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Abstract

The inclusive J/y production in Pb—Pb collisions at the center-of-mass energy per nucleon pair
VSan = 9.02TeV, measured with the ALICE detector at the CERN LHC, is reported. The J /W meson
is reconstructed via the dimuon decay channel at forward rapidity (2.5 <y < 4) down to zero trans-
verse momentum. The suppression of the J/y yield in Pb—Pb collisions with respect to binary-scaled
pp collisions is quantified by the nuclear modification factor (Raa). The Raa at /sy = 5.02 TeV
is presented and compared with previous measurements at /sy = 2.76 TeV as a function of the
centrality of the collision, and of the J/y transverse momentum and rapidity. The inclusive J/y Raa
shows a suppression increasing toward higher transverse momentum, with a steeper dependence for
central collisions. The modification of the J/y average transverse momentum and average squared
transverse momentum is also studied. Comparisons with the results of models based on a transport
equation and on statistical hadronization are carried out.
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1 Introduction

The study of ultra-relativistic heavy-ion collisions aims to investigate the properties of strongly-interacting
matter at high temperature and energy density. Lattice Quantum Chromodynamics calculations predict
that a deconfined state of partonic matter, the so-called Quark—Gluon Plasma (QGP), can be created in
such collisions [1H3]. Among the many possible probes to study this phase of matter, heavy quarks
(charm (c) and beauty (b)) are particularly interesting as they are expected to be produced in the initial
stage of the collisions, by hard partonic scatterings, and to experience the full evolution of the system.
In particular, it was predicted that bound states of ¢ and ¢ quarks (known as charmonia) should be sup-
pressed due to the color-screening mechanism [4]. The suppression probabilities of the quarkonium (cc
or bb) states in the QGP depend on their binding energies and the medium temperature. Therefore, the
measurement of the relative production rates of the quarkonium states should give indications on the
temperature of the system [5]. Among the different charmonium states, the study of the ground state
with quantum numbers J¢ = 1=~ (J/w) is comparatively more accessible due to its larger abundance
and to the relatively large branching ratio to dileptons, and has led to several important results.

Over the past decades, the J/y production in heavy-ion collisions was measured at the SPS, RHIC and
the LHC, covering a wide range of center-of-mass energies per nucleon pair (,/sy,) from about 17 GeV
to 5.02 TeV. A suppression of the J/y production yield in nucleus—nucleus (AA) relative to that expected
from measurements in proton—proton (pp) collisions was observed at the SPS at | /s = 17 GeV [6,[7], at
RHIC up to /s = 0.2 TeV [8H11] and at the LHC at /5 = 2.76 TeV [12-16] and 5.02 TeV [17519].
The suppression is evaluated through the calculation of the nuclear modification factor (Raa), corre-
sponding to the ratio of the production yields in AA and the cross section in pp collisions, normalised
by the nuclear overlap function ((Taa)) [20]. The observed suppression does not increase with increas-
ing collision energy as expected in the color-screening picture considering the increasing temperature of
the formed QGP. This observation is naturally explained by a further production mechanism known as
regeneration, in which abundantly produced cC pairs recombine into J/y [21} 22]]. The contribution of
the regeneration to J/y production has to increase with the density of cc pairs and consequently with the
collision energy. It is worth noting that the regeneration contribution should favour low transverse mo-
mentum (pr) J/y, as the bulk of charm quarks are produced at small momenta [21}22]]. The regeneration
scenario was further supported by the measurement of a positive J/y elliptic flow (v;) [23H27] which, at
low pr, can be acquired via charm-quark recombination [28, 29]. It is important to note that in addition
to the effects discussed above, related to the production of a high energy-density medium, the so-called
cold-nuclear-matter effects may also have a sizeable influence on the charmonium yields. In particular,
the modification of the parton distribution functions in the nucleus (e.g. nuclear shadowing [30, [31]])
may modify the initial yields of charm quarks and has to be taken into account in the interpretation of
the results. Quantitative estimates of these effects are carried out via the study of proton—nucleus col-
lisions [32H37]. Finally, a quantitative interpretation of the results requires taking into account that the
observed J/y are produced either promptly, i.e. as direct J/y or via decay of higher-mass charmonium
states (X, W(2S)), or non-promptly through the weak decay of hadrons containing a b quark [38].

For a better assessment of the suppression-regeneration scenario, extensive studies of the centrality,
pr and rapidity dependence of the J/y nuclear modification factor have to be carried out. The first
ALICE measurement of the inclusive (sum of prompt and non-prompt sources) J/y production at /s =
5.02 TeV at forward rapidity [[17] has shown a hint for an increase of Ras with respect to the /s =
2.76 TeV results in the region 2 < pr < 6 GeV/c, while the results were consistent elsewhere.

In this paper, we complement the results obtained in Ref. [17]]. The J/y Raa is simultaneously obtained
in different collision centrality classes and py or rapidity intervals. In addition, to further assess the
kinematic region of influence of the J/y regeneration mechanism, results on the J/y average pr and p2
as a function of centrality are presented.
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The paper is organized as follows: Sec.2]is dedicated to the description of the ALICE detector systems
used in this analysis. The analysis procedure is briefly explained and a summary of the systematic
uncertainties is also given in Sec.[3] Results are presented and compared to available measurements at
V/Sxw = 2.76 TeV and model calculations in Sec.

2 Apparatus and data sample

The ALICE detector and its performance are extensively described in Refs. [39] and [40], respectively.
J/w mesons are reconstructed in the muon spectrometer (covering the pseudo-rapidity interval —4 <
n < —2.5E]) via their dimuon decay channel down to zero pr. The muon spectrometer consists of a
4.1 m (10 interaction lengths (Aiy)) thick front absorber which is used to filter out hadrons coming from
the interaction point (IP), followed by tracking (MCH) and triggering (MTR) systems. Each of the five
tracking stations is composed of two planes of cathode pad chambers. The third tracking station is located
inside a dipole magnet with a field integral of 3 Tm. A 1.2 m (7.2Aiy) thick iron wall, which absorbs
secondary hadrons escaping from the front absorber and low-momentum muons produced predominantly
from 7 and K decays, is located between the tracking system and the trigger stations. Each of the two
trigger stations consists of two planes of resistive plate chambers. Finally, a small-angle conical absorber
around the beam-pipe protects the spectrometer from secondary particles produced by interactions of
large-n primary particles with the beam-pipe.

The other detectors used in this analysis are the Silicon Pixel Detector (SPD), the VO scintillator detec-
tors, the Cherenkov detectors TO and the Zero Degree Calorimeters (ZDC). The SPD [41]] provides the
coordinates of the primary vertex of the collision, and consists of two cylindrical layers covering || <
2 (inner layer) and || < 1.4 (outer layer). The VO [42], composed of two arrays of 32 scintillator tiles
each, and located on both sides of the IP, covers 2.8 < n < 5.1 (VOA) and —3.7 < n < —1.7 (VOC), and
is used as a trigger detector, for the centrality determination and to remove beam-induced background.
It is also used for the measurement of the luminosity along with the TO detector [43], which consists of
two quartz Cherenkov counters, located on each side of the IP and covering the pseudo-rapidity intervals
—33<n<-3and 4.6 <n <4.9. The ZDCs, located on either side of the IP at == 114 m along the
beam axis, detect spectator nucleons emitted at zero degrees with respect to the LHC beam axis, and are
used to reject electromagnetic Pb—Pb interactions [44]].

The centrality determination and the evaluation of the average number of participant nucleons in the
collision ((Npart>) for each centrality class is based on a Glauber model fit to the VO signal amplitude
distribution as described in Refs. [45] 46]]. The events are classified in centrality classes corresponding
to percentiles of the nuclear hadronic cross section. In this analysis, events corresponding to the most
central 90% of the inelastic cross section were selected. For these events the minimum bias (MB) trigger
is fully efficient and the residual contamination from electromagnetic processes is negligible. The MB
trigger is defined by a coincidence of the signals from both sides of the VO detector.

The analysis presented here is based on dimuon-triggered events which require, in addition to the MB
condition, the detection of two Unlike-Sign (US) tracks in the triggering system of the muon spectrom-
eter. The muon trigger selects muon candidates having a transverse momentum larger than a given
threshold which corresponds to the value for which the trigger efficiency reaches 50%. In Pb—Pb colli-
sions the p threshold is &~ 1 GeV/c with the single-muon trigger efficiency reaching a plateau value of
98% at ~ 2.5 GeV/c [47].

The current analysis exploits the data samples of Pb—Pb collisions at , /s, = 5.02 TeV collected during
2015. This corresponds to an integrated luminosity LE9F® ~ 225 ub~!.

!In the ALICE reference frame, the muon spectrometer covers a negative 7 interval and consequently negative y values. We
have chosen to present our results with a positive y notation.
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3 Data analysis
For a centrality class i, the double-differential J/y invariant yield (YJi/W) is defined as

szJi/u, _ NJi/q,(PTa)’) -
dydpr  BRyjy_pu+py--Apr-Ay- (A X&) (pr,y) - Nyp ’

(D

where Nf/w(pT,y) is the number of J/y for a given pr and y interval, BRy/y_, ;- = (5.96+0.03)% is
the branching ratio of the dimuon decay channel [48]], Apr and Ay are respectively the widths of the py
and y intervals, (A x €)'(pr,y) is the product of the detector acceptance and the reconstruction efficiency
for that pr and y interval, and Njp is the equivalent number of minimum-bias events. The values of N
are obtained as the product of the number of dimuon-triggered events times the inverse of the probability
of having a dimuon trigger in a MB event (F’). The F' values correspond to those quoted in Ref. [[17].
For the centrality integrated sample, the value of the normalization factor is FO~2°% = 11.84 & 0.06.
The quoted uncertainty is systematic and corresponds to the difference between the results obtained with
two methods, either by calculating the ratio of the counting rates of the two triggers, or by applying the
dimuon trigger condition in the analysis of MB events.

The nuclear modification factor Raa is given by

d2 Y]l/y//dyde

. , 2)
TAA>I . dch/pw/dyde

Ria(pr,y) = <

where (Taa) is the average of the nuclear-overlap function [20]. The values of (Taa)' in different cen-
trality classes were obtained using a Glauber calculation [46} 49, |50]]. The systematic uncertainty on the
(Taa) calculation, which ranges from 1% in the most central class to 3% in the most peripheral one, was
determined by varying the density parameters of the Pb nucleus and the nucleon—nucleon inelastic cross
section within their uncertainties. The systematic uncertainty on the definition of the centrality intervals
is evaluated by varying by +0.5% the fraction (90%) of the hadronic cross section selected with the cho-
sen minimal cut on the VO signal amplitude, and redefining accordingly the centrality intervals, following
the approach detailed in Ref. [17]. Values of the J/y cross section in pp collisions (dzcﬁpw /dydpr) at

/s =5.02 TeV were already reported in Refs. [17, 51]] and are used here as a reference. In addition,
following the same analysis procedure as detailed in those papers, the cross section was evaluated in
four py intervals (0.3-2, 2-5, 5-8, and 8-12 GeV/c¢) for the interval 2.5 < y < 4 and three y intervals
(2.5-3,3-3.5, and 3.5-4) for the interval pr < 12 GeV/c. The integrated luminosity of the pp sample is
LP® = (106.3+2.2) nb~! [52]].

int

The J/y candidates were formed by combining US muons reconstructed within the geometrical accep-
tance of the muon spectrometer using the tracking algorithm described in Ref. [53]]. The selection criteria
applied to both single muons and dimuons are identical to the ones used in Refs. [14, [17], requiring a
match between tracks reconstructed in the tracking system and track segments in the muon trigger sys-
tem.

The signal extraction was performed over the US dimuon invariant mass ranges [2.2,4.5] and [2.4,4.7]
GeV/c? using two methods. In the first one, the invariant mass distributions were fitted with the sum of a
signal and a background function. In the second one, the combinatorial background (dominant in central
Pb—Pb collisions) was first estimated using an event-mixing technique [[14f], and then subtracted from the
raw invariant mass distribution. Finally, the resulting distributions were fitted with the sum of a signal
and a residual background component.

The signal component of the fitting function is either a double-sided Crystal Ball function (CB2, where
independent non-Gaussian tails are present on both sides of a Gaussian core) or a pseudo-Gaussian with

4
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a mass-dependent width [54]). For both functions, the position of the J/y pole mass, as well as the width
of the resonance, are free parameters of the fits, while the non-Gaussian tail parameters were fixed.
Two sets of tail parameters were obtained from Monte Carlo (MC) simulations using different particle
transport codes (GEANT3 [55] and GEANT4 [56]) to account for the sensitivity of these parameters to
the description of the detector materials. In addition, another set of CB2 tail parameters was extracted
from the pp collisions at /s = 13 TeV data sample [51]], the sample with the largest significance of the
J/y signal. The y/(2S) signal was included in the fits using the same signal functions as for the J/y,
with mass and width tied to those of the J/y [57].

The background was parametrized either as a pseudo-Gaussian with a width quadratically dependent on
the mass or as a ratio of a 2" to 3" order polynomial. When using the event-mixing technique, the
continuum component of the correlated background remaining in the US dimuon distributions after the
background subtraction and originating mainly from semi-muonic decays of pairs of charm hadrons, was
parametrized using the sum of two exponential functions. Examples of fits to the US dimuon invariant
mass distributions, without and with subtraction of mixed-event background, are shown in Fig. (1| for
different centrality classes and p intervals. For each centrality class, pr and y interval, the number
of J/y and the statistical uncertainty are given by the average of the results from the considered fit
configurations obtained by varying the signal and background functions, the tail parameters and the
invariant mass fit range. The systematic uncertainty is defined, for each centrality, pr and y interval, as
the RMS of the various fit results. It varies between 1.5% and 3.6% as a function of centrality or pr and
between 1.5% and 5% as a function of y.

The J/y A x € was obtained using MC simulations, where the p; and y distributions for the generated
J/w were matched to the ones extracted from data using an iterative procedure as done in Ref. [33]]. Un-
polarized J/y production was assumed, consistently with the measurements of inclusive J/y polarization
in pp collisions [58, 59]. The misalignment of the detection elements as well as the time-dependent sta-
tus of each electronic channel during the data taking period were taken into account in the simulation.
Generated J/y — p*u~ signals were embedded into real minimum bias events in order to properly
reproduce the effect of detector occupancy and its variation from one centrality class to another, and
reconstructed as for real events. A relative decrease by ~14% of A x € was observed in the most central
Pb—Pb collisions with respect to the most peripheral ones.

The following sources of systematic uncertainty on A x € were considered: (i) the parametrization of
the input py and y shapes, (ii) the uncertainty on the tracking efficiency in the muon tracking chambers,
(iii) the uncertainty on the MTR efficiency and (iv) the matching between tracks reconstructed in the
tracking and triggering systems.

For the parametrization of the MC input distributions, two sources of systematic uncertainty were con-
sidered: the effect of the finite data sample used to parametrize these distributions and the correlations
between pr and y (more explicitly, the fact that the p; distribution of the J/y varies within the rapidity
interval in which it is measured). The former turns out to be negligible. For the latter, different MC
simulations were performed by varying the input p; and y distributions within limits that correspond to
this effect and re-calculating the A x € in each case as done in Ref. [51]]. The uncertainties on the tracking
efficiency in the MCH, trigger efficiency in the MTR, and on the matching efficiency between MTR and
MCH tracks were evaluated by comparing the efficiencies obtained in data and MC at the single muon
level and propagating the observed differences to the J/y candidates, as done in Ref. [60]].

In each centrality, pr and y interval, the total systematic uncertainty on the yield and Rax is determined
as the quadratic sum of the uncertainties from the different sources listed in Table [I] Correlations of
various uncertainties vs centrality, pr or y are also reported. The values in the last row correspond to the
sum of the statistical and systematic uncertainties on the pp reference.
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Fig. 1: Example of fits to the US dimuon invariant mass distributions in Pb—Pb collisions at /s = 5.02 TeV in
different centrality classes and pr intervals. The left (right) panels show the distributions before (after) background
subtraction with the event-mixing technique. Dashed gray curves correspond to background functions, red curves
to the signal functions and blue curves to the sum of the signal and background functions.

Table 1: Summary of systematic uncertainties, in percentage, on the yield and Raa in Pb—Pb collisions at , /s

NN

5.02 TeV. Values with an asterisk correspond to the systematic uncertainties correlated as a function of the given
variable. For the pp reference, the correlated and uncorrelated contributions are separated.

Sources vs centrality VS pr VS 'y
Signal extraction 1.5-3.6 1.5-3.6 1.5-5.0
MC input 2F 2-3 0.5-2.5
Tracking efficiency 3* 3 3
Trigger efficiency 1.5-2.7* 1.5-4.1 1.5-2.4
Matching efficiency 1* 1 1

F 0.5* 0.5* 0.5*
BR (only on yield) [48] 0.5" 0.5* 0.5*
(Taa) (only on Ran) 0.7-3.2 0.7-2.0* 0.7-2.0*
Centrality definition 0.1-3.5 0.2-1.4* 0.2-1.4*
pp reference (only on Ras) | 4.9-10.9* | 4.4-16.5and 2.1 | 4.7-8.5 and 2.1*
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4 Results
4.1 Nuclear modification factor

This section summarizes the results for the inclusive J/y Raa at forward rapidity in Pb—Pb collisions at
V/Syn = 5.02 TeV as a function of:

— rapidity and transverse momentum, integrated over the centrality (class 0-90%);
— rapidity and transverse momentum, for the centrality classes 0-20%, 20—40% and 40-90%;

— centrality, in four transverse momentum intervals and in three rapidity intervals.

When possible, the ratio between the results of this analysis and the measurements in Pb—Pb collisions at
VSw = 276 TeV [14], in the same kinematic interval, is computed. Only the uncertainty related to the
(Taa) cancels out in the ratio, as discussed in Ref. [17]. Following the same approach as in Refs. [14}[17],
an estimate of the Raa of prompt J/y was determined by making conservative assumptions on the size
of the non-prompt Raa. The relation between the inclusive (Raa), prompt (RAs™™") and non-prompt

- t . .
(Rioli1 PrOmPYy nuclear modification factors can be expressed as:

non-prompt
Raa — Fg - RO
)

1-Fp

R = ®
where Fy is the fraction of non-prompt to inclusive J/y in pp collisions. This quantity is evaluated at
\/s =5.02 TeV by interpolating in energy the corresponding LHCb cross-section measurements in pp
collisions at /s = 2.76 and 7 TeV [61-63]]. The limits on R}y ™" correspond to the two extreme hypothe-
ses of total non-prompt J/y suppression (Rg(f_prompt = 0) and absence of suppression (RZOK'Pmmpt =1).
The effect is small at moderate transverse momentum (< 10% for pr < 5 GeV/c) and then increases
at higher p;. Numerical values for the limits on Rirzmpt can be found in the HepData record associ-
ated to this paper. Another effect which may influence the interpretation of the inclusive J/y results is
the presence of an excess at very low pr, observed at /s, = 2.76 TeV [64] and related to J /¥ photo-
production [65]]. This source was shown to be significant with respect to hadronic production for periph-
eral Pb—Pb collisions and has a strong influence on the measured Raa values. For this reason, the region
pr < 0.3 GeV/c was excluded when dealing with peripheral collisions. The remaining contribution of
this source to the region pr > 0.3 GeV/c was evaluated following the procedure detailed in Ref. [[14]
and the maximum effect on Ra4 is explicitly shown in the following figures by use of bracket symbols.
The upper and lower limit brackets correspond to the extremest hypotheses on the contribution from

photo-produced J/y and on the efficiency of the aforementioned pr selection as described in Ref. [[14].

4.1.1 Centrality-integrated Rap as a function of y and py

Figures[2]and[3|show the inclusive J/y nuclear modification factor as a function of transverse momentum
and rapidity, integrated over the centrality class 0-90%. The results are compared with those obtained at
VS = 2.76 TeV [14] and with the results of the calculation of a transport model [28, 66]. A significant
increase of Rap is visible with decreasing pr, which was already observed for the most central events (0—
20%) and reported in Ref. [17]. Within uncertainties, the results are compatible with those obtained, in a
more restricted p interval, at the lower LHC energy, with a possible hint (1.20) of a weaker suppression
in the region 2 < pr < 6 GeV/c. The transport model calculations are in qualitative agreement with
the data. In this model, a competition between suppression and regeneration of charmonia is assumed,
choosing a cC production cross section do.z/dy = 0.57 mb and dcf/pw/dy =335ubfor25 <y<
4. The latter value is ~10% smaller than our measurement of the same quantity [17]. The model also
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Fig. 2: Inclusive J/y nuclear modification factor as a function of p; for Pb—Pb collisions at VSw =5.02TeV in
the 0-90% centrality class. The vertical error bars represent statistical uncertainties, the boxes around the points
uncorrelated systematic uncertainties, while the correlated uncertainty is shown as a filled box around Raa = 1.
The corresponding measurements in Pb—Pb collisions at /s = 2.76 TeV [14] are also shown, as well as the ratio
of the Raa values, which is depicted in the bottom panel of the figure. The Raa values at Vo = 5.02 TeV are
compared with transport model calculations [28]].

includes contributions from both prompt and non-prompt J/y. The upper (lower) limit of this calculation
corresponds to a 10% (25%) contribution of nuclear shadowing.

Figure [3] shows that, in the explored rapidity interval, there is no significant variation of the Raa values.
The calculations of the transport model are in good agreement with the experimental results. The com-
parison of the results with those obtained at /s = 2.76 TeV [14] hints (1.50) for a weaker suppression
at /sy =5.02TeV atlarge y (3.75 <y < 4).

4.1.2 Centrality-differential Rxa as a function of y and p

Figures [4] and [5] show, respectively, the pr and y dependence of the inclusive J/y Raa, for events corre-
sponding to the centrality classes 0-20%, 20-40% and 40-90%. It is worth noting that the results for
0-20% were already published in Ref. [17]. In this paper, the corresponding values were updated with
the improved (7Txa) uncertainties reported in Ref. [49]. In Fig. 4, moving from central to peripheral
collisions, a weaker p; dependence of the Raa is observed, up to an almost constant nuclear modifica-
tion factor for 40-90% centrality. When comparing results at /s, = 5.02 TeV and 2.76 TeV, a slight
increase of the Rap is visible for the most central collisions and for 2 < pr < 6 GeV/c at the higher
collision energy, while the results are compatible in the 20-40% and 40-90% samples. A fair agreement
with the transport model calculations is observed. The results for the 0-20% and 20-40% centrality
classes are also compared with a model based on statistical hadronization (SHM) [67]]. A good agree-
ment with this calculation, which does not include contributions from non-prompt J/y production, can
be found up to py ~ 4 GeV/c, while at higher transverse momentum R is underestimated. This feature
could partly be due to additional production mechanisms, not implemented in the model, such as J/y
production from gluon fragmentation in jets.

In Fig. [5] the Raa values exhibit a very weak rapidity dependence in all the centrality classes, as also
observed in 0-90% (Fig. 3)). The calculation of the transport model is able to describe the data, in
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Fig. 3: Inclusive J/y nuclear modification factor as a function of rapidity for Pb—Pb collisions at VS =5.02TeV
in the 0-90% centrality class. The vertical error bars represent statistical uncertainties, the boxes around the points
uncorrelated systematic uncertainties, while the correlated uncertainty is shown as a filled box around Raa = 1.
The corresponding measurements in Pb—Pb collisions at /s = 2.76 TeV [14] are also shown, as well as the ratio
of the Raa values, which is depicted in the bottom panel of the figure. The Raa values at Vo = 5.02 TeV are
compared with transport model calculations [28]].

particular when a weak nuclear shadowing scenario (10%, corresponding to the lower limit chosen by
the authors) is adopted.

4.1.3 Centrality dependence of Raa

In Figs. @ andthe Raa as a function of the average number of participant nucleons (Npar) is shown for
various transverse momentum and rapidity intervals, respectively. The (Npar) intervals correspond to the
centrality selections 0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, and 60-90%, from larger
to smaller (Npar) values. The results of Fig. @ clearly show that moving from low to high p; the cen-
trality dependence of Rya becomes steeper, with Ry reaching a minimum value of 0.29 4+ 0.02(stat) £
0.01(syst) for the 0-10% centrality class and 8 < p; < 12 GeV/c. In the low-py region (0.3 < p;
< 2 GeV/c), the Raa has a weak (Npar) dependence and is compatible with being constant (~ 0.7)
for (Nparr) > 150. In the most peripheral centrality class, a deviation from unity can be observed, in
particular for pr > 2 GeV/c, not seen in the theoretical calculations. As discussed in Refs [68], 69],
the origin may be from the bias introduced by the event selection and collision geometry, which causes
an apparent suppression. When comparing the results with those corresponding to Pb—Pb collisions at
Vo = 2.76 TeV [14], systematically higher Ra values are found in the py interval 2 < pr <5 GeV/c,
even if the maximum observed difference is only at 1.50 level, for the centrality region 0-10%. In all
other p intervals where the comparison is possible, the results at the two energies are compatible. When
comparing the results with the transport model calculations, the agreement is good at low pr (0.3 < pr
< 2 GeV/c), while the data lie close to the upper edge of the calculation at higher py.

In Fig. [/| the centrality dependence of the nuclear modification factor is shown for 3 rapidity intervals.
No variation of the suppression pattern against rapidity is observed. The same weak dependence can also
be observed with the transport model calculations.
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Fig. 4: Inclusive J/y nuclear modification factor as a function of p; for Pb—Pb collisions at Vo = 5.02 TeV
in the 0-20% (top), 20—-40% (middle) and 40-90% (bottom) centrality classes. The vertical error bars represent
statistical uncertainties, the boxes around the points uncorrelated systematic uncertainties, while the correlated
uncertainty is shown as a filled box around Raa = 1. The corresponding measurements in Pb—Pb collisions at
Vo = 2.76 TeV [14] are also shown, as well as the ratio of the Raa values, which is depicted in the bottom
panel of the figure. The Raa values at /s = 5.02 TeV and the ratios to lower energy results are compared with
transport model calculations [28] and, for 0-20% and 20-40% centrality, with the results of the SHM [67]. The
brackets around Raa values for 40-90% centrality in the lowest pr interval represent an estimate of the maximum
influence of J/y photo-production, as detailed in Sec.
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Fig. 5: Inclusive J/y nuclear modification factor as a function of rapidity for Pb—Pb collisions at , /5, = 5.02 TeV
in the 0-20% (top), 20-40% (middle) and 40-90% (bottom) centrality classes. The vertical error bars represent
statistical uncertainties, the boxes around the points uncorrelated systematic uncertainties, while the correlated

uncertainty is shown as a filled box around Rap = 1. The Raa values are compared with transport model calcula-

tions [28]. The brackets around Raa values for 40-90% centrality represent an estimate of the maximum influence
of J/y photo-production, as detailed in Sec.

4.2 J/y average transverse momentum and raa

A complementary insight into the modification of J/y transverse momentum distributions in Pb—Pb colli-
sions can be obtained by the study of the J/y average transverse momentum (p) and the average squared
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Fig. 6: Inclusive J/y nuclear modification factor as a function of (Nyar) for Pb—Pb collisions at , /sy = 5.02 TeV.
Results are shown for four pr intervals. The vertical error bars represent statistical uncertainties, the boxes around
the points uncorrelated systematic uncertainties, while the correlated uncertainty is shown as a filled box around
Raa = 1. When the corresponding results at /s, = 2.76 TeV are available, the ratio of the results at the two
energies is shown in the bottom section of each figure. The brackets around Rsa values for 0.3 < pr < 2
GeV/c represent an estimate of the influence of J/y photo-production, as detailed in Sec. The Raa results at
VS = 5.02 TeV as well as the available ratios to the /sy = 2.76 TeV results are compared with transport model
calculations [28]].

momentum (p2) as a function of the collision centrality. By normalizing (p3) to the corresponding pp
value, one obtains an adimensional quantity, raa = <pT2>AA/ <PT2>pp, useful for comparisons between
various collision energies and/or theory calculations.

As a first step, the J/y invariant yields as a function of py are fitted in various centrality classes with the

following function

Pr

(1+r/po)?)

f(pr)=C- &)

where C, po and n are free parameters. This function is widely used to reproduce the J/y p; distribution
in hadronic collisions (e.g Refs. [[70, [71]]). The quantities to be determined, (pr) and (p2), are then
computed as the first and second moment of f(pr) respectively. In Fig. 8] the J/y invariant yields as
a function of p; are shown for various centrality classes together with the fitted functions. In order
to limit the influence of the J/y production excess at low pr, due to photo-production, the interval py
< 0.5 GeV/c was excluded from the fit. The statistical (systematic) uncertainties on (pr) and (p3)
were obtained from fits to the invariant yield distributions, considering only statistical (pr-uncorrelated
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Fig. 7: Inclusive J/y nuclear modification factor as a function of (Nyu) for Pb—Pb collisions at | /s = 5.02 TeV,
in the interval 0.3 < pr < 12 GeV/c. Results are shown for three y intervals. The vertical error bars represent
statistical uncertainties, the boxes around the points uncorrelated systematic uncertainties, while the correlated un-
certainty is shown as a filled box around Raa = 1. The results are compared with transport model calculations [28].

systematic) uncertainties on the J/y yields.

In the left panel of Fig. E], the centrality dependence of (pr) is shown and compared with previous re-
sults at Vo = 2.76 TeV [14]. The centrality dependence of the V% = 5.02 TeV results is weak up
to (Npart) ~ 150, followed by a significant decrease towards central events. This softening of the J/y
pr distributions is a direct consequence of the smaller suppression observed at low pr when considering
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Fig. 8: Inclusive J/y yields as a function of p; in Pb—Pb collisions at VS = 5.02 TeV, for various centrality
classes. The vertical error bars represent the statistical uncertainties while the uncorrelated systematic uncertainties
are represented by boxes around the points. The curves are the results of fits obtained using the function shown in
Eq.[4] The dashed region corresponds to the region pr < 0.5 GeV/c, excluded in the fits.

the transverse-momentum dependence of the nuclear modification factors, shown in Fig. @ The (pr)
values are systematically larger than those at , /sy = 2.76 TeV, an effect due to the increase of the col-
lision energy, but the decrease of (pr) with increasing centrality is similar at the two energies. A more
direct comparison with lower energy results and theoretical calculations can be performed by studying
the quantity 7oA. The results are shown in the right panel of Fig.[0] and compared with those obtained in
Pb-Pb collisions at /s, =2.76 TeV and the transport model calculations. In peripheral collisions, and
up to (Npart) ~ 150, the raa value is compatible with unity within uncertainties. A maximum decrease of
~25% is observed for central collisions. The brackets around the (pr) and raa in peripheral collisions
represent the possible variation of the hadronic J/y (p1) and raa for two extreme hypotheses on the J/y
photo-production contamination. The lower limit bracket corresponds to the assumption of no contribu-
tion from photo-produced J/y, while the upper one corresponds to the hypothesis that all the J/y with
pr < 300 MeV/c are photo-produced. The results are compatible with those at | /sy, = 2.76 TeV, with
a hint for larger raa values at /s, = 5.02 TeV. A very different centrality dependence was observed
at lower collision energies (, /sy = 200 GeV at RHIC [72] and /sy = 17 GeV at SPS [73]]) as the
raa increases (especially at the SPS energy) towards more central collisions (the comparison was shown
in Ref. [14]). The different behaviors of ras at different energies can be explained by the increasing
amount of J/y regeneration with collision energy. Finally, the comparison with the transport model
calculation [28] shows good agreement for peripheral and central collisions, but an underestimation of
the data points is observed in the intermediate centrality class, reaching a significance up to 2.5¢ for
(Npart) ~ 150.

5 Conclusions

This paper reports on ALICE measurements of the inclusive J/y production in Pb—Pb collisions at
VS = 5.02 TeV in the kinematic range 2.5 <y < 4 up to pr < 12 GeV/c. Results on the nuclear
modification factor Raa, the average transverse-momentum (pr), and the ratio raa were presented. A
systematic comparison with the calculation of a transport model was carried out and, for the pr depen-
dence of Raa, with the results of a statistical hadronization model.

The inclusive J/y Raa as a function of transverse momentum and rapidity for the centrality range O—
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Fig. 9: (Left) Inclusive J/y (pr) measured in Pb—Pb collisions at /sy = 5.02 TeV and /s, = 2.76 TeV, as a
function of (Npar) for pr < 8 GeV/c. The vertical error bars represent the statistical uncertainties, while the uncor-
related systematic uncertainties are shown as boxes around the points. J/y (p:) results in pp collisions at the two
collision energies are also shown at <Npm>: 2. (Right) Inclusive J/y raa in Pb—Pb collisions at VS = 5.02TeV,
compared with the VS = 2.76 TeV results and a transport model calculation [28]], as a function of <Npart> for pr
< 8 GeV/c. The vertical error bars represent the quadratic sum of statistical and systematic uncertainties on the
numerator of the raa expression ({ pT2> AA), while the uncertainties on the denominator ({ pT2>pp) are shown as a
filled box around unity. In the two panels, the brackets around the two most peripheral data points represent an
estimate of the maximum influence of J/y photo-production, as detailed in Sec.

90%, is compatible with previously published results at /s = 2.76 TeV [14]. A suppression of the
J/y production is observed (Raa< 1), mild at low p; but increasing towards higher pr, and not strongly
depending on rapidity. The centrality-differential studies show that the y dependence of R is weak
and fairly independent of centrality, while the p; dependence of Raa grows steeper for more central
events. All the Raa results are fairly reproduced by the calculation of a transport model, with a tendency
to underestimate the observed Raa at intermediate pr. The statistical hadronization model reproduces,
although with larger uncertainties, the pr dependence of Raa for various centrality classes, but shows a
discrepancy in the high-pr region.

A complementary study was also carried out by measuring the centrality dependence of Raa for different
pr and y intervals. A suppression strongly increasing with centrality is visible at high pr, while at low pr
the suppression is relatively weak (Raa ~ 0.7) and practically independent of centrality. On the contrary,
the shape of the Raa as a function of centrality does not vary significantly in the studied rapidity ranges,
showing a mild decrease until (Npart) ~ 100, followed by a plateau.

Finally, the raa ratio decreases with increasing centrality, similarly to previous observations at /s =
2.76 TeV. The transport model calculation underestimates the measurement at intermediate (Npar) val-
ues.

The results shown in this paper confirm, with better accuracy, the observations carried out at /5., =
2.76 TeV and strengthen the evidence for the presence of a mechanism that leads to a significant in-
crease of Raa at low pr. Recombination of charm-quark pairs during the deconfined QGP phase, as
implemented in the transport model compared with our results, is a strong candidate for explaining the
features of the data.
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