, a combination of height, fuel moisture,

and wind influences fire intensity and thus, in combination with an individual’s carbon bal-

ance, topkill survival probability of tree individuals (Scheiter & Higgins, 2009).

The aDGVM2 was developed with the objective of including concepts from community as-

sembly theory and coexistence theory into vegetation modelling. It implements a more flex-

ible, trait-based approach as opposed to PFTs with fixed plant traits (Scheiter et al., 2013). This

takes into account that considerable variation in trait values occurs within a life form (Lavorel
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et al., 2007). The simulated plant community in aDGVM2 assembles based on the perform-

ance of each plant with its individual combination of trait values under given environmental

conditions such as water availability. Tradeoffs between the traits ensure that only plants with

realistic trait combinations establish and different strategies of trait combination within, e.g., a

woody PFT evolve and coexist. Basic structures and implementations of aDGVM2 are based

on processes in the aDGVM (Scheiter et al., 2013).

Individual plants in aDGVM2 can have individual sets of trait combinations. Plant growth and

competition between plant individuals is defined by these trait combinations for each plant.

Trait combinations that are favourable under the given environmental conditions enable plant

individuals to prosper and grow so that they eventually produce seeds. Seeds inherit the traits

of the plant individual that produced them. This results in trait filtering, where only trait com-

binations from reproductive individuals are passed on to new plant individuals. Traits from

a reproductive individual can also cross-over with traits from other reproductive individuals

and adopt their value. In addition in seed production, individual traits of a reproductive indi-

vidual can randomly be mutated, which introduces new trait combinations into the community

(Scheiter et al., 2013). This implementation also allows a more flexible representation of biod-

iversity in a DVM. In aDGM2, plant individuals can be grouped into PFTs in post-processing

of simulation results and PFTs can thus be tailored to specific research questions (Scheiter et al.,

2013).

Both aDGVM and aDGVM2 originally only included grass and tree growth forms. Because

large parts of Africa apart from the tropical rainforest and the deserts are at least partially

covered by shrubs (Tuanmu & Jetz, 2014), Gaillard et al. (2018) developed a shrub sub-module

for aDGVM2. In this shrub model, woody plant individuals can either grow multi-stemmed

or single-stemmed. This implements a trade-off between water-uptake capacity and height-

growth. Single-stemmed trees can grow higher and are thus more competitive in a light-limited

environment. Multi-stemmed shrubs have higher sapwood area in relation to single-stemmed

trees with the same stem biomass. In aDGVM2, the efficiency in water uptake increases with

sapwood area. Thus, the more efficient water uptake provides multi-stemmed shrubs with a
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competitive advantage in water-limited environments. Stem number is a trait for woody plant

individuals that is constant throughout their life span and can be modified in seeds by mutation

or cross-over. Through trait-filtering, the trade-off between water uptake efficiency and height

growth leads to the dominance of woody plant individuals that are better adapted to water- or

light-limited environmental conditions (Gaillard et al., 2018).

1.1.3 Scenarios for future climate change and societal developments

Climate is one of the controlling factors of vegetation and ecosystem processes and states.

Therefore, future ecosystem states depend on future climate. Because climate depends on

the chemical composition of the atmosphere and surface properties (Chapin III et al., 2011,

pp. 14, 23), different climate futures are possible depending on anthropogenic drivers such as

greenhouse-gas emissions and land-use. To test the impact on future climate but also on, e.g.,

future ecosystem states, alternative future scenarios and development paths for these drivers

have been developed in the context of the IPCC (O’Neill et al., 2016).

Currently, there are two sets of scenarios relevant for climate change and climate-change im-

pact projections until 2100, the representative concentration pathways (RCPs) and the shared

socioeconomic pathways (SSPs). The RCPs provide information on components of radiative

forcing such as greenhouse-gas emissions and land use that are required for climate modeling.

Radiative forcing is the change in energy flux in the atmosphere which drives changes in cli-

mate. The naming of the scenarios follows the respective radiative forcing level in 2100, e.g.,

RCP8.5 corresponds to 8.5 W/m2 radiative forcing. The RCP scenarios that were originally

developed for the IPCC’s Fifth Assessment Report covered RCP2.6, RCP4.5, RCP6, and RCP8.5

W/m2 (van Vuuren et al., 2011).

In the SSPs, narratives for socioeconomic futures were developed, which include assumptions

and quantitative descriptions of factors such as population, economic

growth and urbanisation until 2100. The SSP narratives cover SSP1 - “sustainability” with low

challenges to mitigation and adaptation, SSP2 - “middle of the road” with medium challenges

to mitigation and adaptation, SSP3 - “regional rivalry” with high challenges to mitigation and
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adaptation, SSP4 - “inequality” with low challenges to mitigation and high challenges to ad-

aptation, and SSP5 - “fossil-fueled development” with high challenges for mitigation and low

challenges to adaptation (Fig. 1.3). Basic projections around these narratives are used as input

for so-called integrated assessment models (IAM) that cover more complex projections for, e.g.,

energy systems, land-use changes, and associated greenhouse-gas emissions. Different IAMs

use different assumptions and approaches to implement a specific SSP narrative and vary in

their projections of, e.g., greenhouse-gas emissions. The RCP and SSP scenarios can be com-

bined to SSP-RCP scenarios, where different assumptions and implementations in IAMs for an

individual SSP scenario can achieve different radiative forcings for RCP scenarios. Not all SSP

and RCP scenarios are compatible with each other and feedbacks from the climate system on

the socioeconomic system are not incorporated in the IAM implementations of SSP scenarios

(Riahi et al., 2017).

FIGURE 1.3: Shared socioeconomic pathways (SSPs) that are based on different combinations of chal-
lenges for climate mitigation and adaptation from O’Neill et al. (2017).
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These scenarios describe anthropogenic drivers of climate change consistent with socioeco-

nomic developments and allow to assess impacts on ecosystems and societies (O’Neill et al.,

2016). Spatially explicit land use projections from the IAMs (Hurtt et al., 2020) and popula-

tion projections (Gao, 2019) facilitate the analysis of potential consequences of different societal

developments. Climate change projections based on the RCP scenarios can be used to project

vegetation dynamics into the future with DVMs (Prentice et al., 2007).

1.2 Scope and overview of this thesis

The main motivation for this thesis was to contribute to an improved understanding of eco-

system processes and the impacts of climate change and global change on African ecosystems.

As DVMs are particularly suitable for future projections under climate change and analysing

individual processes, they are the main tool applied to answer the following main research

questions that guided this thesis:

1. How does climate change affect African ecosystems and carbon stocks until the end of

the 21st century?

2. Where may climate change impacts and the global change drivers human population

density and land use co-occur and exert pressure on African protected areas until the end

of the 21st century?

3. Which uncertainties do these future projections entail? Can the simulations be used to

make detailed projections for individual ecosystems and their carbon dynamics or for

individual protected areas?

4. How well do we understand and reproduce carbon cycle dynamics in semi-arid niche

ecosystems such as the Nama Karoo?

This thesis is based on two publications, Martens et al. (2021, Chapter 2) and Martens et al.

(2022, Chapter 3), and an unpublished manuscript (Chapter 4). The publications are included

as published with minor formatting changes.
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The focus of Chapter 2 lies on vegetation change projections with aDGVM for Africa until

the end of the 21st century. Uncertainties associated with climate input data, chosen climate

change scenario, and CO2 fertilisation effect were analysed. The analysis was focused on biome

changes and changes in the water use efficiency of simulated vegetation and addresses research

questions 1 and 3.

In Chapter 3, the potential, future co-occurrence of the global change drivers climate change,

human population growth, and land-use change were analysed for African protected areas.

The aDGVM projections for climate-change impacts on vegetation from Chapter 2 were com-

bined with data on human population densities and land use until the end of the 21st century

to address research question 2. The discussion of uncertainties associated with this analysis

adds an additional aspect for research question 3.

In Chapter 4, the focus shifts to a smaller scale zooming in on the challenges of simulating

and reproducing ecosystem dynamics in South Africa’s Nama Karoo dwarf shrub ecosystem.

Data from an eddy covariance flux tower on ecosystem carbon fluxes and vegetation structure

were the basis for reparameterising the aDGVM2 and benchmarking of simulation results. This

analysis was used to derive knowledge gaps in the process understanding of the Nama Karoo

and the representation of dwarf shrubs, its main vegetation component, in aDGVM2. In this

chapter, I focused on research question 4 and delved further into research question 3 and the

uncertainties associated with simulating a specific African ecosystem and its carbon dynamics.

The research questions are reviewed in Chapter 5 based on a synthesis of the presented research

and are put into a wider context. Based on the presented research, potential avenues of future

research are suggested.
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adaptation strategies

2.1 Abstract

Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and eco-

system services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model

(aDGVM), which was originally developed and tested for Africa, to quantify sources of uncer-

tainties in simulated African potential natural vegetation towards the end of the 21st century.

We forced the aDGVM with regionally downscaled high-resolution climate scenarios based on

an ensemble of six General Circulation Models (GCMs) under two Representative Concentra-

tion Pathways (RCPs 4.5 and 8.5). Our study assessed the direct effects of climate change and

elevated CO2 on vegetation change and its plant-physiological drivers. Total increase of carbon

in aboveground biomass in Africa until the end of the century was between 18-43% (RCP4.5)

and 37-61% (RCP8.5) and was associated with woody encroachment into grasslands and in-

creased woody cover in savannas. When direct effects of CO2 on plants were omitted, woody

encroachment was muted and carbon in aboveground vegetation changed between (–8)-11%

(RCP4.5) and (–22)-(–6)% (RCP8.5). Simulated biome changes lacked consistent large-scale geo-

graphical patterns of change across scenarios. In Ethiopia and the Sahara/Sahel transition

zone, the biome changes forecast by the aDGVM were consistent across GCMs and RCPs. Dir-

ect effects from elevated CO2 were associated with substantial increases in water use efficiency,

primarily driven by photosynthesis enhancement, which may relieve soil moisture limitations

to plant productivity. At the ecosystem level, interactions between fire and woody plant demo-

graphy further promoted woody encroachment. We conclude that substantial future biome

changes due to climate and CO2 changes are likely across Africa. Because of the large uncer-

tainties in future projections, however, adaptation strategies must be highly flexible. Focused

research on CO2 effects, and improved model representations of these effects will be necessary

to reduce these uncertainties.
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2.2 Introduction

Climate change is expected to drive changes in ecosystem structure and functioning as well

as geographical shifts of ecosystems and biomes (Engelbrecht & Engelbrecht, 2016; Hoegh-

Guldberg et al., 2018; Niang et al., 2014). Such ecosystem changes will impact the potential for

future land uses and the livelihoods of people in Africa, where agriculture accounts for 50%

of employment in 2019 (ILO, 2019). The critical ecosystem services provided vary for different

biomes (Chapin III et al., 2011, p.428), such as carbon sequestration (forests), and pasture for

grazing (grasslands and savannas, Naidoo et al., 2008). Biome changes and shifts therefore im-

pact ecosystem services (Gonzalez et al., 2010). Furthermore, many animal species are strongly

associated with certain biome types (Jetz & Fine, 2012), which together with vegetation changes

implies large potential impacts on prevailing biodiversity.

Biome shifts attributed to climate change have already been observed in Africa (Niang et al.,

2014), but do not show a consistent pattern. For instance, declines in tree density and changes

in species composition have led to a southward shift of the savanna vegetation zone in West

Africa (Gonzalez et al., 2012) into previously more humid areas. At the same time, increased

woody cover in savannas has been reported at many sites across Africa, including West Africa.

Increasing atmospheric CO2 concentrations ([CO2]), changes in land management and altered

rainfall patterns were identified as likely drivers of this woody vegetation increase (Stevens

et al., 2017).

With the widespread mixture of grasses with C4 photosynthesis and woody plants with C3

photosynthesis across African savannas, plant physiological effects of increasing [CO2] might

change the competitive balance between grasses and trees and thus play a key role for future

ecosystem changes (Bond & Midgley, 2000; Midgley & Bond, 2015; Osborne et al., 2018). Fur-

thermore, changes in plant growth interact with changes in fire regimes, and direct enhance-

ment of tree sapling growth rates under elevated [CO2] (eCO2) increases the likelihood that

young tree individuals escape the “firetrap”. This might lead to a positive feedback, where an
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initial increase in woody vegetation suppresses grasses, thereby reduces fire activity, which in

turn benefits woody plants (Bond & Midgley, 2012; Midgley & Bond, 2015).

However, the magnitude of eCO2 effects both, directly on plant growth through CO2 fertil-

isation of photosynthetic efficiency (Long et al., 2004), and indirectly on ecosystem hydrology

(through a reduction of stomatal conductance, gs; Ainsworth & Rogers, 2007; Medlyn et al.,

2001), is still debated (Körner, 2015; Medlyn et al., 2015; Zaehle et al., 2014). Free-Air Carbon

dioxide Enrichment (FACE) experiments suggest that an increase in carbon assimilation in C3

plants does not necessarily scale to increased plant growth (e.g. Körner et al., 2005; Medlyn

et al., 2015), particularly when limited by nutrient availability (e.g. Jiang et al., 2020a,b; Norby

et al., 2010). For ecosystem hydrology and water use efficiency (WUE), eCO2 effects translate

into a balance of decreased transpiration and water demand due to reduced gs (De Kauwe et al.,

2013) and increased water demand following increased net primary production (NPP, Warren

et al., 2011).

Dynamic Global Vegetation Models (DGVMs) are a widely used tool to project future ecosys-

tem changes and to attribute ongoing changes to different drivers and mechanisms (Prentice

et al., 2007). DGVMs simulate ecophysiological processes, such as photosynthesis and plant

growth, vegetation dynamics and structure, geographical distribution of plant biomes, and

biogeochemical cycles (e.g. water and carbon), in particular in response to climate change (e.g.

Prentice et al., 2007; Sitch et al., 2008). However, the effects of eCO2 on plants and interactions

with nutrient limitations in DGVMs are still uncertain (Hickler et al., 2015; Medlyn et al., 2015).

If key plant demographic processes such as mortality, recruitment of tree saplings, and fire im-

pacts on plant individuals, are implemented in DGVMs (Fisher et al., 2018), they can capture

complex dynamics in savanna ecosystems.

In this study, we simulated the impacts of climate change and eCO2 on carbon stocks, WUE,

and biome distribution of potential natural vegetation (PNV) in Africa using the adaptive Dy-

namic Global Vegetation Model (aDGVM, Scheiter & Higgins, 2009). The aDGVM was ori-

ginally developed for Africa and its savanna (Scheiter & Higgins, 2009) and has been applied

and tested in several Africa-focused case studies (e.g. Scheiter et al., 2018; Scheiter & Savadogo,
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2016). It simulates woody plant demography for individual trees and this allows fire impacts to

be conditioned on individual tree size. Advancing on earlier studies with the aDGVM, we used

an ensemble of Regional Climate Model (RCM) data based on six downscaled General Circu-

lation Models (GCMs, Archer et al., 2018; Davis-Reddy et al., 2017; Engelbrecht et al., 2015) and

two Representative Concentration Pathway (RCP) scenarios (RCPs 4.5 and 8.5 Stocker et al.,

2013). This is the first time that this ensemble of downscaled GCM data has been used as cli-

mate driver for a DGVM covering Africa. We ran the aDGVM with and without eCO2 effects

enabled to assess uncertainty related to plant-physiological CO2 effects and to identify import-

ant drivers of vegetation change. Our study quantifies how uncertainty in projections caused

by CO2, in particular concerning CO2 effects on WUE and biomass, interacts with uncertainty

due to the choice of GCM and RCP.

2.3 Materials and methods

2.3.1 The aDGVM

For this study, we used the well-tested adaptive Dynamic Global Vegetation Model (aDGVM),

a regionally adapted DGVM (e.g. Scheiter & Higgins, 2009; Scheiter et al., 2015; Scheiter &

Savadogo, 2016). The aDGVM was developed for tropical and subtropical grass-tree ecosys-

tems (for details see Scheiter & Higgins, 2009; Scheiter et al., 2012). It incorporates ecophysiolo-

gical processes that are commonly implemented in DGVMs (Prentice et al., 2007). State vari-

ables such as photosynthetic rates, biomass or height are simulated for individual plants de-

pending on environmental conditions. For each plant the aDGVM dynamically simulates leaf

phenology and flexibly determines carbon allocation to plant biomass compartments (roots,

stem or leaf biomass). aDGVM prioritises carbon allocation to compartments that are most

limiting for plant growth based on the constraining factors water, light or photosynthesis.

Physiological processes, such as photosynthesis, stomatal conductance (gs) and transpiration,

are simulated for each individual plant based on environmental and plant individual state vari-

ables such as light availability. Stomatal conductance gs is represented by the model from Ball



22
Chapter 2. Large uncertainties in future biome changes in Africa call for flexible climate

adaptation strategies

et al. (1987) and is directly proportional to relative humidity, and the ratio of photosynthesis

and [CO2] at the leaf surface (Medlyn et al., 2001).

The aDGVM simulates 1ha plots that are assumed to be representative for the simulated grid

cell. Grasses with C3 and C4 photosynthesis are each implemented as two types of super-

individuals that represent grasses growing beneath tree canopies and in tree canopy gaps. The

aDGVM distinguishes savanna and forest trees (Scheiter et al., 2012) as two distinct tree types

that differ in their fire and shade tolerance (Bond & Midgley, 2001; Ratnam et al., 2011). In the

model, savanna trees are shade-intolerant and more fire-resistant as adult trees (>2m). Mod-

elled forest trees are shade-tolerant but fire-sensitive in all age classes. Each tree individual

competes for light with neighbouring plants and for water with all plants simulated per 1ha

plot.

Fire in the aDGVM is determined by fuel load and fuel moisture, both dependent on biomass

growth and thus indirectly influenced by climate, and wind speed following Higgins et al.

(2008). Ignitions are simulated as random events decoupled from climatic or regional factors.

Fire disturbance is therefore one of the factors causing some stochasticity in the model results.

Whether fire spreads after a stochastic ignition event depends on fire intensity and a previously

determined likelihood that a fire will spread (Scheiter & Higgins, 2009).

In contrast to many other DGVMs, simulating individual trees in aDGVM allows accounting

for fire effects on individual plants and vegetation structure as a function of individual plant

height (Scheiter & Higgins, 2009). Height influences if trees survive grass fires because only

tall enough trees can escape the flame or topkill zone of a fire (Higgins et al., 2000). In addition,

in contrast to forest trees, grasses and savanna trees in aDGVM are able to resprout after fire

damage (Bond & Midgley, 2001). Population composition evolves dynamically in the model as

a result of interactions of, e.g., fire and [CO2]. Random events in demography sub-routines for

tree populations add to the stochasticity in model results.
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2.3.2 Regional climate model simulations

Climate input data consisted of an ensemble of six downscaled GCM projections under two

mitigation scenarios generated with the variable-resolution conformal-cubic atmospheric model

(CCAM, McGregor, 2005). The simulations were performed at the Council for Scientific and

Industrial Research (CSIR) in South Africa (Archer et al., 2018; Davis-Reddy et al., 2017; Engel-

brecht et al., 2015). The GCM projections formed part of the Coupled Model Intercomparison

Project Phase 5 (CMIP5; Table S1, Stocker et al., 2013). The downscaling procedure involved

CCAM being integrated globally at a quasi-uniform resolution of about 50km in the horizontal,

forced at its lower boundary by sea-ice concentrations and bias-corrected sea-surface temperat-

ures from the host GCMs (Engelbrecht et al., 2015). The CCAM simulations were performed for

the period 1961-2099 and for the low mitigation scenario RCP8.5 and modest-high mitigation

scenario RCP4.5.

The downscaled climate data sets were bias-corrected to the monthly climatologies of tem-

perature and rainfall from CRU TS3.1 data for the period 1961-1990 (Engelbrecht et al., 2015;

Engelbrecht & Engelbrecht, 2016). Previously, the CCAM downscalings have been shown to

realistically represent present-day climate over southern Africa (e.g. Engelbrecht et al., 2009,

2013, 2015).

CCAM output is available on a latitude-longitude grid of 0.5° resolution and at a daily time

step. We used daily precipitation, daily minimum and maximum temperature, daily wind

speed and daily relative humidity from the CCAM data set to force aDGVM (see Appendix A

Figure S1 for mean annual precipitation (MAP) and temperature maps). As projected radiation

data was not available, we derived present day radiation from sunshine percentage (Allen

et al., 1998) from New et al. (2002) data set. Thus, our vegetation simulations are based on

an ensemble of climate data providing a range of GCM-projected climate change under two

emission scenarios at high spatial and temporal resolution.
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2.3.3 Simulation design

We simulated vegetation dynamics in Africa from 1971 to 2099 at 0.5° resolution by forcing

the aDGVM with the climate ensemble described above and soil data from the Global Soil

Data Task Group (2000). A model spin-up of 210 years was simulated to allow vegetation to

reach equilibrium with environmental forcing. To that end, we used a random series of climate

data from the period 1971-1979. In our experimental setup, we combined changes in climatic

conditions with increases of [CO2] (eCO2) for two greenhouse gas emission scenarios, RCPs 4.5

and 8.5. To estimate the extent of the eCO2 effect and its uncertainties, we repeated the same

simulations with climate conditions following the two RCP scenarios, but with [CO2] rising

only to 400ppm and then keeping [CO2] fixed (fCO2).

Stochastic effects within DGVMs can be factored in when conducting replicate runs for each

ensemble member. Due to high computing times for continental-scale high-resolution simula-

tions, for each GCM only one simulation was conducted per RCP-CO2 scenario. In a previous

study with the aDGVM at regional scale, more than 60% of replicate simulations agreed with

respect to biome projections for the year 2100 for large parts of the simulated area, the Limpopo

province in South Africa (Scheiter et al., 2018). As opposed to Scheiter et al. (2018), the use of

daily climate input data for our simulations helped to avoid generation of daily climate time

series with the aDGVM and thus removed the associated stochasticity. In addition, the high

spatial resolution of our simulations effectively acts as a replication in space with smooth sim-

ulation patterns in space indicating low aDGVM-caused variability in the simulation.

2.3.4 Analysis of simulation results

Aboveground carbon dynamics and plant-physiological effects of eCO2 were analysed in more

detail. We defined stand WUE as the ratio of NPP and plant transpiration, following the defin-

ition by De Kauwe et al. (2013) for FACE results. We used NPP, transpiration and WUE to

isolate which processes – CO2 fertilisation of photosynthesis or increased WUE via reduced

transpiration through reduced gs – are driving plant-physiological responses to eCO2.
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We created time series for total aboveground carbon and WUE in Africa for the four RCP-CO2-

scenario combinations (RCP4.5/8.5 with fCO2/eCO2) with annual time steps for 2000-2099. We

used the ensemble mean and standard deviation (SD) of the six ensemble members for each of

the four scenario combinations in each year. For other analyses, model results were averaged

over 20-year periods to focus on long-term climate-driven trends (Stocker et al., 2013) and to

reduce the influence of model-inherent stochastic processes on model output. Two time win-

dows were used for comparison: 2000-2019 and 2080-2099. Maps of aboveground biomass

were generated, based on the mean across all 24 simulation runs in 2000-2019, because the

different scenarios did not deviate much from another For 2080-2099, we used the ensemble

mean of each of the four scenarios. In addition, changes in mean aboveground biomass from

the present (2000-2019) until 2080-2099 were mapped for the four scenarios. For the change in

total aboveground vegetation carbon and in WUE (from 2000-2019 to 2080-2099), we used the

omega squared (ω2) measure to quantify the effect size of explanatory variables (see supple-

mentary material for R code; R Core Team, 2015). CO2 scenario, RCP scenario, and GCM and

their two-way interactions were used to explain differences of the dependent variables. Using

ω2 to estimate the proportion of variance explained (Olejnik & Algina, 2003), we quantitat-

ively evaluate the magnitude of the differences between the ensemble members (White et al.,

2014). As computational limitations restricted us from implementing replicate runs, analysing

for three-way interactions between the three explanatory variables was not possible.

To study potential future biome distributions and biome changes, we classified the simulated

vegetation into seven biome types: desert, C3 grassland, C4 grassland, C3 savanna, C4 savanna,

woodland and forest. The classification scheme is based on simulated tree cover, grass biomass

and composition of tree and grass types (Scheiter et al., 2012) with minimum grass biomass

levels for grassland classifications (Scheiter et al., 2018, see Table S2). In this definition scheme,

the main difference between savannas and woodlands is the predominance of savanna or forest

tree types, which is in turn an indicator of fire activity.
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Based on this biome classification scheme, we identified biomes for the above-listed time peri-

ods for Africa for each RCP-CO2-scenario (RCP4.5/8.5 with eCO2/fCO2). The biomes identi-

fied for all GCM simulations per scenario were used to derive consensus biome maps for each

scenario. For each grid cell, the biome type that was most common in the ensemble member

maps was used to derive each scenario’s consensus biome map. According to the binomial

distribution, two ensemble members agreeing in the simulated biome do not have a higher

probability than an outcome by chance. Such grid cells therefore were denominated as hav-

ing ‘No consensus’. In addition, we plotted the number of ensemble members that simulated

the consensus vegetation type for each time period as an indicator of agreement within the

simulated ensemble.

We used the number of ensemble members per RCP-CO2-scenario combination that showed a

biome change from 2000-2019 to 2080-2099 (maximum six ensemble members) as an indicator

for the probability of biome change under future climatic conditions. We therefore derived a

measure of uncertainty from the number of simulated biome changes within a scenario. The

type of biome change, i.e., whether ensemble members simulate the same or different biome

transitions, was not considered in this uncertainty assessment.

To illustrate the overall potential consequences (i.e. areal increase or decrease) of biome changes

for each biome type, we determined each biome’s change in total area covered [%] between

2000-2019 and 2080-2099 based on the consensus biome maps for all four scenarios. In ad-

dition, we plotted the changes of total area covered by each biome type for two time steps

(2000-2019, 2080-2099).

Atmospheric CO2 effects on WUE and gs were analysed for each RCP-CO2 scenario, based

on the relative change of ensemble means from 2000-2019 to 2080-2099 for each grid cell. As

a proxy for water availability, NPP change and MAP change were plotted against each other

as relative change for each RCP-CO2 scenario combination. NPP change against tree biomass

change per grid cell was used to illustrate possible effects of population dynamics on biomass.

For these figures, biomes in 2000-2019 were depicted on a per grid cell basis to assess different

responses for different biomes.
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2.4 Results

2.4.1 Current aboveground biomass and future projections

The spatial pattern of simulated biomass in 2000-2019 compared reasonably well with an ob-

servation-based biomass distribution (Avitabile et al., 2016, Figure 2.1 a,b). Our simulations of

potential natural biomass underestimated the high aboveground biomass in the Congo basin,

while overestimating biomass in areas more distant to the equator (Figure 2.1a). While Avit-

abile et al.’s (2016) map included both intact and nonintact vegetation, aDGVM only simulated

PNV, thus intact vegetation. aDGVM, therefore, overestimated simulated biomass and actual

carbon stocks in areas of high land-use, such as agricultural land. The mean carbon stored in

simulated total aboveground biomass for Africa between 2000 and 2010 amounted to 52.2 PgC

(±0.36, all 24 ensemble members, Figure 2.2a). This is within the range of estimates derived

from satellite and inventory plot data (48.3-64.5 PgC, Figure 2.2a, Avitabile et al., 2016; Baccini

et al., 2012; Liu et al., 2015; Saatchi et al., 2011, extent varies from tropical Africa to continental

Africa).

When comparing current (2000-2019) and future (2080-2099) aboveground biomass, both RCP-

eCO2 scenarios showed similar spatial patterns of increasing and decreasing biomass, but areas

with increasing biomass predominated (Figure 2.1c-d; Appendix A Figure S2a,b; Table 2.1).

Both RCP-eCO2 scenarios showed small biomass decreases in a narrow belt along the equator.

North and south of the equator both RCP scenarios showed a general pattern towards woody

encroachment, with higher biomass increases for RCP8.5.
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(f) RCP8.5 with fCO2(e) RCP4.5 with fCO2

(c) RCP4.5 with eCO2 (d) RCP8.5 with eCO2

(a) 2000-2019 (b) Adapted from Avitabile et al. (2016)



2.4. Results 29

FIGURE 2.1: Simulated and observation-derived aboveground biomass in Africa and simulated change
in biomass. Current aboveground biomass in Africa (t/ha) is derived from the ensemble mean across
all 24 ensemble members of aDGVM-simulated biomass (2000–2019, a) and Avitabile et al. (2016, b).
Change in aboveground biomass between 2000–2019 and 2080–2099 under RCP4.5 and 8.5 with eCO2
(c, d) and with fCO2 (e, f) is based on the mean of all six ensemble members of the respective scenario.
aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; fCO2, CO2 fixed at 400 ppm;
RCP, representative concentration pathway

(a)    (b)

FIGURE 2.2: Mean total aboveground carbon and WUE in Africa in 2000–2099 under RCP4.5 and RCP8.5
with eCO2 and fCO2 simulated by the aDGVM. Thick lines are the mean over all six ensemble members
per scenario. Shaded areas are the mean ± standard deviation (SD) of the six ensemble members per
scenario. In (a), aboveground carbon for tropical Africa (64.5 Pg C, Baccini et al., 2012), sub-Saharan
Africa (Avitabile et al. 2016, and 48.3 Pg C, Saatchi et al., 2011) and Africa (55.7 Pg C, Liu et al., 2015)
are depicted for comparison. See Appendix A Figure S3 for aboveground carbon time series of all
individual ensemble members. Water use efficiency (WUE, b) is defined as the ratio of net primary
production and transpiration. See Table S3 for more details on the variability of aboveground carbon
and WUE in 2080–2099. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2 , elevated CO2 ;
fCO2, CO2 fixed at 400 ppm; RCP, representative concentration pathway

Spatial patterns of biomass change in the fCO2 scenarios were more variable. Increases pre-

vailed over decreases under RCP4.5 and decreases prevailed under RCP8.5 (Table 2.1 and Fig-

ure 2.1c-f). The Ethiopian Highlands were the only larger area that showed mean biomass

increases for all four RCP-CO2 scenarios. However, these increases were weaker under fCO2

than under eCO2. This biomass increase is in line with precipitation increases predicted for

this region (Appendix A Figure S1). Both RCP-eCO2 scenarios showed an appreciable carbon

sink for Africa by the end of the 21st century in all GCM simulations (Figure 2.2a & S3). The

increase under RCP8.5 was more pronounced, whereas under RCP4.5 mean total aboveground

carbon started to saturate towards the end of the century (81.3 PgC and 70.0 PgC in 2080-2099,

respectively, see Table 2.2 for % change). Saturating biomass increases under RCP4.5-eCO2 fol-

lowed the projected mid-century peak in greenhouse gas emissions for RCP4.5 (Stocker et al.,
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TABLE 2.1: Area (%) of Africa affected by biomass change and biome change between 2000–2019 and
2080–2099 and agreement of simulation results per scenario. Change for aboveground biomass (AGB)
is given as the percentage of area with AGB increases or decreases. Where AGB increases and decreases
did not sum to 100%, the remaining percentage of land area did not experience AGB changes. For biome
change, proportions of area with no consensus biome in either period were not included. For agreement
of biome state, only areas where all six ensemble members of a scenario agreed on simulated biome in
2080–2099 were included. The respective percentages refer to the total area of the African continent.

Scenario % area with
AGB increase

% area with
AGB decrease

% area with
biome changes

% area with agreement in
biome state in all ensemble
members in 2080-2099

RCP4.5, eCO2 84.3 15.3 23.4 45.6
RCP8.5, eCO2 80.2 19.1 27.7 45.7
RCP4.5, fCO2 64.5 35.2 17.5 50.3
RCP8.5, fCO2 31.8 67.5 18.6 53.7

AGB, aboveground biomass; eCO2, elevated CO2; fCO2 , CO2 fixed at 400 ppm; RCP, representative concentration
pathway

2013). Variability within each RCP ensemble due to differences between the six GCMs (±SD,

2×SD=9.7 and 11.2 PgC, respectively for RCPs 4.5 and 8.5) was similar to the difference of the

means of the two eCO2 RCP scenarios (11.2 PgC, see Table S3).

TABLE 2.2: Change in aboveground biomass (AGB) and in WUE from 2000–2019 to 2080–2099. Change
in carbon in AGB was calculated for all six ensemble members for each RCP-CO2 scenario. The range
of minimum and maximum change rate for the six ensemble members for each scenario are presented
here. See Table S4 for change rates for each ensemble member.

Scenario AGB change WUE change
RCP4.5, eCO2 18 to 43% 15 to 25%
RCP8.5, eCO2 37 to 61% 61 to 74%
RCP4.5, fCO2 –8 to –11% –1 to –9%
RCP8.5, fCO2 –6 to –22% –9 to –16%

AGB, aboveground biomass; eCO2, elevated CO2; fCO2 , CO2 fixed at 400 ppm; RCP, representative concentration
pathway; WUE, water use efficiency

Under fCO2, simulated total biomass in 2099 was lower than under eCO2 (Figure 2.2a). For

RCP8.5 under fCO2, vegetation became a carbon source by the 2050s and biomass in 2080-2099

(47.1 PgC, see Tab 2 for % change) was less than in 2000. For RCP4.5-fCO2, the ensemble mean

biomass in 2080-2099 was 55.2 PgC. It depended on the downscaled GCM whether a small

source or a small sink was projected for RCP4.5 under fCO2 (Appendix A Figure S3). The ω2

metric indicated that variation in total carbon between all 24 ensemble members was mainly ex-

plained by the CO2 scenarios, followed by interaction effects of CO2 and RCP scenarios (Table

2.3; see Table S5 for corresponding F-values from ANOVA).
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2.4.2 Future projections of WUE and underlying plant physiological processes

Changes in WUE, here defined as the ratio of NPP and transpiration, until 2080-2099 were

similar to the trends simulated for aboveground biomass for all four RCP-CO2 scenarios (Figure

2.2b; Table 2.2). Yet, under RCP4.5-eCO2, WUE leveled off earlier than carbon in aboveground

biomass. Both fCO2 scenarios showed a decrease in mean WUE. For NPP and WUE, the shape

of the timeseries was almost identical for each individual scenario (Figure 2.2b & Appendix A

Figure S4a). For transpiration on the other hand, all four scenarios showed increases (Appendix

A Figure S4b). Within an RCP, transpiration was lower for fCO2 than for eCO2.

TABLE 2.3: Effect size of explanatory variables for change in carbon stored in aboveground biomass
and WUE between 2000–2019 and 2080–2099. The table presents ω2 for the dependent variables above-
ground biomass change (in Pg C) and WUE change (in gC/kgH2O) and explanatory variables CO2
scenario, RCP scenario and GCM. Two-way interaction effects are included in the model and are de-
noted with ‘:’.

Independent variables and
interaction effects

ω2

AGB WUE
CO2 0.794 0.692
RCP 0.005 0.105
GCM 0.069 0.009
RCP:CO2 0.123 0.190
CO2:GCM 0.002 0.000
GCM:RCP 0.005 0.000

AGB, aboveground biomass; GCM, general circulation model; RCP, representative concentration path-
way; WUE, water use efficiency

WUE increased in most of the simulated grid cells between 2000-2019 and 2080-2099 in eCO2

simulations, and relative change ratios were higher than in fCO2 simulations (Figure 2.3a).

With a stronger decrease under eCO2 than fCO2 and for RCP8.5 than for RCP4.5, gs showed

the opposite trend (Figure 2.3b). Although gs decreased with increasing [CO2], transpiration

increased for all four RCP-CO2 scenarios (Appendix A Figure S4b). NPP was more sensitive to

MAP changes under RCP8.5 than RCP4.5, with a steeper slope for eCO2 (Figure 2.3c). We found

increased NPP in both eCO2 scenarios even for grid cells where MAP decreased. Variation in

WUE was largely explained by CO2 scenarios, followed by the interaction between CO2, and
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(a)

(b)

(c)

FIGURE 2.3: Change in WUE (a) and sto-
matal conductance gs (b) under eCO2 and
fCO2, and change in NPP versus change
in MAP (continental scale, c) between
2000–2019 and 2080–2099 simulated by
the aDGVM. Changes are represented by
the ratio between values for 2000–2019
and 2080–2099 for each simulated grid
cell. Values greater than 1 indicate an in-
crease, values less than 1 indicate a de-
crease. Black lines in (a) are linear re-
gressions for the respective RCP scen-
arios with the continental-scale mean of
the scenario shown as a black point. Red
lines represent the 1:1 lines. Each point
represents a grid cell and is shape- and
colour-coded according to its assigned
biome type in 2000–2019. Lines in (c)
are continental-scale regression lines for
the four RCP-CO2 scenario combinations.
Appendix A Figure S5 for data points
used to derive the MAP-NPP change re-
gression lines for each scenario. Note
that x- and y-axes do not have the same
scale. aDGVM, adaptive Dynamic Global
Vegetation Model; eCO2 , elevated CO2;
fCO2, CO2 fixed at 400 ppm; MAP, mean
annual precipitation; NPP, net primary
production; RCP, representative concen-
tration pathway; WUE, water use effi-
ciency
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RCP, and the RCP scenario (Table 2.3). The effect of RCP scenario on WUE was stronger than

its effect on carbon in aboveground biomass.

2.4.3 Projected biome changes and population dynamics

For all 24 ensemble members, aDGVM simulated biome shifts (change of spatial location of

biomes) and biome transitions (changes in biome type at a given location) from 2000-2019 to

2080-2099 (Figures 2.4 and 2.5 for RCP8.5 and Appendix A Figures S6 and S7 for RCP4.5). This

implied considerable changes in area covered by each biome (Figure 2.6).

(a)   (b)

(c)

FIGURE 2.4: Consensus biome type under RCP8.5-eCO2 in 2000–2019 (a), biome changes until 2080–2099
(b) and transitions and fractional cover of biomes (c) simulated by aDGVM. The consensus biome type is
the biome simulated by at least three ensemble members of the scenario. Grid cells with an agreement of
less than three ensemble members do not have a higher probability than an outcome by chance and are
marked as ‘No consensus’. The biomes shown in (b) are the biomes that were simulated for 2080–2099
for grid cells where biome transitions were simulated for the consensus biome. Numbers in each col-
oured circle (c) represent the percentage of area covered by each biome at the respective time step in the
consensus map. Arrows show biome changes with regard to the previous time step. Arrow thickness is
proportional to the change in total area. In panel (c), only changes that affected more than 0.5% of the
African land surface are shown. See Appendix A Figure S6 for RCP4.5-eCO2. aDGVM, adaptive Dy-
namic Global Vegetation Model; eCO2 , elevated CO2; precipitation; RCP, representative concentration
pathway

Under eCO2 , in line with simulated biomass increase, biome transitions from non-woody bio-

mes to woody biomes dominated for both RCP scenarios (Figure 2.4). The area covered by
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(a)   (b)

(c)

FIGURE 2.5: Consensus biome type under RCP8.5-fCO2 in 2000–2019 (a), biome changes until 2080–2099
(b) and transitions and fractional cover of biomes (c) simulated by aDGVM. The consensus biome type is
the biome simulated by at least three ensemble members of the scenario. Grid cells with an agreement of
less than three ensemble members do not have a higher probability than an outcome by chance and are
marked as ‘No consensus’. The biomes shown in (b) are the biomes that were simulated for 2080–2099
for grid cells where biome transitions were simulated for the consensus biome. Numbers in each col-
oured circle (c) represent the percentage of area covered by each biome at the respective time step in the
consensus map. Arrows show biome changes with regard to the previous time step. Arrow thickness
is proportional to the change in total area. In panel (c), only changes that affected more than 0.5% of
the African land surface are shown. See Appendix A Figure S7 for RCP4.5-fCO2. aDGVM, adaptive
Dynamic Global Vegetation Model; fCO2, CO2 fixed at 400 ppm; precipitation; RCP, representative con-
centration pathway

forest increased for both RCP-eCO2 scenarios at the expense of desert, grasslands and savan-

nas, with stronger effects for RCP8.5 (Figure 2.6). Non-desert biomes shifted towards mid-

latitudes (Figure 2.4a,b; Appendix A Figure S6a,b). However, in line with simulated biomass

reductions, woodland replaced forests in some areas close to the equator (Figure 2.1c,d). [CO2]

increase and climatic change are stronger in RCP8.5, therefore the aDGVM simulated that lar-

ger areas changed biome state than under RCP4.5 (Table 2.1). Large areas showed transitions

from C4 savanna to forest, especially under RCP8.5 (Figure 2.4c).

As opposed to the eCO2 scenarios, a decrease in forests dominated biome cover changes in the

fCO2 scenarios (Figure 2.5). In total, under fCO2 a smaller area was projected to experience

biome transitions (Table 2.1). For RCP8.5, we found a strong decrease of forest cover (5.8 per-

centage points) and an increase of C4-dominated biomes. Forests mainly shifted to woodlands
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FIGURE 2.6: Change in African area covered by each biome in each GCM simulation and ensemble
medians (box plots) under RCP4.5 and RCP8.5 with eCO2 and fCO2 simulated by aDGVM. Change is
the difference in area covered between the time periods 2000–2019 and 2080–2099 in percentage points
(left axis) and km2 (right axis). aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated
CO2; fCO2 , CO2 fixed at 400 ppm; GCM, general circulation model; RCP, representative concentration
pathway

in both RCP scenarios (Figure 2.5c; Appendix A Figure S7c). Under RCP8.5-fCO2, the core sa-

vanna area in 2080-2099 in southern Africa was smaller and located further north than in the

other three scenarios (Appendix A Figures S8e,f and S9e,f), with a pronounced transition from

C4 savanna to C4 grasslands in the Kalahari region (Figure 2.5a,b). Under RCP4.5 the cover

fractions of biome types did not change as much, with transitions in favour of C4 savanna and

woodlands.

Rates of tree biomass change were biome-specific and varied between CO2 scenarios (Figure

2.7). Under eCO2, C4 savannas showed a stronger relative increase in tree biomass change rates

than woodlands and forests for both RCP scenarios, hinting at population dynamics effects

(Figure 2.7a,b). Tree biomass change in C4 savannas was more sensitive to NPP change than

in other woody biomes for both eCO2 scenarios. With fCO2, an increase of NPP often did not

lead to an increase in tree biomass, especially for RCP8.5 and forest biomes.
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(a) RCP4.5 eCO
2

        (b) RCP8.5 eCO
2

(c) RCP4.5 fCO
2

        (d) RCP8.5 fCO
2

FIGURE 2.7: Mean tree biomass change in relation to mean NPP change for eCO2 (a, b) and fCO2 (c, d)
under RCP4.5 (a, c) and RCP8.5 (b, d) simulated by aDGVM. Change is represented by the ratio between
2000–2019 and 2080–2099. Hence, values greater than 1 indicate increase and values less than 1 indicate
decrease. Black lines are regression lines for all data points of the mean of a scenario. Coloured lines are
regression lines for the respective biomes in 2000–2019 of the mean of a scenario. The regression lines for
biomes are marked with a symbol at the top right of each line with colour and shape of the respective
biome. Each point represents the mean for a simulated grid cell, and colour and shape represent the
grid cell’s consensus biome type in 2000–2019. The mean of each scenario is based on the six GCM
simulations in each time period. Note that the scales of x- and y-axes differ. aDGVM, adaptive Dynamic
Global Vegetation Model; eCO2, elevated CO2; fCO2 , CO2 fixed at 400 ppm; GCM, general circulation
model; NPP, net primary production; RCP, representative concentration pathway
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2.4.4 Uncertainty of biome projections

The simulated biomes for the six ensemble members of all four RCP-CO2 scenarios agreed well

at the beginning of the simulations (2000-2019) in the equatorial forests, the Sahara desert along

the Tropic of Cancer, and in more open C4 savanna areas (Figs 8a, S10a). In the transition zones

between these biome types the ensemble members agreed less well and agreement was low in

grasslands, closed savannas and woodlands.

(a) 2000-2019, RCP8.5 eCO2 (b) 2080-2099, RCP8.5 eCO2 (c) 2080-2099, RCP8.5 fCO2

FIGURE 2.8: Agreement of ensemble members in 2000–2019, under eCO2 (a) and change in agreement
until 2080–2099 under eCO2 (b) and fCO2 (c) for RCP8.5 in aDGVM simulations. The number of en-
semble members simulating the consensus type is denoted as ‘Agreement’. Grid cells with an agreement
of less than three ensemble members are marked as ‘No consensus’. We only displayed the number of
ensemble members simulating the consensus type in 2000–2019 for eCO2 in (a), because agreement is
almost identical for eCO2 and fCO2 (see Appendix A Figures S8b and S9b). The consensus biome type is
the biome simulated by at least three ensemble members of the scenario. See Appendix A Figure S10 for
RCP4.5. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; fCO2 , CO2 fixed at
400 ppm; RCP, representative concentration pathway

Agreement of the six ensemble members per scenario decreased towards the end of the 21st

century, especially for eCO2 scenarios (Figure 2.8b,c; Appendix A Figure S10b,c). The core areas

of forest, C4 savanna and desert, where all six ensemble members still showed high agreement

within a scenario, decreased. Agreement was higher for fCO2 scenarios, where only climate

change influenced vegetation changes (Table 2.1; Figure 2.8b,c; Appendix A Figure S10b,c).

Under eCO2, the projections for the transition zones between forest and C4 savanna, and C4 sa-

vanna and desert showed increasing disagreement between ensemble members for each RCP

scenario (Figure 2.8b; Appendix A Figure S10b), with the desert-grassland-savanna transition
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(a) RCP8.5 eCO2      (b) RCP8.5 fCO2

FIGURE 2.9: Probability of biome change between 2000–2019 and 2080–2099 simulated by aDGVM. The
proportion of the six GCM ensemble members per scenario — here RCP8.5, eCO2 (a) and fCO2 (b) —
that showed a biome change from 2000–2019 to 2080–2099 was used as a measure of probability of biome
change. The more ensemble members projected a biome change per grid cell, the higher its probability of
biome change. High probability of biome change — all six simulations project biome changes; medium
probability of biome change — four or five simulations with biome changes; low probability of biome
change — three simulations with biome changes; no change — zero to two simulations with changes.
Grid cells with two or fewer simulations with biome changes do not have a higher probability than
an outcome by chance and were therefore regarded as ‘No change’. Whether the ensemble members
simulated the same type of biome transition was not considered here. See Appendix A Figure S11 for
RCP4.5. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; fCO2 , CO2 fixed at
400 ppm; GCM, general circulation model; RCP, representative concentration pathway

zone north of the equator at a medium to high probability of biome transition in our simu-

lations, especially under RCP8.5 (Figure 2.9a; Appendix A Figure S11a). Further hotspots of

medium to high probability of biome transitions for both RCP-eCO2 scenarios were found in

eastern Africa, areas north and south of the equator in the humid and moist sub-humid tropics,

and for RCP8.5 in southern Africa with an increased dominance of C3 plants (Figure 2.4b and

9a).

In fCO2 scenarios, biomes were projected to have a lower probability of change (Figure 2.9b;

Appendix A Figure S11b). The hotspot of likely biome transitions south of the equator under

eCO2 was also simulated under fCO2 for both RCP scenarios. Conversely, unlike in the eCO2

scenarios, the southern Kalahari was projected to change with medium to high probability
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under RCP8.5-fCO2. Overall for both CO2 scenarios, under RCP8.5 a larger area in Africa had

a medium to high probability for biome transitions than under RCP4.5 (Figure 2.9; Appendix

A Figure S11).

2.5 Discussion

The aim of this study was to provide projections of climate- and [CO2]-driven vegetation

changes in Africa until the end of the century using a regionally adapted DGVM and regionally

downscaled climate data. We analysed plant-physiological and vegetation dynamics responses

to eCO2 and quantified the impact of three sources of uncertainty on vegetation projections:

the influence of climate models (GCM implementations), future global socio-economic devel-

opment (RCP scenario) and strength of CO2 effects on plant growth (CO2 scenarios). We found

that large regions in Africa are likely to experience changes in biomes and carbon stocks, es-

pecially with eCO2 response scenarios. The extent of the projected changes depended on the

chosen scenario and patterns were less clear for biome changes. Projected change in above-

ground biomass was driven primarily by CO2 fertilisation and showed that assumptions con-

cerning CO2 effects (eCO2 or fCO2) caused the strongest variability in future projections (Table

2.3; Figure 2.2; Appendix A Figure S3). Even medium-impact scenarios (RCP4.5, irrespective of

CO2 scenario) suggested considerable ecosystem change (Figure 2.6; Appendix A Figure S6b,c).

2.5.1 Plant-physiological effects of eCO2 and drivers of woody encroachment

Elevated CO2 led to strong woody encroachment in our projections and was accompanied by

enhanced WUE. Increases in NPP clearly drove WUE enhancement, although both photosyn-

thesis (increase of NPP via more efficient CO2 fixation) and gs (decrease) are affected by eCO2 in

aDGVM. We therefore conclude that increased WUE, intensification of carbon sinks and woody

encroachment are mainly driven by CO2 fertilisation of photosynthesis in aDGVM. This find-

ing seems to contradict observational studies that found that increased intrinsic WUE in mature

tropical and subtropical trees did not translate into growth enhancement and often even resul-

ted in declining tree growth rates (Peñuelas et al., 2011; Silva & Anand, 2013; van der Sleen et al.,



40
Chapter 2. Large uncertainties in future biome changes in Africa call for flexible climate

adaptation strategies

2015). However, our simulated biomass increases in savannas are driven by a combination of

demographic processes and CO2 fertilisation effects on tree seedlings and saplings, which are

sub-mature, unlike most empirical studies (Figure 2.7).

Similar to observations reported from FACE experiments in young forest stands (Warren et al.,

2011), the effects of increased NPP and vegetation cover on transpiration outweigh the effects

of decreased gs under eCO2 with increased transpiration having a dampening effect on WUE.

For RCP8.5, this leads to an increased positive relation between NPP and MAP change with

a steeper slope under eCO2. The increased sensitivity of NPP to MAP under RCP8.5 implies

stronger limitation of plant growth by soil moisture availability. This limitation is driven by a

combination of higher demand for water by more productive vegetation, higher transpiration

(Appendix A Figure S4b), temperature increases, and regionally decreasing MAP (Appendix

A Figure S1). However, the gs model implemented in the aDGVM might not represent eCO2-

responses adequately in these increasingly water-limited ecosystems (Medlyn et al., 2001).

Our results confirm results from previous DGVM studies that plant-physiological CO2 effects

strongly impact projections of future vegetation states (Cramer et al., 2001; Hickler et al., 2015;

Huntingford et al., 2013; Rammig et al., 2010; Sato & Ise, 2012). The ensemble modelling results

are useful to estimate potential lower and upper bounds of potential eCO2 effects. Disabled

eCO2 effect scenarios serve as a surrogate for low physiological sensitivity of plants to eCO2,

represent an artificial lower bound of change. It is, however, unlikely that eCO2 effects on

plants will be negligible in systems composed of C3 and C4 plants, where feedbacks between

CO2 fertilisation and fire disturbance affecting the competitive balance between C3 and C4

plants have been postulated (Midgley & Bond, 2015). However, DGVMs such as aDGVM might

not adequately represent carbon sink-source processes and other non-photosynthetic growth

limitations (Körner, 2015), though empirical work by Kgope et al. (2010) strongly implicate

sink:source effects in controlling the demographic process under elevated CO2, as simulated

by aDGVM. The first sub-models that consider long-term physiological acclimation effects in

plants to eCO2 are now being implemented in DGVMs (Haverd et al., 2018).
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Nutrient dynamics in plants and ecosystems can stimulate or reduce eCO2 effects on plants,

but are not represented in aDGVM. Low nutrient availability, e.g. nitrogen and phosphorus

deficits, limits the growth-enhancing effects of eCO2 and therefore on aboveground biomass

(e.g. Jiang et al., 2020a; Peñuelas et al., 2011). Vegetation models including nutrient cycling

frequently predict smaller eCO2 effects (Fleischer et al., 2019; Hickler et al., 2015). Field data

suggests that tree encroachment might further reduce nitrogen availability in African savannas,

which might lead to a negative feedback on CO2-induced tree encroachment (Higgins et al.,

2015). The ability of trees to benefit from eCO2 under nutrient limitation depends on their

association with different mycorrhizal types and a tree’s ability to fix atmospheric nitrogen

(Terrer et al., 2018) with nitrogen-fixing trees from the Fabaceae-family having high abundances

in African savannas (Stevens et al., 2017). Under nitrogen limitation, tree species associated

with arbuscular mycorrhizae, the dominant type in the tropics, benefit less than trees associated

with ectomycorrhizae or N2-fixers (Terrer et al., 2016, 2018).

Based on extrapolation of 138 eCO2 experiments, Terrer et al. (2019) confirmed substantial bio-

mass increases due to CO2 fertilisation in past decades and likely in the future, even when ac-

counting for nutrient limitation. They estimated 12±3% and 12.5±3% increases in global and

tropical biomass, respectively, as a result of a 250ppm increase in [CO2] from 375ppm by 2100.

This is less than the increase of 26.9% in aDGVM-projected aboveground biomass for eCO2-

compared to fCO2-scenarios in 2080-2099 for RCP4.5 (∆CO2 ∼135ppm, Figure2a), but Terrer

et al.’s results clearly ignore demographic effects that result in biome structural shifts. Next

to missing nutrient limitations in aDGVM, another explanation for this mismatch could be

that empirical eCO2 experiments do not account for ecological feedback mechanisms proposed

for savannas that might foster woody encroachment and increase biomass stocks (Midgley &

Bond, 2015), nor does Terrer et al.’s meta analysis explicitly (but indirectly) include N2-fixation

and the associated eCO2 response. Indeed, Stevens et al. (2017) found that recent patterns of

woody encroachment in savannas in Africa are often due to N-fixing species. Thus, large un-

certainties in vegetation response remain with a significant response to be expected in tropical

areas. For representation in DGVMs, the FUN2.0 model offers a mechanism that considers a
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range of processes for nitrogen acquisition (e.g. different mycorrhizal strategies, active uptake,

resorption from senescing leaves; Shi et al., 2016).

Belowground carbon, including roots and soil carbon, are estimated to make up 77% of Sub-

Saharan Africa’s carbon stocks (161Pg C of 209Pg C total C stocks, Bombelli et al., 2009). We

acknowledge that root biomass and soil carbon are crucial for a full representation of the ter-

restrial carbon cycle, especially as carbon and nitrogen cycles are highly interdependent. Soil

and vegetation responses to climate change and eCO2 may vary and may impact carbon cycling

significantly (Dietzen et al., 2019; Dufresne et al., 2002).

Long-term FACE experiments (AmazonFACE, OzFACE; Norby et al., 2016; Stokes et al., 2005)

in African ecosystems in combination with eCO2 experiments such as open-top chamber exper-

iments with savanna plants (pers. comm. BS Ripley, March 2019) may provide further insights

regarding the long-term effects of eCO2 in Africa. Consolidated results from these experiments

will contribute to a comprehensive understanding of the effects of rising [CO2] on African plant

communities and can be used to revise process implementation in DGVMs.

2.5.2 Climate change impacts on biome patterns

Projected biome changes towards woody vegetation under eCO2 are consistent with results

from previous studies on regional (Conradi et al., 2020; Doherty et al., 2010) and continental

scale (Gonzalez et al., 2010; Higgins & Scheiter, 2012; Niang et al., 2014; Scholze et al., 2006;

Sitch et al., 2008). The transition of grassland and savanna biomes, i.e. C4-dominated biomes, to

more woody biomes, i.e., C3-dominated biomes, in eCO2 simulations corroborates findings that

savannas and grasslands are particularly vulnerable to biome changes under eCO2 (Higgins &

Scheiter, 2012; Osborne et al., 2018; Scheiter et al., 2018). Woody encroachment into grasslands

and savannas in Africa is a major threat to their biodiversity (Bond, 2016).

Tropical forests are less stable in our simulations than suggested by Gonzalez et al. (2010),

Scholze et al. (2006) and Sitch et al. (2008). Climatic changes outweigh eCO2 effects in a belt

south of the equator with decreasing biomass in both CO2 scenarios by 2080-2099, which is sim-

ilar to DGVM-results by Sato & Ise (2012) and projections of carbon sinks saturating in African



2.5. Discussion 43

tropical forests by 2040 (Hubau et al., 2020). In our simulations, this decrease in regional car-

bon stocks in forests is outweighed on the continental scale by increases in other tropical forest

areas as well as savanna and grassland areas that were not included in Hubau et al. (2020).

Feedbacks between population dynamics and combined fire-eCO2 effects in the aDGVM also

explain this discrepancy. While Hubau et al. (2020) used linear regression models both to pro-

ject predictor variables, such as mean annual temperature, and then based on these to project

carbon changes into the future, here the process-based aDGVM was driven with downscaled

GCM data. Increases in aboveground biomass and transitions to forest biomes in East Africa

under both eCO2 and present-day [CO2] levels (400ppm, fCO2) for both RCP scenarios are the

result of higher water availability due to increased precipitation in these areas (Appendix A

Figure S1e,f; Archer et al., 2018; Doherty et al., 2010; Engelbrecht et al., 2015; Niang et al., 2014).

Large proportions of simulated biome changes under eCO2 occur in the moist sub-humid

and humid tropics where woodland and C4 savanna biomes were found in 2000-2019 (Fig-

ure 2.4a,b). This is opposed to previous studies where most changes occurred further north

and south of the equator in regions with more open savannas (Gonzalez et al., 2010; Higgins &

Scheiter, 2012).

Explanations for differences in biome change projections between different studies include the

use of different modelling approaches (e.g., species distribution models, Conradi et al., 2020),

different climate data sets, (e.g., GCM data or interpolated data such as ISIMIP instead of

RCM data), different DGVMs (Doherty et al., 2010; Gonzalez et al., 2010), and that precipita-

tion changes until 2100 were not accounted for (Higgins & Scheiter, 2012). In addition, util-

isation of different biome classification schemes can influence if and where vegetation changes

are simulated (Scheiter et al., 2020) and create mismatches between different vegetation models

that impede comparison of simulated biomes. Nonetheless, the different studies agree on a

potential increase in the area covered by woody biomes under future climatic conditions.

Where MAP decreases and temperatures increase, C4 plants can maintain their competitive

advantage over C3 plants even under eCO2 (Higgins & Scheiter, 2012). We found such beha-

viour in southwestern Africa, where the CCAM ensemble predicts a decrease in MAP, and a
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temperature increase to levels unprecedented in recent history. Trends of bush encroachment

observerd in this region in the recent past were explained by a combination of [CO2] increase,

precipitation increase, and land use practices such as live stock grazing (O’Connor et al., 2014).

However, future projections of precipitation in our forcing data for this region showed a trend

towards substantial precipitation decreases, i.e. opposed to increases in the past, whereas land

use was not considered in our study. In particular, the shift from C4 savanna to C4 grasslands

by 2080-2099 in the Kalahari under RCP8.5 with fCO2 is due to the competitive advantage of

C4 plants under drier conditions at lower [CO2]. Differences between Higgins & Scheiter (2012)

and our result in this region, illustrate that it is crucial to include precipitation changes in ve-

getation projections under climate change. Increasing likelihood or severity of droughts under

future climate conditions may offset the eCO2 effect, as plant responses to eCO2 are hampered

by low soil water availability (Nowak et al., 2004; Reich et al., 2014). On the other hand, advant-

ages of C4 grasses over C3 grasses in dry habitats may be reduced under drought conditions

(Taylor et al., 2011).

2.5.3 Uncertainties of vegetation projections

In our simulations, direct eCO2 effects on plants are the primary determinants of the future

carbon sink or source, WUE and biome states in Africa (Figures 2.2 and 2.6; Table 2.3). This

is consistent with the results from Rammig et al. (2010) for the Amazon and Huntingford et al.

(2013) for the global tropics. Direct eCO2 effects are very likely, but considerable uncertainty

remains with respect to the strength of the effect. Thus, the effect sizes in Table 2.3 only allow

comparison of CO2 effects and climate input data as simulated by the aDGVM. Nevertheless,

our results suggest that improving our understanding of plant-physiological CO2 effects is

crucial to achieve realistic future ecosystem projections.

Areas with high uncertainty in projected biome transitions only partially agree with patterns

reported by Gonzalez et al. (2010). Uncertainty is often higher in our study (Figure 2.9a). Both

studies agree on high uncertainty for biome changes in the western parts of the transition zone

between the Sahel and the Sahara. The uncertainty of biome change we inferred in this study
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was similar or smaller than in Scholze et al.’s (2006) projections. Low agreement of projected

biome changes in grassland, closed savanna, and woodland areas in our ensemble can be ex-

plained by alternative vegetation states related to fire occurrence typical for Africa (Hoffmann

et al., 2012; Moncrieff et al., 2014; Staver et al., 2011b) and variability in climatic drivers derived

from GCMs, in particular uncertainty regarding precipitation.

Uncertainty in future projections is increased by the interplay of eCO2, fire and feedbacks

caused by population dynamics. Enhanced tree sapling growth under eCO2 may eventually

reduce grass biomass and fine fuel availability, which in turn reduces fire frequency and intens-

ity. In combination with climate changes, this feedback mechanism can lead to rapid woody

encroachment in savanna ecosystems (Figure 2.7, Midgley & Bond, 2015). Fire disturbance is a

factor shaping ecosystems (e.g. Bond & Midgley, 2012; Midgley & Bond, 2015; Scheiter et al.,

2012) leading to multiple stable states for the same climate zones (e.g. Higgins & Scheiter, 2012;

Staver et al., 2011b). Fire has been shown to influence and delay projected biome changes and

can delay transitions to woody biomes and thus stabilisation of ecosystem states after changes

in environmental drivers stabilised (e.g. [CO2], Scheiter et al., 2020). Even when ecophysiolo-

gical processes have already saturated (e.g. here expressed via NPP), ecosystem states continue

to change (e.g., biomass, Figure 2.2a; Appendix A Figure S4a), because they have not reached an

equilibrium state under changed environmental conditions. In addition, stochastic processes

in the aDGVM fire model and differences in GCM climate projections can produce varying fire

occurrences in different ensemble members and thus explain uncertainty in projections, espe-

cially in fire-shaped ecosystems like savannas. Other disturbances not included here, such as

herbivory, and their interactions with fire and eCO2 are additional factors of uncertainty in

vegetation projections.

Despite of the uncertainties in regional patterns, the projections of substantial biome changes

across all scenarios of the ensemble suggest substantial future changes in habitat structure and

biodiversity. These potentially large changes in climate and biomes sharply contrast with rel-

ative stability in past climates and disturbance regimes in Africa, which probably contributed

to its high biodiversity (Midgley & Bond, 2015).
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2.5.4 Socio-economic development and flexible adaptation

The stronger impacts under RCP8.5 compared to RCP4.5, irrespective whether eCO2 or fCO2 is

assumed, entail that today’s decisions from individual to policy level shape the degree to which

climate, ecosystems and livelihoods will change. The strong carbon sink simulated here under

RCP8.5-eCO2 might suggest regional potential for land-based climate mitigation, but the asso-

ciated conversion of grassy biomes to more encroached biomes is a threat to their biodiversity.

Increased woody cover in grassy biomes might lead to losses of their ecosystem services, such

as arable and range land (Parr et al., 2014; Bond et al., 2019).

The range of possible climate change impacts in Africa presented in our study can support

policy makers and stakeholders in Africa in planning for alternative climate futures in climate

change adaptation measures (Müller et al., 2014) even though the study was not specifically de-

signed to address policy questions. Our PNV simulations, for example, could help to guide

good practice in nature conservation and land-use planning (Loidi & Fernández-González,

2012) or to avoid afforestation activities in non-forest ecosystems (Bond et al., 2019; Brancalion

et al., 2019; Veldman et al., 2015b). Stakeholders such as NGOs and state agencies can use projec-

tions of PNV to raise awareness for possible climate change impacts. To inform policy makers

and stakeholders, it will also be necessary to include land management practices such as live-

stock and fire management in model simulations (e.g. Pfeiffer et al., 2019; Scheiter & Savadogo,

2016; Scheiter et al., 2019) and to implement DGVM ensemble simulations with greenhouse gas

emissions and land-use scenarios of different Shared Socio-Economic Pathways (SSPs, Popp

et al., 2017).

As the large differences between the different scenarios imply large uncertainties, adaptation

strategies must be highly adaptive and flexible. Over time, observations of climate change and

impacts on ecosystems will provide an improved knowledge base (Fletcher et al., 2019). As

opposed to using vegetation projections only, Bayesian statistics combined with a stochastic

dynamic programming approach allow an upfront assessment of the opportunity of this in-

creased knowledge base in the future (Fletcher et al., 2019; Yousefpour et al., 2012). Thus, trade-

offs between investing in highly flexible measures compared to potentially simpler but less
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flexible measures can be weighed against each other (Fletcher et al., 2019). In combination with

updated information on population developments and land-use change via continued mon-

itoring, this method may support stakeholders in the development of adequate management

plans. However, implementing this method requires close and iterative exchange between

stakeholders and scientists, so that specific policy and planning questions and their uncertain-

ties can be assessed using vegetation projections as an exploratory tool adjusted to the specific

question (Weaver et al., 2013).

Combining DGVMs with land use, SSPs and population development would give deeper in-

sights into the vulnerability of different regions in Africa to climate change. However, know-

ledge of PNV states is a basis for future conservation planning and provides an estimate of eco-

system and plant types that could persist and thrive under future climatic conditions. When

considering human population development and future potential land use, information on

PNV is essential to feed into development policies. Especially in regions with higher uncer-

tainty regarding the impact of climate change on future PNV, a diverse set of climate change

adaptation measures needs to be included in development strategies, such as diversification

of income and flexibility in production methods, to account for this uncertainty (Müller et al.,

2014). Policies need to embrace the opportunities of continuous knowledge gain about climate

change impacts (Fletcher et al., 2019) based on latest monitoring results, empirical research and

updated models with scientists and policy makers collaborating closely in the decision making

process.
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The aDGVM code that was used to produce the results in this publication is available on Github

(https://github.com/540aDGVM/aDGVM1_CCAM). aDGVM simulation results are access-

ible through the SASSCAL database (http://data.sasscal.org/ metadata/view.php?view=li_-

rbis_process_step&id=6379&ident=118872017185729320).
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3.1 Abstract

Africa’s protected areas (PAs) are the last stronghold of the continent’s unique biodiversity, but

they appear increasingly threatened by climate change, substantial human population growth,

and land-use change. Conservation planning is challenged by uncertainty about how strongly

and where these drivers will interact over the next few decades. We investigated the combined

future impacts of climate-driven vegetation changes inside African PAs and human population

densities and land use in their surroundings for 2 scenarios until the end of the 21st century.

We used the following 2 combinations of the shared socioeconomic pathways (SSPs) and rep-

resentative greenhouse gas concentration pathways (RCPs): the “middle-of-the-road” scenario

SSP2–RCP4.5 and the resource-intensive “fossil-fueled development” scenario SSP5–RCP8.5.

Climate change impacts on tree cover and biome type (i.e., desert, grassland, savanna, and

forest) were simulated with the adaptive dynamic global vegetation model (aDGVM). Un-

der both scenarios, most PAs were adversely affected by at least 1 of the drivers, but the co-

occurrence of drivers was largely region and scenario specific. The aDGVM projections sug-

gest considerable climate-driven tree cover increases in PAs in today’s grasslands and savan-

nas. For PAs in West Africa, the analyses revealed climate-driven vegetation changes combined

with hotspots of high future population and land-use pressure. Except for many PAs in North

Africa, future decreases in population and land-use pressures were rare. At the continental

scale, SSP5–RCP8.5 led to higher climate-driven changes in tree cover and higher land-use

pressure, whereas SSP2–RCP4.5 was characterized by higher future population pressure. Both

SSP–RCP scenarios implied increasing challenges for conserving Africa’s biodiversity in PAs.

Our findings underline the importance of developing and implementing region-specific con-

servation responses. Strong mitigation of future climate change and equitable development

scenarios would reduce ecosystem impacts and sustain the effectiveness of conservation in

Africa.
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3.2 Introduction

African protected areas (PAs) are strongholds of Africa’s unique biodiversity (Pacifici et al.,

2020) and are fundamental to safeguarding it. A proposed key global goal is to protect 30% of

terrestrial area (action target 3, Convention on Biological Diversity [2021]), but there is increas-

ing evidence that under climate change this target may not be ambitious enough to protect

biodiversity (Hannah et al., 2020). Even today, PAs and the biodiversity they conserve are in-

creasingly under pressure from global change drivers such as climate change (Hannah, 2008),

human population growth, and land-use change (Geldmann et al., 2014).

Climate-driven vegetation changes in African PAs have already been observed. Woody en-

croachment into African savannas in PAs has probably at least partly been driven by fertiliza-

tion effects of increased atmospheric CO2 on woody plants (Stevens et al., 2017). Changes in tree

cover and thus vegetation structure in savanna and forest biomes imply habitat loss and de-

creased biodiversity (Aleman et al., 2016; Midgley & Bond, 2015), which impairs the potential of

PAs for biodiversity conservation under climate change. Under future climate change, dynamic

vegetation models (DVMs) have projected woody encroachment into African grasslands and

savannas driven by increasing atmospheric CO2 and its potential effects on plant physiology

and vegetation structure (Martens et al., 2021; Scheiter & Higgins, 2009). In dynamic vegetation

simulations for areas with at least 50% protected area, only 2% of Africa remains refugia for

biodiversity under climate change (Eigenbrod et al., 2015).

At the beginning of the 21st century, human population growth within the perimeters of African

PAs was limited (Geldmann et al., 2019). However, until the end of the century, the human

population in sub-Saharan Africa is projected to increase substantially, in contrast to all other

global regions (United Nations, Department of Economic and Social Affairs, Population Divi-

sion, 2019). Urbanization in the vicinity of PAs is projected to increase more than 8-fold from

2000 to 2030 across Africa, which implies vast, dynamic changes in future socioeconomic pres-

sures on biodiversity and PAs (Güneralp et al., 2017). In the past, agricultural expansion inside
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African PAs was stronger than in similar unprotected regions (Geldmann et al., 2019). Deforest-

ation, logging, and fire in the immediate vicinity of PAs often drive changes within PAs (e.g.,

through ecological edge effects and by predisposing the PA to similar land-use-driven changes)

(Laurance et al., 2012). In the future, pressure from commercial agriculture in the vicinity of PAs

is expected to increase and intensify (DeFries et al., 2007), likely driven by the expected human

population growth and socioeconomic developments.

Increased pressure from a combination of drivers such as human population and intensive ag-

riculture on the majority of African PAs has already been reported for the recent past, although

pressure was reduced for several other PAs in Africa (Jones et al., 2018). However, there have

been few studies on relationships between climate change impacts (e.g., tree-cover changes)

and pressure from socioeconomic drivers (e.g., human population density and agricultural and

pasture land use) as they relate to African PAs in the future. Asamoah et al. (2021) estimated

that by 2050, ∼27% of PAs globally are expected to be in areas with large climate and land-use

changes. PAs in tropical moist forests and tropical savanna and grassland biomes are expected

to be particularly affected (Asamoah et al., 2021). Both land-use and climate change have been

projected to continuously drive a decline of African plant biodiversity in the future for most

regions and scenarios (Di Marco et al., 2019).

To assess global change pressure on PAs in Africa until the end of the 21st century, we used

projections for climate-driven tree-cover change, human population density, and land use, in-

cluding urban, agricultural, pasture, and natural land, under 2 shared socioeconomic path-

way (SSP) and representative concentration pathway (RCP) marker scenarios (SSP2-RCP4.5

and SSP5-RCP8.5). For each SSP–RCP scenario, we investigated up to the end of the 21st cen-

tury which PAs and biomes in PAs were projected to be most affected by climate-change-driven

vegetation and habitat loss; which PAs were projected to be particularly affected by popula-

tion and land-use pressure in their surroundings; and whether population and land-use pres-

sures were projected to co-occur with each other and with climate-change-driven vegetation

changes. We also investigated whether the global-change scenarios we considered suggest dif-

fering strategies for conservation in different PAs in Africa.
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The SSP2–RCP4.5 is the “middle-of-the-road” (O’Neill et al., 2017) scenario in which global in-

equalities in development and income growth continue with some regional improvements and

medium climatic changes (Riahi et al., 2017). In SSP5RCP8.5, rapid economic and social devel-

opment is driven by fossil fuel exploitation and associated strong climate change and technolo-

gical development (“fossil-fueled development”) (Kriegler et al., 2017). We simulated climate-

driven vegetation changes with the adaptive dynamic global vegetation model (aDGVM) and

used projections of population density (Gao, 2019) and land use (Hurtt et al., 2020) and their

respective changes in the surroundings of PAs as proxies for future socioeconomic pressures

directly or indirectly exerted on PAs.

3.3 Methods

3.3.1 Scenarios

The RCP and SSP scenarios describe alternative future developments of anthropogenic climate

change and its drivers. Emissions associated with possible societal development (SSP) are used

as input for RCP scenarios. Radiative forcing from RCP scenarios is used as input for climate

model projections. The SSP–RCP scenarios that we used in our analysis, SSP2–RCP4.5 and

SSP5–RCP8.5, are designated marker scenarios and part of the Scenario Model Intercomparison

Project (ScenarioMIP) for phase 6 of the Coupled Model Intercomparison Project (O’Neill et al.,

2016).

The selection of scenario combinations was limited to SSP2-RCP4.5 and SSP5RCP8.5 by the

available climate data for vegetation simulations. Under SSP2RCP4.5, population is projected

to increase by ∼157% from 2010 until 2100 for Africa (KC & Lutz, 2017). Cropland is expected

to expand by ∼51% (∼154Mha) and pastures to decrease by ∼7% (58Mha) from 2020 to 2090 in

Africa (based on land-use harmonization [LUH2] data) (Hurtt et al., 2020) (see land-use section

under “Data sets and data processing” section). Climatic changes are modest to high and mean
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annual temperature from 2000-2019 to 2080-2099 is projected to increase by 2.0 °C at the con-

tinental scale in Africa (derived from Engelbrecht et al. [2015] and Martens et al. [2021]) (details

below in “aDGVM and simulation design” section).

Under SSP5–RCP8.5, the evolving global energy-intensive lifestyle and associated

greenhouse gas emissions lead to strong climate changes, with mean annual temperature in-

creasing by 4.5 °C from 2000–2019 to 2080–2099 in Africa (based on Engelbrecht et al. [2015]

and Martens et al. [2021]). Africa’s population in 2100 is projected to be 77% higher than in

2010 (KC & Lutz, 2017). Even though population increase for SSP5–RCP8.5 is only about half

the increase for SSP2–RCP4.5, the increased food and feed demand of the changed lifestyle

(Hurtt et al., 2020) leads to a similar expansion in cropland (∼42%, ∼131 Mha) and decrease in

pastures (∼−7%, ∼58 Mha, LUH2 data) from 2020 to 2090 in Africa.

3.3.2 aDGVM and simulation design

The aDGVM is a DVM and was originally developed for tropical vegetation and treegrass

dynamics in Africa. It includes dynamic climate–vegetation–fire feedback processes (Scheiter

& Higgins, 2009), which influence tree cover and thus habitats and biome changes in Africa

(Midgley & Bond, 2015). Implemented processes at the plant level include photosynthesis,

transpiration, and carbon allocation to different plant compartments based on limiting factors,

such as light and water availability (Scheiter & Higgins, 2009). Simulated trees compete for

light with neighboring trees and for water with all plants at stand scale. Trees are represented

as individuals of forest or savanna tree types. Forest trees are shade tolerant but do not cope

well with fire, whereas savanna trees are fire tolerant, but shade intolerant. Grasses are rep-

resented by superindividuals with C4 or C3 photosynthesis growing either below or between

tree canopies. Shrubs are not included in aDGVM and thus ecosystems such as the Succulent

Karoo or Fynbos in South Africa are not well represented. Fire disturbance occurs in aDGVM

depending on available fuel biomass from grasses and tree leaf litter and their moisture con-

tent. Ignition events occur randomly. A full model description is in Scheiter & Higgins (2009)

and Scheiter et al. (2012).
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We used results for potential natural vegetation (i.e., no human land use) from aDGVM simu-

lations in Martens et al. (2021). The aDGVM was forced with an ensemble of climate input from

6 different general circulation models (GCMs) (i.e., ACCESS, CCSM4, CNRM, GFDL, MPI,

NorESM1M [Archer et al., 2018]) that were downscaled for Africa with the conformal-cubic at-

mospheric model (CCAM) (McGregor, 2005) to 0.5° resolution. The mechanistic model CCAM

was forced with bias-corrected sea-surface temperature and sea-ice data from the GCMs (En-

gelbrecht et al., 2015) for RCP4.5 and RCP8.5. Soil properties were derived from Global Soil

Data Task Group’s (2000) soil data. The aDGVM was run for a spin-up period of 210 years to

allow simulated vegetation to reach an equilibrium state. Spin-up was followed by a transient

phase with the CCAM climate data for 1971–2099. For each 0.5° grid cell, vegetation in aDGVM

was simulated in a 1-ha stand. We scaled the simulation results up to the 0.5° grid by assuming

vegetation is homogeneous in each grid cell and that the simulated 1-ha stand is representative

for the grid cell. We used the mean across the ensemble of 6 aDGVM simulations for each RCP

scenario for our analyses.

3.3.3 Data sets and data processing

We derived geographical location and administrative boundaries of PAs in Africa from the

World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, 2019). An overview

figure of data sets used is in Appendix B S1. We excluded PAs smaller than 5 km2 from the

analysis. Hence, many of the PAs considered in the analysis are smaller than the resolution of

the other data sets used (0.5° for vegetation, 0.25° for LUH2). Vegetation in smaller PAs is of-

ten characterized by small-scale local microclimatic and topographic conditions, such as steep

valleys, that cannot be captured in DVM simulations due to the coarse resolution of climate

forcings. We used QGIS 3.10 (QGIS Development Team, 2021) to select African terrestrial PAs

of an area greater than 5 km2 for the analysis, fill holes in PAs, and identify and fix invalid

geometries, such as self-intersecting polygons in the original data set, with the fix geomet-

ries algorithm in QGIS. The PAs without spatial polygon data available were excluded from

this study as well as PAs with a designation status of proposed or not reported. Coastal PAs
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that were not covered by the aDGVM data, due to the resolution of simulations, were also re-

moved. In total, 5121 PAs were used for this analysis (72.0% of terrestrial PAs with spatial data

and 99.9% of their total PA [Appendix B S2]).

Human population pressure was based on Gao’s 2019 downscaled projections for SSPs 2 and

5 at 1 km2 resolution (Gao, 2017). We used climate data operators’ (CDO) remapcon algorithm

for first-order conservative remapping (Schulzweida, 2019) to regrid these projections to 0.25°

resolution to match the resolution of the LUH2 data set (see below). For each grid cell, decadal

population (pop.) densities for 2020 and 2090 were rescaled from 0 to 10 so land-use and pop-

ulation would be on comparable scales. This rescaling assumes a steep increase of population

pressure at low population densities that saturates at a population density of 1000/km2 (Venter

et al., 2016):

pop.pressure =

⎧⎪⎪⎨⎪⎪⎩
3.333 ∗ log10(pop. density + 1) pop. density < 1000/km2

10 pop. density ≥ 1000/km2.
(3.1)

To estimate land-use pressure, we used annual data for 2020 and 2090 from SSPRCP marker

scenarios SSP2–RCP4.5 and SSP5–RCP8.5 from the LUH2 data set (Hurtt et al., 2020) at 0.25°

resolution. The LUH2 data were simulated with different integrated assessment models (IAMs)

that combine economic and energy models with agricultural and land-use models and envir-

onmental impacts (Hurtt et al., 2020). The SSP2–RCP4.5 data were simulated with the IAM

MESSAGE-GLOBIOM and SSP5–RCP8.5 with REMIND-MAgPIE (Hurtt et al., 2020). Each IAM

implementation is the marker scenario for the respective SSP and recommended for use in ana-

lyses of climate change impact (Riahi et al., 2017).

We grouped the different land-use types in LUH2 into 5 classes (primary vegetation, secondary

vegetation, pasture, cropland, urban) and assigned each class a land-use pressure factor from

0 to 10 (Appendix B S3) based on an adapted scheme from Venter et al. (2016). We grouped

secondary natural vegetation into young, intermediate, and mature vegetation based on stand

age classes (Newbold et al., 2015), where land-use pressure was lower for mature vegetation
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stands and higher for young stands. In the LUH2 data set, the fractional cover of each land-use

type in a grid cell is given. The overall land-use pressure in a grid cell is based on the weighted

mean of pressure factors of land-use fractions. A land-use level of 4 is equivalent to pasture.

Levels of 4 and higher are considered human dominated (Watson et al., 2016).

3.3.4 Data analysis

Based on simulated tree cover and aboveground biomass, we classified vegetation into desert,

grassland, savanna, and forest biomes (simplified from Martens et al., 2021) (Appendix B S4).

The savanna–forest threshold was chosen at 70% tree cover to reflect observations from remote

sensing on the fire- and rainfall-driven bimodality of savanna and forest showing that interme-

diate tree cover levels of 50–75% rarely occur in Africa (Staver et al., 2011a). Subtropical deserts

are treeless (Chapin III et al., 2011); therefore, we used biomass to distinguish grasslands from

deserts. Biome classification for a PA was based on means for tree cover and aboveground

biomass in the PA. Because habitat loss is an important driver of biodiversity loss, we used

changes in tree cover as an indicator of habitat loss in forest, savanna (Aleman et al., 2016),

and grassland. Tree-cover change does not represent habitat loss and climate-driven vegeta-

tion changes well for desert biomes; therefore, we used change in aboveground biomass as

indicator of habitat loss in the desert biome (Appendix B S5).

Analyses of the impacts of the different drivers on PAs in Africa were conducted in R (R Core

Team, 2020). For climate change impacts on PAs, we analyzed simulated vegetation and veget-

ation changes within PAs and used the R package raster (Hijmans, 2020)) to crop data to the

boundaries of PAs. Ensemble means of aDGVM simulation results were averaged over 2, 20-

year periods, 2000–2019 and 2080–2099, to represent long-term climate-driven vegetation states

for both RCP scenarios. We used population and land use within a specified area surrounding

PAs (i.e., buffers) (Wittemyer et al., 2008) as a proxy for potential pressures resulting from so-

cioeconomic states and indirect drivers, such as deforestation or overexploitation of ecosystem

resources near PAs. We assumed that population and land-use drivers mainly act from outside

PAs and omitted communities and land use inside PAs. Population and land use for grid cells
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intersecting with buffers and the size of the intersecting area were used to derive average pres-

sures from outside a PA. Based on a previous study (Wittemyer et al., 2008) and our minimum

PA size of 5 km2, we chose 10-km buffers around each PA, but also tested 50-km buffers. Buffer

areas were created in QGIS.

To investigate the impacts of climate-driven vegetation changes on biomes in PAs, we com-

pared each biome’s share of the total area protected in 2000–2019 and in 2080–2099 and looked

at shares of their initial extent affected by habitat loss. To investigate regional differences in

the drivers and impacts on PAs, we grouped the PAs by regions of the African Union (Organ-

ization of African Unity, 1976) (Appendix B S6) and compared them in a box plot. Changes in

socioeconomic pressures were calculated as the difference between pressure factors in 2090 and

2020. To determine whether PAs in certain regions were projected to be particularly affected by

multiple drivers simultaneously, we plotted population pressure, land-use pressure (and their

changes), and climate-driven tree-cover change from 2000–2019 to 2080–2099 against each other

for different regions and projected habitat loss of PAs by convex hulls. We investigated rela-

tionships between the socioeconomic pressures, population and land use (and their changes),

and climate-driven tree-cover change with Spearman’s rank correlation for each scenario at

continental and regional scale. These analyses required a single indicator of climate change

impact on vegetation in PAs. For this purpose, we chose change in mean simulated tree cover

because tree cover was also used for the classification of 3 out of the 4 biomes used. Absolute

values of tree-cover change were used for Spearman’s rank correlation because both negative

and positive tree-cover changes represent climate-driven vegetation changes. For population

and land-use pressure, actual change values in the buffers were used because increasing values

represented increasing pressure. A strong relationship between the different pressure factors

may also occur when pressures are low. To analyze differences between the SSP–RCP scenarios,

we compared the respective results from the above analyses.
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3.4 Results

3.4.1 Climate-driven vegetation changes

Model results showed large increases in tree cover until 2080–2099 (Figure 3.1a,e), which of-

ten implied habitat loss in PAs in savanna and grassland regions under both scenarios (Figure

3.1b,f). The savanna and grassland areas in PAs decreased, and more than 50% of these bio-

mes were projected to lose habitat until the end of the century under both scenarios (Table 3.1).

Forest area in PAs increased under both scenarios (Table 3.1) and was projected to be less af-

fected by habitat loss (Table 3.1; Figure 3.1b,f). Modeled tree cover increases and decreases in

PAs were more pronounced under SSP5–RCP8.5 than under SSP2–RCP4.5 (Figure 3.2a). For

both scenarios, tree-cover change in the majority of PAs in Southern and West Africa exceeded

the median tree-cover change at the continental scale (Figure 3.2a).

TABLE 3.1: Shares of overall protected area in 2000-2019, and 2080-2099 and of projected habitat loss for
each biome.

Desert Grassland Savanna Forest
SSP2-RCP4.5
2000-2019 13.7% 9.4% 51.2% 25.7%
2080-2099 9.4% 8.2% 46.4% 36.0%
habitat lossb 39.0% 56.7% 67.3% 15.0%
SSP5-RCP8.5
2000-2019 16.2% 7.0% 51.3% 25.5%
2080-2099 13.9% 5.4% 40.1% 40.7%
habitat lossb 19.3% 64.2% 71.8% 21.2%

a Simulated with the adaptive dynamic global vegetation model. Results from Martens et al. (2021) were clas-
sified into biomes based on the scheme in Appendix B S4. Definitions: SSP2–RCP4.5, intermediate scenario in
which global inequalities in development and income growth cont with some regional improvements and medium
climatic changes (Riahi et al., 2017); SSP5–RCP8.5, rapid economic and social development driven by fossil fuel ex-
ploitation and associated strong climate change and technological development (Kriegler et al., 2017).
b Based on the scheme to determine habitat loss in Appendix B S5.
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FIGURE 3.1: Projected (a, e) climate-driven change in tree cover in percentage points, (b, f) habitat loss,
(c, g) population density in people per square kilometers, and (d, h) land-use pressure in Africa and pro-
tected areas for scenarios (a–d) SSP2–RCP4.5 and (e–h) SSP5–RCP8.5 (RCP, representative concentration
pathways; SSP, shared socioeconomic pathways). Projected tree-cover changes (a, e) and derived habitat
loss (b, f) (derived from the adaptive dynamic global vegetation model) show the difference between
2000–2019 and 2080–2099 (based on Martens et al. [2021]). For deserts, encroachment was defined as
aboveground biomass increase >0.5 t/ha. For grasslands and savannas, encroachment was defined as
an increase in tree cover >5 percentage points (p.p.) and >10 p.p., respectively. Dieback for savanna and
forest was defined by reductions of tree cover of (>10 and >20 p.p., respectively). Population (based on
Gao [2017]) and land-use (based on Hurtt et al. [2020]) pressure are shown for 2090. Land-use pressure
factors were based on an adapted scheme from Venter et al. (2016), in which higher numbers represent
higher land-use pressure. Protected areas used in this study are mapped on top for each panel. Maps
of population density and land-use pressures in 2020 and their projected changes up to 2090 for both
SSP–RCP scenarios are in Appendix B S8

3.4.2 Future socioeconomic pressures

At the continental scale, PAs were projected to experience higher population pressure in buf-

fers in 2090 under SSP2–RCP4.5 than under SSP5–RCP8.5 (Figure 3.2b); regional patterns were

similar (Figure 3.1c,g). For the majority of PAs in North and Southern Africa, population dens-

ities decreased by the end of the century under SSP5–RCP8.5 (Figure 3.2b). Continental-scale

projections of land-use pressure generally showed higher pressure under SSP5–RCP8.5 than

under SSP2–RCP4.5 in 2090 (Figure 3.2b). However, in North Africa future land-use pressure

in the buffers of PAs was generally lower under SSP5–RCP8.5 than under SSP2–RCP4.5 (Fig-

ures 3.1d,h & 3.2b). Projected land-use pressure in 2090 for PAs in East and West Africa was

high (Figure 3.1d,h). Increases in land-use pressure for the majority of PAs in Central, East, and

West Africa exceeded the continental-scale median increase (Figure 3.2b). Most PAs in Central

Africa were projected to experience lower future population and land-use pressure in their buf-

fers than the continental-scale medians, whereas PAs in East and West Africa were projected to

be particularly exposed to both pressures in their buffers under both SSP–RCPs (Figure 3.2b).

3.4.3 Co-occurrence of climate-driven vegetation changes and future socioeconomic

pressures

At the continental scale, 7.1% of PAs under SSP2–RCP4.5 and 8.2% under SSP5–

RCP8.5 were projected to experience high future pressure from all 3 global-change drivers
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FIGURE 3.2: (a) Climate-driven change in tree cover in protected areas (derived from adaptive dynamic
global vegetation model based on results from Martens et al. [2021]) and (b) socioeconomic pressures
in 10-km zones around protected areas by region under SSP2–RCP4.5 (SSP, shared socioeconomic path-
ways; RCP, representative concentration pathways) and SSP5–RCP8.5 scenarios (defined in Table 3.1
and text) (p.p., percentage points; pop., population; LU, land use; horizontal lines, median; box ends,
25% and 75% quantile; ends of whisker lines, smallest or largest value, respectively, ≥ or ≤1.5 times
the interquartile range beyond the box ends of protected areas in each group; * continental scale medi-
ans from the Africa panel for each pressure and scenario combination). Regions are based on regions
defined by the African Union (Appendix B S6). Absolute values for tree-cover change from 2000–2019
to 2080–2099 are used because both negative and positive tree-cover changes represent climate-driven
vegetation changes. The socioeconomic pressures population (based on Gao [2017]) and land use (based
on Hurtt et al. [2020]) in 10-km zones around the protected areas were rescaled from 0 to 10 (Equation
3.1; Appendix B S3) based on Venter et al.’s (2016) scheme. Pressures for protected areas by biome and
region under both scenarios are in Appendix B S7
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(Figure 3.3a,b; PAs with population and land-use pressure levels >6 and habitat loss). Future

population and land-use pressure were positively correlated with each other for both scenarios

at the continental scale and for most regions (Table 3.2), but future changes in population and

land-use pressure on buffers of PAs were only weakly correlated under SSP5–RCP8.5 (Table

3.2). Climate-driven tree-cover changes in PAs were not correlated with future population,

land-use pressures, or their changes (Table 3.2).

TABLE 3.2: Spearman’s rank correlation (ρ) of pressures in and around protected areas for both
SSP–RCPa scenarios at continental scale and on regional level

Pressure and scenariob
Continental Central

Africa
East

Africa
North
Africa

Southern
Africa

West
Africa

(5121c) (187c) (1017c) (279c) (1979c) (1659c)
TCC & population
SSP2-RCP4.5
ρ -0.06 -0.11 -0.31 0.37 0.01 0.01
p <0.0005 0.137 <0.0005 <0.0005 0.647 0.598
SSP5-RCP8.5
ρ -0.05 -0.14 -0.29 0.51 0.19 -0.07
p <0.0005 0.055 <0.0005 <0.0005 <0.0005 0.007
TCC & population change
SSP2-RCP4.5
ρ -0.04 -0.14 -0.15 -0.16 -0.09 -0.01
p 0.002 0.062 <0.0005 0.006 <0.0005 0.837
SSP5-RCP8.5
ρ -0.02 -0.17 -0.20 -0.14 0.02 0.00
p 0.109 0.024 <0.0005 0.020 0.286 0.988
TCC & land use
SSP2-RCP4.5
ρ 0.02 0.02 -0.16 0.30 -0.03 -0.01
p-value 0.167 0.795 <0.0005 <0.0005 0.212 0.811
SSP5-RCP8.5
ρ -0.02 0.05 -0.08 0.08 0.00 -0.10
p 0.112 0.542 0.008 0.163 0.911 <0.0005
TCC & land use change
SSP2-RCP4.5
ρ 0.03 0.17 0.01 0.12 0.02 0.01
p-value 0.019 0.024 0.776 0.039 0.384 0.566
SSP5-RCP8.5
ρ -0.10 0.00 0.11 -0.57 -0.15 -0.11
p <0.0005 0.938 0.001 <0.0005 <0.0005 <0.0005

continued
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Chapter 3. Combined impacts of future climate-driven vegetation changes and

socioeconomic pressures on protected areas in Africa

TABLE 3.2: (continued)

Pressure and scenariob
Continental Central

Africa
East

Africa
North
Africa

Southern
Africa

West
Africa

(5121c) (187c) (1017c) (279c) (1979c) (1659c)
Population & land use
SSP2-RCP4.5
ρ 0.70 0.57 0.69 0.63 0.17 0.69
p <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005
SSP5-RCP8.5
ρ 0.67 0.60 0.44 0.18 0.12 0.56
p <0.0005 <0.0005 <0.0005 0.002 <0.0005 <0.0005
Population change & land use change
SSP2-RCP4.5
ρ 0.33 0.22 -0.35 0.07 0.19 -0.23
p <0.0005 0.003 <0.0005 0.243 <0.0005 <0.0005
SSP5-RCP8.5
ρ 0.11 -0.05 -0.28 0.36 -0.46 -0.51
p <0.0005 0.470 <0.0005 <0.0005 <0.0005 <0.0005

a Shared socioeconomic pathway (SSP) and representative concentration pathway (RCP). Pathways are
defined in Table 3.1 and text. Correlations for SSP–RCP scenario combinations SSP2–RCP4.5 and
SSP5–RCP8.5 were derived.
b TCC, tree-cover change simulated with the adaptive dynamic global vegetation model (Martens et al., 2021)
for which absolute change values from 2000–2019 to 2080–2099 were used because both negative and
positive tree-cover changes represent climate-driven vegetation changes; population, projections derived
from Gao (2017); land-use pressure, projections derived from Hurtt et al. (2020). For population and land use,
values for 2090 and change from 2020 to 2090 were derived from areas surrounding protected areas.
c Number of protected areas considered.

In West Africa, PAs were projected to experience climate-driven habitat loss in combination

with elevated future population and land-use pressure in their buffers under both scenarios

(Figure 3.3a,b). These included PAs in savannas and forests of West Africa, where current so-

cioeconomic pressures are already high (Appendix B S7). For PAs in East Africa, climate-driven

tree-cover change was negatively correlated with future population pressure and its change

under both scenarios (Table 3.2). Future population and land-use changes in East Africa were

negatively correlated (Table 3.2). For Central Africa, future population pressure was lower un-

der both scenarios for PAs affected by habitat loss than for those without (Figure 3.4a,b), but

future land-use pressure was, on average, higher (Figure 3.5a,b). Future changes in popula-

tion pressure were generally lower for PAs in Central Africa affected by habitat loss (Figure

3.4c,d). Many PAs in Southern Africa were subject to habitat loss with low to intermediate

future socioeconomic pressures under both scenarios (Figure 3.3). Under SSP5–RCP8.5, for
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FIGURE 3.3: (a, b) Population and land-use pressure in 10-km zones around protected areas and (c, d)
their change for (a, c) SSP2–RCP4.5 and (b, d) SSP5–RCP8.5 scenarios (defined in Table 3.1 and text)
and habitat loss by region and biome (p.p., percentage points; cross, continental mean across protected
areas; polygons, convex hulls of subgroups of protected areas; solid lines and filled circles, subgroups
of protected areas projected to show habitat loss and their means; dashed lines and circles, subgroups of
protected areas without habitat loss and their means). Land use (based on Hurtt et al. [2020]) and popu-
lation density (based on Gao [2017]) pressures in 10-km zones surrounding protected areas were scaled
based on an adapted scheme from Venter et al. (2016). Pressure plots showing all individual protected
areas and regions for SSP2–RCP4.5 and SSP5–RCP8.5 are in Appendices B S9 and B S10. Pressure-change
plots showing individual protected areas and regions for SSP2–RCP4.5 and SSP5–RCP8.5 are in Appen-
dices B S11 and B S12.
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Southern Africa changes in future population pressure were negatively correlated with changes

in future land-use pressure (Table 3.2). Under SSP2–RCP4.5, PAs with habitat loss in Southern

Africa were projected to experience lower population pressure and lower population increases

in their buffers than PAs without habitat loss (Figure 3.4a,c).

North Africa was the only region where many PAs were projected to experience a decrease in

both socioeconomic pressures in their buffers and no habitat loss under both scenarios (bottom

left quadrants in Figure 3.3c,d). In North Africa, climate-driven tree-cover changes under both

scenarios particularly affected PAs that also experienced elevated future population pressure

and under SSP2–RCP4.5 land-use pressures in their buffers (Table 3.2). However, increases in

land-use pressure were negatively correlated with climate-driven tree-cover changes in North

Africa under SSP5–RCP8.5 (Table 3.2).

When considering the combination of all 3 pressures (Figure 3.3a,b), the continental-scale pat-

terns were broadly the same between the 2 SSP–RCP scenarios. Under both scenarios, many

PAs were affected by climate-change-associated habitat loss but experienced regionally vary-

ing combinations of future socioeconomic pressures. Under SSP5–RCP8.5, climate-change im-

pacts and future land-use pressure were often higher for PAs and their buffers (Figure 3.2). In

contrast, PAs across all regions experienced higher future population pressure in their buffers

under SSP2–RCP4.5. Despite similar spatial patterns, there was a tendency for SSP5–RCP8.5 to

have higher overall pressure considering all drivers at the continental scale.

3.5 Discussion

Our results suggest that the majority of overall PA with grassland and savanna vegetation will

be affected by climate-driven increases in tree cover and habitat loss. At the continental scale,

the projected climate-driven tree-cover changes were not correlated with socioeconomic pres-

sures under both scenarios. Except for many PAs in North Africa, PAs across Africa were gener-

ally projected to experience increasing pressure from at least 1 of the investigated global change

pressures under both SSP–RCP scenarios. Particularly strong pressure from all 3 drivers was
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FIGURE 3.4: Climate-driven (a, b) tree-cover change in protected areas and population pressure in 10-km
zones surrounding protected areas and (c, d) population pressure change in 10-km zones surrounding
protected areas for (a, c) SSP2–RCP4.5 and (b, d) SSP5–RCP8.5 scenarios (defined in Table 3.1 and text)
and habitat loss by region and biome (p.p., percentage points; cross, continental mean across protected
areas; polygons, convex hulls of subgroups of protected areas; solid lines and filled circles, subgroups
of protected areas projected to show habitat loss and their means; dashed lines and circles, subgroups
of protected areas without habitat loss and their means). Tree-cover change derived from simulations
with the adaptive dynamic global vegetation model (Martens et al., 2021). Population density (based on
Gao [2017]) in 10-km zones surrounding protected areas was scaled from 0 to 10 based on an adapted
scheme from Venter et al. (2016). Pressure plots showing all individual protected areas and regions for
SSP2–RCP4.5 and SSP5–RCP8.5, respectively, are in Appendices B S13 and B S14. Pressure-change plots
showing individual protected areas and regions for SSP2–RCP4.5 and SSP5–RCP8.5, respectively, are in
Appendices B S15 and B S16
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FIGURE 3.5: Climate-driven (a, b) tree-cover change in protected areas and land-use pressure in 10-km
zones surrounding protected areas and (c, d) land-use pressure change in 10-km zones surrounding
protected areas for (a, c) SSP2–RCP4.5 and (b, d) SSP5–RCP8.5 scenarios (defined in Table 3.1 and text)
and habitat loss by region and biome (p.p., percentage points; cross, continental mean across protected
areas; polygons, convex hulls of subgroups of protected areas; solid lines and filled circles, subgroups
of protected areas projected to show habitat loss and their means; dashed lines and circles, subgroups
of protected areas without habitat loss and their means). Tree-cover change derived from simulations
with the adaptive Dynamic Global Vegetation Model (Martens et al., 2021). Land-use (based on Hurtt
et al. [2020]) pressure factors in 10-km zones surrounding protected areas were scaled from 0 to 10 based
on an adapted scheme from Venter et al. (2016). Pressure plots showing all individual protected areas
and regions for SSP2–RCP4.5 and SSP5–RCP8.5, respectively, are in Appendices B S17 and B S18. Pres-
sure change plots showing individual protected areas and regions for SSP2–RCP4.5 and SSP5–RCP8.5,
respectively, are in Appendices B S19 and B S20
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projected for PAs in West Africa. Overall, impacts from SSP5–RCP8.5 were slightly stronger

than under SSP2–RCP4.5, even though increases in population pressure were generally lower

under SSP5–RCP8.5.

3.5.1 Climate change impacts on PAs

The aDGVM results suggested high vulnerability of grasslands and savannas to climate- and

CO2-driven habitat loss in African PAs; effects were stronger under SSP5–RCP8.5, which is

consistent with continental-scale biome change projections of Martens et al. (2021). This previ-

ous analysis also showed that physiological effects of increasing atmospheric CO2 have a large

impact on simulated climate-driven vegetation changes and are a main source of uncertainties

in the simulations (Martens et al., 2021).

The high vulnerability of grasslands and savannas also confirms Eigenbrod et al.’s (2015) res-

ults: protected tropical grasslands and tropical woodlands are among the global biomes most

vulnerable to climate-driven biome shifts. Differences between our results and Eigenbrod et al.

(2015) included a lower vulnerability of forests in PAs to climate-driven vegetation changes in

our results. This may be due to differences in climate input data and DVMs, in climate change

impacts on simulated future vegetation states at global scale compared with the African scale,

and in applied biome classification schemes. In addition, we focused on habitat loss rather than

biome change, where habitat loss may occur without a biome change and vice versa.

In our DVM-based projections of vegetation changes under climate change, habitat loss in PAs

was more widespread under SSP5–RCP8.5 than SSP2–RCP4.5. This is consistent with projec-

tions from species distribution models (SDMs) (e.g., Hannah et al., 2020), which are the basis

for calls to limit climate change and expand the PA network to reduce species extinction risk.

The widespread habitat loss projected for all biomes in our simulations supports the view that

the current extent of African PAs might not be sufficient to prevent species loss. Using DVM

results as input for SDMs could improve representation of climate change impacts and ecosys-

tem feedbacks among fire dynamics, CO2 fertilization of C3 photosynthesis, and related tipping

points (Midgley & Bond, 2015) for species and their habitat.
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3.5.2 Socioeconomic change impacts on PAs

The projected general increase in population density in the vicinity of most African PAs un-

til the end of this century under both scenarios (Gao, 2017) is consistent with urbanization

trends projected to 2030 (Güneralp et al., 2017). Although rural to urban migration may reduce

pressure on PAs, increased food and resource demands (Güneralp et al., 2017) (e.g., through

resource-intensive lifestyles under SSP5–RCP8.5) can lead to increased land-use pressure on

PAs. This particularly affects PAs in urban catchments and near good transportation links to

cities (Rudel, 2013). Increases in human population in combination with socioeconomic devel-

opment may also increase societal pressure to downgrade PAs to allow, for example, human

settlements and livestock herding (Lindsey et al., 2017) or renewable energy facilities (Rehbein

et al., 2020) in PAs. This is expected to increase conflicts between achieving conservation goals

and meeting human needs (DeFries et al., 2007). In IAMs, PAs are usually excluded from con-

version into cropland or pastures (Stehfest et al., 2019) and land-use types from industrial activ-

ities are not explicitly included apart from urban land (Hurtt et al., 2020). We used the devel-

opments of human population and land use in the vicinity of PAs as a proxy for these types of

developments and associated impacts on PAs.

The co-occurrence of population and land-use pressure under both scenarios is in line with

population pressure being a key driving force of land-cover change in West Africa (Herrmann

et al., 2020). However, for changes in these socioeconomic pressures, co-occurrences were vari-

able: positive, negative, and no correlation depending on region and scenario. This can be

attributed to a combination of scenario-dependent local patterns of population pressure, the

physical environment, socioeconomic conditions, policies (Herrmann et al., 2020), and links to

international markets (Kriegler et al., 2017).
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3.5.3 Combined socioeconomic and climate change impacts on PAs

At the continental scale, no clear overall patterns in relationships between climate-driven ve-

getation changes and socioeconomic pressures emerged from our analysis. This is not sur-

prising because climate-driven vegetation changes and socioeconomic drivers are spatially in-

dependent global change drivers and socioeconomic developments vary regionally such that

different regions will be subject to different combinations of pressures. The majority of PAs in

West Africa might face challenges coping with elevated pressures from climate change impacts

together with population and land-use pressure. In East Africa, socioeconomic pressure factors

will need to be considered in management plans of PAs. In Southern Africa, climate change ad-

aptation in PAs will be the main challenge, whereas socioeconomic pressures are weaker than

in other regions.

Our results largely confirmed regional patterns of climate and land-use change under SSP5-

RCP8.5 in African PAs identified by Asamoah et al. (2021). However, our climate-driven DVM

simulations included dynamic fire–vegetation feedbacks and plant-physiological effects of in-

creasing atmospheric CO2 concentrations. As Martens et al. (2021) showed, CO2 fertilization

may partially compensate for adverse climate-change impacts on vegetation. This explains

why climate-change impacts on forest PAs in Central Africa in our analysis were weaker than

those presented by Asamoah et al. (2021).

Patterns of increased land-use pressure until 2090 in our analysis for SSP5–RCP8.5 are in line

with Di Marco et al.’s (2019) LUH2-driven statistical modeling projections of declining plant

biodiversity persistence until 2050. Compared with these global land-use-only projections,

climate-change impacts increased the number of species estimated to go extinct by a factor

of 4.5 (Di Marco et al., 2019), which underlines the importance of combining climate and so-

cioeconomic projections when analyzing global-change impacts on ecosystems and PAs. Even

under the high mitigation SSP1–RCP2.6 scenario, impacts on biodiversity from land use alone

were projected to increase by a factor of 3.7 when climate change impacts were included (Di

Marco et al., 2019).
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3.5.4 Study limitations

Our data were derived from model projections. Models inherently come with assumptions

and uncertainties, such as the implementation of the CO2-fertilization effect (Martens et al.,

2021), country- or regional-level assumptions for population or land use (Riahi et al., 2017), and

limited data resolution, and can only be evaluated against observational data (e.g., Scheiter &

Higgins [2009] for aDGVM). To study potential future dynamics at larger scales, models are,

however, the only feasible option. We included PAs that were smaller than the size of grid

cells in the data sets we used. Hence, heterogeneity of, for example, environmental conditions

within PAs or differences inside and outside of smaller PAs were not represented. This sim-

plification allowed us to study regional patterns of pressures for PAs rather than providing

specific estimates for individual PAs.

In conservation science, the effectiveness of PAs is often analyzed using a matching approach,

in which environmental states in a PA are compared with those of a matching site outside the

PA (e.g., Geldmann et al., 2019). We used buffers as proxies for potential future socioeconomic

influences on PAs because this study was based entirely on model results and could not be

tested against observational data. Land-use and population changes in PAs depend on factors,

such as management capacities, resource availability, and socioeconomic level (Lindsey et al.,

2017), that are difficult to project into the future across larger scales. We argue that PAs are

usually not isolated from their surrounding areas, neither ecologically nor socioeconomically.

Using the matching approach to identify sites similar to the PA would introduce additional

parameters to our analysis and increase uncertainty.

We acknowledge uncertainties of the applied buffer approach. Where the ecosystem in a PA

is very different from the surrounding area, developments in the buffer do not adequately

represent developments of the PA (Joppa & Pfaff, 2011). Therefore, we do not assume that

the developments in buffer areas are representative of developments within PAs, but rather

that they represent potential indirect socioeconomic influences on PAs as well as the potential

isolation of PAs from other natural areas. We expected that the size of the buffer may influence
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our results; however, the analysis with 50-km instead of 10-km buffers yielded similar results

(Appendix B S21).

Future studies could also include other SSP–RCP scenario combinations, including a high mit-

igation sustainability scenario to give a wider overview of consequences of societal pathways

and could thus help motivate policies beneficial for conservation. For example, high climate

change mitigation under SSP2–RCP2.6 (Riahi et al., 2017) may come at the cost of large increases

in bioenergy croplands, which would affect biodiversity (Hof et al., 2018). These biodiversity

impacts can have similar magnitudes, as in a scenario with higher climate change but lower

land-use impacts (SSP2–RCP6.0; Hof et al., 2018).

3.5.5 Implications for conservation and management

The high vulnerability of grasslands and savannas in PAs to climate- and CO2-driven habitat

loss may require well-conceived conservation measures. Active management practices that in-

clude fire and browsing to maintain grasslands and savannas (Midgley & Bond, 2015) may help

safeguard their unique, ancient biodiversity (Bond, 2016). Where future environmental condi-

tions do not support grasslands and savannas in their current locations, intensive management

might not be sufficient to conserve these ecosystems. Therefore, future anthropogenic climate

and CO2 change may lead to the loss of these old-growth ecosystems and their biodiversity.

The controversial method of managed translocation of species to new or other PAs (Corlett

& Westcott, 2013) to recreate old-growth grassland communities might not be appropriate for

these systems because old-growth grasslands are very slow to establish and are distinct from

secondarily established grasslands (Veldman et al., 2015a). Managed translocation also bears

the risk of potentially introducing invasive species to local ecosystems (Schwartz et al., 2012).

In addition, over time costs of maintaining PAs and their connectivity under climate change

increase and their effectiveness decreases (Hannah, 2008). We conclude that limiting climate

change is the most promising path to conserving these unique ecosystems.
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Projected associations of multiple pressures for African PAs differed by region and biome as

well as by socioeconomic and climate change scenario. This implies that challenges for conser-

vation differ by region and biome, depending on socioeconomic and climatic developments.

To account for these differences, conservation strategies need to be regionally and locally adap-

ted. A solid understanding of the individual socioeconomic and ecological conditions as well

as existing or potential conflicts builds an important foundation for planning (DeFries et al.,

2007). Developing regional narratives in the context of the global SSP scenarios (Palazzo et al.,

2017) can ensure that projections and policy development are based on regionally appropriate

and relevant scenarios.

For PAs with high population pressure in heavily fragmented regions, fencing together with

sufficient resources and management capacities can effectively prevent increasing human in-

fluence within PAs and human–wildlife conflicts (Lindsey et al., 2017). Multiuse buffer areas

with low-intensity land use and community engagement that surround the main PAs can also

support conservation goals and local communities (Wittemyer et al., 2008). At the same time,

introducing buffer zones around PAs with high population density or intensive land use often

leads to local imbalances of power, land, and resource access and to conflicts due to relocation

and evictions (Neumann, 1997).

For PAs with communities that rely heavily on local food and energy resources in their vicinity,

the main challenge for conservation remains to develop livelihood alternatives that improve

human well-being, reduce pressure on natural resources (DeFries et al., 2007), and thus reduce

pressure on the PA. Under the scenarios we investigated, socioeconomic pressures in the vicin-

ity of PAs increased, which emphasizes that future conservation strategies need to account for

the socioeconomic situation and changes in the surroundings of PAs. Community-managed

PAs (Grantham et al., 2020) with a strong focus on long-term awareness strategies (Nzau et al.,

2020), participatory decision-making processes, and benefit sharing that consider socioeco-

nomic and power structures and interests of local communities (Neumann, 1997) are important

to develop strategies that account for conservation and community needs. Indigenous know-

ledge, which is increasingly being lost, formal education, awareness raising, and equitable
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access to resources are important contributing factors for the success of these strategies (Nzau

et al., 2020).

Despite the large variation between scenarios and regions, it can be concluded that climate-

change impacts on vegetation will likely be exacerbated by socioeconomic pressures for most

PAs and regions in Africa. This combination of pressures challenges conservation aspirations,

such as protecting 30% of land areas (post-2020 global biodiversity framework; Convention on

Biological Diversity, 2021). Our results suggest that efforts to strongly mitigate climate change

combined with measures that promote equitable, wealth-distributing, and sustainable devel-

opment (Crist et al., 2017) are key for the success of ecosystem conservation in this century.
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4.1 Abstract

Semi-arid ecosystems are the main driver of variability of the global carbon sink. However,

the contribution of southern Africa’s semi-arid Nama Karoo dwarf-shrubland to this variabil-

ity is less clear. In addition, climate change impacts on the Nama Karoo carbon dynamics, its

grass dwarf-shrub balance, and its sheep farming system are uncertain. To assess carbon and

vegetation dynamics under climate change, dynamic vegetation models (DVMs) are key tools.

Here, I applied the adaptive dynamic global vegetation model 2 (aDGVM2) with its shrub sub-

module to a site in the Nama Karoo. I evaluated the simulated carbon fluxes against carbon

flux measurements from an eddy covariance flux tower and compared simulated and observed

vegetation structure. Soil water access, soil depth, and photosynthesis were reparameterised to

test which model setups improve simulation results. Simulated carbon fluxes and biomass for

the Nama Karoo were vastly overestimated in all simulation setups. Compared to a base ver-

sion, the different simulation setups improved the agreement for individual flux components

or biomass, but none of the implemented reparametrisations of the model was able to repres-

ent dwarf shrub morphology and carbon fluxes and their intra- and interannual dynamics. Soil

moisture levels were overestimated in all simulations. Nonetheless, simulations with limited

soil water access led to the extinction of shrubs. In simulations where shrubs established, they

grew too tall with heights of 1.5-3.2 m which are common for savanna shrubs. The discrep-

ancies of the aDGVM2 simulations highlighted that dwarf shrub ecology is not represented

by the existing shrub-module. To simulate the vegetation in the Nama Karoo in aDGVM2, an

implementation of dwarf shrubs by a distinct plant functional type may be necessary. Further

field research on the ecophysiology and processes driving the dynamics of Nama Karoo veget-

ation and soil moisture is required to parameterise DVMs. If this is addressed, DVMs can be

a powerful tool for much needed research on climate-change impacts on its ecology but also

regional livelihoods.
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4.2 Introduction

Semi-arid ecosystems contributed around 20% to the global net primary productivity at the be-

ginning of the 21st century (Ahlström et al., 2015). Yet, Africa’s role in the global carbon balance

and whether Africa is a source or a sink still carries large uncertainties (Valentini et al., 2014).

From the 1980s until 2011, variability in the global carbon sink was mainly driven by semi-arid

ecosystems in the southern hemisphere. Southern African semi-arid ecosystems together with

Australian and temperate South American semi-arid regions explained most of the variability

in global net primary productivity (NPP) (Poulter et al., 2014). However, among the southern

African semi-arid ecosystems, the contribution varied and savannas contributed positively to

the global variability whereas the Karoo shrublands were neutral or contributed negatively

depending on chosen simulation model (Ahlström et al., 2015).

At the same time, climate change in Southern Africa has manifested in increases in mean

air temperatures and extreme heat, in decreases of mean precipitation, and in increases of

droughts. These trends continue in projections of future climate change (Arias et al., 2022).

Semi-arid ecosystems such as South Africa’s Nama Karoo dwarf-shrubland exhibit high nat-

ural variability in the environmental conditions, particularly precipitation, which makes it

more difficult to detect and associate climate-change-driven trends and changes (du Toit &

O’Connor, 2014). At the same time, ecological change in semi-arid ecosystems such as the

Nama Karoo is often slow (Hoffman et al., 2018). This means that projecting climate change

impacts on vegetation and carbon cycling in the Nama Karoo into the future is a challenge

(Walker et al., 2018). However, there is sparse research on climate change impacts on ecosys-

tem functioning of the Nama Karoo (Henschel et al., 2018) and large uncertainties in the carbon

dynamics remain (Rybchak et al., 2023).

Eddy covariance flux tower measurements contribute to an improved understanding of carbon

cycle dynamics and net ecosystem carbon exchange (NEE), but only a limited number of (long-

running) towers and data sets across Africa (Valentini et al., 2014) and in semi-arid ecosystems

(Fig. 4.1) are available. In the eddy covariance flux tower technique, rapidly repeated local
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measurements of the vertical wind speed and the atmospheric CO2 concentration above an

ecosystem are used to derive net CO2 flux for the local ecosystem (Chapin III et al., 2011, p. 209).

At local scales, these in-situ measurements are key to understanding and monitoring ecosystem

dynamics (Valentini et al., 2014), especially in relation to environmental variables and local

drivers of NEE variability such as soil moisture content (SMC) or temperature (Chapin III

et al., 2011, p. 209). These NEE measurements can also be used to derive estimates for gross

primary production (GPP) and ecosystem respiration (Reco). However, extrapolation from

these limited, local measurements to regional, country or continental scale are associated with

high uncertainties (Valentini et al., 2014), especially in semi-arid regions (Jung et al., 2020).

For larger scale estimates of carbon dynamics, remote sensing derived NEE can be used, but

these products have uncertainties for drylands because processes of soil and plant respiration

are difficult to detect for satellites (Dannenberg et al., 2023). Carbon dynamics at larger scales

can also be derived from simulations with dynamic vegetation models (DVMs) (Prentice et al.,

2007). The application of DVMs allows investigating future scenarios, potential drought im-

pacts and potential interactions between changes in multiple environmental variables and are

thus well suited for research on climate change impacts on ecosystems. However, continental

or regional DVM simulations require parameters that might not be appropriate for individual

ecosystems, such as the Nama Karoo (Moncrieff et al., 2015). In addition, locally dominant

plant functional types such as dwarf shrubs are often not implemented in DVMs (Moncrieff

et al., 2015). DVMs provide the opportunity to integrate knowledge on the Nama Karoo eco-

system from different disciplines (Hoffman et al., 2018). Local scale eddy covariance flux tower

measurements can be used to evaluate DVM simulations (Prentice et al., 2007; Valentini et al.,

2014) and to investigate the sensitivity of data-model agreement to the implementation and

parametrisation of different processes. Only few DVM studies have used local eddy covari-

ance flux tower data to evaluate the quality of modelled carbon fluxes in Africa (Valentini et al.,

2014) or in dryland regions (MacBean et al., 2021). The representation of dryland vegetation

dynamics and carbon fluxes in DVMs remains poor in comparison with remote-sensing based

estimates (MacBean et al., 2021).
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FIGURE 4.1: Eddy covariance flux tower sites that are registered with FLUXNET2015 or
FLUXNET and their distribution across continents and biomes. The figure was taken from
https://fluxnet.org/sites/site-summary/ which was accessed on September 13, 2022 at 14:35.

https://fluxnet.org/sites/site-summary/
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In this chapter, ecosystem characteristics of the semi-arid Nama Karoo dwarf-shrubland in

southern Africa are described. These are put into context of previous research on its carbon

cycle and modelling vegetation of the Karoo. By applying the state-of-the-art DVM adaptive

dynamic global vegetation model 2 (aDGVM2) (Scheiter et al., 2013) to an eddy covariance flux

tower site in the Nama Karoo and testing the sensitivity of the simulation results to changes in

the aDGVM2, I showcased the challenges of simulating the Nama Karoo with a DVM. Based

on the presented simulation results, knowledge gaps in ecosystem functioning of the Nama

Karoo and requirements for the representation of dwarf shrubs in DVMs were highlighted. In

the end, opportunities for future research with DVMs on the Nama Karoo were developed.

4.3 Ecosystem characteristics of the Nama Karoo

4.3.1 General ecosystem characteristics

The Nama Karoo vegetation is a mix of dwarf shrubs with C3 and crassulacean acid metabolism

(CAM) photosynthesis and C3 and C4 grasses mixed with geophytes and annual forbs. From

West to East following an increase in mean annual precipitation and a shift from winter rainfall

in the neighbouring Succulent Karoo in the West to summer rainfall in the Nama Karoo, the

abundance of grasses increases and the abundance of succulent shrubs decreases. Unlike other

South African ecosystems such as the Succulent Karoo or the Fynbos it has low numbers of

local endemics. Naturally present grazers, migratory ungulates, were gradually replaced in

the landscape by sheep and goat farming since the 19th century (Mucina et al., 2006, p. 329-

331).

4.3.2 Site description

The site for the case study in the Nama Karoo ecosystem lies in paddocks of a decades-long

grazing trial ran by the Grootfontein Agricultural Development Institute (GADI) in the Eastern

Upper Karoo (Mucina et al., 2006, p. 341) approximately 8 km north of Middelburg, Eastern
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Cape at approximately 1310 m.a.s.l. (31°25’S 25°01’E, Berger et al., 2019). The mean annual pre-

cipitation in the period 1981-2010 was 413 mm with an approximate range from 180 to 725 mm

(du Toit & O’Connor, 2014). Mid- to late southern hemisphere summer is the main rainfall sea-

son (du Toit & O’Connor, 2014) and March is generally the wettest month (Venter & Mebrhatu,

2005). Temperatures vary from daytime temperatures of 30-35 °C in summer to night-time tem-

peratures of -4-4 °C in winter (du Toit & O’Connor, 2014). The soils at the site are classified as

loam soils (Roux (1993) in du Toit & O’Connor (2020)).

Two eddy covariance flux towers are located in grazing paddocks of different grazing man-

agement schemes. In this study, I focused on the site with a lenient grazing scheme because

more data on ecological structure and from field experiments was available. The vegetation is

characterised by a grassy dwarf shrubland which is constituted by perennial, small-leaved C3

shrubs that usually do not grow much taller than 50 cm and annual and perennial C4 grasses

with bare ground in between (du Toit & O’Connor, 2014, Fig. 4.2, Tab. 4.1). The dominant

shrub species include Eriocephalus ericoides, Eriocephalus spinescens, and Ruschia intricata which

are accompanied by grasses such as Digitaria eriantha (field data collected in October 2016 with

Dr. Nicola Stevens). Dwarf shrubs cover approximately 1/5 of the ground (Tab. 4.1) with large

parts of bare ground in between. Aboveground biomass of the ecosystem was estimated to be

2.5-4.3 t/ha in a study executed nearby (Tab. 4.1, Roux (1988) in Milton (1990)). More recent

estimates were not available. Since the 1970s, this site has been grazed by sheep and cattle two

weeks at a time followed by a resting period of 24-26 weeks (stocking rates of approximately

0.0625 animal units per hectare, du Toit (2002) in Rybchak et al. (2023)).
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(a) Nama Karoo eddy covariance flux tower with vegetation

(b) Nama Karoo vegetation during a field experiment
with bare ground in between

(c) Eriocephalus ericoides during photosynthesis mea-
surements

FIGURE 4.2: Nama Karoo vegetation at the leniently grazed Middelburg eddy covariance flux tower
site. Dwarf shrubs are the dominant life form (a, E. Falge, October 2015). Main dwarf shrub species
include Eriocephalus spinescens, Ruschia intricata (b, C. Martens, October 2016), and Eriocephalus ericoides
(c, C. Martens, October 2016)
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TABLE 4.1: Vegetation composition and biomass observed at the leniently grazed Middelburg eddy
covariance flux tower site. Information on the October 2016 measurement campaign can be found in
Appendix C.

Variable value source & comments
Aboveground bio-
mass [t/ha]

2.5-4.3 Roux (1988) in Milton (1990); measure-
ments close to Middelburg on slopes

Mean shrub cover
[%] ± SD

19.18 ± 0.05 measurements conducted with Dr. Nico-
la Stevens in October 2016

Mean shrub canopy
area [m2] ± SD

0.11 ± 0.11 based on measurements conducted with
Dr. Nicola Stevens in October 2016 as-
suming an elliptical canopy shape

Mean shrub height
[m] ± SD

0.24 ± 0.10 measurements conducted with Dr. Nico-
la Stevens in October 2016

Shrub life-span [a] 25-70 assumptions by Wiegand et al. (1995)

4.4 Carbon balance and previous steps towards carbon accounting

for the Nama Karoo

4.4.1 Ecosystem carbon balance and its components

The carbon balance of an ecosystem can be expressed as net ecosystem production (NEP),

which is the balance of GPP, the carbon fixed by photosynthesis, and Reco, the ecosystem

respiration:

NEP = GPP − Reco. (4.1)

Reco is composed of autotrophic respiration (Raut) from plants and heterotrophic respiration

(Rhet) from microbes and animals. Because NEP is difficult to measure, net ecosystem ex-

change (NEE) is often used to approximate NEP. NEE is measured by eddy covariance flux

towers in the atmosphere above an ecosystem and is defined as CO2 flux from the ecosystem to

the atmosphere. Therefore, NEE for an ecosystem acting as a carbon sink is negative. Carbon

losses through, e.g., leaching and other non-gaseous processes or from non-CO2 carbon com-

ponents such as methane are not accounted for in NEE CO2 measurements (Chapin III et al.,

2011, p. 208-214).
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4.4.2 Eddy covariance flux towers in Middelburg

The number of eddy covariance flux tower measurement sites in South Africa has increased in

recent years: Two eddy covariance flux towers in the Nama Karoo in Middelburg were estab-

lished in the projects Adaptive Resilience of Southern African Ecosystems (ARS AfricaE) and

Ecosystem Management Support for Climate Change in Southern Africa (EMSAfrica) in 2015

alongside two other towers in northeastern South Africa. South Africa’s Expanded Freshwater

and Terrestrial Environmental Observation Network (EFTEON, https://efteon.saeon.ac.za/)

is in the process of establishing more observation sites that include eddy covariance flux meas-

urements. NEE measurements from eddy covariance flux towers can be used to derive GPP

and Reco estimates (Chapin III et al., 2011, p. 209) in the footprint of the tower. A footprint

is the area surrounding a tower that is included in measurements and its size increases with

sensor height above the vegetation surface and wind (Schmid, 2002). Carbon balances (NEE) at

the two Nama Karoo eddy covariance flux tower sites in Middelburg were close to neutral and

fluctuated with a slight tendency towards a small source (26± 39gCm−2 at the leniently grazed

site and −5± 42gCm−2 at the second site) over the 6-year measurement period from November

2015 to October 2021. At the onset of rains in November and December, Reco responded with

an immediate increase to major precipitation events. For GPP, the response at the beginning

of the growing season was delayed by about 1 to 4 weeks. Therefore, the Nama Karoo at these

sites first becomes a carbon source at the onset of rains and slowly switches to a carbon sink

(Rybchak et al., 2023).

4.4.3 Previous modelling approaches

In previous vegetation modelling approaches that focused on the Nama Karoo or an Israeli

dwarf-shrub-dominated ecosystem (Malkinson & Jeltsch, 2007), dwarf shrubs were simulated

at monthly (Wiegand et al., 1995) or annual (Beukes et al., 2002; Hahn et al., 2005; Malkinson &

Jeltsch, 2007) time steps. The model by Venter (2001) and Venter (2002) is an exception with

daily time steps. These models scaled shrub production expressed in stem growth, either in

length (Malkinson & Jeltsch, 2007) or as growth rate in relation to optimal conditions (Venter,

https://efteon.saeon.ac.za/
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2001, 2002), biomass (Beukes et al., 2002), or shrub canopy cover (Hahn et al., 2005; Wiegand

et al., 1995) based on empirical statistical relationship with annual precipitation (Beukes et al.,

2002; Hahn et al., 2005; Malkinson & Jeltsch, 2007; Venter, 2001, 2002; Wiegand et al., 1995). In

Wiegand et al. (1995), this relationship was modulated by age (Wiegand et al., 1995). Only Wie-

gand et al. (1995) and Malkinson & Jeltsch (2007) simulated shrubs as individuals and included

processes such as death, seed production, germination and establishment. In some models,

competition between simulated plant species or individuals was included and affected growth

or establishment (Hahn et al., 2005; Wiegand et al., 1995). Grass production was only simulated

in Beukes et al. (2002).

While these models adequately reproduced shrub production for their specific research ques-

tions, which were sometimes focused on economic or subsistence grazing systems (Beukes

et al., 2002; Hahn et al., 2005), they did not explicitly simulate ecophysiological processes such

as photosynthesis and did not include environmental factors such as temperature or atmo-

spheric CO2 concentrations. In implementations of DVMs, these additional environmental

drivers are accounted for and competitive interactions between shrub and grass individuals

can be included (Prentice et al., 2007). The representation of shrubs is a challenge when sim-

ulating the Nama Karoo with DVMs (Moncrieff et al., 2015), as ecological differences between

shrubs and trees are not yet fully understood (Zizka et al., 2014) especially outside of African

savannas (Gaillard et al., 2018). This also includes the implementation of soil water dynamics

and competition between grasses and shrubs (Moncrieff et al., 2015).

4.5 Dynamic vegetation modelling experiment for Nama Karoo ve-

getation

4.5.1 Methods

4.5.1.1 Eddy covariance flux measurements for model evaluation

Data from the eddy covariance flux tower in Middelburg were provided by EMSAfrica pro-

ject partners from the Thünen Institute of Climate-Smart Agriculture in Braunschweig (contact
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persons Oksana Rybchak and Dr. Christian Brümmer). They provided meteorological data

from the eddy covariance flux tower and gap-filled carbon fluxes at daily resolution from 1

November 2015 to 31 October 2021. Flux and meteorological measurements at the Middel-

burg eddy covariance flux tower had several unavoidable data gaps due to instrument failure.

Processing and filtering for, e.g., bad data quality further reduced the number of data points

(Rybchak et al., 2020). These were filled with standard daytime gap-filling techniques (Lasslop

et al., 2010).

In a preliminary analysis of the precipitation data from the eddy covariance flux tower, the

following issues stood out: periods with missing data could not be distinguished from periods

of 0 mm precipitation; inconsistencies in the precision of measurements after a longer period

(> 1 year) of 0 mm precipitation. This confirmed the assessment from Dr. Justin du Toit, a

local researcher from GADI maintaining the Middelburg eddy covariance flux towers, that the

precipitation measurements at the tower sites are not reliable. Dr. Justin du Toit runs a privately

operated rain gauge, which does not provide daily precipitation information but accumulated

records over multiple days. These were used to derive annual precipitation sums.

4.5.1.2 aDGVM2

The DVM aDGVM2 is based on the aDGVM (Scheiter & Higgins, 2009) which was origin-

ally developed for tropical grass-tree ecosystems. In aDGVM2, individuals from the vegeta-

tion types grass and woody plant are simulated with flexible, individual plant trait combina-

tions (Langan et al., 2017; Scheiter et al., 2013). Simulated vegetation types in aDGVM2 vary in

their life-history strategies such as C3 or C4 photosynthetic pathways and annual or perennial

strategies for grasses, and deciduous or evergreen phenology and single or multi-stemmed for

woody plants (Gaillard et al., 2018; Kumar et al., 2021a; Langan et al., 2017; Pfeiffer et al., 2019;

Scheiter et al., 2013). The simulated vegetation types in aDGVM2 are similar to plant func-

tional types (PFTs) in other DVMs, but do not have fixed, predefined vegetation traits across

all individuals of a vegetation type. Plant trait values for individuals from the same vegetation

type in aDGVM2 vary from one individual to another and are inheritable. These inheritable
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trait values are drawn from a uniform random distribution with predefined bounds for each

trait of an individual at initialisation of a simulation. Inheritable traits are fixed throughout an

individual’s lifetime (Langan et al., 2017; Scheiter et al., 2013).

The inheritable traits influence growth, reproduction and mortality and include, e.g., carbon al-

location to different plant compartments such as roots or leaves. The allocation varies between

individuals but follows mass conservation rules, where a higher allocation to one plant com-

partment implies a lower allocation to other compartments. Traits for plant architecture (e.g.

root or canopy form) and leaf and plant economics (e.g. matric potential at 50% loss of xylem

conductance, P50) are also inheritable (Langan et al., 2017). Trade-offs between these traits are

implemented for mass conservation, plant mechanics (e.g., stem stability versus height growth)

and empirically measured trade-offs, where processes are not explicitly simulated in the model

such as cavitation resistance versus hydraulic efficiency. Processes are driven by meteorological

and soil input data. Neighbouring plants compete for light resources and all plants compete

for soil water resources (Langan et al., 2017; Scheiter et al., 2013). Photosynthetic rates are sens-

itive to factors such as leaf temperature, light availability, and water availability (Scheiter &

Higgins, 2009). State variables such as stem biomass, height or crown area change throughout

the lifetime of a simulated individual (Scheiter et al., 2013).

Reproductive individuals pass their traits on to their seeds and only trait combinations of suc-

cessful, reproductive individuals are passed on to new plant individuals. Thus, trait filtering

occurs and individuals with trait combinations that are not well adapted to the environmental

conditions are filtered out. Cross-over of traits between reproductive individuals and devel-

opment of new trait values through mutation allow changes of the trait values of reproductive

plants and thereby adaptation of plant communities to changing conditions. PFTs can be de-

rived by classification and post-processing of simulated plants and their trait values (Scheiter

et al., 2013).

In the original version of the included shrub module (Gaillard et al., 2018), woody plants can

either grow as single-stemmed trees or as multi-stemmed shrubs. However, because of shal-

low soils and low precipitation, trees generally do not grow in the Nama Karoo (Mucina et al.,
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2006, p. 329). Therefore, I excluded tree architecture of 3 stems or fewer from the simula-

tions. Although fires occur in irregular intervals in the Nama Karoo and in the region around

Middelburg, they are rare and vegetation responses are not well known (du Toit et al., 2015).

Therefore, fire was switched off in the aDGVM2 to simplify the simulation setup. Although

C3 grasses occur in the Nama Karoo (Midgley & van der Heyden, 2004; Mucina et al., 2006, p.

330), they were also switched off in the simulations to focus on the dynamics between the main

vegetation types of the ecosystem, C4 grasses and C3 shrubs (du Toit & O’Connor, 2020).

Carbon fluxes GPP and Raut, which consists of maintenance respiration (Rmt) and growth

respiration (Rgr), are components of the ecosystem carbon balance that aDGVM2 simulates

and that are directly required to derive plant growth. Reco is the sum of Raut and Rhet from

soil microbes decomposing dead plant material, where Rhet is simulated using the Yasso soil

model (see section 4.5.1.3) in aDGVM2. Rhet from animals is not considered.

Simulations were implemented for the Middelburg site for stands of 1 ha. Results for the 1-

ha-stand were assumed to be representative of the vegetation in the footprint of the eddy cov-

ariance flux tower. The spin-up duration was chosen at 2500 years to bring traits, model state

variables, and soil carbon pools into equilibrium. The climate forcing for the spin-up period

was derived by randomly sampling years of meteorological data between 1951 and 1980 from

the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a, see section 4.5.1.4). The

spin-up was followed by a transient run from 1981 to 2025. Simulations were repeated 20 times

to account for stochastic processes such as trait initialisation, cross-over, and mutation in the

aDGVM2. The mean of the 20 runs was used to represent a specific simulation setup.

4.5.1.3 Yasso soil model

The Yasso soil carbon model was originally developed for forest soils (Liski et al., 2005). How-

ever, in a previous study NEE and Reco fluxes in Australian savanna ecosystems were repro-

duced well by a version of aDGVM which was coupled with the Yasso model, but soil carbon

pools and individual Reco components such as Rhet were not analysed (Scheiter et al., 2015). In
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addition, Tuomi et al. (2009) showed with an updated version that the model is globally applic-

able. The Yasso model (Liski et al., 2005) uses three litter input pools, non-woody, fine woody,

and coarse woody litter, and simulates decomposition of organic carbon. In the decomposition

process, carbon is released as CO2 to the atmosphere and transferred to five decomposition

pools (extractives, celluloses, lignin-like components, humus and recalcitrant humus).

Liski et al.’s (2005) Yasso model uses annual decomposition rates. For these simulations, I

derived daily decomposition rates kd from annual decomposition rates ka

kd = 1 − (1 − ka)
1

365 . (4.2)

In the original Yasso model, decomposition rates are influenced by the water budget of the

summer months (precipitation minus potential evapotranspiration) in relation to a standard

water budget ((1) in Tab. 4.2). When simulating daily carbon fluxes, the daily variability in de-

composition is not reflected in this moisture modifier for decomposition rates. Adapting this

scheme with daily precipitation and potential evapotranspiration is associated with uncertain-

ties, because the standard water budget only represents summer months. Therefore, a different

soil moisture response function was chosen. This also required to change the structure of the

equation for kd’s sensitivity from a sum (Liski et al., 2005) to a product and thus, to change the

soil temperature modifier. The decomposition rates modified by temperature and SMC ksens of

the different litter and soil carbon pools were implemented as

ksens = kd ∗ modSMC ∗ modT (4.3)

with the soil moisture modifier modSMC and the temperature modifier modT. modSMC was

based on a non-linear function driven by SMC (Kucharik et al., 2000; Zhou et al., 2021)

modSMC = e
−(SMC−0.6)2

0.08 . (4.4)
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modSMC reaches its maximum value 1 for SMC = 0.6, i.e., 60% soil moisture. Following Krinner

et al. (2005), modT depends on temperature T (°C)

modT = 2
(T−30)

10 . (4.5)

Other temperature (Tuomi et al., 2009; Vuichard et al., 2019) and soil moisture response func-

tions (Zhou et al., 2021) were also tested (Tab. 4.2, 2a-b and 3a-c), but produced similar or worse

results for this simulation setup.

TABLE 4.2: Alternative functions for annual decomposition rate ka (1), temperature (T) (2a-b) and soil
moisture (SMC) response modifier (3a-c) for heterotrophic respiration in the Yasso soil carbon model
coupled with the aDGVM2. (1) is the original function in the Yasso soil carbon model. (2a-b) and (3a-c)
were tested for the described simulation setup with daily time steps. Respective parameter values can
be found in the cited literature.

Function reference

(1) ka = ka0(1 + sjβ(T − T0) + γ(D − D0)) Liski et al. (2005)

(2a) modT = e(β1T+β2T2) Tuomi et al. (2009)

(2b) modT = e
0.69(T−30)

10 Vuichard et al. (2019)

(3a) modSMC =

(︃
1.7 − SMC

1.15

)︃6.6481 (︃SMC − 0.007
0.557

)︃3.22 Zhou et al. (2021),

CABLE model

(3b) modSMC = 0.25 + 0.75 ∗ SMC
Zhou et al. (2021),

LPJ model

(3c) modSMC =

⎧⎪⎪⎨⎪⎪⎩
5 ∗ SMC SMC < 0.2

1 SMC ≥ 0.2

Zhou et al. (2021),

TECO model

4.5.1.4 Input data

Soil properties for the aDGVM2 were generally derived from Global Soil Data Task Group

(2000). For soil texture, local information was available and did not agree with the data set.

Therefore, the soil texture class was set to loam soil (Roux (1993) in du Toit & O’Connor

(2020)). For climate input data, DVMs require continuous time series. Data from climate
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models from the ISIMIP2a ensemble for climate-impacts simulations (Rosenzweig et al., 2017)

provided all meteorological variables required as input for aDGVM2. The ISIMIP2a climate

data also covered the historic period as well as future projections and therefore allow for cli-

mate change impact simulations.

Because the Nama Karoo is mostly a water-limited ecosystem (Desmet & Cowling, 2004; Jonard

et al., 2022; Rybchak et al., 2023), I used precipitation measures to select a general circulation

model (GCM) from the ISIMIP2a ensemble. For precipitation, the GFDL-ESM2M data agreed

best with the long-term mean from 1981-2010 for Grootfontein with a mean annual precipita-

tion of 459 mm and agreed second best for minimum and maximum annual precipitation (287

mm and 676 mm, respectively). The mean of the GFDL-ESM2M data set is higher than the

measured mean annual precipitation and minimum and maximum are less extreme. In the

GFDL-ESM2M simulations, data covered a historical period from 1950 to 2005. For the years

2006 to 2025, I used GFDL-ESM2M data from the representative concentration pathway (RCP)

8.5, for which mean, minimum and maximum agreed best with the measured precipitation

data. The ISIMIP meteorological data had a 0.5° resolution.

Evaluating DVM-simulated carbon fluxes with locally measured carbon fluxes requires local

meteorological data. However, as mentioned the meteorological data from the eddy covari-

ance flux towers have data gaps that range from days to months. To fill these data gaps in

meteorological flux tower data for modelling purposes, Vuichard & Papale (2015) used glob-

ally available, continuous, simulated meteorological data. As these global data are not accurate

at local scale, they developed a method that applies slope and intercept of a linear regression

between flux tower meteorological data and climate model data for bias correction in the sim-

ulated meteorological data. As the timing of precipitation events in model data is not expected

to agree with observations (Vuichard & Papale, 2015), especially in semi-arid regions with less

predictable rainfall events (Cowling & Hilton-Taylor, 2004), they use a simple rescaling ap-

proach for precipitation data based on total precipitation in the measurement period.

When I applied the Vuichard & Papale (2015) algorithms to the input data, standard deviation

of the GFDL-ESM2M data was reduced for most variables and decreased agreement with the
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flux tower meteorological data standard deviation, except for long-wave radiation, short-wave

radiation, and wind speed (Tab. 4.3). For the Middelburg study site in the Nama Karoo, an eco-

system driven by inter- and intra-annual climate variability (Cowling & Hilton-Taylor, 2004),

the debiasing removed an important, ecosystem-defining characteristic from the climate data

for most variables. In addition, the largest part of the climate input data for the aDGVM2 is not

in the observation period of a few years from the Middelburg eddy covariance flux tower. This

includes the 30 years of data used for the aDGVM2 spin-up. A switch from GFDL-ESM2M data

to flux tower meteorological data, where both data sets differ in standard deviation, may lead

to unpredictable model behaviour. Therefore, GFDL-ESM2M data was used as meteorological

input for aDGVM2.

TABLE 4.3: Standard deviation (SD) for meteorological data from the eddy covariance flux tower for
the leniently grazed site in Middelburg and the general circulation model GFDL-ESM2M (original and
debiased data). The debiasing approach for meteorological data with gaps from Vuichard & Papale
(2015) was used.

variable SD
flux tower

SD
GFDL-ESM2M

SD debiased
GFDL-ESM2M

air pressure [Pa] 426.2 395.4 118.4
long-wave radiation [W/m2] 37.5 44.1 43.6
mean temperature [K] 5.8 6.1 3.5
relative humidity [%] 17.8 18.4 3.3
short-wave radiation [W/m2] 88.7 81.7 83.3
wind speed [m/s] 1.2 0.8 0.9

4.5.1.5 Sensitivity analysis

To compare simulated vegetation with observed vegetation, I compared ecosystem character-

istics such as vegetation biomass, shrub height, shrub canopy cover, and carbon fluxes from lit-

erature and measurements with simulation results. The simulated carbon fluxes net ecosystem

exchange (NEEsim), gross primary production (GPPsim), and ecosystem respiration (Recosim)

were compared to NEEEC, GPPEC, and RecoEC from eddy covariance flux tower measure-

ments. The Recosim components Rgrsim, Rhetsim, and Rmtsim were put into context of RecoEC

and Recosim, because measurement derived counterparts did not exist. SMC as driver of Reco

but also GPP and soil temperature (Tsoil) as driver of heterotrophic respiration (Rhet) were also
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compared between field measurements at the eddy covariance flux tower (SMCEC, TsoilEC ) and

simulation results (SMCsim, Tsoilsim ). 30-day sliding averages were used to smooth data from

measurements and modelling.

Initial test simulations with a base version of aDGVM2 (simbase) have shown that GPPsim and

especially Recosim exceed GPPEC and RecoEC at the investigated Middelburg eddy covariance

flux tower site (Fig. 4.3). Because Recosim was more than 10 times bigger than RecoEC compared

to GPPsim which was about 2-3 times bigger than GPPEC, NEEsim was a strong carbon source

compared to an almost neutral carbon balance NEEEC. Aboveground biomass was almost 30

times higher than estimates from field observations (Tab. 4.1).

To improve the representation of the carbon fluxes in the aDGVM2 in comparison to eddy co-

variance flux tower measurements, I tested the sensitivity of simulation results to changes in

different aDGVM2 components. I compared time series, the root mean square error (RMSE),

and annual carbon fluxes between simulations and measurements. aDGVM2 components that

were adapted ranged from photosynthesis, water balance and soil to establishment and com-

petition. Changes in the photosynthesis and plant production included:

(a) Reducing the plant leaf area index (LAI) limit for allocation to leaf biomass to 2 instead

of 5 to limit an individual’s total plant photosynthesis. A side-effect may be that more

assimilated carbon is allocated to other plant compartments such as stem biomass and

thus total biomass is increased.

(b) Reducing the maximum LAI limit for an evergreen individual for flushing leaves from

7 to 2, also with the idea of limiting allocation to leaf biomass and limiting total plant

photosynthesis.

(c) Increasing a light extinction parameter to decrease a shrub’s light use efficiency. In theory

with a lower light use efficiency, a smaller fraction of light can be used for photosynthesis.

(d) Reducing photosynthesis by a factor of 1/3 to test how this influences the overall carbon

balance.
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In the water balance, the following were adapted to test their impact on the simulation results:

(e) Water input into the soil was decreased in a simple implementation of surface runoff with

the objective of decreasing SMC and reducing water availability for plants.

(f) Evaporation underneath plants was increased by considering half of the area covered by

plants as bare ground with the intention of decreasing SMC and thus water availability

for plants.

Adapted soil components included:

(g) A decrease in soil layer thickness to 5 cm per layer and an overall depth of 60 cm to better

represent actual soil depth.

(h) Setting soil temperature equal to air temperature, because measured soil temperatures

had a larger annual amplitude with a higher maximum than simulated soil temperatures.

Soil temperature is critical for decomposition and Rhet.

In plant competition, I tested the following:

(i) A niche separation in soil water access, where grasses were only able to access water in

the top 2 soil layers and shrubs soil layers 2 and below. Thus, soil layer 2 was shared by

grasses and shrubs.

(j) The effects of lowering germination probability of seeds from 100% to 50% for woody

plants and perennial grasses. The motivation behind this was to decrease the number

of plants that establish and to decrease the overall productive biomass. This could also

increase the fraction of bare ground.

Simulations were implemented with each of the modifications described in (a) to (j) separately.

Some of these modifications to the aDGVM2 did not improve the agreement between measure-

ments and simulations. These modifications were excluded from further analysis. In additional

simulations, modifications from (a) to (j) were combined. In the following, only simulation res-

ults for individual aDGVM2 changes that improved the agreement and the two combinations
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FIGURE 4.3: Daily net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem
respiration (Reco) at the leniently grazed eddy covariance flux tower site in Middelburg derived from
tower measurements and from simulations with a base version of the adaptive dynamic global veget-
ation model 2 (aDGVM2). By convention, negative NEE values represent a carbon sink. For plotting
purposes, GPP is shown as negative fluxes. For both measurements and simulations, a 30-day sliding
average was used to smooth the data. The grey horizontal line indicates 0.
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with the best agreement with the measurements are presented (d, g, i). The presented, modi-

fied aDGVM2 versions include reducing GPP by a factor of 1/3 (simGPP/3), niche separation of

soil water access for grasses and shrubs (simniche), and the decrease in soil layer depths (simsoil).

The aDGVM2 simulations where individual model changes were combined included the com-

bination of all three changes (simcomb1) and the combination of only reducing GPP by 1/3 and

niche separation of soil water access (simcomb2).

4.5.2 Nama Karoo simulation results

4.5.2.1 Carbon fluxes

All three simulation setups with individual changes, improved the agreement of the simulated

carbon fluxes with the measurements (Figs 4.3, 4.4a, c & e) and reduced the RMSE (Tab. 4.4).

The order of magnitude of NEEsim was closest to NEEEC for simniche with the smallest RMSE,

followed by simGPP/3 (Fig. 4.4a, Tab. 4.4). simsoil showed only a small improvement in NEE

agreement and RMSE. None of the three simulation setups reproduced the intraannual patterns

well. simGPP/3 and simsoil showed seasonal patterns but these patterns did not agree well with

NEEEC. For simniche, no clear intraannual pattern emerged.

TABLE 4.4: Root mean square error (RMSE) for simulated net ecosystem exchange (NEE), gross primary
production (GPP), and ecosystem respiration (Reco) in comparison to measurements at an eddy covari-
ance flux tower at a leniently grazed site in Middelburg, South Africa. Simulations were implemen-
ted with the adaptive dynamic global vegetation model 2 (aDGVM2). Observations and simulations
covered November 2015 to October 2021. Results for six different simulation setups in aDGVM2 are
shown: simbase, simulations with a base version of aDGVM2; simGPP/3, GPP reduced by factor of 1/3;
simniche, niche separation for soil water access; simsoil , decreased soil layer thickness; simcomb1, combin-
ation of GPP/3, niche separation, and decreased soil thickness; simcomb2, combination of GPP/3 and
niche separation. aDGVM2 results were the mean across 20 simulations.

Simulation setup
RMSE NEE
[gC/m2/day]

RMSE GPP
[gC/m2/day]

RMSE Reco
[gC/m2/day]

simbase 25.7 5.7 30.6
simcomb1 2.2 3.0 3.8
simcomb2 1.9 4.0 2.9
simGPP/3 5.9 2.5 7.4
simniche 3.2 6.4 6.0
simsoil 23.1 7.7 29.5
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(a) (b)

(c) (d)

(e) (f)
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FIGURE 4.4: Net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respira-
tion (Reco) at the leniently grazed eddy covariance flux tower site in Middelburg derived from tower
measurements and from simulations with the adaptive dynamic global vegetation model 2 (aDGVM2)
with different simulation setups. In panels on the left (a, c & e), results from adapted aDGVM2 versions
with individual changes are shown (‘GPP/3’, GPP reduced by factor of 1/3; ‘Niche sep.’, niche separ-
ation for soil water access; ‘Soil thickn.’, decreased soil layer thickness). In panels on the right (b, d &
f), combinations of changes in the aDGVM2 are shown (‘Comb. 1’: GPP/3, niche separation, and soil
thickness; ‘Comb. 2’: GPP/3 and niche separation). Depicted aDGVM2 results are the mean of 20 sim-
ulations. The y axes scales differ for each sub plot. For both measurements and simulations, a 30-day
sliding average was used to smooth the data. By convention, negative NEE values represent carbon
uptake. The grey horizontal lines indicate 0.

For the two simulation setups simcomb1 and simcomb2 with combinations of changes in the model,

the agreement of simulated with measured fluxes also improved (Figs 4.3, 4.4b, d, f, Tab. 4.4).

Of all simulations, NEEsim for simcomb2 was closest to NEEEC with the smallest RMSE (Figs 4.4a

& b). Simulations with niche separation in soil water access (simniche, simcomb1 and simcomb2) had

more variable NEEsim with a less pronounced seasonality than NEEEC. A broad intraannual

seasonal pattern emerged but the timing and frequency of maxima and minima did not match

well with NEEEC.

Intraannual NEEEC patterns usually started with carbon release (positive values, maxima) at

the beginning of the warm summer rain season and larger rainfall events followed by a switch

to carbon uptake (negative values, minima). In the colder, dryer winter periods, low levels of

exchange that were almost neutral or a small carbon source followed. None of the implemen-

ted aDGVM2 simulations were able to reproduce this pattern, especially not the more inact-

ive winter period. While NEEEC at annual scales switched between small sources and sinks,

NEEsim was mostly a carbon source from 2016 to 2021 except for simcomb2 and simniche (Figs 4.4a,

b & Tab. 4.5). These simulation setups did not reproduce the interannual variability of annual

NEEEC.

For GPP, the intraannual pattern was largely reproduced, but the productive summer period

in aDGVM2 usually started earlier and was longer (Fig. 4.4c, d). In the colder, drier winters,

GPPsim was hardly ever close to 0 unlike GPPEC which usually showed an extended period of

vegetation inactivity. simGPP/3 showed the best agreement between GPPsim and GPPEC (Tab.
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TABLE 4.5: Annual balances for net ecosystem exchange (NEE), gross primary production (GPP), and
ecosystem respiration (Reco) derived from an eddy covariance (EC) flux tower at a leniently grazed
site in Middelburg, South Africa and simulations with the adaptive dynamic global vegetation model 2
(aDGVM2) from 2016 to 2020. In the aDGVM2 setup simniche, niche separation for soil water access is
implemented. In simcomb2, GPP reduced by a factor of 1/3 is combined with niche separation. aDGVM2
results for simcomb2 and simniche were each the mean across 20 simulations.

Year
NEE [gC/m2/year] GPP [gC/m2/year] Reco [gC/m2/year]

EC simcomb2 simniche EC simcomb2 simniche EC simcomb2 simniche
2016 62.1 -177.8 600.5 221.6 1443.3 1689.7 265.0 1265.5 2290.2
2017 -15.4 -77.6 317.5 347.3 1330.6 1849.7 317.1 1253.1 2167.2
2018 -54.9 -120.8 152.9 424.7 1406.3 2236.5 370.0 1285.5 2389.4
2019 78.1 -26.5 87.1 216.9 1300.0 2415.2 290.6 1273.5 2502.3
2020 3.4 -76.9 -62.3 443.5 1300.0 2200.0 435.5 1223.0 2137.7

4.4). Under simGPP/3, the interannual variability in the amplitude of GPPEC was roughly re-

produced in GPPsim. simcomb1 and simcomb2 also approached GPPEC and simcomb1 agreed better

than simcomb2 with a smaller RMSE (Fig. 4.4d, Tab. 4.4). The other simulation setups had peaks

up to three times higher than GPPEC.

None of the simulation setups achieved Recosim in the same order of magnitude as RecoEC

(Fig. 4.4e, f). simcomb2 came closest but was still up to three times larger than RecoEC for peak

respiration. In addition, none of the Recosim had values close to 0 in winter as opposed to

RecoEC. Small RecoEC peaks in winter were lower than the minimum values of Recosim in winter.

Similar to GPPsim, Recosim had very short periods of low activity. Periods of higher activity in

Recosim started earlier than in RecoEC and lasted longer. In the dry winter season, the main

source of simulated respiration was Rhetsim which contributed the largest part to Recosim as

was shown exemplarily for simcomb2 (Fig. 4.5). Rgrsim and Rmtsim were smaller than Rhetsim

and approached 0 in the winter season similar to RecoEC. The sum of Rgrsim and Rmtsim, i.e.,

Raut, was roughly in the order of magnitude of RecoEC and sometimes exceeded it.

4.5.2.2 Biomass and vegetation structure

In comparison to simbase, agreement of simulated aboveground biomass with observation-

derived estimates improved for all simulations with adapted aDGVM2 versions and simulated

aboveground biomass decreased (Tabs 4.1 & 4.6). Estimates for the observation period for
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FIGURE 4.5: Ecosystem respiration (Reco) at the leniently grazed eddy covariance flux tower site in
Middelburg derived from tower measurements and from simulations with the adaptive dynamic global
vegetation model 2 (aDGVM2). For simulated Reco, the contributing components growth respiration
(Rgr), maintenance respiration (Rmt), and heterotrophic respiration (Rhet) are shown. For this simula-
tion, aDGVM2 was modified so that GPP was reduced by a factor of 1/3 and the niche for soil water
access was separated (simcomb2). Depicted aDGVM2 results are the mean across 20 simulations. For both
measurements and simulations, a 30-day sliding average was used to smooth the data.
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simcomb1, simniche and simcomb2 were in the range of observations. At the same time, these were

the aDGVM2 simulations where shrubs did not grow during the measurement period under

the given environmental conditions and plant biomass was based on grass individuals only.

TABLE 4.6: Vegetation structure and aboveground biomass simulated by aDGVM2 for the leniently
grazed eddy covariance flux tower site in Middelburg. Values are means and standard deviation for
the simulated time period November 2015 to October 2021. Results from adapted aDGVM2 versions in
comparison to its base version (simbase) are shown. Individual changes included, GPP reduced by factor
of 1/3 (simGPP/3), niche separation for soil water access (simniche), decreased soil layer thickness (simsoil).
Simulations with combinations of changes in the aDGVM2 were simcomb1 (GPP/3, niche separation, and
soil thickness) and simcomb2 (GPP/3 and niche separation). aDGVM2 results for each simulation setup
were the mean of 20 simulations. ‘–’ signifies that the respective plant functional type did not survive in
aDGVM2. See Tab. 4.1 for observed values.

Simulations
age [a] biomass [t/ha] crown area [m2] height [m]

grasses shrubs aboveground shrubs shrubs
simbase 6.3 ± 0.8 46.9 ± 1.3 93.9 ± 5.9 17.5 ± 0.8 3.2 ± 0.1
simGPP/3 17.7 ± 1.8 17.1 ± 0.5 15.1 ± 2.1 6.6 ± 0.6 1.5 ± 0.1
simniche 26.6 ± 3.2 – 2.7 ± 2.0 – –
simsoil 17.3 ± 1.6 33.4 ± 1.5 69.5 ± 6.1 17.6 ± 0.7 2.8 ± 0.2
simcomb1 43.0 ± 0.7 – 5.3 ± 1.1 – –
simcomb2 66.4 ± 2.0 – 2.2 ± 1.4 – –

For the two adapted aDGVM2 versions where shrubs persisted (simGPP/3 and simsoil), simu-

lated shrubs were bigger than plants growing on-site (Tabs 4.1 and 4.6). For simGPP/3, crown

area and shrub height decreased compared to simbase and simsoil , but were still not close to ob-

served vegetation. Simulated shrub individuals rather resembled tree-like savanna shrubs in

their heights and crown areas (Zizka et al., 2014) and were around 1 order of magnitude taller

with a crown area up to 2 orders of magnitude larger than dwarf shrubs found on site (Tab.

4.1, Fig. 4.2). Mean shrub age was within the range of shrub life spans used in Wiegand et al.’s

(1995) model for aDGVM2 simulation setups in which shrubs persisted (Tab. 4.1).

4.5.2.3 Soil moisture and soil temperature

SMCsim was higher than SMCEC for all simulations including simbase (Fig. 4.6a). Under simsoil ,

SMCsim came closest to SMCEC and was most variable, but minimum values of SMCsim were

only in the range of maximum values of SMCEC. For simcomb1, which included the reduced soil
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layer thickness in aDGVM2, the variability of SMCsim was similar but values were higher than

for simsoil . All other simulations had a simpler, less variable seasonal cycle.

(a) (b)

FIGURE 4.6: Soil moisture and soil temperature at the leniently grazed eddy covariance flux tower site in
Middelburg derived from tower measurements and from simulations with the adaptive dynamic global
vegetation model 2 (aDGVM2). For aDGVM2, results for different model setups are shown. aDGVM2
setups included the base version ‘Base’, setups with individual changes (‘GPP/3’, GPP reduced by
factor of 1/3; ‘Niche sep.’, niche separation for soil water access; ‘Soil thickn.’, decreased soil layer
thickness), and setups with combinations of changes (‘Comb. 1’, GPP/3, niche separation, and soil
thickness; ‘Comb. 2’, GPP/3 and niche separation). Note that for (b) soil temperature simulation results
for ‘Comb. 1’ and ‘Soil thickn.’ as well as for ‘Base’, ‘Comb. 2’, ‘GPP/3’, and ‘Niche sep.’ are almost
identical. Depicted aDGVM2 results are the mean across 20 simulations. For both measurements and
simulations, a 30-day sliding average was used to smooth the data.

For all simulations, the amplitude of Tsoilsim was smaller than for TsoilEC (Fig. 4.6b). Minima were

in the range of TsoilEC and the seasonal cycle was reproduced well. Maxima were up to 5 to 10

°C smaller than for TsoilEC . Simulations with decreased soil layer thickness (simcomb1 and simsoil)

increased the amplitude of Tsoilsim with smaller minima and bigger maxima, but maxima were

still smaller than for TsoilEC .
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4.5.3 Discussion

The case study for the Nama Karoo at the Middelburg eddy covariance flux tower site showed

that the aDGVM2 currently does not adequately simulate this semi-arid dwarf shrub ecosys-

tem. After basic reparametrisation, calibration, and changes in aDGVM2, observed vegetation

structure and carbon fluxes were still not reproduced by simulations. In simulations where

NEEsim approximated NEEEC (simcomb2 and simniche), the simulated grassy vegetation and ab-

sence of shrubs did not agree with the observed vegetation. Because of the mismatch of GPPsim

and Recosim with GPPEC and RecoEC, the intraannual NEEEC patterns are not reproduced well

by NEEsim. In simulations where shrubs established, individuals were bigger both in size and

canopy cover than dwarf shrubs at the study site and the simulated carbon balance was at least

an order of magnitude higher than the measurements. SMC was overestimated by aDGVM2.

4.5.3.1 Limitations of the eddy covariance flux tower data and field measurements

The gap-filled eddy covariance flux tower data and especially the components RecoEC and

GPPEC come with uncertainties. Sources of uncertainty in the gap-filled data include decisions

in the quality control filtering, NEE gap-filling techniques, and techniques of partitioning

fluxes into RecoEC and GPPEC (Wutzler et al., 2018). For example, in the daytime gap-filling

technique (Lasslop et al., 2010), both RecoEC and GPPEC are based on a model and they do not

balance out to exactly NEEEC (Wutzler et al., 2018). Measurements are ongoing and longer time

series can help to compensate data gaps in future analyses. In addition, regular servicing of the

tower can reduce the occurrence of data gaps or unreliable data caused by instrument failure.

Precipitation events and soil moisture are important drivers of carbon fluxes in semi-arid eco-

systems (Archibald et al., 2009; Merbold et al., 2009) such as the Nama Karoo. Especially, the

timing and the amount of rainfall shape intraannual flux patterns (Hao et al., 2020). As ex-

plained in section 4.5.1.1, measured local precipitation data at daily time steps were not avail-

able. The timing of the GFDL-ESM2M precipitation data that were used here cannot be expec-

ted to agree accurately with precipitation events at the eddy covariance flux tower (Vuichard
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& Papale, 2015). GFDL-ESM2M data also have a much lower resolution than the eddy cov-

ariance flux tower footprint. Next to the difficulties of simulating the dwarf shrub vegetation,

this may explain some of the differences of patterns and timing of peaks of carbon fluxes in

aDGVM2-simulated and flux-tower-derived carbon fluxes. Obtaining continuous meteorolo-

gical data that agree well with the original weather conditions during the carbon flux meas-

urement period is important for simulating and recreating intraannual ecosystem carbon flux

patterns.

Independent measurements of the Reco components Raut and Rhet can be used to test the

implementation of respiration processes in DVMs (Luyssaert et al., 2007). To improve the un-

derstanding of respiration processes in the Nama Karoo, soil respiration was measured during

a soil watering experiment with measurement chambers by a team from CzechGlobe for a week

in October 2016 (contact person Dr. Eva Dařenová). A challenge for working with these data

was that soil respiration is a combination of Raut from plant roots and Rhet. Therefore, the

components that are simulated in DVMs are not measured separately. This hinders identifying

processes that are not implemented well in DVMs or deriving ecosystem-specific decompos-

ition rates that could be used to parameterise Rhet in DVM soil models. In addition in this

specific case study, the range of measured SMC (4-20%) during the soil respiration measure-

ments was much lower than SMCsim. Any derived decomposition rates or equations to use in

the aDGVM2 would need to be extrapolated and applied for SMC values well outside of the

range of measured values.

4.5.3.2 Challenges in simulating the Nama Karoo with the aDGVM2 and knowledge gaps

The regular switch of annual NEEEC between carbon source and sink throughout the meas-

urement period is characteristic of dryland sites (Dannenberg et al., 2023). Although the sim-

ulation setups showed interannual variability, the switch between source and sink was not

reproduced by any of the simulation setups. The measured carbon flux response to precipita-

tion events throughout the growing season of the Nama Karoo in Middelburg is in line with

semi-arid grassland research (Hao et al., 2020). In the initial response to the first larger rainfall
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events at the beginning of the summer growing season, a prompt increase in RecoEC increased

the ecosystem’s carbon source. A delayed increase in GPPEC led to a subsequent switch to a

carbon sink in the eddy covariance flux tower measurements. This delayed response of GPPEC

to SMC increases but also subsequent decreases in RecoEC due to drying of upper soil layers

(Parton et al., 2012) is not represented well in aDGVM2. The delayed GPPEC response of 1 to 4

weeks (Rybchak et al., 2023) could be used to reparameterise the phenology switch and its time

dependence in aDGVM2 so that the transition of a plant individual to an active state at the

beginning of larger rainfall events is delayed accordingly. Detailed analyses of the responses

of carbon flux components in Middelburg to individual precipitation events could be used to

derive a minimum size of a precipitation event that triggers a GPPEC response in the ecosys-

tem (Parton et al., 2012) or to investigate activity durations of GPPEC and RecoEC following

precipitation events (Hao et al., 2020). In addition, carbon flux measurements in the savanna in

Kruger National Park in South Africa have shown that the intensity and duration of dry spells

before precipitation events may cause lags in carbon flux responses (Williams et al., 2009). The

results from these analyses could be used to parameterise the photosynthesis and respiration

responses in aDGVM2.

My simulations in combination with previous results (Gaillard et al., 2018) showed that dwarf

shrubs and their ecology are not represented well by the shrub model in aDGVM2. The shrubs

implemented in the aDGVM2 and thus in my simulations represented savanna-type shrubs

that can grow to the size of small to medium trees (see Gaillard et al., 2018). These tree-like

shrubs differ in their morphology from the dwarf shrubs under the semi-arid conditions in the

Nama Karoo. The main focus of Gaillard et al.’s (2018) aDGVM2 shrub module was to imple-

ment a trade-off between adapting to water-limited or light-limited conditions based on stem

number. The plant physiology did not differ for shrub and tree individuals. The simulations

have shown that the existing representation of shrubs does not suffice to simulate the Nama

Karoo ecosystem, because the shrub individuals do not survive or the architecture of the dwarf

shrubs is not reproduced.
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Growth of Karoo dwarf shrubs is limited by water availability (Venter, 2001), but soil water

dynamics in the aDGVM2 currently do not represent the observed patterns and ranges at the

Middelburg site well. In an experiment with the Karoo species E. ericoides, soil moisture levels

greater than 10% led to stomatal conductance greater than optimal stomatal conductance rates.

In the field, E. ericoides individuals rapidly use soil water resources and thus reduce soil water

availability for other competitors (Midgley & Moll, 1993), which is in line with the spiteful wa-

ter use theory (Blonder et al., 2023). In addition, an experiment in semi-arid Argentina did not

confirm the implemented type of niche separation for soil water access for an evergreen shrub

species and grasses (Peláez et al., 1994). Therefore the implemented niche separation for soil

water access in aDGVM2 might not represent Nama Karoo processes well because simulated

competitors have exclusive access to soil water resources in some of the soil layers. In addition,

SMCsim levels did not drop to the levels that were observed in field measurements and were

always higher than 10%. In the simulations where SMC access for plants was restricted, the

implemented shrubs did not grow. This indicates that processes in aDGVM2 may not reflect

the coping mechanisms of Nama Karoo shrubs for limited water resources well and more field

research on root systems in the Nama Karoo is required.

In an ecosystem, where water limitation is a key driver of ecosystem dynamics and carbon

fluxes, the SMCsim levels in the current aDGVM2 implementation provide Rhet processes with

more SMC than is available in reality. Thus, Recosim is higher than derived by measurements.

In addition, Zhou et al. (2021) showed that the selection of the moisture-response function is

a key source of uncertainty in simulating soil Rhet. In combination with an adequate dwarf

shrub representation, an appropriate implementation of Rhet responses to soil moisture pulses

and temperatures will be key to achieve the typical, pulsed Reco (Rybchak et al., 2023) in simu-

lations.

In this case study, grazing was ignored to remove an additional layer of complexity. Yet, herb-

ivory is an important disturbance in the Nama Karoo (van der Merwe & Milton, 2019; Wie-

gand et al., 1995). Grazing trials in Middelburg have shown that the timing and the duration of

grazing influence dwarf shrub abundance, where continuous grazing throughout the year and
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summer grazing led to higher shrub densities (Mureva & Ward, 2016). Once the ecophysiology

of dwarf shrubs is implemented adequately in aDGVM2, including grazing and herbivory into

simulations using a previously implemented grazing model (Pfeiffer et al., 2019) would be im-

portant to fully represent the Nama Karoo and its key ecosystem processes.

The analysis in this chapter was focused on carbon fluxes and shrub representation in aDGVM2.

However, the mix of grasses and shrubs is an important characteristic of the Nama Karoo (p.

330 Mucina et al., 2006). To ensure that all key components of the Nama Karoo vegetation are

represented adequately, especially when grazing effects are considered, simulated grass veget-

ation, currently only C4 grasses, would need to be analysed in more detail and should also

include C3 grasses. Ideally, simulated vegetation would reflect changes in annual and peren-

nial grass and dwarf shrub abundances as well as changes in palatability of grasses following

different grazing treatments. This would also allow testing the implementation of annual and

perennial grasses in aDGVM2 and the grazing module in which palatability of grasses is based

on specific leaf area (SLA, the inverse of leaf dry mass per leaf area) as a proxy (Pfeiffer et al.,

2019).

Even though shrubs with the CAM-type photosynthesis are usually not dominant in the Nama

Karoo, they are an important part of the vegetation. For example, in Middelburg Ruschia in-

tricata is a common succulent from the Ruschia genus (du Toit et al., 2015). Facultative CAM, i.e.,

environmentally triggered CAM, was shown for many succulent shrub species including other

Ruschia species (Winter, 2019) and likely also plays a role in the metabolism of Ruschia intricata.

Currently in aDGVM2, woody plants can only have C3 and grasses C3 or C4 photosynthesic

pathways. Future developments of aDGVM2 could therefore, include an implementation of

CAM for woody plants.

Nutrient cycling and nitrogen in particular is currently not implemented in

aDGVM2. At the same time, the role of nutrients in the Nama Karoo is uncertain (Whitford,

2004). Measurements in the Namibian Nama Karoo hinted at nitrogen limitation (Büdel et al.,

2009). Nutrient availability and mobilisation in Nama Karoo soils seem to be periodic, where
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dead roots from annual plants after productive years lead to nutrient immobilisation and nu-

trient availability is higher after a prolonged drought (Milton & Dean, 2004; Whitford, 2004).

Representing these mechanisms in aDGVM2 adequately may prove to be challenging, because

of the variable availability of nutrients but also the potential role of soil crusts (Büdel et al.,

2009). The role of termites for nutrients in Karoo soils is unresolved (Whitford, 2004) and ter-

mites are not represented in aDGVM2.

The challenges of simulating the Nama Karoo were also shown in simulations with the DVM

Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) for southern Africa. The glob-

ally parameterised LPJ-GUESS overestimated net primary production in the Nama Karoo when

compared to satellite-derived MODIS net primary productivity estimates (Thavhana et al.,

2023). For a global DVM, Thavhana et al. (2023) highlight that a regional parameterisation with

shrub PFTs would be key to improve the representation of the Nama Karoo. At the same time

physiological characteristics of shrubs in general (Moncrieff et al., 2015) and of dwarf shrubs

in particular and how they differ from trees are still unclear. The aDGVM2 simulations in this

study have shown that developing an appropriate parameterisation of shrubs to adequately

represent the Nama Karoo’s typical semi-arid dwarf shrubs is challenging.

4.5.4 Requirements for the representation of dwarf shrubs in aDGVM2

An extension of the aDGVM2 may be required to simulate the shrubs in the Nama Karoo eco-

system. A new representation of dwarf shrubs would need to represent the slow growth and

small size typical of Karoo dwarf shrubs (van der Merwe & Milton, 2019), where ungrazed

shrubs usually reach their maximum canopy size within a decade (Wiegand et al., 1995). Low

growth rates and thus smaller leaf surface areas come with a lower risk of damage during times

of low water availability and droughts, especially for seedlings (Esler & Phillips, 1994). In com-

bination with their small size, the dwarf shrubs are also characterised by their small leaves. As

an adaptation to the semi-arid growing conditions, Karoo shrubs also feature the ability to

revive after longer dry periods, where they show elevated growth rates with low water-use

efficiency (Venter, 2004).
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In this chapter’s simulations in which shrubs disappeared, their disappearance was caused

by carbon mortality, i.e., plant individuals died because of a negative carbon balance. The

main components of the carbon balance in aDGVM2 are water- and light-limited photosyn-

thesis, representing carbon uptake, and Rmt and Rgr, representing carbon losses. Leaf and

root turnover also decrease the carbon balance which includes biomass turnover in case of a

prolonged period of water stress. As long as a certain threshold of water limitation is exceeded,

each day an individual looses a fixed fraction of its alive leaf and root biomass, thus decreasing

its carbon balance. To simulate the dwarf shrubs in the Nama Karoo, the simulated susceptib-

ility to dry stress could be reduced for dwarf shrubs. By decreasing the daily rate of leaf and

root biomass that dies for dwarf shrub individuals in case of water limitation, they would loose

less leaf and root biomass. This would also lead to higher remaining leaf and root biomass at

the end of a dry spell which would also facilitate the subsequent recovery of dwarf shrubs.

Currently, the daily biomass turnover rate is a fixed model parameter which is equal for all

woody individuals (shrubs and trees). In an aDGVM2 implementation that accounts for dwarf

shrubs, this parameter could vary between woody individuals and could be lower for drought-

resilient dwarf shrubs. Ideally, this parameter for drought resilience would be implemented

with trade-offs against other plant traits. A simple approach could be to couple the daily

turnover rate under drought stress to the number of stems of an individual, where the daily

turnover rate decreases with the number of stems. The daily turnover rate could also be imple-

mented as a trade-off with growth rates. Plants with lower growth rates such as dwarf shrubs

could have lower turnover rates in drought situations. This implementation would provide

shrubs with slow growth rates a competitive advantage over fast-growing shrubs, because the

stress caused by dry spells would be lower.

The daily biomass turnover rate is a fixed model parameter that is currently not parameterised

based on measured data. The TRY data base (Kattge et al., 2020) contains globally available

turnover data, but lacks data for dwarf shrubs. A sensitivity analysis and benchmarking of

model results with data on plant morphology and carbon fluxes could be used to constrain the

parameter for woody vegetation and dwarf shrubs specifically.
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Some traits from the leaf economics spectrum (Wright et al., 2004), such as SLA and leaf longev-

ity (the inverse of leaf turnover), and some trade-offs between traits are implemented in

aDGVM2 (Scheiter et al., 2013). According to the leaf economics spectrum, plants with lower

SLA, i.e., with higher leaf construction costs, have a higher leaf longevity (Wright et al., 2004),

which is typical for slow-growing species (Lambers & Poorter, 1992) such as the Nama Karoo

dwarf shrubs and supports the above suggestion of reducing leaf turnover rates. In aDGVM2,

trade-offs between SLA and leaf longevity have been implemented in the past (Langan et al.,

2017; Scheiter et al., 2013). However in subsequent model development and thereby in the ap-

plied version of aDGVM2, leaf longevity was not tied to SLA anymore. Including this trade-off

may be key for appropriate dwarf shrub representation.

Growth rates are also linked to maximum photosynthetic rates (Chapin III et al., 2011, p. 144),

where dwarf shrubs tend to have lower maximum photosynthetic rates and thus lower growth

rates (Schulze & F.S. Chapin, 1987). To lower GPPsim with a process-oriented scheme rather

than a tuning parameter as was implemented in simGPP/3, investigating the role of maximum

carboxylation rates might be promising. Sakschewski et al. (2015) implemented a trade-off in

the DVM LPJmL (Lund-Potsdam-Jena managed Lands) where area-based maximum carboxyla-

tion rates increased for leaves with decreasing SLAs such as the slow-growing Nama Karoo

dwarf shrubs. At first glance, this is in contrast to the lower photosynthetic rates for dwarf

shrubs in Chapin III et al. (2011, p. 144) and Schulze & F.S. Chapin (1987) and points towards

the complexity of this relationship. However based on leaf mass, the maximum carboxyla-

tion rates of plants with small SLAs may nonetheless be lower than those for high-SLA plants

(Sakschewski et al., 2015). In a sensitivity analysis and optimisation study with the Ecosystem

Demography (EDv2.2) model for a shrub PFT developed for the North American sagebrush

steppe, SLA limits were lower than currently implemented in aDGVM2 (3–9 m2kg−1 and 4.5–

20.3 m2kg−1, respectively; Pandit et al., 2019). In the optimisation, their range limits for max-

imum carboxylation rate per leaf area were also lower than the range limits implemented in
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aDGVM2 (14–21.5 µmolm−2s−1 and 17.5–37 µmolm−2s−1, respectively). However, traits can-

not be compared directly between aDGVM2 and EDv2.2, because the process implementa-

tions differ in the two models and the optimisation in Pandit et al. (2019) was implemented

for sagebrush steppe. To lower SLA range limits in aDGVM2, range limits for matric potential

at 50% loss of xylem conductance, P50, would need to be lowered. Field measurements with

CO2-response curves of photosynthesis for typical Nama Karoo shrubs can be used to derive

maximum carboxylation rates to parameterise the aDGVM2 (De Kauwe et al., 2016).

Leaf size is not explicitly simulated as inheritable trait in aDGVM2. Leaf length is currently a

fixed parameter that is used in aDGVM2 to scale leaf hydraulic conductivity for woody indi-

viduals and thus influences water availability for plant individuals and their photosynthesis.

For dwarf shrubs, leaf length could be reduced compared to single- and multi-stemmed tree

and shrub individuals. Thus, the characteristic, small leaves of Karoo shrubs could be taken

into account. The complex dynamics of leaf physiology in aDGVM2, including photosynthesis

and stomatal conductance sub-models, make it difficult to predict the effect that this change

would have on simulated vegetation. Preliminary test simulations and analyses can show, if

additional model development is necessary to implement leaf size as a trait that varies by vege-

tation type or by individual plants in aDGVM2. This will also show if the simulated effects of

smaller leaf size agree with results in the literature, where, for arid, warm environments, plants

with smaller leaves are better adapted to achieve transpirational cooling when water resources

are limited (Wright et al., 2017).

To improve the representation of dwarf shrubs, aDGVM2 parameters for crown architecture

could also be adapted. One of the parameters characterising crown architecture of woody

plants in aDGVM2 is the height of the bottom end of the crown. For trees and shrubs, the

crown does not start at the bottom of the stem. This does not represent the crown architecture

of dwarf shrubs in Middelburg well (Fig. 4.2), although shrubs with a more inverse conical

shape are also typical in the Karoo (Whitford, 2004). For dwarf shrubs, the range limits for the

height of the bottom of the crown, an inheritable aDGVM2 trait, could be lowered so that the

crown can start close to the ground. In addition, parameter ranges for aDGVM2 parameters
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that relate plant height to biomass could be adjusted to limit height growth of individuals. High

degrees of branching with many small-diameter twigs is typical for the Nama Karoo shrubs in

Middelburg and play a role in plant water dynamics decreasing water potential in leaves and

growing shoots. This could be a factor limiting height growth (Wilson, 1995) and would require

further model development and refinement of an existing branching sub-module in aDGVM2.

The inadequate representation of dwarf shrubs and the need to improve existing PFTs or intro-

ducing new PFTs can also be found in other DVMs or for other world regions. For example, for

the North American semi-arid sagebrush steppe, a new PFT was developed for EDv2.2 (Pandit

et al., 2019) and an existing Mediterranean shrub PFT was adapted and optimised in LPJ-GUESS

(Renwick et al., 2019). In simulations with the Sheffield dynamic global vegetation model for

Namibia, the Namibian Nama Karoo was classified based on thresholds for deciduous broad-

leaved trees and grass biomass without considering a shrub or a dwarf shrub PFT (Thuiller

et al., 2006). Similar to this chapter, Horvath et al. (2021) faced difficulties with the DVM com-

munity land model 4.5 bio-geo-chemical cycles and dynamical vegetation (CLM4.5BGCDV)

in simulations for Norway, although PFTs in their simulations were developed for boreal re-

gions and thus different climatic zones. The existing boreal shrub PFT in CLM4.5BGCDV was

developed for larger-sized shrubs and do not represent dwarf shrubs well.

In these models, shrub PFTs are defined by bioclimatic limits and fixed parameters (Horvath

et al., 2021; Pandit et al., 2019; Renwick et al., 2019). Maximum growth limitations, e.g., in terms

of maximum annual growth or maximum biomass values, are also used to restrain the growth

of a PFT (Horvath et al., 2021). Some of the traits and parameter values that were used in

other DVMs to parameterise shrubs would require model development in aDGVM2, because

the traits currently do not exist in aDGVM2 (e.g., growing degree-day sum) or the traits are

implemented with different equations and trade-offs (e.g., SLA and maximum carboxylation

rate). Nonetheless, implementations in other DVMs can shed light on critical processes and

parameters to consider when implementing dwarf shrubs in aDGVM2.

For the Nama Karoo, test simulations with the suggested changes in aDGVM2 can show if

driven by environmental input data and the newly implemented trade-offs dwarf shrubs emerge
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in the woody vegetation type. If dwarf shrubs do not emerge, some key trade-offs may still

be missing. However, larger ecophysiological differences between dwarf shrubs and larger

woody plants, such as trees and savanna shrubs, that cannot be represented by trade-offs alone,

could also be an explanation for this. This may then point to the need of an implementation

of dwarf shrubs as a new, separate vegetation type in aDGVM2. An important prerequisite

for these simulations would be that soil water processes in aDGVM2 are adapted so that they

represent soil water dynamics in the Nama Karoo more closely.

4.6 Further considerations and future research opportunities

The analysis in this chapter showed that further field research on the ecophysiology and pro-

cesses driving the dynamics of Nama Karoo vegetation and soils is required. For example,

the Nama Karoo C3 shrubs predominantly grow in spring (August - September) and autumn

(March - May), but generally throughout the whole year (du Toit & O’Connor, 2020). The

driving processes behind this pattern are unclear. For the case study site in the Nama Karoo,

experimental temperature increases had a growth enhancing impact on stem lengths for the

C3 shrub E. ericoides (Edwardes, 2018), indicating that both water and temperature limitation

might contribute to this growth pattern. More extensive field experiments are required to re-

late growth rates and photosynthetic rates to each other and to investigate the effect of molecu-

lar (e.g., carbon-expensive photorespiration) and structural (e.g., reduced light-use efficiency)

photoprotection on carbon balance (Fernández-Marín et al., 2020). Because of slow changes in

community composition in the Nama Karoo ecosystem, especially for the slow-growing shrubs

(van der Merwe & Milton, 2019), long-term ecological observations are important to get a bet-

ter understanding of drivers of ecological change (Hoffman et al., 2018) and potential climate

change impacts. This will increase understanding of key processes driving vegetation dynam-

ics and improving their representation in DVMs.

Nama Karoo grasses are much faster in their response to grazing pressure and changes in pre-

cipitation than Nama Karoo shrubs. In the past, increased precipitation led to an increased

grass abundance in the Nama Karoo close to Middelburg (du Toit et al., 2018). Increased grass
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abundance, and hence increased fuel load, could increase the likelihood of fire occurrence.

Therefore, if the precipitation trend continues, the fire dynamics in the Nama Karoo could

change (du Toit et al., 2018). In the past, fires were rare in the semi-arid eastern Nama Karoo

dwarf shrublands. In one of the rare fires that occurred about 1 km away from the Middel-

burg eddy covariance flux tower from this case study, the dominant shrub species E. ericoides

and R. intricata were extirpated by the fire (du Toit et al., 2015). If fire occurrence increases in

the future, this could benefit resprouting plants and fast-growing grasses as opposed to slow-

growing shrubs. Therefore, when investigating climate change impacts on the Nama Karoo

in the future, it would be critical to include fire in the simulation setup. Thus, feedbacks and

tipping point effects, where increased grass abundance and increased fire occurrence facilitate

each other and extirpate dwarf shrubs, could be investigated. This would lead to a transition

from Nama Karoo to a grassland biome.

The differing responses of species with C3 or C4 photosynthesis to changes in environmental

drivers such as warming or increases in atmospheric CO2 concentration further complicate

these dynamics. At first glance, observations of increased growth for a C3 shrub but not C4

grasses under experimental heating treatments at the Middelburg site (Edwardes, 2018) may

be surprising, because C4 grasses tend to cope better with warmer climates than C3 plants (Col-

latz et al., 1998). This behaviour may be explained by the requirement of sufficient soil moisture

for C4 grasses to grow well. Climate change simulations with an appropriate implementation

of dwarf shrubs in aDGVM2 would allow investigating potential effects of warming in combin-

ation with elevated atmospheric CO2 concentrations on the implemented vegetation types and

growth forms and their dynamic interactions. Climate change effects such as bush encroach-

ment of larger-sized shrubs and the potential interplay of grasses, dwarf shrubs, and bigger

shrubs could be investigated. However, precipitation projections for the Nama Karoo are still

uncertain but current projections point towards a reduction in precipitation (Arias et al., 2022).

Grazing and browsing also shape the Nama Karoo vegetation, but effects are often dwarfed by

the influence of precipitation (du Toit et al., 2018). When combining grazing and browsing mod-

els with vegetation dynamics, socio-economic impacts of droughts and future climate changes
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could be investigated to fill an important research gap (Hoffman et al., 2018). In a previously

published aDGVM2 sub-module for cattle grazing (Pfeiffer et al., 2019, 2022), the biomass de-

mand required for each livestock unit would need to be reparameterised to implement grazing

simulations for sheep. Because palatable dwarf shrub species contribute to feed for livestock,

the grazing model would ideally be extended to include browsing of leaves from dwarf shrubs.

Combined with an economic model previously developed for the aDGVM (Scheiter et al., 2018),

ecological and socioeconomic Nama Karoo systems can be coupled. Estimates for the economic

value of sheep and cattle in the Nama Karoo could be derived in collaboration with researchers

from e.g., GADI in Middelburg with their long-term research and experience (du Toit et al.,

2018; Hoffman et al., 2018). To assess ecological and socio-economic dynamics, future studies

could also couple the aDGVM2 with an agent-based model that simulates animal behaviour

(Fust & Schlecht, 2018; Grillot et al., 2018) or human decision processes (Dressler et al., 2019).

Thus, interactions of different components in the socio-ecological system and how decisions on,

e.g., grazing strategy affect the ecosystem state (Pfeiffer et al., 2022) in the Nama Karoo could

be analysed. This could support the decision processes in the development of management

strategies (Fust & Schlecht, 2018).

Based on a socioeconomically coupled version of aDGVM2, climate change impacts on Nama

Karoo vegetation and its grazing system as well as human livelihoods under different shared

socioeconomic pathways (SSP) and climate change scenarios (representative concentration path-

ways, RCPs) (O’Neill et al., 2016) could be investigated. Potential woody encroachment under

scenarios of climate change and increased atmospheric CO2 concentrations (see Chapter 2 and

Figure 2.1, Martens et al., 2021) could also be considered in the economic model. In the case

of encroachment of larger shrubs, the removal of encroaching biomass may generate economic

opportunities, e.g., by its use for charcoal production as it is currently done in Namibia (Shik-

angalah & Mapani, 2020) or generation of electricity (Stafford et al., 2017). Thus, climate-driven

changes and potential losses in grazing, an important ecosystem service in the Nama Karoo,

can be put into perspective of emerging economic opportunities. This economic incentive could

support intervention efforts of clearing larger shrubs to keep the Nama Karoo an open dwarf
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shrub ecosystem. Ecologically, a fully encroached ecosystem, where the encroaching species

led to a change in dominant plant functional type, cannot easily be reverted to its previous

state at a timescale of several decades (Scholes, 2009), especially in a slow-growth ecosystem

such as the Nama Karoo. Benefits of clearing activities to restore an encroached Nama Karoo

landscape can also include water-related ecosystem services and by avoiding local biodiversity

loss could provide benefits on multiple levels (Stafford et al., 2017).

Livestock farming is the predominant land use in the Nama Karoo with regionally important

economic significance. At the same time competing non-agricultural land uses such as renew-

able energy and mining increasingly put pressure on the Nama Karoo ecosystem (Walker et al.,

2018). In combination with the uncertainty of the contribution of the Nama Karoo to the in-

terannual variability and trend of the global land carbon balance (Ahlström et al., 2015), this

emphasises the need for a solid understanding of the ecosystem components and processes

of the Nama Karoo and potential impacts and consequences of these land uses and land use

changes. At the same time, DVMs are currently the only tools for investigating impacts of fu-

ture climate change and dynamic feedback effects between ecosystem components (Prentice

et al., 2007). However, this study has shown that simulating the Nama Karoo with a DVM is

still challenging and that further model development and field research are essential for mak-

ing meaningful projections for climate change impacts on the Nama Karoo.



119

Chapter 5

Synthesis



120 Chapter 5. Synthesis

5.1 Overview

African ecosystems provide the livelihoods and ecosystem services for approximately 1.4 bil-

lion people (United Nations, Department of Economic and Social Affairs, Population Division,

2022) and the habitat for a unique biodiversity (Midgley & Bond, 2015). Semi-arid ecosys-

tems, which cover large parts of Africa, drive trends and variability of global terrestrial carbon

dynamics (Ahlström et al., 2015). However, the African continent is highly vulnerable to cli-

mate change due to intersections between environmental, socioeconomic and political factors.

The majority of people in sub-Saharan Africa work in agriculture, where 95% of croplands are

rainfed (Trisos et al., 2022). At the same time, the human population in sub-Saharan Africa is

projected to grow and potentially more than double by the end of the 21st century in contrast

to all other world regions (United Nations, Department of Economic and Social Affairs, Pop-

ulation Division, 2022). This population growth and the associated changes in land use and

land cover are challenges for the conservation of Africa’s biodiversity (IPBES, 2018b). Under-

standing ecosystem and carbon cycle dynamics and potential climate change impacts in Africa

and uncertainties associated with vegetation projections is critical for the planning of climate

change adaptation measures (Müller et al., 2014). These prospects motivated the research in

this thesis with a focus on future climate change impacts on ecosystems and carbon dynamics

in Africa and where they may co-occur with the global change drivers population and land use.

In addition, I investigated uncertainties of DVM projections and how the representation of the

Nama Karoo as a niche ecosystem and its carbon cycle could be improved. I showed oppor-

tunities but also limitations and uncertainties of simulations and climate change projections

with the DVMs aDGVM and aDGVM2 for African ecosystems and their carbon balance and

the combination of DVM projections with global change projections. In the following section, I

first respond to the research questions presented in Chapter 1 based on the presented research.

Then, avenues of future research are presented including potentials of model development and

the application of DVMs in climate impact attribution research and for assessing nature-based

solutions, before drawing final conclusions.
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5.1.1 How does climate change affect African ecosystems and carbon stocks until

the end of the 21st century?

The projections for African ecosystems until the end of the 21st century in Martens et al. (2021,

Chapter 2) show that changes in biomes and carbon stocks are likely for large areas in Africa.

Effects were stronger under RCP8.5 than RCP4.5, but even the medium-impact scenario RCP4.5

suggested considerable ecosystem change across Africa. Elevated atmospheric CO2 concentra-

tions resulted in enhanced water use efficiency (WUE) and strong woody encroachment into

C4-dominated savannas and grasslands and their transition to more C3-dominated, woody

biomes. This confirms the vulnerability of savanna and grassland biomes (Bond, 2016) to

woody encroachment under elevated atmospheric CO2 concentrations, which threaten their

biodiversity (Midgley & Bond, 2015). At the same time tropical forests in a belt south of the

equator were less stable in our simulations than found by Gonzalez et al. (2010), Scholze et al.

(2006) and Sitch et al. (2008).

At first glance, the combination of increased WUE and increased biomass production contrasts

with analyses that did not find increased tree growth when WUE was increased under elevated

CO2 (e.g., Peñuelas et al., 2011). However, in our simulations the biomass increase is linked to

demographic effects and changes in vegetation structure in grassland and savanna ecosystems.

Feedbacks between CO2 fertilisation and fire disturbance alter the competitive balance between

C3 trees and C4 grasses in favour of C3 trees and their saplings (Midgley & Bond, 2015). Recent

experiments with an encroaching southern African savanna tree have confirmed that elevated

CO2 concentrations stimulate growth in the critical recruitment phase and seedlings reach a

critical size threshold faster, which allows them to survive herbivory (Ripley et al., 2022). Even

though demographic effects in Martens et al. (2021) were only influenced by fire dynamics,

these findings corroborate the importance of demographic effects in African savanna ecosys-

tems. When herbivory or C4 grass competition occur during the initial recruitment phase, the

stimulating effect of elevated CO2 concentration on the growth of C3 tree seedlings is removed

(Raubenheimer & Ripley, 2022). Nonetheless during the tree seedling recruitment phase, the

CO2-stimulated growth of tree saplings decreases the probability of fatal herbivory (Ripley
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et al., 2022). Next to fire, herbivory is an essential ecosystem-shaping disturbance in African

savannas (Bond et al., 2005). This underlines that including representation of herbivory (e.g.,

Pfeiffer et al., 2019) in future projections is key to reflect ecosystem dynamics in African savan-

nas under a changing climate and increasing atmospheric CO2.

Mean annual precipitation in central African tropical forest is close to a postulated lower viab-

ility threshold for humid tropical forest of 1500 mm (Malhi et al., 2013; Zelazowski et al., 2011).

This agrees with analyses where the tropical forest region in the Congo basin is not charac-

terised as deterministic forest but rather as bistable, where savanna is a possible alternative

vegetation state (Staver et al., 2011b). Our findings of high vulnerability of African tropical

forest to vegetation change driven by climate change by the end of the 21st century in Martens

et al. (2021) supports these findings. The CO2 fertilisation effect only partially counteracted

these climate-change driven developments. However, a recent analysis challenges the previ-

ously assumed extent of possible alternative vegetation states (Staver et al., 2011b), including

central African forests (Higgins et al., 2023a). They argue that alternative states are less preval-

ent and that often micro-environments resulting from, e.g., topographic gradients create local

climates that mainly determine the local ecosystem state (Higgins et al., 2023a).

5.1.2 Where may climate change impacts and the global change drivers human

population density and land use co-occur and exert pressure on African pro-

tected areas until the end of the 21st century?

The combination of projections for vegetation change, human population and land use in

Martens et al. (2022, Chapter 3) showed that most African protected areas and their biodiversity

are projected to be adversely affected by at least one of these three global change drivers un-

til the end of the 21st century. The co-occurrence of the three drivers was mostly specific

to a region or one of the two investigated scenarios, SSP2-RCP4.5 and SSP5-RCP8.5. At the

continental scale, no clear overall patterns in relationships between climate-driven vegetation

changes and socioeconomic pressures emerged from our analysis. This is not surprising be-

cause climate-driven vegetation changes and socioeconomic drivers are spatially independent
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global change drivers. Different regions will be subject to different combinations of pressures

as socioeconomic developments vary regionally. Protected areas in West Africa were projected

to be affected by climate-driven vegetation changes in combination with high levels of future

population density and land-use pressure in their vicinity. Except for North Africa, future de-

creases in population density and land-use pressure in the vicinity of protected areas were rare.

Both SSP-RCP scenarios implied increasing challenges for conserving Africa’s biodiversity in

protected areas.

Consistent with the continental scale biome projections in Martens et al. (2021, Chapter 2), the

investigation in Martens et al. (2022) suggests high vulnerability of protected areas with grass-

lands and savannas to future climate- and CO2-driven habitat loss. This confirms previous res-

ults, where protected tropical grasslands and tropical woodlands were among global biomes

most vulnerable to climate-driven biome changes (Eigenbrod et al., 2015). Habitat loss in our

projections was more widespread under SSP5-RCP8.5 than SSP2-RCP4.5, which is consistent

with projections from species distribution models (e.g., Hannah et al., 2020). The widespread

projected habitat loss in protected areas raises the question, if the current extent and network

of protected areas in Africa is sufficient to prevent species loss. Under climate change, con-

nectivity of protected areas may be essential to facilitate climate-induced movement between

protected areas (Dobrowski et al., 2021). Yet, this connectivity is currently not given under-

lining the need for conservation and land management strategies that allow for species range

shifts (Parks et al., 2023). Conservation targets of increasing the cover of protected land areas

to at least 30% under the Kunming-Montreal global biodiversity framework of the Convention

on Biological Diversity (CBD COP, 2022) are in line with this need for increased connectivity.

At the same time, the projected increases in human population and land use in the vicinity of

many protected areas may be interpreted as proxies for additional pressure on the protected

areas (Martens et al., 2022). For instance, the likelihood for the downsizing of big protected

areas increases with local population densities (Symes et al., 2016). Societal pressure to down-

grade protected areas to allow, for example, human settlements and livestock herding (Lindsey

et al., 2017) or renewable energy facilities (Rehbein et al., 2020) in protected areas is expected
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to increase conflicts between achieving conservation goals and meeting human needs (DeFries

et al., 2007). Thus, the goals of biodiversity protection and climate mitigation through protected

areas are competing with, e.g., food production. Despite the large variation between scenarios

and regions, we concluded that socioeconomic pressures will likely exacerbate climate-change

impacts on vegetation for most protected areas and regions in Africa. Our findings also under-

line the importance of developing and implementing region-specific conservation responses

(Martens et al., 2022). Other global change factors such as invasive species, that are known to

be a great threat for protected areas (Sieck et al., 2011) or other proxies for human pressure such

as electricity and road infrastructure (Sanderson et al., 2002) could expand future analyses of

pressures on protected areas.

In the two investigated scenarios, all three investigated pressures showed medium to strong

increases in pressures for most protected areas in Africa and point to increasing difficulties to

sustain the effectiveness of conservation in Africa (Martens et al., 2022). Hence, an increase in

coverage to 30% will also need to be accompanied by an improved effectiveness of protected

areas. For protected areas in China, socio-economic status was an important predictor for the

effectiveness of protected areas in conserving threatened species (Zhao et al., 2023). Therefore,

efforts to strongly mitigate climate change combined with measures that promote equitable,

wealth-distributing, and sustainable development (Crist et al., 2017) are key for the success of

biodiversity conservation in this century.

5.1.3 Which uncertainties do these future projections entail? Can the simulations

be used to make detailed projections for individual ecosystems and their car-

bon dynamics or for individual protected areas?

Our projections in Martens et al. (2021, Chapter 2) with the aDGVM showed that the imple-

mentation of the CO2 fertilisation is key for the simulation results and projected vegetation

states. CO2 fertilisation caused the strongest variability in our future projections compared

to RCP scenario and chosen climate model (general circulation model, GCM) and primarily

defined the future carbon source or sink behaviour, WUE, and biome states. This importance of
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CO2 fertilisation for simulation outcome is consistent with projections for the Amazon (Ram-

mig et al., 2010) and the global tropics (Huntingford et al., 2013). The simulations with and

without increases in atmospheric CO2 concentration and thus with and without CO2 fertilisa-

tion give an idea of the range of the potential impact of CO2 fertilisation and future climate

change. The aDGVM currently does not include nutrient cycling and therefore no nutrient lim-

itation. DVMs with incorporated nutrient dynamics often project smaller impacts of elevated

CO2 than shown in Martens et al. (2021) due to nutrient limitation. Compared to experimental

data the aDGVM projections overestimate the CO2 fertilisation effect (e.g., Fleischer & Ter-

rer, 2022). Especially due to the feedback effects between population and fire dynamics and

elevated CO2 concentrations in savanna ecosystems (Midgley & Bond, 2015) some effects pro-

moting woody encroachment and biomass increases as simulated in Martens et al. (2021) are

likely.

The ensemble approach in Martens et al. (2021) revealed disagreements in the simulated bio-

mes between the different ensemble members especially in the transition zones between bio-

mes. This disagreement increased in the projections of climate change impacts until the end

of the 21st century. Variability in climatic drivers from GCMs and particularly uncertainty

in projected future precipitation (Engelbrecht et al., 2015) explain disagreements between en-

semble members. In the transition zones between savanna and forest, stochastic processes in

the aDGVM fire model may also partially explain the disagreement between ensemble mem-

bers, because fire is an important driving factor which differentiates between these two altern-

ative stable biome states, which are possible in large parts of Africa (Staver et al., 2011b). The

projections of substantial biome changes across all simulations and scenarios of the ensemble

suggest substantial future changes in habitat structure and biodiversity, which contrasts with

relative stability of past climates and disturbance regimes in Africa (Midgley & Bond, 2015).

The ecosystem changes simulated at continental scale indicate broad patterns of change in ve-

getation biomass and biome change under elevated CO2 concentrations across Africa (Martens

et al., 2021) and in African protected areas in particular (Martens et al., 2022). Most of the pro-

tected areas included in the study were smaller than the size of grid cells in the vegetation
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simulations. This implies that small-scale environmental conditions within protected areas

and unique features of protected areas were not represented in the vegetation projections. This

simplification hampers estimates for individual protected areas, but allowed the analysis of

regional patterns of potential future pressures on protected areas.

The results from Chapter 4 for recent vegetation dynamics at a site in the Nama Karoo in South

Africa underline that DVM simulations need to be interpreted cautiously for individual eco-

systems and their carbon fluxes. For aDGVM and aDGVM2, this is particularly true for eco-

systems not covered by the forest-savanna-grassland spectrum and niche ecosystems because

their growth forms and ecophysiological dynamics may not be represented well. Long-term

ecological observations with, e.g., eddy covariance flux towers and repeated field surveys in

combination with ecophysiological and soil carbon flux experiments help to improve our un-

derstanding of these dynamics (Hoffman et al., 2018). Long-term observations are particularly

valuable in ecosystems such as the Nama Karoo with its slow-growing shrub community and

associated slow changes in community composition (van der Merwe & Milton, 2019) and its

high precipitation variability (du Toit et al., 2018). The Grootfontein Agricultural Development

Institute (GADI) close to Middelburg, South Africa, with their long-standing research can be an

important partner for further research on Nama Karoo processes. In combination with model

developments that ensure the representation of typical growth forms, the knowledge gained

from long-term observations will facilitate representation of Nama Karoo vegetation dynam-

ics in DVMs. These model developments will enhance projections of future climate change

impacts for the Nama Karoo.

In the analysis of future global change pressures for African protected areas, projections in

buffers surrounding protected areas were assumed to be proxies for their potential ecological

isolation from other natural areas and for potential, indirect, future, socioeconomic influences

on protected areas. This approach does not evaluate population and land use pressures inside

the protected areas (Martens et al., 2022). This may be particularly problematic for protected

areas, where the ecosystems in the protected area differ strongly from the surrounding area,
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e.g. because of elevational gradients (Joppa & Pfaff, 2011). In conservation science, an estab-

lished method to evaluate the effectiveness of a protected area is to compare developments in a

protected area with developments in a site with matching environmental states outside of the

protected area (e.g., Geldmann et al., 2019). This approach could be adapted to our research of

potential future pressures on protected areas by assuming that projections for the matched site

are representative of changes within a protected area. However, because Martens et al. (2022)

was based entirely on model results and future projections, results cannot be tested against

observational data. Applying the matching approach for future projections would require as-

sumptions and additional parameters that would entail additional uncertainty for the analysis,

especially because factors, such as management capacities, resource availability, and socioeco-

nomic level, that influence land use and population in protected areas (Lindsey et al., 2017) are

difficult to project into the future across larger scales. A comparison of results for the matching

approach and the buffer approach in future research would shed further light on the influence

of the chosen approach on the results.

5.1.4 How well do we understand and reproduce carbon cycle dynamics in semi-

arid niche ecosystems such as the Nama Karoo?

In simulations for the Nama Karoo in Chapter 4, vegetation biomass was largely overestimated

in most simulation setups and simulated vegetation structure did not agree with observed ve-

getation. In their size and accumulated biomass, simulated shrubs resembled savanna shrubs

rather than small Nama Karoo dwarf shrubs. The intraannual patterns of the carbon fluxes

gross primary production (GPP) and ecosystem respiration (Reco) was only partially repro-

duced and the fluxes were generally overestimated. Delayed responses of GPP to soil moisture

increases and decreases in Reco due to drying in upper soil layers (Parton et al., 2012) were

not represented well in the aDGVM2 simulations. Because net ecosystem exchange (NEE) is

derived from GPP and Reco in aDGVM2, simulated NEE did not agree well with observations

neither for intraannual patterns nor for annual budgets and their variabilities.
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The simulations in Chapter 4 also showed challenges in simulating below-ground water and

carbon processes in semi-arid ecosystems. Simulated soil moisture did not drop to observed

levels and heterotrophic respiration was overestimated. In semi-arid ecosystems such as the

Nama Karoo, water availability limits plant growth (Venter, 2001) and drives heterotrophic

respiration (Zhou et al., 2021). Therefore, an appropriate model representation of soil mois-

ture dynamics is key for plant growth and simulated carbon balance. Even though soil mois-

ture levels in aDGVM2 simulations in Chapter 4 were higher than measured values, simulated

shrubs died because of a negative carbon balance in simulations where soil water input from

precipitation was limited. This points to a high susceptibility of simulated shrubs to dry stress

and that coping mechanisms of semi-arid dwarf shrubs are not reflected well in the aDGVM2

implementation of woody vegetation.

Simulations with the aDGVM2 and its approach of inheritable traits and trade-offs between

traits provide the opportunity of simulating the emergence of plants with individual trait com-

binations that are adapted to the environmental conditions. A community can evolve flexibly

over time under changing conditions such as changes in climate or land use (Langan et al., 2017;

Pfeiffer et al., 2019; Scheiter et al., 2013). Trade-offs between, e.g., SLA and leaf longevity fol-

lowing the leaf economics spectrum (Wright et al., 2004) or between growth rates and turnover

rates of leaves and roots could be tested in aDGVM2 in efforts of improving the representation

of dwarf shrubs. In addition, adaptation of parameters for, e.g., crown architecture, biomass

longevity and maximum carboxylation rates as well as an implementation of high degrees of

branching are promising routes of model development to enable representation of semi-arid

vegetation dynamics and dwarf shrubs in particular in aDGVM2 simulations.

If simulations with these adaptations are not successful, this could point to physiological dif-

ferences between dwarf shrubs and larger woody plants that cannot be represented by trade-

offs. In this case, a new vegetation type which is explicitly parameterised for dwarf shrubs

may be required to simulate semi-arid dwarf shrub ecosystems. Additional field research on

turnover rates, root systems and water dynamics of dwarf shrubs could shed further light on

the functioning of vegetation dynamics in dwarf shrub ecosystems. In summary, further model
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development and field research are essential for making meaningful DVM projections for land

use and climate change impacts on vegetation dynamics and carbon cycles in niche ecosystems

such as the Nama Karoo and the roles of rising atmospheric CO2 concentrations but also fire

dynamics.

Livestock farming with sheep but also goats and cattle is a main land use and important part

of the economy in the Nama Karoo (du Toit et al., 2018; Walker et al., 2018) and an import-

ant disturbance in its ecosystem (van der Merwe & Milton, 2019; Wiegand et al., 1995). It has

been shown that grazing in the Nama Karoo influences ecosystem composition and the mix of

grasses and dwarf shrubs (du Toit et al., 2018). To fully capture dynamics of the Nama Karoo

and grassy dwarf-shrub ecosystem in DVMs, it would therefore be essential to include a graz-

ing model, which also captures transitions between annual and perennial grass species (e.g.,

Pfeiffer et al., 2019). At the same time, changes in precipitation influence community composi-

tion and seem to be a more important driver of the grassiness in the eastern Nama Karoo than

grazing. Increases in precipitation in the past have led to a transition towards more grassy spe-

cies and fewer dwarf shrubs. Although some dwarf shrubs in the Nama Karoo are palatable,

palatability of many grasses is higher. Economically, this may be beneficial for livestock farm-

ing (du Toit et al., 2018). However beyond the ecosystem service of livestock farming, it can be

argued that the Nama Karoo ecosystem and its biodiversity, or any ecosystem for that matter,

have their own intrinsic value independent of their use to humans (Batavia & Nelson, 2017).

This would implicate that the conservation of the Nama Karoo ecosystem and minimising cli-

mate change to avoid biome changes are a moral imperative.
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5.2 Vision for future research with DVMs and aDGVM2 in

particular

5.2.1 Future avenues of model development to improve ecosystem representation

in DVMs

DVM simulations at regional and continental scale as implemented and used in Chapters 2

and 3 are useful to understand broad patterns of change, but results at smaller scale for indi-

vidual ecosystems must be interpreted cautiously. This especially applies for ecosystems for

which the dominant vegetation types are not explicitly represented in DVMs. For aDGVM

and aDGVM2 this comprises ecosystems that are not characterised by tree, savanna shrub and

grass vegetation types. For South Africa, Moncrieff et al. (2015) have shown with the aDGVM

that ecosystems outside of the forest-savanna-grassland spectrum are not represented well in

simulations. This is underlined by the case study with the aDGVM2 for the Nama Karoo in

Chapter 4 and the presented difficulties in representing soil water and carbon dynamics and

dwarf shrub growth forms, which highlighted the importance of revisiting plant and soil water

dynamics in aDGVM2 for semi-arid ecosystems. Other ecosystems not represented by aDGVM

and aDGVM2 include South Africa’s unique Fynbos with its shrubs and crown fires and the

Succulent Karoo with succulent shrubs and CAM photosynthesis (Moncrieff et al., 2015) as well

as facultative CAM photosynthesis in succulent C3 dwarf shrubs (Winter, 2019). Representa-

tion of dryland ecosystems with fog as a main source of moisture as is found in the Namib

Desert (Wang et al., 2019) brings multiple challenges. In a dynamic model, they would require

an implementation which captures the dynamics of climatic fog formation, fog interception

by plant biomass and moisture uptake by plants (Borthagaray et al., 2010). Next to moisture

availability for plants, fog and dew also alter soil moisture and are thus important controls of

heterotrophic respiration in semi-arid and arid ecosystems (Logan et al., 2022). This could be a

key component to improve the representation of their carbon cycles in DVMs.

Large uncertainties related to the implementation of the CO2 fertilisation effect were presented

in Martens et al. (2022, Chapter 2). Nutrient dynamics are not implemented in aDGVM and
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aDGVM2 but are known to be an important controlling factor of the CO2 fertilisation effect,

especially in the tropics (Fleischer & Terrer, 2022). The implementation of nitrogen and phos-

phorus cycles have dampened the CO2 fertilisation responses in DVMs (e.g., Fleischer et al.,

2019; Hickler et al., 2015) and are important steps in aDGVM and aDGVM2 model develop-

ment. Thus, uncertainty in simulated ecosystem variability under climate change and elevated

CO2 concentrations can be reduced. The implementation of nitrogen fixation as an inherit-

able trait for tree growth forms in aDGVM2 could be a worthwhile extension when simulating

African ecosystem dynamics, because observed woody encroachment in African savannas was

mainly driven by nitrogen-fixing species (Stevens et al., 2017).

5.2.2 Attribution of anthropogenic climate change to observed vegetation change

based on ensemble studies

Sensitivity analyses based on ensembles of climate data such as the implementation in Chapter

2 contribute to the identification of uncertainties in simulations with dynamic vegetation mod-

els. They can provide insights into the range of possible impacts of anthropogenic climate

change on vegetation. In climate change research, ensemble studies have also been used to in-

vestigate if observed meteorological events can be attributed to anthropogenic climate change

(e.g., Hegerl & Zwiers, 2011; Otto et al., 2013). Attribution of changes to drivers contributes

to the evaluation of how anthropogenic climate change is affecting observed changes. It can

provide scientific evidence on impacts of climate change today and support the assessment of

changing risks due to climate change (Otto et al., 2013).

For vegetation changes, the interaction and compounded occurrence of multiple drivers of

change including land use and climate change (IPBES, 2018a) complicates a direct attribution

of vegetation changes to individual drivers (Stone et al., 2013). For observed vegetation changes

such as woody encroachment (Stevens et al., 2017) or desertification (Burrell et al., 2020), data

on land use and climate in the investigated regions have been analysed to attribute different

drivers to the observed changes. Rising atmospheric CO2, changing land management, and

rainfall were identified as likely drivers of encroachment in Africa based on a literature review
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and a statistical analysis of published data on woody cover, mean annual precipitation, and

the first year of observations (Stevens et al., 2017). In the analysis of drivers of desertification,

vegetation change in the past was based on a time series of remote sensing data on peak norm-

alised difference vegetation index (NDVI). The regional strengths of the desertification drivers

CO2 concentration, climate variability, climate change and land use were derived in a statist-

ical analysis. For this analysis a combination of trend analysis of NDVI, data on atmospheric

CO2 concentration, a relationship between GPP and atmospheric CO2, and observed and de-

trended precipitation and temperature was used (Burrell et al., 2020). Higgins et al. (2023b)

globally detected climate change as a main driver of changes in terrestrial ecosystems over the

past 40 years. Soil moisture was the main driver of change in dry and warm locations and

changes in temperature mainly drove changes in cooler ecosystems. Their analysis was based

on a combination of NDVI, a dynamic growth model for single plants, climate reanalysis data

and detrended time series of climate forcings.

To explicitly attribute anthropogenic climate change as driver of ecological

changes distinct from natural variability but also external drivers such as volcanic eruptions

and solar luminosity (Stone et al., 2013), a combination of analysis steps has been developed.

First, a climatic event is attributed to anthropogenic climate change. Next, an ecosystem re-

sponse outside of its natural variability needs to be detected. Finally, the likelihood that the

biological impact is driven by anthropogenic climate change and not by other forcings is ana-

lysed (Harris et al., 2020; Rosenzweig et al., 2008). Ecological impact attribution, however, is

challenging at species-level because of missing baseline data and naturally high variability in

time and space (Harris et al., 2020). A combination of remote sensing data and DVMs could

contribute to closing the gap in attribution research on analysing the role of anthropogenic

climate change as driver of observed vegetation changes and trends.

DVMs have reproduced trends in past vegetation changes such as greening trends observed in

satellite data for the Sahel (Hickler et al., 2005; Seaquist et al., 2009) and for boreal zones (Lucht

et al., 2002) in the 1980s and 1990s. Precipitation (Hickler et al., 2005) and temperature (Lucht

et al., 2002) were found to be main climatic drivers of vegetation change. However, these studies
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did not investigate whether the detected vegetation change can be at least partially attributed

to anthropogenic climate change. Following the above approach (Harris et al., 2020), two sets

of climate data would be required, where one includes anthropogenic drivers of the climate

and the other, the so-called counterfactual, does not. Under the Inter-Sectoral Impact Model

Intercomparison Project 3a (ISIMIP) a counterfactual climate data set was developed. How-

ever in this counterfactual data set, anthropogenic climate forcing is not isolated from other

drivers of climate change such as volcanic eruptions and solar luminosity (Mengel et al., 2021).

If a separation of other drivers is required for the desired investigation, a collaboration with

climate scientists that develop data sets including counterfactual simulations for the specific

case study and analyse anthropogenic climate change attribution, as was done with a focus on

central Africa in Otto et al. (2013), may provide a solution. Analysis of the observed and the

counterfactual climate data set can establish if detected trends in the climate system are outside

of the natural variability of the system and attributable to climate change.

Then, simulations with DVMs driven by the observed climate and by the counterfactual data

need to be implemented. Time series of satellite-based data such as NDVI can be used to

detect if a change in vegetation occurred in the investigated ecosystem and to test if DVM

simulations with the observed climate can accurately reproduce observed vegetation dynamics.

To detect if vegetation changes larger than the natural variability of the ecosystem occurred,

the counterfactual DVM simulations are compared with the DVM simulations with observed

climate. If the observed change may not be explained by alternative drivers such as land use,

climate change can be derived as a likely driver of change. Other drivers of vegetation change

such as land use and their adequate representation in DVMs pose a challenge for this analysis.

The investigation could focus on protected areas and other areas with low levels of land use

impacts if it is centered around changes in natural vegetation.

In semi-arid regions, which together with dry sub-humid regions cover a third of Africa (Prăvălie,

2016), studies on attribution of climate change are challenging because the climate exhibits a

naturally high variability especially for precipitation (Kew et al., 2021) and ecosystems evolved
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adapted to this variability. With an increasing length of observation periods over time, attri-

bution analyses will yield more reliable information for semi-arid ecosystems. Generally, this

approach of combining climate models with process-based ecological models, also called joint

attribution (Rosenzweig et al., 2008), can increase the understanding of the natural variability in

ecosystem states. Especially in semi-arid ecosystems, this understanding is key for reliable fu-

ture projections of potential impacts of climate change. In addition, this type of climate change

attribution study would reveal if observed changes in vegetation are attributable to anthropo-

genic climate change. If anthropogenic climate forcing is already reflected in observed vegeta-

tion changes, this could be powerful information for the communication on climate change. It

might help increasing awareness for future challenges that anthropogenic climate change will

bring and for mitigating climate change.

5.2.3 Dynamic vegetation models and model coupling to support the planning of

nature-based solutions

Nature-based solutions as tools to address both climate change and biodiversity loss while

at the same time contributing to sustainable development have gained increasing attention in

research, governmental institutions and the private sector (Seddon et al., 2021). They cover ac-

tions in ecosystem-based adaptation and mitigation and eco-disaster risk reduction, but also

conservation and management actions to reduce greenhouse gas emissions from ecosystems

and to store carbon (Seddon et al., 2020). While nature-based solutions have great potentials,

possible adverse impacts, especially of large scale approaches or of a simple focus on tree-

planting, require caution and solutions need to be well planned and well-thought-out (Seddon

et al., 2021). For example, the controversial afforestation suggestions to mitigate climate change

presented in Bastin et al. (2019) ensued heavy criticism, e.g., for their one-dimensional car-

bon sink perspective (e.g., Veldman et al., 2019). The suggested afforestation in grassland and

savanna regions (Bastin et al., 2019) would result in biodiversity loss. In addition, afforestation-

driven decreases in albedo in some regions would feed back on climate and increase climate

change and thus counteract the desired climate change mitigation (Veldman et al., 2019). This
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underlines that nature-based solutions require a multi-dimensional, interdisciplinary approach

and need to consider synergies and trade-offs associated with them (Seddon et al., 2021).

Simulations with DVMs could support the planning process for nature-based solutions in ter-

restrial ecosystems to investigate their potential and to ensure robust and resilient responses to

climate change and to prevent biodiversity loss (Gómez Martín et al., 2021). Ensemble simula-

tions with DVMs similar to the projections in Martens et al. (2021, Chapter 2) could be used to

investigate the long-term stability of carbon stocks and ecosystems in nature-based solutions

under climate change and potential uncertainties associated with nature-based solutions. De-

livering benefits to biodiversity is a key component of nature-based solutions (Seddon et al.,

2021), because biodiversity supports the provision of ecosystem services and increases the

resilience of ecosystems to disturbances (Cardinale et al., 2012). The design of the aDGVM2

provides the unique opportunity to test potential consequences of changes in biodiversity for

the stability of ecosystem biomass but also for the resilience towards changes in climate or at-

mospheric CO2 concentrations (Langan, 2018; Scheiter et al., 2013). At the same time, potential

influences of climate change or different management options for nature-based solutions and

their potential impacts on biodiversity can be investigated with the aDGVM2. Simulations with

aDGVM2 can thus help to weigh different nature-based solutions for their potential impacts on

biodiversity before their implementation.

The combination of vegetation, human population and land-use projections in Martens et al.

(2022, Chapter 3) allowed the integration of multiple global change facets in the analysis of its

impacts on protected areas, an important component of nature-based solutions. Yet in the in-

tegrated assessment models that produced the land use projections used in Martens et al. (2022),

climate-change impacts on socioeconomic systems are currently not implemented (Riahi et al.,

2017). Incorporating feedback processes such as climate-change driven changes in land pro-

ductivity and their impacts on socioeconomic systems in integrated assessment models would

on the one hand lead to a more comprehensive representation of socioeconomic and climate
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systems (Calvin et al., 2019) and their impacts on protected areas and other nature-based solu-

tions. On the other hand, this coupling adds additional layers of complexity and uncertainty

to climate-impact modelling and requires more research and development (Calvin et al., 2019).

The coupling and combination of DVMs with different models opens up more opportunities

for investigating potential impacts and feedbacks of nature-based solutions. Future studies for

protected areas could additionally use modelled estimates of global invasion threat by alien

species (Early et al., 2016) and, thus, include another main driver of change in nature (IPBES,

2019a) in the analysis. The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) was

coupled with a hydrogeological model to estimate the effects of warming on small watersheds

in temperate forests (Beaulieu et al., 2016; Kumar et al., 2021b). Earth system models, where

general circulation models that simulate climate are coupled with dynamic vegetation models,

could shed light on potential feedback effects of nature-based solutions between atmosphere

and biosphere (Schaubroeck, 2018). When land use modules such as grazing (e.g., Pfeiffer et al.,

2019) or fire management are integrated in DVMs, they can be used to test different land man-

agement practices and their potentials and risks for nature-based solutions. The coupling of

DVMs with agent-based models could help to improve the representation of animal behaviour

or to include processes of decision-making for human agents (Clemen et al., 2021; Pfeiffer et al.,

2022). Some of the coupling steps, especially when multiple models are combined or larger en-

sembles of multiple models are desired, may require international collaborative efforts, similar

to the call for global partnerships to achieve kilometer-scale climate simulations by Slingo et al.

(2022).

As highlighted in Martens et al. (2022, Chapter 3) for the planning of protected areas under

global change, it is essential that nature-based solutions ensure that local communities and

Indigenous Peoples are fully involved in the planning and implementation and that their needs

are met (Seddon et al., 2021). In addition, the analyses of simulations under the medium to high

emission scenarios RCP4.5 and RCP8.5 in Martens et al. (2021, Chapter 2) and the "middle-of-

the-road" SSP2-RCP4.5 scenario and the "fossil-fueled development" SSP5-RCP8.5 scenario in

Martens et al. (2022, Chapter 3) indicated that minimising climate change by cutting fossil fuel
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emissions in combination with equitable, sustainable societal developments are key to keeping

global change impacts on nature and society manageable. Nature-based solutions can only

work in combination with climate action such as decarbonisation of economies and sustainable

development where human rights especially of local communities are respected (Seddon et al.,

2021).

5.3 Conclusion

The investigations in this thesis have shown that climate change under medium to high emis-

sion scenarios will likely result in large scale ecosystem and carbon balance changes in Africa.

The presented uncertainties in the representation of the CO2 fertilisation effect, of semi-arid soil

moisture dynamics, of carbon fluxes, and of vegetation types in more niche ecosystems such as

the Nama Karoo highlight the importance of further field research and DVM development. For

the medium emission scenario, uncertainties in the CO2 fertilisation effect resulted in a smaller

range of potential future ecosystem states compared to the high emission scenario. This en-

tails that adaptation strategies and measures likely need to be less complex or extensive, when

climate change is minimised. For African protected areas, climate change challenges may be

exacerbated by socioeconomic factors to a regionally varying extent. This analysis pointed to-

wards the importance of not only taking climate action but also ensuring equitable, sustainable

development to facilitate successful ecosystem conservation. With this thesis, I hope that I was

able to make a contribution towards providing scientific evidence on possible climate change

impacts on ecosystems and conservation, the complex links with other global change factors,

and research gaps in ecosystem representation in DVMs. Based on the plethora of research on

climate and global change and their impacts on ecosystems, my hope is that we as a society

will step-by-step learn from science and move towards a lifestyle that conserves biodiversity

and will leave an earth that is liveable for future generations. For never was a story of more

hope, than this of nature and its blue-green globe.*

*Adapted from the last sentence in Shakespeare (1597): “For never was a story of more woe / Than this of Juliet
and her Romeo.”
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R code for ω² metric:

The following R code was used to calculate the effect size of the explanatory variables. The R

code was derived from https://stats.stackexchange.com/questions/2962/omega-squared-for-

measure-of-effect-in-r (website accessed on June 03, 2020, 12:55).

omega_sq <- function(aov_in, neg2zero=T){
    aovtab <- summary(aov_in)[[1]]
    n_terms <- length(aovtab[["Sum Sq"]]) - 1
    output <- rep(-1, n_terms)
    SSr <- aovtab[["Sum Sq"]][n_terms + 1]
    MSr <- aovtab[["Mean Sq"]][n_terms + 1]
    SSt <- sum(aovtab[["Sum Sq"]])
    for(i in 1:n_terms){
        SSm <- aovtab[["Sum Sq"]][i]
        DFm <- aovtab[["Df"]][i]
        output[i] <- (SSm-DFm*MSr)/(SSt+MSr)
        if(neg2zero & output[i] < 0){output[i] <- 0}
    }
    names(output) <- rownames(aovtab)[1:n_terms]

    return(output)
}

2
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Uncertainty in African vegetation projections

Supplementary Figures and Tables

Supplementary Table S1: General Circulation Models (GCMs) from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) used in the ensemble experiment and the 

institutions and countries, where they were developed.

GCM 
abbreviation

Full name Institute Country 
of origin

ACCESS Australian Community 
Climate and Earth System 
Simulator

Commonwealth Scientific and 
Industrial Research Organisation/ 
Bureau of Meteorology

Australia

CCSM4 Community Climate 
System Model 4

National Center for Atmospheric 
Research (NCAR)

USA

CNRM CNRM Climate Model 
version 5 (CNRM-CM5)

Centre National de Recherches 
Météorologiques (CNRM) 

France

GFDL GFDL Climate Model 
version 3 (GFDL-CM3)

Geophysical Fluid Dynamics 
Laboratory (GFDL)

USA

MPI MPI Earth System Model 
(MPI-ESM)

Max Planck Institute (MPI) for 
Meteorology

Germany

NorESM1M Norwegian Earth System 
Model

Bjerknes Centre for Climate Research,
Norwegian Meteorological Institute 
(NCC)

Norway

3

142
Appendix A. Supporting Information for “Large uncertainties in future biome changes in

Africa call for flexible climate adaptation strategies”



Uncertainty in African vegetation projections

Supplementary Table S2: Scheme for classifying vegetation into seven different biomes, 

based on Scheiter et al. (2012 & 2018). Dominant trees or grasses account for >50% of tree 

cover or grass biomass (peak leaf biomass), respectively. ‘–’ means that a variable was not 

used for the classification of a certain biome.

Biome Tree cover Dominant trees Grass biomass Dominant grasses

Desert <10% - <1.5t/ha -

C4 grassland <10% - >1.5t/ha C4

C3 grassland <10% - >1.5t/ha C3

C4 savanna 10-80% Savanna tree - C4

C3 savanna 10-80% Savanna tree - C3

Woodland 10-80% Forest tree - -

Forest >80% - - -

4
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Uncertainty in African vegetation projections

Supplementary Table S3: Variability of carbon stored in continental-scale mean total 

aboveground biomass (in PgC) and variability of WUE (in gC / H2O) in 2080-2099. ‘GCM 

variability’ is 2×SD of the ensemble mean per scenario. ‘RCP variability’ is the difference 

between the ensemble means of each RCP scenario per CO2 scenario. ‘CO2 variability’ is the 

difference between eCO2 and fCO2 scenarios per RCP scenario. ‘x’ designates which 

scenarios or ensemble members were used to derive the respective variability. ‘–’ means that 

this category was not considered in the specific case. See Fig. 1 for the according time series.

CO2 scenario RCP 
scenario

GCM variability RCP variability CO2 variability

eCO2 fCO2 4.5 8.5 AGB WUE AGB WUE AGB WUE
 x  x   9.7 0.048  -  -  -  -
 x x 11.2 0.085  -  -  -  -

 x  x   7.2 0.041  -  -  -  -
 x x   7.2 0.044  -  -  -  -

 x  x x  -  - 11.2 0.327  -  -
 x  x x  -  -   8.0 0.048  -  -

x x x  -  -  -  - 14.8 0.173
 x  x x  -  -  -  - 34.1 0.548

5
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Uncertainty in African vegetation projections

Supplementary Table S4: Change in aboveground biomass (AGB) and WUE from 2000-

2019 to 2080-2099 for the six GCMs in each RCP-CO2 scenario.

Scenario GCM AGB change WUE change

RCP4.5, eCO2 ACCESS 31.0% 20.0%

CCSM4 43.4% 20.2%

CNRM 33.3% 22.7%

GFDL 17.7% 15.3%

MPI 28.7% 21.4%

NorESM1M 35.7% 24.7%

RCP8.5, eCO2 ACCESS 59.6% 64.0%

CCSM4 60.1% 72.2%

CNRM 61.2% 73.0%

GFDL 36.4% 61.3%

MPI 48.4% 65.6%

NorESM1M 55.2% 73.7%

RCP4.5, fCO2 ACCESS   3.6%  -4.7%

CCSM4 11.2%  -4.1%

CNRM   5.7%  -2.6%

GFDL  -7.5%  -9.1%

MPI    2.4%  -3.7%

NorESM1M    7.5%  -0.9%

RCP8.5, fCO2 ACCESS   -6.1% -12.5%

CCSM4   -7.4%  -9.4%

CNRM   -6.0%  -8.8%

GFDL -22.2% -15.7%

MPI -13.4% -12.5%

NorESM1M   -9.8%  -9.0%

6
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Uncertainty in African vegetation projections

Supplementary Table S5: ANOVA for change in carbon in aboveground biomass (AGB) 

and water use efficiency (WUE) between 2000-2019 and 2080-2099. The table presents F-

values from ANOVA for the dependent variables “aboveground biomass change” and “water 

use efficiency”, and independent variables “CO2 scenario”, “RCP scenario” and “GCM” that 

were used for the omega-squared metric. Two-way interaction effects are included in the 

model and are denoted with ‘:’.

Independent 
variables & 
interaction effects

F-value

AGB WUE

 CO2 8330 7992

 RCP 50 1210

 GCM 146 23

 CO2:RCP 1293 2198

 CO2:GCM 12 3

 RCP:GCM 6 2

7
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Uncertainty in African vegetation projections

Supplementary Figure S1: Mean annual temperature (MAT) and precipitation (MAP) in 

2000-2019 and change by 2080-2099. MAT in 2000-2019 (a) is the mean across all six GCMs

under RCP4.5. Change in MAT for RCP4.5 (b) and RCP8.5 (c) is the difference between the 

periods 2080-2099 and 2000-2019 in °C. MAP in 2000-2019 (d) is the mean across all six 

GCMs under RCP4.5. Change in MAP for RCP4.5 (e) and RCP8.5 (f) is the difference 

between the periods 2080-2099 and 2000-2019 in mm.

8
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Uncertainty in African vegetation projections

Supplementary Figure S2: Simulated aboveground biomass in t/ha for 2080-2099. The 

maps show the ensemble mean in 2080-2099 across all six ensemble members under eCO2 (a, 

b) and fCO2 (c, d) with RCP4.5 (a, c) and RCP8.5 (b, d).

9
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Uncertainty in African vegetation projections

Supplementary Figure S3: Total aboveground carbon in Africa between 2000 and 2099 

simulated by all six ensemble members and their mean (black lines) under RCP4.5 and 

RCP8.5 with eCO2 and fCO2.

10
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Uncertainty in African vegetation projections

Supplementary Figure S4: Mean NPP (a) and mean total transpiration (b) from vegetation in 

Africa between 2000 and 2099 across all six ensemble members under RCP4.5 and RCP8.5 

with eCO2 and fCO2 . Shaded areas are the mean +/- standard deviation of the six ensemble 

members per scenario. NPP  and transpiration are used to calculate water use efficiency 

(WUE).

11
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Uncertainty in African vegetation projections

Supplementary Figure S5: MAP change versus NPP change per grid cell between 2000-2019 

and 2080-2099 for eCO2 (a,b) and fCO2 (c,d) under RCP4.5 (a,c) and RCP8.5 (b,d). Change is

the ratio between 2000-2019 and 2080-2099. Black lines are regression lines for all data 

points of a scenario. Coloured lines are regression lines for the respective biomes per 

12
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Uncertainty in African vegetation projections

scenario. Points have the colour and shape of the biome in 2000-2019. See Fig. 4 for overall 

regression lines of MAP-NPP change of all four scenarios in one figure.

13
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Uncertainty in African vegetation projections

Supplementary Figure S6: Consensus biome type under eCO2 RCP4.5 in 2000-2019 (a), 

biome changes in 2080-2099 (b) and transitions and fractional cover of biomes (c).  The 

consensus biome type is the biome simulated by most ensemble members of the scenario. 

Grid cells with an agreement of less than three ensemble members do not have a higher 

probability than an outcome by chance and are marked as ‘No consensus’. The biomes shown 

in (b) are the biomes that were simulated for 2080-2099, shown only for grid cells where 

biome transitions were simulated for the consensus biome. Numbers in each coloured circle 

(c) represent the percentage of area covered by each biome at the respective time step in the 

consensus map. Arrows show biome changes with regard to the previous time step. Thicker 

arrows indicate that a higher proportion of the total area changed. In panel (c), only changes 

that affect more than 0.5% of the African land surface are shown. See Fig. 5 for RCP8.5.

14
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Uncertainty in African vegetation projections

Supplementary Figure S7: Consensus biome type under fCO2 RCP4.5 in 2000-2019 (a), 

biome changes in 2080-2099 (b) and transitions and fractional cover of biomes (c). The 

consensus biome type is the biome simulated by most ensemble members of the scenario. 

Grid cells with an agreement of less than three ensemble members do not have a higher 

probability than an outcome by chance and are marked as ‘No consensus’. The biomes shown 

in (b) are the biomes that were simulated for 2080-2099, shown only for grid cells where 

biome transitions were simulated for the consensus biome. Numbers in each coloured circle 

(c) represent the percentage of area covered by each biome at the respective time step in the 

consensus map. Arrows show biome changes with regard to the previous time step. Thicker 

arrows indicate that a higher proportion of the total area changed. In panel (c), only changes 

that affected more than 0.5% of the African land surface are shown. See Fig. 6 for RCP8.5.

15
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Uncertainty in African vegetation projections

Supplementary Figure S8: Consensus biome type and number of scenarios simulating the 

consensus type for eCO2 simulations under RCP4.5 (left, a, c, e) and RCP8.5 (right, b, d, f). 

The consensus biome type is the biome simulated by the majority of ensemble members. The 

number of ensemble members simulating the consensus type is denoted as ‘Agreement’. Grid 

cells with less than three agreeing ensemble members are marked as ‘No consensus’.

16
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Uncertainty in African vegetation projections

Supplementary Figure S9: Consensus biome type and number of scenarios simulating the 

consensus type for fCO2 simulations under RCP4.5 (left, a, c, e) and RCP8.5 (right, b, d, f). 

The consensus biome type is the biome simulated by the majority of ensemble members. The 

number of ensemble members simulating the consensus type is denoted as ‘Agreement’. Grid 

cells with an agreement of less than three ensemble members are marked as ‘No consensus’.

17
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Uncertainty in African vegetation projections

Supplementary Figure S10: Simulation agreement in 2000-2019, under eCO2 (a) and change 

in agreement in 2080-2099 under eCO2 (b) and fCO2  (c) for RCP4.5. The number of 

ensemble members simulating the consensus type is denoted as ‘Agreement’. Grid cells with 

an agreement of less than three ensemble members are marked as ‘No consensus’.We only 

displayed the number of ensemble members simulating the consensus type in 2000-2019 for 

eCO2, because agreement is almost identical for eCO2 and fCO2 (see Fig. S8a and S9a). The 

consensus biome type is the biome simulated by the majority of ensemble members of the 

scenarios. See Fig. 8 for RCP8.5.
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Uncertainty in African vegetation projections

Figure S11: Probability of biome change between 2000-2019 and 2080-2099. The number of 

the six GCM ensemble members per scenario (here RCP4.5, eCO2 and fCO2) that showed a 

biome change from 2000-2019 to 2080-2099 was used as a measure of probability of biome 

change. The more ensemble members projected a biome change per grid cell, the higher its 

probability of biome change. High probability of biome change – all 6 simulations project 

biome changes; medium probability of biome change – 4-5 simulations with biome changes; 

low probability of biome change – 3 simulations with biome changes; no change – 0-2 

simulations with changes. Grid cells with 2 or fewer simulations with biome changes do not 

have a higher probability than an outcome by chance and were therefore regarded as ‘no 

change’. Whether the ensemble members simulated the same type of biome transition was not

considered here. See Fig. 9 for RCP8.5.
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Appendix S1 Overview of data used to analyse global change pressure on African protected areas (PAs).

African PAs from the WDPA data base (1) were filtered to only include terrestrial PAs that are equal to or

bigger than 5 km² and are officially “inscribed” or “designated” (2). For this PA selection, buffers of

10-km-width were created (3). For each PA, aDGVM simulated tree cover and biomass within their

perimeters were derived (4). Using population densities from (Gao, 2019) and land use types from LUH2

data (Hurtt et al., 2020), population pressure (5) and land-use pressure (6) in the perimeters of PAs were

derived. These human pressures in the buffer areas were used as proxies for future human pressures

exerted on PAs. For (4)-(6) data for two RCP-SSP scenarios, i.e. SSP2-RCP4.5 and SSP5-RCP8.5, were

used to investigate differences between two future scenarios. These data for PAs were then used to analyse

in which continental regions global change pressures were high and where individual pressures co-occurred

(7). aDGVM - adaptive Dynamic Global Vegetation Model; LUH2 - Land-Use Harmonization; RCP -

representative concentration pathway; SSP - shared socio-economic pathway; WDPA - world database on

protected areas (UNEP-WCMC & IUCN, 2019).
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Appendix S2 List of protected areas used in this analysis. Geographical location and administrative

boundaries of protected areas in Africa used in this study were derived from the World Database on

Protected Areas (WDPA; UNEP-WCMC & IUCN, 2019). Terrestrial protected areas in Africa of a size

bigger than 5 km2 were selected for the analysis. Protected areas without spatial polygon data available

were excluded from this study as well as protected areas whose designation status is ‘proposed’ or ‘not

reported’. Transfrontier PAs in our analysis and their buffers did not lie in multiple regions. The table can

be found in a separate file.
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Appendix S3 Weighting scheme for land-use pressure factors based on LUH2a land use types and age

classes.

Aggregated land use

types

Ageb Pressurec LUH2 land use types

Primary vegetation 0
forested primary land &

non-forested primary land

Secondary vegetation

mature

intermediate

young

>100 years

30-100 years

<30 years

1

2

3

potentially forested primary land &

potentially non-forested primary land

Pastures 4
managed pasture &

rangeland

Cropland 7

C3 annual crops,

C3 perennial crops,

C4 annual crops,

C4 perennial crops &

C3 nitrogen-fixing crops

Urban 10 urban

aLand-Use Harmonization (LUH2) data (Hurtt et al., 2020)

bBased on Newbold et al. (2015). Age is only used to classify secondary vegetation in subgroups.

cBased on Venter et al. (2016). For each grid cell the fraction covered by each aggregated land use

type was multiplied with the assigned pressure and then summed over all aggregated land use types.

The maximum land-use pressure in a grid cell is ten (100% urban area).
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Appendix S4 Classification scheme for grouping vegetation into four different biomes (simplified from

Martens et al., 2021).

Biome Tree cover Total aboveground

biomass

Desert -* <1.5t/ha

Grassland <10% >1.5t/ha

Savanna 10-70% >1.5t/ha

Forest >70% >1.5t/ha

*Variable was not used for classification of deserts.
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Appendix S5 Classification scheme for habitat loss for the four biomes.

Biome aDGVMa variable Level of changeb

Desert aboveground biomass >0.5t/ha

Grassland tree coverc >5p.p.

Savanna tree coverc >10p.p or <-10p.p.d

Forest tree coverc <-20%d

a adaptive Dynamic Global Vegetation Model

bHabitat loss for each biome is determined by change between 2000-2019 and 2080-2099 of the given

aDGVM output variable.

cLevel of change is based on percentage points for tree cover.

dHabitat loss is defined following (Aleman et al., 2016); p.p., percentage points.
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Appendix S6 Regions used for grouping protected areas based on regions of the African Union

(Council of Ministers, Organization of African Unity, 1976)

Region Countries

Central Africa Burundi, Cameroon, Central African Republic, Chad, Congo Republic, DR

Congo, Equatorial Guinea, Gabon, São Tomé and Principe

East Africa Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Mauritius,

Rwanda, Seychelles, Somalia, South Sudan, Sudan, Tanzania, Uganda

North Africa Algeria, Egypt, Libya, Mauritania, Morocco, Sahrawi Republic, Tunisia

Southern Africa Angola, Botswana, Eswatini, Lesotho, Malawi, Mozambique, Namibia, South

Africa, Zambia, Zimbabwe

West Africa Benin, Burkina Faso, Cabo Verde, Côte d’Ivoire, Gambia, Ghana, Guinea,

Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo
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Appendix S7 (a) Climate-driven change in tree cover in protected areas (derived from adaptive

dynamic global vegetation model (aDGVM) based on results from Martens et al., [2021]) and (b)

socio-economic pressures in 10-km zones around protected areas by biome and region under

SSP2-RCP4.5 (SSP, shared socioeconomic pathways; RCP, representative concentration pathways)

and SSP5-RCP8.5 scenarios (defined in Table 1 and text) (p.p., percentage points; pop., population;

press., pressure; LU, land use; horizontal lines, median; box ends, 25% and 75% quantile; ends of

whisker lines, smallest or largest value respectively ≥ or ≤ 1.5 times the interquartile range beyond the

box ends of protected areas in each group; Des. - desert; Grl. - grasland; For - forest; Sav. - savanna).

Regions are based on regions defined by the African Union (Appendix S6). Absolute values for
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tree-cover change from 2000-2019 to 2080-2099 are used because both negative and positive

tree-cover changes represent climate-driven vegetation changes. The socio-economic pressures

population (based on Gao [2017]) and land use (based on Hurtt et al. [2020]) in 10-km zones around

the protected areas were rescaled from 0 to 10 (Appendix S3, Eq. 1) based on Venter et al.’s (2016)

scheme. Each protected area's biome is derived from mean state variables simulated by aDGVM.
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Appendix S8 (a, e) Population density, and (b, f) land-use pressure in 2020 and their change until 2090

([c, g] population density change; [d, h] land use change) in Africa and protected areas under SSP-RCP

scenarios (c, d, left) SSP2-RCP4.5 and (g, h, right) SSP5-RCP8.5 (RCP, representative concentration

pathways; SSP, shared socioeconomic pathways). Population projections were derived from Gao

(2017). Land use (based on Hurtt et al., 2020) pressure is weighted based on an adapted scheme from

Venter et al. (2016) where higher numbers represent higher land-use pressure (see Appendix S3).

Protected areas used in this study are mapped on top for each panel.
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Appendix S9 Population and land-use pressure in 10-km-buffers around protected areas for

SSP2-RCP4.5 grouped by region and biome with habitat loss. Each protected area is represented by a

point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a point

represents the mean biome in the protected area as classified using the scheme in Appendix S4. Filled

points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Land use (based on Hurtt et al., 2020) and population (based on Gao, 2017) pressures

were weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

Appendix B. Supporting Information for “Combined impacts of future climate-driven

vegetation changes and socioeconomic pressures on protected areas in Africa”
171



panels of the figure.

Appendix S10 Population and land-use pressure in 10-km-buffers around protected areas for

SSP5-RCP8.5 grouped by region and biome with habitat loss. Each protected area is represented by a

point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a point

represents the mean biome in the protected area as classified using the scheme in Appendix S4. Filled

points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Land use (based on Hurtt et al., 2020) and population (based on Gao, 2017) pressures

were weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S11 Change in population and land-use pressure in 10-km-buffers around protected areas

for SSP2-RCP4.5 grouped by region and biome with habitat loss. Each protected area is represented

by a point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a

point represents the mean biome in the protected area as classified using the scheme in Appendix S4.

Filled points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Change in land use (based on Hurtt et al., 2020) and population (based on Gao, 2017)

pressures were weighted based on an adapted scheme from Venter et al. (2016). The shown legend

applies to all panels of the figure.
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Appendix S12 Change in population and land-use pressure in 10-km-buffers around protected areas

for SSP5-RCP8.5 grouped by region and biome with habitat loss. Each protected area is represented

by a point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a

point represents the mean biome in the protected area as classified using the scheme in Appendix S4.

Filled points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Change in land use (based on Hurtt et al., 2020) and population (based on Gao, 2017)

pressures were weighted based on an adapted scheme from Venter et al. (2016). The shown legend

applies to all panels of the figure.
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Appendix S13 Tree-cover change in protected areas and population pressure in 10-km-buffers for

SSP2-RCP4.5 grouped by region and biome with habitat loss. Each protected area is represented by a

point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a point

represents the mean biome in the protected area as classified using the scheme in Appendix S4. Filled

points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Population (based on Gao, 2017) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S14 Tree-cover change in protected areas and population pressure in 10-km-buffers for

SSP5-RCP8.5 grouped by region and biome with habitat loss. Each protected area is represented by a

point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a point

represents the mean biome in the protected area as classified using the scheme in Appendix S4. Filled

points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Population (based on Gao, 2017) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S15 Tree-cover change in protected areas and population pressure change in 10-km-buffers

for SSP2-RCP4.5 grouped by region and biome with habitat loss. Each protected area is represented

by a point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a

point represents the mean biome in the protected area as classified using the scheme in Appendix S4.

Filled points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Population (based on Gao, 2017) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S16 Tree-cover change in protected areas and population pressure change in 10-km-buffers

for SSP5-RCP8.5 grouped by region and biome with habitat loss. Each protected area is represented

by a point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a

point represents the mean biome in the protected area as classified using the scheme in Appendix S4.

Filled points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Population (based on Gao, 2017) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S17 Tree-cover change in protected areas and land-use pressure in 10-km-buffers for

SSP2-RCP4.5 grouped by region and biome with habitat loss. Each protected area is represented by a

point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a point

represents the mean biome in the protected area as classified using the scheme in Appendix S4. Filled

points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Land use (based on Hurtt et al., 2020) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S18 Tree-cover change in protected areas and land-use pressure in 10-km-buffers for

SSP5-RCP8.5 grouped by region and biome with habitat loss. Each protected area is represented by a

point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a point

represents the mean biome in the protected area as classified using the scheme in Appendix S4. Filled

points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Land use (based on Hurtt et al., 2020) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S19 Tree-cover change in protected areas and change in land-use pressure in 10-km-buffers

for SSP2-RCP4.5 grouped by region and biome with habitat loss. Each protected area is represented

by a point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a

point represents the mean biome in the protected area as classified using the scheme in Appendix S4.

Filled points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Land use (based on Hurtt et al., 2020) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S20 Tree-cover change in protected areas and change in land-use pressure in 10-km-buffers

for SSP5-RCP8.5 grouped by region and biome with habitat loss. Each protected area is represented

by a point. Colours represent the regions that the protected areas are in (Appendix S6). The shape of a

point represents the mean biome in the protected area as classified using the scheme in Appendix S4.

Filled points represent protected areas projected to show habitat loss following the classification in

Appendix S5. Tree-cover change was derived from simulations with the adaptive Dynamic Global

Vegetation Model (aDGVM, Martens et al., 2021). Land use (based on Hurtt et al., 2020) pressure was

weighted based on an adapted scheme from Venter et al. (2016). The shown legend applies to all

panels of the figure.
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Appendix S21 Climate-driven tree-cover changes on protected areas (a) and socio-economic

pressures in 50-km buffers around protected (b) areas by region under SSP2-RCP4.5 and

SSP5-RCP8.5. See Fig. 2 for the same figure with the 10-km buffer used in the study. The box plots are

based on median, 25% and 75% quantile, and smallest (largest) value greater (less) than or equal to

1.5 times the interquartile range of protected areas in each group. Asterisks are the respective

continental scale medians from the ‘Africa’ panel for each pressure and scenario combination. Regions

are based on regions defined by the African Union (Appendix S6). Tree-cover change in percentage

points (a) is derived from the adaptive dynamic global vegetation model (aDGVM, based on results

from Martens et al., 2021). Absolute values for tree-cover change values from 2000-2019 to 2080-2099
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are used because both negative and positive tree-cover changes represent climate-driven vegetation

changes. For (b), the socio-economic pressures population (based on Gao, 2017) and land use (based

on Hurtt et al., 2020) in 50-km buffers around the protected areas were rescaled to 0-10 (Appendix S3,

Equ. 1) using a scheme from Venter et al. (2016). Grey vertical lines separate each socio-economic

pressure and their changes. See Appendix S7 for pressures on protected areas by biome and region

under both scenarios. See Appendix S7 for pressures on protected areas by biome and region under

both scenarios. aDGVM - adaptive Dynamic Global Vegetation Model; LU - land use; Pop. - Population;

RCP - representative concentration pathway; SSP - shared socio-economic pathways.
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Appendix C

Supporting Information for “Towards

carbon accounting in southern Africa’s

Nama Karoo ecosystem”

C.1 Measurement campaign in October 2016 in Middelburg, Eastern

Cape, South Africa

In a measurement campaign from 19th to 21st of October 2016 in Middelburg, Eastern Cape,

South Africa data for a site description for the Middelburg eddy covariance flux towers was

collected under the lead of Nicola Stevens supported by me. The measurements were imple-

mented in the vicinity of the eddy covariance flux tower with the coordinates 31°25’S, 25°01’E.

Collected data included 8 transects of 50 m length in the directions East, North East, North,

etc. starting at the eddy covariance flux tower. For each transect, shrubs that intersected with

the transect were recorded with their start and end point and the resulting intersecting length,

their width perpendicular to the transect, their height, and their species.
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For chapter 4, I derived mean shrub height and standard deviation based on the height meas-

urements along the transects. Based on recorded length and width of the shrubs and the as-

sumptions of an elliptical shape of the shrub canopy area was derived for each recorded indi-

vidual:

canopy area =
length ∗ width

2
∗ Π. (C.1)

Mean shrub canopy area and its standard deviation was calculated as the mean of the indi-

vidual canopy areas. The intersection length was also used to derive overall shrub cover. For

each pair of perpendicular transects, the shrub cover was calculated based on the transect in-

tersection of each shrub individual i, lengthi and the length of the two transects lengthtr:

shrub cover = ∑(lenghti)

2 ∗ lengthtr
. (C.2)

The overall canopy cover and its standard deviation was then calculated as the mean across

the derived shrub covers for each of the 8 pairs of perpendicular transects.

Please contact Dr. Nicola Stevens to get access to the original data.
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