Untersuchungen zur Reaktivität des Lithiumphosphanids Li[PtBu₂] gegenüber GaCl₃

Investigations of the Reactivity of the Lithiumphosphanide Li[PtBu₂] towards GaCl₃

Hans-Wolfram Lerner, Inge Sänger, Frauke Schödel, Michael Bolte und Matthias Wagner

Institut für Anorganische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany

Reprint requests to Dr. Hans-Wolfram Lerner. Fax: ++49-69-79829260. E-mail: lerner@chemie.uni-frankfurt.de

Z. Naturforsch. 2011, 66b, 695-699; received April 8, 2011

Single crystals suitable for X-ray diffraction of $(tBu_2P)_3Ga$ (monoclinic, space group Cc) were obtained from GaCl₃ and two equivalents of Li[PtBu₂] at room temperature in benzene. The phosphanylgallane $(tBu_2P)_3Ga$ was also produced *via* a one-pot approach by reaction of GaCl₃ with three or more than three equivalents of Li[PtBu₂]. However, treatment of one equivalent of GaCl₃ with one equivalent of Li[PtBu₂] and subsequent protolysis yielded $[tBu_2PH_2][tBu_2P(GaCl_3)_2-Li(Cl_3Ga)_2PtBu_2]$. Single crystals of this phosphonium salt (monoclinic, space group Cc) were obtained from benzene at room temperature.

Key words: Gallium, Phosphorus, Addition Compounds, X-Ray Structure Analysis

Einleitung

Verbindungen mit *E*–P-Bindungen (*E* = B, Al, Ga, In; Triel) wurden in den letzten Jahren in großer Anzahl synthetisiert. Einerseits beruht das Interesse an dieser Substanzklasse darauf, dass Moleküle dieses Typs zur Gasphasenabscheidung von binären Verbindungen $E_m P_n$ geeignet erscheinen [1]. Zudem ermöglichen es Phosphanyl-Substituenten PR₂ mit sterisch anspruchsvollen Gruppen (z. B. R = *t*Bu), Clusterverbindungen $E_m (PR_2)_n$ (*E* = B, Al, Ga, In; Triel) zu verwirklichen, in welchen die Trielzentren eine ungewöhnliche Koordinationsgeometrie und kleine Koordinationszahlen aufweisen [2].

Kürzlich befassten wir uns eingehend mit der Darstellung und der strukturellen Charakterisierung von Additionsverbindugen des Typs $tBu_2PH \cdot EX_3$ (E = B, Al, Ga, In; X = Cl, Br, I) [3]. Diese Verbindungen lassen sich leicht durch Protonierung mit Brønsted-Säuren HX in die entsprechenden Phosphoniumsalze [tBu_2PH_2][EX_4] überführen. Zudem konnten wir das Reaktionsverhalten von $tBu_2PH \cdot EX_3$ gegenüber O₂ aufklären [3].

Weiterführend beschäftigte uns nun die Frage, ob die di-*tert*-butylphosphanyl-substituierten Trielverbindungen mit der Formel (tBu_2P)_{3-n} EX_n (E = B, Al, Ga, In; X = Cl, Br, I) auf analogem Wege synthetisierbar sind wie die entsprechenden Tri-tert-butylsilylderivate (Supersilylderivate) $(tBu_3Si)_{3-n}EX_n$ (E = B, Al, Ga, In; X = Cl, Br, I [4–6]. Wie wir berichtet haben, lassen sich die Monosilyltrieldihalogenide (tBu₂RSi)EX₂ (E = B, Al, Ga, In; X = Cl, Br, I; R = tBu, Ph) leicht durch Umsetzung von EX₃ mit Na[SitBu₃] [7,8] bzw. Na[SiPhtBu₂] [7,9,10] im Molverhältnis 1:1 in Alkanen als Reaktionsmedium in Abwesenheit von Donoren gewinnen [4-6]. Interessanterweise sind die Disilylhalogenide $(tBu_3Si)_2EX$ (E = B, Al, Ga, In; X = Cl, Br, I) aus EX_3 und der doppeltmolaren Menge Natriumsilanid Na[SitBu₃] [7,8] sowohl in Anwesenheit als auch in Abwesenheit von Donoren darstellbar [4]. Zudem sei darauf hingewiesen, dass nur sehr wenige di-tert-butylphosphanyl-substituierte Trielverbindungen der Zusammensetzung $(tBu_2P)_{3-n}EX_n$ (E = B, Al, Ga, In; X = Cl, Br, I) beschrieben und strukturell charakterisiert wurden. Bisher liegen nur von (tBu₂P)₃In und (tBu₂P)₂InCl Strukturuntersuchungen vor [11,12]. Des Weiteren ist nur noch das Galliumderivat (tBu₂P)₃Ga literaturbekannt, welches ausgehend von Li[PtBu₂] und GaCl₃ hergestellt werden kann [13]. Dieser Hintergrund veranlasste uns, die Reaktion von Li[PtBu₂] mit GaCl₃ eingehender zu untersuchen. Nachfolgend berichten wir über Umsetzungen von Li[PtBu₂] mit GaCl₃ im Molverhältnis der Reaktanden von 0.5:1 bis 3.5:1 in Benzol bei Raum-

0932-0776 / 11 / 0700-0695 \$ 06.00 © 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

temperatur, bei denen unter anderem wieder das di*tert*-butylphosphanyl-substituierte Gallan (*t*Bu₂P)₃Ga isoliert wurde. Darüber hinaus beschreiben wir die Kristallstrukturen von (*t*Bu₂P)₃Ga und vom partiellen Protonierungsprodukt von Li[*t*Bu₂P(GaCl₃)₂], dem Phosphoniumsalz [*t*Bu₂PH₂][*t*Bu₂P(GaCl₃)₂Li-(Cl₃Ga)₂PtBu₂].

Ergebnisse und Diskussion

Setzt man Galliumtrichlorid GaCl3 mit Li-[PtBu₂] [14] in Benzol bei Raumtemperatur (RT) im Molverhältnis 1:2 um, so beobachtet man neben nicht umgesetztem Galliumtrichlorid überraschenderweise die Bildung von (tBu₂P)₃Ga (1). Offensichtlich erfolgt die Überführung des zwischenzeitlich gebildeten Halogenids (tBu₂P)₂GaCl durch Li[PtBu₂] rascher als die Substitution von GaCl₃ bzw. tBu₂PGaCl₂ mit Li $[PtBu_2]$. Das entstandene Phosphanylgallan 1 konnte aus Benzol bei RT kristallisiert und durch Einkristallröntgenstrukturanalyse identifiziert werden. An dieser Stelle sei darauf hingewiesen, dass dieser Verlauf analog zu jenem der Reaktion von GaCl₃ mit zwei Äquivalenten Na[SiPhtBu₂] [7,9,10] ist [6]. Interessanterweise lässt sich (tBu₂P)₂GaCl (2) jedoch durch längeres Einwirken von GaCl3 auf das Phosphanylgallan 1 in Benzol bei RT gewinnen.

Eine Erhöhung des Anteils an Lithiumphosphid von 2 auf 3.5 Moläquivalente führt bei der Reaktion von GaCl₃ mit Li[$PtBu_2$] weiterhin ausschließlich zur Bildung des Phosphanylgallans **1**, wobei mit drei Moläquivalenten Phosphid die effizienteste Darstellung gelingt. Das Entstehen von Li[Ga($PtBu_2$)₄]

Schema 1. (i) In Benzol bei RT, $\times 3$, + GaCl₃, - 3LiCl; (ii) in Benzol bei RT, $\times 2$, + GaCl₃; (iii) in Benzol bei RT, $\times 3$, + 4GaCl₃, + 2H⁺, - 2Li⁺.

konnte auch beim Einwirken von mehr als drei Äquivalenten Li[PtBu₂] auf GaCl₃ nicht festgestellt werden. Einen völlig anderen Verlauf beobachtet man jedoch bei der Reaktion von GaCl3 mit einem Äquivalent Li[PtBu₂]. Man erkennt in den NMR-Spektren der Reaktionslösung ausschließlich Signale des Anions $[tBu_2P(GaCl_3)_2Li(Cl_3Ga)_2PtBu_2]^-$ sowie von nicht abreagiertem Li[PtBu₂]. Offensichtlich erfolgt die Adduktbildung hierbei konzertiert, d.h. ein Molekül Ga₂Cl₆ reagiert nur mit einem Phosphidanion [PtBu₂]⁻. Bemerkenswerterweise verläuft diese Adduktbildung wesentlich rascher als eine nachfolgend mögliche LiCl-Eliminierung. Durch eine partielle Protonierung lässt sich dieses Reaktionsgemisch gemäß Schema 1 in das Phosphoniumsalz 3 überführen, das aus der Reaktionslösung kristallisierte. Folgerichtig liefert deshalb die Reaktion von Li[PtBu₂] mit der doppeltmolaren Menge an GaCl₃ nahezu quantitativ das

Abb. 1. Festkörperstruktur eines von drei unabhängigen Molekülen von 1 in der asymmetrischen Einheit (ORTEP, Auslenkungsparameter 50 %). Die Wasserstoff-Atome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°]: Ga(1)–P(3) 2.428(2), Ga(1) - P(1) = 2.428(2),Ga(1) - P(2)2.437(2),P(1)-C(1)P(1)-C(5)1.917(8), P(2)-C(9)1.900(8), 1.892(8). P(2)-C(13) 1.895(8), P(3)-C(21) 1.880(8), P(3)-C(17) 1.894(9); P(3)-Ga(1)-P(1) 119.76(6), P(3)-Ga(1)-P(2) P(1)-Ga(1)-P(2)119.91(7), 120.33(6), C(1)-P(1)-C(5)C(1)-P(1)-Ga(1)C(5)-P(1)-Ga(1) 110.6(3),105.0(2), 103.5(2), C(9)-P(2)-C(13)109.2(3), C(9)-P(2)-Ga(1)102.6(2), C(13)-P(2)-Ga(1) 106.7(2), C(21)-P(3)-C(17) 110.8(4), C(21)-P(3)-Ga(1) 104.5(3), C(17)-P(3)-Ga(1) 105.5(2).

Anion $[tBu_2P(GaCl_3)_2Li(Cl_3Ga)_2PtBu_2]^-$ ohne Verbleib von zusätzlichem Li[PtBu_2].

Einkristalle von 1 wurden aus Benzol bei RT erhalten. Abbildung 1 gibt die Struktur von 1 wieder. Das Phosphanylgallan 1 bildet rote Kristalle mit monokliner Elementarzelle (Raumgruppe *Cc*). 1 weist in der asymmetrischen Einheit drei unabhängige Moleküle auf. Zentrales Strukturelement ist eine planare P₃Ga-Einheit (Winkelsumme an Ga: 360°). Die *t*Bu-Substituenten liegen jeweils hälftig oberhalb und unterhalb der P₃Ga-Molekülebene. Interessanterweise liegt das Molekül in der Festkörperstruktur auf keiner kristallographischen Spiegelebene. Die P–Ga-Bindungen

Abb. 2. Struktur des Anions von 3 im Kristall (ORTEP, Auslenkungsparameter 50%). Die Wasserstoff-Atome Übersichtlichkeit halber wurden der weggelassen. [Å] und Ausgewählte Bindungslängen -winkel [°]: 2.582(17), Li(1)-Cl(33) 2.564(15), Li(1)-Cl(13) Li(1)-Cl(32) Li(1)-Cl(11) 2.619(15), 2.629(17), Li(1)-Cl(42) 2.693(15), Li(1)-Cl(23) 2.696(15), P(1)-C(1) 1.876(8), P(1)–C(2) 1.894(6), P(1)–Ga(2) 2.357(2), P(1)-Ga(1) 2.359(2), Ga(1)-Cl(12) 2.168(2), Ga(1)-Cl(11) 2.198(2), Ga(1)-Cl(13) 2.205(2), Ga(2)-Cl(21) 2.168(12), Ga(2)-Cl(22) 2.200(2), Ga(2)-Cl(23) 2.204(2), P(2)-C(3) 1.879(7), P(2)–C(4) 1.880(6), P(2)–Ga(3) 2.3591(17). 2.3748(17), P(2)-Ga(4)Ga(3)-Cl(31) 2.1732(19), Ga(3)-Cl(33) 2.198(2), Ga(3)-Cl(32) 2.1985(17), 2.1692(19), Ga(4)-Cl(43)Ga(4)-Cl(41)2.1907(18), 2.2013(17); Cl(33)-Li(1)-Cl(13) 97.3(5), Ga(4)-Cl(42)Cl(33)-Li(1)-Cl(11) 176.4(7), Cl(13)-Li(1)-Cl(11) 82.3(5), Cl(33)-Li(1)-Cl(32) 81.2(5), Cl(13)-Li(1)-Cl(32) 178.3(7), Cl(11)-Li(1)-Cl(32) 99.2(6), Cl(33)-Li(1)-Cl(42) 94.4(5), Cl(13)-Li(1)-Cl(42) 90.8(5), Cl(11)-Li(1)-Cl(42) 82.1(4), Cl(32)-Li(1)-Cl(42) 90.1(5), Cl(33)-Li(1)-Cl(23) 90.8(5), Cl(13)-Li(1)-Cl(23) 90.6(5), Cl(11)-Li(1)-Cl(23) 92.8(5), Cl(32)-Li(1)-Cl(23) 88.6(5), Cl(42)-Li(1)-Cl(23) 174.4(7). [2.431(2) Å (Mittelwert)] sind geringfügig länger als jene in anderen Phosphanylgallanen [15].

Zur Röntgenstrukturanalyse geeignete Kristalle von **3** entstanden aus Benzol bei Raumtemperatur. Die Struktur des Anions $[tBu_2P(GaCl_3)_2Li(Cl_3Ga)_2-PtBu_2]^-$ ist in Abbildung 2 und die des Kations $[tBu_2-PH_2]^+$ in Abbildung 3 wiedergegeben. Das Phosphoniumsalz **3** kristallisiert in der monoklinen Raumgruppe *Cc*. Eine Ansicht der Anordnung der Ionen gibt Abbildung 4 wieder. Die Struktur des Anions weist zwei über ein Lithiumatom verbrückte tBu_2- P(GaCl_3)₂-Einheiten auf. Das Lithiumatom ist hierbei oktaedrisch von sechs Cl-Atomen umgeben. Die P–C-Bindungen sind im Anion [1.882(8) Å (Mittel-

Abb. 3. Struktur des Kations von **3** im Kristall (ORTEP, Auslenkungsparameter 50 %). Ausgewählte Bindungslängen [Å]: P(3)–C(5) 1.826(9), P(3)–C(6) 1.830(9), P(3)–H(3A) 1.33(11), P(3)–H(3B) 1.47(16), C(5)–C(52) 1.539(11), C(5)–C(51) 1.542(10), C(5)–C(53) 1.548(10), C(6)–C(62) 1.522(11), C(6)–C(63) 1.534(10), C(6)–C(61) 1.547(12).

Abb. 4. Kristallstruktur von 3.

wert)] etwas länger als im Kation [1.828(8) Å (Mittelwert)], aber beide Werte liegen im typischen Bereich für P–C-Bindungen [15]. Die P–Ga-Bindungen im Anion [2.370(2) Å (Mittelwert)] sind geringfügig kürzer als jene in **1** [2.431(2) Å (Mittelwert)].

Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluss von Luft und Wasser unter Verwendung von Stickstoff (99.996%) oder Argon (99.996%) als Schutzgas durchgeführt. Die Reaktionsmedien wurden mit Natrium in Gegenwart von Benzophenon vorgetrocknet und vor Gebrauch von diesen Stoffen destilliert. Zur Verfügung standen *n*BuLi, HPtBu₂ und GaCl₃. Nach Literaturvorschriften wurde Li[PtBu₂] synthetisiert [14]. Für NMR-Spektren dienten die Kernresonanzspektrometer Bruker AM 250 (¹H/¹³C: 250.133/ 62.896 MHz), Bruker DPX 250 (¹H/¹³C: 250.13/ 62.895 MHz), Bruker Avance 300 (¹H/¹³C/³¹P: 300.03/ 121.47 MHz) und Bruker Avance 400 (¹H/¹³C/³¹P: 400.13/ 100.62/ 161.98 MHz).

Reaktion von 2 Äquivalenten Li[PtBu₂] mit 1 Äquivalent GaCl₃

Zu 34 mg (0.21 mmol) Li[PtBu₂] und 18 mg (0.10 mmol) GaCl₃ wurden 2 mL Benzol langsam bei RT gegeben. Es bildete sich ein farbloser Niederschlag. Das ³¹P-NMR-Spektrum der Reaktionslösung zeigte ein Signal, das dem Phosphanylgallan **1** zugeordnet werden kann. Nach Abtrennung des farblosen Niederschlags wurden aus der eingeengten Benzollösung bei RT rote Einkristalle von **1** erhalten (Ausbeute: 60 %). – ¹H-NMR (C₆D₆): δ = 1.54 (d, *J* = 12.1 Hz, *t*Bu₂P). – ³¹P{¹H}-NMR (C₆D₆): δ = 55.3 (*t*Bu₂P)₃Ga. – C₂₄H₅₄GaP₃ (504.27): ber. C 57.04, H 10.77; gef. C 56.60, H 10.96.

Anmerkung: Bei den entsprechenden Umsetzungen von 45 mg (0.30 mmol) Li[PtBu₂] mit 18 mg (0.10 mmol) GaCl₃ bzw. von 53 mg (0.35 mmol) Li[PtBu₂] mit 18 mg (0.10 mmol) GaCl₃ in 2 mL Benzol bei RT bildete sich nach Maßgabe der ³¹P-NMR-Spektren der Reaktionslösungen ausschließlich das Phosphanylgallan **1**.

Reaktion von $(tBu_2P)_3Ga(1)$ mit GaCl₃ in Benzol bei RT

Zu 10 mg (tBu_2P)₃Ga (1) (0.20 mmol) in 1 mL C₆D₆ wurden bei RT 18 mg (0.10 mmol) GaCl₃ gegeben. Allmählich entfärbte sich die Reaktionslösung vollständig. Das ³¹P-NMR-Spektrum der Lösung zeigte nach 4 Wochen keine Resonanz von 1 mehr, sondern ein neues Signal, das dem Phosphanylgallan (tBu_2P)₂GaCl (2) zugeordnet werden kann. Nach Entfernen aller flüchtigen Bestandteile verblieb farbloses 2 als Rückstand in nahezu quantitativer Ausbeute. – ¹H-NMR (C₆D₆): δ = 36.2 (d, J = 32.7 Hz, tBu₂P). – ¹³C{¹H}-NMR (C₆D₆): δ = 36.2 (d, J = 32.7 Hz,

Tabelle 1. Kristallstrukturdaten für 1 und 3.

	1	3
Summenformel	C24H54GaP3	C24H56Cl12Ga4LiP3
M _r	505.30	1148.82
Kristallgröße [mm ³]	$0.32{\times}0.30{\times}0.25$	0.29×0.27×0.16S
Kristallsystem	monoklin	monoklin
Raumgruppe	Cc	Cc
a [Å]	17.5582(7)	29.7094(16)
b [Å]	30.2873(12)	11.3851(4)
c [Å]	17.6348(7)	17.1988(10)
β[°]	111.859(3)	125.235(4)
V [Å ³]	8703.8(6)	4994.3(5)
Ζ	12	4
$D_{\rm ber} [{ m gcm^{-3}}]$	1.16	1.61
$\mu(MoK_{\alpha}) [mm^{-1}]$	1.1	3.0
F(000) [e]	3288	2304
hkl-Bereich	$\pm 21, \pm 36, \pm 21$	$\pm 36, -11/13, -16/20$
$(\sin\theta)/\lambda_{\max} [Å^{-1}]$	0.609	0.615
Gemessene / unabh. Refl.	52253/16255	13674/7310
R _{int}	0.084	0.045
Verfeinerte Param.	757	406
R(F)	0.0759	0.0475
$wR(F^2)^a$ (alle Reflexe)	0.0736	0.1143
GoF $(F^2)^b$	0.843	1.017
x (Flack)	0.009(14)	0.474(12)
$\Delta \rho_{\rm fin} \ ({ m max} \ / \ { m min})$	0.32 / -0.49	0.73 / -0.92
$[e Å^{-3}]$		

^a $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$, $wR = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$, $w = [\sigma^2 (F_0^2) + (aP)^2 + bP]^{-1}$, mit $P = (Max (F_0^2, 0) + 2F_c^2)/3$, a = 0.0124, b = 0 (1). a = 0.0843, b = 0 (3); ^b GoF = $[\Sigma w (F_0^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}$.

P(CMe₃)₂), 34.7 (dt, J = 13.1 Hz, J = 2.7 Hz, P(CMe₃)₂). – ³¹P{¹H}-NMR (C₆D₆): $\delta = 39.7$ (tBu_2P)₂GaCl. – C₁₆H₃₆GaClP₂ (395.58): ber. C 48.58, H 9.17; gef. C 47.13, H 9.26.

Reaktion von 1 Äquivalent Li[PtBu₂] mit 1 Äquivalent GaCl₃

Zu 15 mg (0.10 mmol) Li[PtBu₂] und 18 mg (0.10 mmol) GaCl₃ wurde bei RT 1 mL Benzol gegeben. Das ³¹P-NMR-Spektrum der Reaktionslösung zeigte Signale, die [tBu₂P(GaCl₃)₂Li(Cl₃Ga)₂PtBu₂]⁻ und Li[PtBu₂] zugeordnet werden können. Die entstandene Lösung wurde mehrere Wochen bei RT belassen, wobei farblose Einkristalle von **3** erhalten wurden (Ausbeute: 21%). – ¹H-NMR (C₆D₆): δ = 3.99 (d, *J* = 389.1 Hz, 2H, PH₂), 1.36 (d, *J* = 16.8 Hz, 36H (tBu₂P(GaCl₃)₂), 0.95 (d, *J* = 16.2 Hz, 18H tBu₂PH₂). – ³¹P{¹H}-NMR (C₆D₆): δ = 24.2 (tBu₂PH₂), 6.0 (br, tBu₂P(GaCl₃)₂). – C₂₄H₅₆Cl₁₂Ga₄LiP₃ (1148.89): ber. C 25.09, H 12.87, N 4.91; gef. C 24.09, H 4.88.

Anmerkung: Bei der Umsetzung von 30 mg (0.30 mmol) Li[PtBu₂] mit 92 mg (0.53 mmol) GaCl₃ in 4 mL Benzol bei RT zeigte das ³¹P-NMR-Spektrum der Reaktionslösung ein Signal, das [$tBu_2P(GaCl_3)_2Li(Cl_3Ga)_2PtBu_2$]⁻ zugeordnet werden konnte.

Röntgenstrukturanalysen

Für die Strukturbestimmungen wurde ein Stoe IPDS II Gerät benutzt. Die Strukturen wurden mit Direkten Methoden gelöst. Alle Nicht-Wasserstoffatome wurden anisotrop, die H-Atome mit dem Reitermodell und fixierten isotropen Auslenkungsparametern verfeinert [16]. Abbildungen 1-3 zeigen ORTEP-Darstellungen der Strukturen von 1 und 3. Angaben zu den Röntgenstrukturanalysen sind in Tabelle 1 zusammengestellt.

CCDC 819240 (1) und 819239 (3) enthalten die beim Cambridge Crystallographic Data Centre hinterlegten Kristallstrukturdaten. Anforderung: www.ccdc.cam.ac.uk/ data_request/cif.

- [1] Y.-H. Kim, Y.-w. Jun, B.-H. Jun, S.-M. Lee, J. Cheon, J. Am. Chem. Soc. 2002, 124, 13656-13657.
- [2] J. Steiner, G. Stößer, H. Schnöckel, Angew. Chem. 2003, 115, 2016-2019; Angew. Chem. Int. Ed. 2003, 42, 1971-1974; J. Steiner, G. Stößer, H. Schnöckel, Angew. Chem. 2004, 116, 6712-6715; Angew. Chem. Int. Ed. 2004, 43, 6549-6552; J. Steiner, H. Schnöckel, Chem. Eur. J. 2006, 12, 5429-5433; J. Steiner, G. Stößer, H. Schnöckel, Angew. Chem. 2004, 116, 306-309; Angew. Chem. Int. Ed. 2004, 43, 302-305.
- [3] F. Dornhaus, S. Scholz, I. Sänger, M. Bolte, M. Wagner, H.-W. Lerner, Z. Anorg. Allg. Chem. 2009, 635, 2263–2272.
- [4] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, J. Knizek, I. Krossing, Z. Naturforsch. 1998, 53b, 333– 348.
- [5] N. Wiberg, K. Amelunxen, T. Blank, H.-W. Lerner, K. Polborn, H. Nöth, R. Littger, M. Rackl, M. Schmidt-Amelunxen, H. Schwenk-Kircher, M. Warchold, Z. Naturforsch. 2001, 56b, 634–651.
- [6] N. Wiberg, T. Blank, H.-W. Lerner, H. Nöth, T. Habereder, D. Fenske, Z. Naturforsch. 2001, 56b, 652–658.
- [7] H.-W. Lerner, Coord. Chem. Rev. 2005, 249, 781-798.

- [8] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 1997, 542, 1–18.
- [9] H.-W. Lerner, S. Scholz, M. Bolte, Z. Anorg. Allg. Chem. 2001, 627, 1638-1642.
- [10] H.-W. Lerner, S. Scholz, M. Bolte, M. Wagner, Z. Anorg. Allg. Chem. 2004, 630, 443-451.
- [11] N. W. Alcock, I. A. Degnan, M. G. H. Wallbridge, H. R. Powell, M. McPartlin, G. M. Sheldrick, *J. Organomet. Chem.* **1989**, *361*, C33–C36.
- [12] K. Merzweiler, J. Spohn, Z. Anorg. Allg. Chem. 1993, 619, 318-320.
- [13] A. M. Arif, B. L. Benac, A. H. Cowley, R. Geerts, R. A. Jones, K. B. Kidd, J. M. Power, S. T. Schwab, *Chem. Commun.* **1986**, 1543 – 1545.
- [14] S. Scholz, M. Bolte, M. Wagner, H.-W. Lerner, Z. Anorg. Allg. Chem. 2007, 633, 1199–1204.
- [15] CSD, Cambridge Structural Database (Version 5.29 mit drei updates) 2008; siehe auch: F. H. Allen, Acta Crystallogr. 2002, B58, 380-388.
- [16] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, Göttingen 1997; siehe auch: G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.