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Abstract

The production of ϒ mesons in Pb–Pb collisions at a centre-of-mass energy per nucleon pair
√

sNN =
5.02 TeV is measured with the muon spectrometer of ALICE at the LHC. The yields as well as the
nuclear modification factors are determined in the forward rapidity region 2.5< y< 4.0, as a function
of rapidity, transverse momentum and collision centrality. The results show that the production
of ϒ(1S) is suppressed by a factor of about three with respect to the production in proton–proton
collisions. For the first time, a significant ϒ(2S) signal is observed at forward rapidity, indicating a
suppression stronger by about a factor 2–3 with respect to the ground state. The measurements are
compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

*See Appendix A for the list of collaboration members
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1 Introduction

The collisions of ultra-relativistic heavy ions are investigated to explore deconfined and chirally restored
matter at high temperatures, the quark–gluon plasma (QGP) [1]. The characterisation of the degrees of
freedom of the QGP as well as the transition from this new state of matter to ordinary hadrons are central
questions to this field of research. The production rate of bound states of two heavy quark-antiquark
pair, quarkonia, was proposed as a key observable for deconfinement [2]. Quarkonium states are the best
approximations in nature of two static colour charges, hence representing a unique test system of the
strong interaction. Since bottom and charm quarks have masses mb/c well above the temperature reached
in heavy-ion collisions, they are produced dominantly within a short time scale of the order of 1/(2 ·mb/c)
at the beginning of the collision by hard partonic interactions. Therefore, heavy quarks experience the
whole evolution of the thermodynamic system. As of today, the thermal properties of quarkonium are the
subject of intense studies based on lattice quantum chromodynamics (QCD) and effective field theories
of QCD. These calculations observe strong modifications of the real and imaginary part of the potential
between the heavy quark and its antiquark extracted with increasing precision [3, 4]. Beyond the thermal
properties of quarkonia in QCD matter, the investigation of the full quantum dynamical treatment of the
time evolution involving the interaction between heavy-quark pairs and the medium has started [4].

Experimentally, charmonium production in nucleus–nucleus collisions was investigated at the SPS,
RHIC and LHC [5]. At the LHC, the suppression of J/ψ production in heavy-ion collisions with re-
spect to the production expectation based on proton–proton collision data and binary nucleon–nucleon
collision scaling is weaker than measurements at lower energies. This behaviour is commonly inter-
preted as a sign of (re)generation of charmonium either solely at the phase boundary [6] or during the
deconfined stage of the medium evolution [7]. Both scenarios are advertised as signatures of decon-
finement. In the bottomonium sector, the CMS collaboration at the LHC pioneered the measurements
with the observation of a strong suppression of the ϒ(1S) state in Pb–Pb collisions [8–11]. Recently, the
ALICE and CMS collaborations published the first measurement of the second Fourier coefficient of the
azimuthal anisotropy of the ϒ(1S) production that indicates a weaker elliptic flow than the one measured
for J/ψ [12, 13]. The latter measurement, difficult to access because of the need for large data samples,
provides a new experimental handle to constrain the mechanisms behind the bottomonium production in
nucleus–nucleus collisions. Furthermore, the production of the excited ϒ(2S) state is much more strongly
suppressed whereas the ϒ(3S) state has not been observed yet and is at least similarly suppressed as the
ϒ(2S) state [8–11, 14]. The interpretation of the data requires to account for the feed-down from the
decay of excited states as well as the consideration of effects not related to the occurrence of the QGP,
for example, differences between nuclear parton distribution functions (PDFs) and free nucleon PDFs.
Nuclear modification factors, quantifying the deviation of the production in nucleus–nucleus collisions
with respect to the expectation from the proton–proton binary collision scaling, were also measured in
proton–nucleus collisions by the LHC collaborations [15–19] where no formation of a plasma phase
was expected prior to the LHC and RHIC measurements. The results indicate a significant modifica-
tion of the ϒ(1S) production at midrapidity and forward rapidity, in line with expectations from nuclear
PDFs [20–22] or energy loss considerations [23]. However, the experimental data hint of a stronger sup-
pression than present in these approaches at backward rapidity. In addition, stronger suppressions of the
excited states compared to the ϒ(1S) state were observed pointing towards other possible mechanisms,
potentially analogue to nucleus–nucleus collisions [24].

Currently, the status of phenomenology in nucleus–nucleus collisions comprises frameworks implement-
ing transport or rate equations [24–28] using a wide range of approaches for the created thermodynamic
system and its interaction with the bb quark pair. The statistical hadronisation model, usually applied to
the charm sector, was also proposed as a possible scenario for the bottom sector including the production
of bottomonia [29].

The ALICE collaboration reported the suppression of ϒ production at forward rapidity 2.5 < y < 4.0
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in Pb–Pb collisions at
√

sNN = 2.76 TeV [30] and 5.02 TeV [31] based on the 2011 and 2015 data
samples, respectively. This article presents the combined analysis of the 2015 and 2018 data sets recorded
at
√

sNN = 5.02 TeV, corresponding to a three times larger integrated luminosity than the previously
published measurements at the same energy. This increase enables to perform a detailed measurement
of the ϒ(1S) production as a function of the centrality, transverse momentum and rapidity. For the first
time, a significant ϒ(2S) signal is observed in the forward rapidity region in heavy-ion collisions.

2 Detector, data samples and observables

A detailed description of the ALICE setup and its performance can be found in the references [32, 33].
The analysis is based on the detection of muons within the pseudorapidity range −4.0 < η < −2.51

reconstructed and identified with the muon spectrometer [34]. In the following, we briefly introduce the
detection systems relevant for the ϒ measurements in Pb–Pb collisions.

The primary vertex is determined with the silicon pixel detector, the two innermost layers of the inner
tracking system of the central barrel of ALICE [35]. These two cylinders surrounding the beam pipe
cover the pseudorapidity range |η | < 2 (first layer) and |η | < 1.4 (second layer) assuming the nominal
interaction point (IP). The V0 detector [36] provides the centrality determination. It is made of two ar-
rays of scintillators covering the pseudorapidity intervals−3.7 < η <−1.7 and 2.8 < η < 5. The logical
AND of the signals from both subdetectors constitutes the minimum bias (MB) interaction trigger. This
trigger decision is fully efficient for the 0–90% most central collisions. Zero-degree calorimeters [37],
installed at ±112.5 m from the IP along the beam direction, are used for the rejection of events corre-
sponding to electromagnetic interactions of the colliding lead nuclei.

The muon spectrometer of ALICE consists of a front absorber to filter muons, five tracking stations,
a dipole magnet with a field integral of 3 T×m surrounding the third tracking station, an iron wall to
reject further punch-through hadrons and low momentum muons from pion and kaon decays and two
trigger stations. These elements are traversed subsequently by the muons originating from the IP region.
Each tracking station is composed of two planes of cathode-pad chambers. The two trigger stations are
equipped with two planes of resistive plate chambers [38].

The trigger used for this analysis requires a coincidence of the MB signal and a dimuon trigger provided
by the trigger stations. The dimuon condition consists of a positively and a negatively charged track
candidate above a transverse momentum threshold of 1 GeV/c each. The analysed data set was recorded
in 2015 and 2018 and corresponds to a total integrated luminosity of about 760 µb−1.

The centrality determination relies on a Glauber fit to the sum of the signal amplitudes of the V0 detec-
tors [39–41]. The centrality ranges are quoted as quantiles in percent of the total inelastic Pb–Pb cross
section. The fit allows each centrality interval to be attributed an average number of participants 〈Npart〉,
of binary nucleon–nucleon collisions 〈Ncoll〉 and the average nuclear overlap function 〈TAA〉. The anal-
ysis comprises measurements integrated over the centrality interval 0–90% and differential in centrality.
The Glauber fit quantities used in this analysis are tabulated in the note [41]. For the centrality intervals
used in the present analysis and not reported in the note, the relevant values, including uncertainties,
were obtained by averaging the corresponding values over the narrower ranges.

The nuclear modification factor is the main observable quantifying the difference of production between
Pb–Pb and proton–proton (pp) collisions. It is defined as

RAA =
d2Nϒ→µ+µ−/dydpT

〈TAA〉×d2
σ

pp
ϒ→µ+µ−/dydpT

with
d2Nϒ→µ+µ−

dydpT
=

Nraw
ϒ→µ+µ−

(A× ε)ϒ→µ+µ−×NMB×∆y∆pT
, (1)

1In the ALICE reference frame, the muon spectrometer covers a negative η range and consequently a negative y range. We
have chosen to present our results with a positive y notation, due to the symmetry of the collision system.
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where Nraw
ϒ→µ+µ− denotes the raw number of ϒ candidates within a given rapidity, centrality and transverse

momentum interval, (A× ε)ϒ→µ+µ− the correction for the geometrical acceptance of the decay muons
and the trigger, tracking and track quality selection inefficiencies. The quantity NMB represents the
number of equivalent inelastic nucleus–nucleus collisions, 〈TAA〉 the average nuclear overlap function,
∆y and ∆pT the widths of the rapidity and transverse momentum intervals. The term d2

σ
pp
ϒ→µ+µ−/dydpT

corresponds to the product of the ϒ branching ratio for the dimuon decay channel BR(ϒ→ µ+µ−) and
the ϒ production cross section in pp collisions at the same collision energy and in the same kinematic
regime of the Pb–Pb measurement. The yields Nϒ→µ+µ− normalised by 〈TAA〉 and the yield ratio between
the ϒ(2S) and ϒ(1S) states are also presented as complementary observables. The latter reads

Nϒ(2S)

Nϒ(1S)
=

Nraw
ϒ(2S)→µ+µ−

Nraw
ϒ(1S)→µ+µ−

×
BR(ϒ(1S)→ µ+µ−)× (A× ε)ϒ(1S)→µ+µ−

BR(ϒ(2S)→ µ+µ−)× (A× ε)ϒ(2S)→µ+µ−
. (2)

In this equation, the yields are corrected for the branching ratios for comparison with model calculations.
The relative nuclear modification factor is written simply as

RAA(ϒ(2S)/ϒ(1S)) =
Nraw

ϒ(2S)→µ+µ−

Nraw
ϒ(1S)→µ+µ−

×
(A× ε)ϒ(1S)→µ+µ−

(A× ε)ϒ(2S)→µ+µ−
×

σ
pp
ϒ(1S)→µ+µ−

σ
pp
ϒ(2S)→µ+µ−

. (3)

In the following, the expression “integrated” stands for “integrated over the 0–90% centrality interval, in
2.5 < y < 4.0 and for pT < 15 GeV/c” unless otherwise specified.

3 Analysis description

3.1 Signal extraction

The number of ϒ mesons reconstructed via the dimuon decay channel is extracted from a log-likelihood
fit to the invariant mass spectra. Opposite-charge pairs are formed with muon tracks meeting the se-
lection criteria listed in the publication [30]. An extended Crystal Ball distribution [42] models the
signal shape, one for each of the three resonances. Due to the significant background in the ϒ mass re-
gion, the parameters quantifying the tails of the distribution have to be fixed to the values obtained from
Monte Carlo (MC) simulations. The pole mass and width of the ϒ(1S) fit are left free. For the ϒ(2S) and
ϒ(3S), the mass peak positions are fixed to the ratio of the mass values from the Particle Data Group [43]
with respect to the ϒ(1S) while the widths are determined according to the ratio of the widths obtained in
the MC simulation. The background contribution is evaluated by empirical functions, either via a direct
fit on the raw distribution or after application of the event-mixing technique. This method, described in
Ref. [44], consists of pairing muon tracks from different events belonging to the same centrality class
in order to estimate the combinatorial background present in the invariant mass distribution. Fit exam-
ples are displayed in Fig. 1 for the two background descriptions. After subtraction of the mixed-event
background from the raw distribution, the visible residual background is also fitted with an empirical
function.

In total, Nraw
ϒ(1S)→µ+µ− = 3581±119 (stat.) ±156 (syst.) and Nraw

ϒ(2S)→µ+µ− = 325±61 (stat.) ±60 (syst.)
are found. The quoted uncertainties are discussed in Section 3.4. No significant ϒ(3S) signal is observed
in any of the kinematic regions. Assuming that the event-mixing technique provides the correct back-
ground estimation, this method improves the effective signal-to-background ratio of the ϒ(1S) by more
than 2.5 and of the ϒ(2S) by almost a factor 2 with respect to the direct extraction of the raw yields.
However, as the description of the background shape is a delicate part of this analysis, the two methods
are applied for the signal extraction.
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Figure 1: Invariant mass distributions of opposite-charge muon pairs within the 3.3 < y < 4.0 interval. The left
panel shows the raw invariant mass spectrum while the mixed-event background is subtracted in the right panel.

3.2 Acceptance and efficiency corrections

The raw yields are corrected for the acceptance and the reconstruction efficiency with a Monte Carlo
simulation. The ϒ signals are generated according to pT and y distributions extrapolated from collider
data [45, 46], assuming an unpolarised production [47, 48]. These input shapes are adjusted by a nuclear
PDF (nPDF) parametrisation to emulate the modification of the initial distributions. The generated reso-
nances are then decayed into muon pairs using the EvtGen package [49], together with PHOTOS [50] to
account for final-state radiation. Muons are transported through a realistic modelling of the ALICE appa-
ratus via the GEANT3 code [51], and are injected in recorded MB events from data. This approach allows
the experimental data-taking conditions and the occupancy of the detection elements to be accounted for.

The integrated acceptance and efficiency (A× ε), averaged over the 2015 and 2018 data sets, is about
25.7% for all ϒ states. This value varies with pT by less than 1%. Figure 2 shows the A×ε as a function
of the collision centrality (left) and rapidity (right). An observed relative decrease of about 10% from
peripheral to central events is due to the rise of the occupancy in the muon chambers. The variations as
a function of rapidity are a direct consequence of the spectrometer geometry.
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Figure 2: Acceptance and reconstruction efficiency (A× ε) for ϒ(1S) and ϒ(2S) as a function of centrality (left)
and rapidity (right). The vertical error bars denote the statistical uncertainties.
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3.3 Production cross sections in proton–proton collisions

The inclusive production of ϒ mesons in pp collisions at
√

s = 5.02 TeV has been recently measured at
forward rapidity, 2.5< y< 4.02. The relative statistical uncertainties are of the order of the ones obtained
in the present Pb–Pb analysis and limit the potential of the RAA study. To overcome this limitation,
the ϒ production cross sections in pp collisions at

√
s = 5.02 TeV are interpolated from measurements

performed at various centre-of-mass energies at the LHC.

The first procedure exploits the ALICE [52, 53] and LHCb [54–56] data within the 2.5 < y < 4.0 accep-
tance. Empirical functions, such as an exponential or a power law, are fitted to the cross sections as a
function of the centre-of-mass energy and then evaluated for

√
s = 5.02 TeV. This energy interpolation

procedure, described in Ref. [57], is employed to estimate the integrated and the pT-dependent differen-
tial cross sections. For the rapidity-differential cross sections, a further interpolation is performed as in
the note [58]. The rapidity dependence of dσ

pp
ϒ→µ+µ−/dy is fitted and integrated over the ranges matching

the present Pb–Pb analysis. The inclusion of CMS measurements [11] constrains the curvature of the
fit function down to y = 0. The corresponding uncertainties are calculated as the quadratic sums of the
uncertainties of the data propagated through the interpolation procedures and the spread of the results
from the fitted functions.

3.4 Systematic uncertainties

This section describes the different sources of systematic uncertainties to compute the yields and the nu-
clear modification factors. The raw yields as well as the ϒ(2S)-to-ϒ(1S) yield ratio are evaluated as the
average of the results obtained from the following fit variations. The parameters of the Crystal Ball dis-
tributions are estimated from MC simulations using either the GEANT3 [51] or GEANT4 [59] transport
package. A set of tail parameters from simulations of pp collisions at

√
s = 5.02 TeV is also considered.

The ratios of widths characterising the signal shapes of ϒ(2S) and ϒ(3S) are varied from 1 to 1.08 and
from 1 to 1.14, respectively, in order to account for discrepancies between data and simulation. Sev-
eral empirical functions are used to model the background shape, whether the event-mixing technique
is applied or not. The raw spectrum is fitted with the sum of two decreasing exponentials as well as
a pseudo-Gaussian function whose width varies linearly with mass. These functions are defined in the
note [42]. Once the mixed-event background is subtracted from the raw distribution, a single exponen-
tial or a power-law function are employed. The fits are alternatively performed within two mass ranges,
[6–13] and [7–14] GeV/c2, to cover different invariant mass regions. The final statistical uncertainty is
calculated as the linear average over the uncertainty returned by the fit whereas the systematic uncer-
tainty is estimated as one standard deviation of the distribution of the results. The relative systematic
uncertainty ranges from 4 to 10% for the ϒ(1S) as a function of rapidity. The large relative uncertainties
between 10 and 39% for the ϒ(2S) as a function of rapidity arise predominantly from the background
description uncertainty. The signal extraction uncertainties are uncorrelated to any kinematic variable.

The uncertainties of the calculations of the A× ε corrections have multiple origins. The pT and y distri-
butions in the initial MC conditions are modified by nuclear PDFs or by not considering any shadowing
effect. The uncertainty associated to the choice of nPDF set is estimated as the maximum relative dif-
ference across the A× ε values obtained when switching the input shapes. The uncertainties due to the
tracking, trigger and matching efficiencies are treated as in Ref. [60], the dominant source being the
dimuon reconstruction efficiency. Discrepancies between data and MC studies are propagated from sin-
gle muon tracks to ϒ mesons by multiplying the uncertainties with a factor two. The uncertainties of the
MC input shapes as well as of the tracking, trigger and matching efficiencies are uncorrelated with pT
and rapidity and fully correlated with the centrality. In addition, the tracking systematic uncertainty con-
tains an uncorrelated component as a function of the centrality. The latter is negligible in the peripheral
collisions and increases up to 1% for the most central events.

2to be submitted

6



ϒ production and nuclear modification in Pb–Pb collisions ALICE Collaboration

Furthermore, the yields can be sensitive to the uncertainty associated to the definition of the centrality
intervals. The corresponding uncertainties are taken from a previous J/ψ analysis [60] as the statistical
fluctuations are too large to make a sensitive estimate with the present ϒ measurement. This uncertainty
is negligible for the 0–90% interval. The uncertainty assigned to the 〈TAA〉 calculation is detailed in the
references [40, 41]. The number of equivalent minimum bias events is obtained from the number of anal-
ysed dimuon-triggered events normalised by the probability of having a dimuon trigger in a MB event.
Its uncertainty is estimated in Ref. [61] and is correlated with all kinematic variables. The uncertainties
of the production cross sections in pp collisions are fully correlated with the centrality and uncorrelated
as a function of pT and rapidity.

All the sources of systematic uncertainties entering in the computation of the nuclear modification factor
are summarised in Tables 1 and 2 for the ϒ(1S) and ϒ(2S), respectively. The ranges indicate the mini-
mum and maximum relative uncertainties as a function of the given kinematic variable. The uncertainties
are common to the normalised yields. For the ratio of yields, only the uncertainty attributed to the signal
extraction as well as the branching ratio uncertainties [43] are assumed not to cancel.

Table 1: Summary of the relative systematic uncertainties (in %) of the RAA for ϒ(1S). The symbol “⊕" de-
notes the quadratic sum of a correlated and an uncorrelated component. The first value represents the component
correlated with the column variable while the second value is the uncorrelated component.

Source of uncertainty Integrated Centrality pT y
Signal extraction 4.4 3.9–7.4 3.6–9.1 3.6–10.2
Monte Carlo input 0.4 0.4 0.1–0.6 0.2–0.4
Tracking efficiency 3 3 ⊕ (0–1) 1⊕3 1⊕3
Trigger efficiency 3 3 0.5–2.6 1.5–4.0
Matching efficiency 1 1 1 1
Number of MB events 0.5 0.5 0.5 0.5
〈TAA〉 1 0.7–2.4 1 1
Centrality determination - 0.1–5.5 - -
σ

pp
ϒ(1S)→µ+µ− 5.3 5.3 5.7–15.8 4.9–14.3

Table 2: Summary of the relative systematic uncertainties (in %) of the RAA for ϒ(2S). The symbol “⊕" de-
notes the quadratic sum of a correlated and an uncorrelated component. The first value represents the component
correlated with the column variable while the second value is the uncorrelated component.

Source of uncertainty Integrated Centrality y
Signal extraction 18.4 14.0–23.4 9.7–39.0
Monte Carlo input 0.3 0.3 0.7
Tracking efficiency 3 3 ⊕ (0–1) 1⊕3
Trigger efficiency 3 3 1.4–3.7
Matching efficiency 1 1 1
Number of MB events 0.5 0.5 0.5
〈TAA〉 1 0.8–2.6 1
Centrality determination - 0.1–0.3 -
σ

pp
ϒ(2S)→µ+µ− 7.5 7.5 8.1–14.4

4 Results and discussion

The rapidity and pT-differential yields of inclusive ϒ production in Pb–Pb collisions, normalised by
〈TAA〉 = 6.28± 0.06 mb−1 for the 0–90% centrality interval [41], are presented in Fig. 3. The results
are shown together with the CMS measurements performed at midrapidity [11]. The vertical error bars
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represent the statistical uncertainties whereas the boxes correspond to the uncorrelated systematic un-
certainties described in the previous section. Henceforth, this convention is adopted for all figures. The
rapidity dependence indicates that the forward rapidity measurement spans an interesting dynamic range
where the signal falls off significantly with respect to the approximate plateau reached around midrapid-
ity. For the first time, a significant ϒ(2S) signal is observed in Pb–Pb collisions at forward rapidity. The
measured pT spectrum of ϒ(1S) within the ALICE forward acceptance is softer than at midrapidity as
also observed in pp and p–Pb collisions [5].
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Figure 3: Rapidity (left) and pT (right) differential measurements of normalised yields for inclusive ϒ production
in Pb–Pb collisions at

√
sNN = 5.02 TeV together with CMS measurements [11]. The ϒ(2S) results are multiplied

by a factor 4 for better visibility. The global uncertainties of the nuclear overlap functions and of the number of
MB events are not represented.

The integrated nuclear modification factor is 0.353±0.012 (stat.) ±0.029 (syst.) for ϒ(1S) and 0.128±
0.024 (stat.) ±0.026 (syst.) for ϒ(2S). The dependence with the collision centrality is depicted in Fig. 4
by representing the RAA as a function of the average number of participant nucleons 〈Npart〉. The sup-
pression of ϒ(1S) production with respect to pp collisions gets stronger towards more central collisions
as reported by the CMS collaboration at midrapidity [11]. The RAA of ϒ(1S) is compatible with unity in
the 70–90% most peripheral interval and decreases to a plateau value of about 0.3 for 〈Npart〉> 200. The
nuclear modification factor of ϒ(2S) is smaller by about a factor 2–3. The sizeable uncertainties of the
measurements within the 0–30% and 30–90% centrality classes prevent any conclusion on a centrality
dependence for ϒ(2S).

The measurements are compared with calculations based on transport and rate equations. Within the
comover picture, quarkonia are dissociated via the interaction with surrounding particles in the final
state [24]. The revisited version of this model aims to explain the suppression of bottomonium produc-
tion in both p–Pb and Pb–Pb collisions with the same assumptions. It takes into account the nuclear
modification of parton distribution functions (nPDFs). Uncertainties from the nCTEQ15 shadowing [22]
and the comover-ϒ interaction cross sections are depicted together in the figures as grids. Predictions
are also derived from the thermal modification of a complex heavy-quark potential inside an anisotropic
plasma [25]. The survival probability of bottomonia is evaluated based on the local energy density, in-
tegrating the rate equation over the proper time of each state. The background medium is described
with viscous hydrodynamics for three values of the shear viscosity-to-entropy density ratio η/s. These
calculations do not include any modification of nuclear PDFs or any regeneration phenomenon. The
transport approaches describe an interplay of dissociation and regeneration mechanisms regulating the
production of bottomonia at the QGP stage. For the transport model [26], the medium evolves as an
expanding isotropic fireball. Results are provided with and without the presence of a regeneration com-
ponent. The width of the bands represents the modification of the PDF modelled by an effective scale
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Figure 4: Nuclear modification factor of ϒ(1S) and ϒ(2S) as a function of the average number of participants. The
filled boxes at unity correspond to the relative uncertainties correlated with centrality. The results are compared
with calculations from the comover and the hydrodynamic models [24, 25] in the left panel and with the transport
descriptions [26, 27] in the right panel.

factor on the initial number of bb pairs. This scale factor is neglected in peripheral collisions and is varied
between no modification up to 30% suppression at forward rapidity in the most central collisions. In the
framework of coupled Boltzmann equations [27], the regeneration is dominated by real-time recombina-
tions of correlated heavy-quark pairs. The simulation of the collision system includes the EPPS16 nPDF
parametrisation [21]. In the figures, the calculations are shown with a band due to the nPDF uncertainty
and with three curves from the variation of the coupling constants.

Inclusive production can be decomposed into the direct production component and the production from
feed-down of higher bottomonium resonances. Direct ϒ(1S) production constitutes approximately 70%
to the total inclusive cross section in pp collisions at the LHC [5]. The feed-down contributions of P-wave
states to excited ϒ production are not measured at low transverse momentum and need to be estimated.
All models treat the excited states and their decay chains to ϒ mesons. They account for a feed-down
contribution to ϒ(1S) production in pp collisions consistent with the measured values, but with varying
assumptions for the feed-down of the excited states.

The predictions from the comover and the hydrodynamic models are compared with the data in the left
panel of Fig. 4 while the calculations from the transport approaches are shown in the right panel of the
same figure. The various calculations reproduce the trend of the data within uncertainties. For the ϒ(1S),
the measurement points lie on the lower limit of the comover interaction model [24] and of the coupled
Boltzmann equations [27]. The sharp slope expected in all cases for the RAA of ϒ(2S) is not measurable
because of statistical limitations. The current models do not account for the spatial dependence of the
nPDF modification: stronger effects are expected for nuclei probed close to their centre. The impact
on measurements has been discussed early on [62], a more recent extraction can be found in Ref. [63].
Future models should consider this phenomenon in particular for the discussion of centrality-dependent
studies.

Before studying the different approaches via the relative suppression, the ϒ(2S)-to-ϒ(1S) yield ratio
in Pb–Pb collisions shown in the left panel of Fig. 5 is compared with the statistical hadronisation
model [29]. It assumes that the final state light-flavour hadron yields are calculable from hadron res-
onance gas densities with a common chemical freeze-out temperature and the baryochemical potential
tracing closely the phase boundary from the QGP to hadrons. The approach has been extended to heavy-
flavour production assuming a kinetic equilibration of the heavy quarks prior to freeze-out and total heavy
quark conservation using the production from initial hard scatterings as an input. The model calculates
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the abundances of various heavy-flavour species assuming thermal weights. For non-central collisions,
a contribution from pp-like scattering behaviour at the surface of the interaction zone is introduced. The
calculation seems to underestimate the measured ϒ(2S)-to-ϒ(1S) yield ratio for the 0–30% most central
collisions. Taking into account all the uncertainties, the deviation is about one sigma. Comparisons with
other measurements in the bottom sector are required to further test the applicability of the model.
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Figure 5: (Left) Ratio of ϒ(2S)-to-ϒ(1S) yields as a function of the average number of participants. The results
are displayed on top of the statistical hadronisation model values [29]. The two curves represent the uncertainty
of the pp-like contribution of the corona of the nuclear overlap. (Right) Relative nuclear modification factor along
with the predictions from the comover interaction model [24], hydrodynamic calculations [25], from the transport
model [26] and calculations based on the coupled Boltzmann equations [27]. The filled red box at unity denotes
the uncertainty on the ϒ(2S)-to-ϒ(1S) cross section ratio in pp collisions.

The relative nuclear modification factor is an appropriate observable to confront the different approaches.
Considerations of effects common to both states are thus expected to disappear as indicated by the smaller
uncertainties in the right panel of Fig. 5 compared to Fig. 4. The relative uncorrelated systematic uncer-
tainties are 4% smaller when accounting for correlations in the signal extraction, while the systematic
uncertainty correlated with the centrality is reduced from 9.2% to 2.5%. Integrated over the 0–90% class,
the ϒ(2S)-to-ϒ(1S) RAA is 0.360±0.069 (stat.) ±0.055 (syst.) i.e. 7.2σ from unity. The comover inter-
action model shows a deviation with respect to the measurement for the 0–30% most central collisions,
also noticed in a comparison with CMS data [24]. The hydrodynamic calculations [25] describe well the
data within the present experimental uncertainties. Interestingly, within the transport approaches [26, 27],
the larger double ratio is achieved by the large regeneration component of the ϒ(2S) production. With
more precise measurements, the relative RAA could serve as a model discriminator thanks to the cancel-
lation of sources of uncertainty.

In the following, differential studies of the nuclear modification factor are carried out to scrutinise the
suppression features. The dependence of the RAA on the transverse momentum is investigated in Fig. 6
for the 0–90% centrality interval. No significant variation is observed up to 15 GeV/c, in line with
hydrodynamic and transport model expectations. The present ϒ(1S) measurement disfavours the hydro-
dynamic calculation for the highest shear viscosity-to-entropy density ratio. It is interesting to note that
the nuclear modification factor in p–Pb collisions exhibits a significant pT dependence in both forward
and backward regions [18, 19]. The difference in spectral shape between proton–nucleus and nucleus–
nucleus collisions may be used to distinguish the model scenarios in the future.

Figure 7 shows the rapidity dependence of the nuclear modification factors measured by ALICE and
CMS [11], and the results are compared with the hydrodynamic model as well as with the calculations
based on the coupled Boltzmann transport equations. The experimental data indicate a plateau value
of the ϒ(1S) nuclear modification factor of around 0.4 between midrapidity and y ≈ 3. The two most
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Figure 6: Nuclear modification factor of ϒ(1S) as a function of the transverse momentum. The red box at unity cor-
responds to the global uncertainty correlated with pT. Predictions from the hydrodynamic [25] and transport [26]
models are also shown.

forward measurement points hint of a decrease of the nuclear modification factor down to a value close
to 0.3: the RAA is lower by 2σ in the most forward rapidity interval with respect to the central range
of the ALICE measurement. The hydrodynamic calculations indicate the opposite behaviour. In this
model, the rapidity profile inherits from the initial conditions of the simulated medium [25]. The results
from the coupled Boltzmann equations exhibit a structure induced by the rapidity-dependent impact of
the used nPDF [27]. The curves cannot describe the CMS and ALICE measurement consistently, albeit
the most forward data points lie on the limit of the nPDF uncertainty band. These discrepancies may
point towards a physical mechanism not captured in the presently available models. This behaviour
will need to be scrutinised further in future analyses improving the current experimental and theoretical
uncertainties. Interestingly, the nuclear modification factor of ϒ(1S) calculated with the coherent energy
loss model shows a decreasing trend towards forward rapidity at

√
sNN = 2.76 TeV [64], even though the

model does not reproduce the overall suppression at this centre-of-mass energy. The RAA of the ϒ(2S)
is independent of the rapidity within uncertainties in the measured interval with values between 0.05 and
0.20. The rapidity dependence of the models for ϒ(2S) is similar to the one observed for the ground state
and is compatible with the experimental measurements.

5 Conclusions

The results presented in this article provide a detailed measurement of the ϒ(1S) production as well as
the first significant measurement of the ϒ(2S) state at forward rapidity in Pb–Pb collisions at the LHC.
For the 0–90% centrality class, the nuclear modification factor is 0.353± 0.012 (stat.) ±0.029 (syst.)
for ϒ(1S) and 0.128± 0.024 (stat.) ±0.026 (syst.) for ϒ(2S). The corresponding excited-to-ground
state ratios are in agreement with hydrodynamic calculations [25], a transport model with a regeneration
component [26], predictions from coupled Boltzmann equations [27] and are in tension with the comover
interaction model [24] and with the statistical hadronisation model [29] for the 0–30% most central
collisions. Taken together with the CMS data, these measurements constrain the rapidity dependence of
ϒ suppression with respect to proton–proton collisions. The available models describing bottomonium
production in heavy-ion collisions do not capture the rapidity dependence observed for the RAA of ϒ(1S)
in the ALICE acceptance.

Bottomonia are privileged observables to understand the formation and the interaction of bound states
in strongly interacting matter and hence to learn about the degrees of freedom of the QGP. This mea-
surement is one of the starting points for more differential studies of bottomonium production. Flow,
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Figure 7: Nuclear modification factor of ϒ(1S) and ϒ(2S) as a function of rapidity. The red and violet filled boxes
at unity correspond to the global uncertainties common to both ϒ states from the ALICE and CMS measurements.
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on the left and right panel, respectively.

ϒ(3S) measurements as well as better constraints on parton densities in nuclear collisions, feed-down
chains and beauty production cross sections will become available in the upcoming years [65].
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98 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
99 Ohio State University, Columbus, Ohio, United States
100 Petersburg Nuclear Physics Institute, Gatchina, Russia
101 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
102 Physics Department, Panjab University, Chandigarh, India
103 Physics Department, University of Jammu, Jammu, India
104 Physics Department, University of Rajasthan, Jaipur, India
105 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
106 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
107 Physik Department, Technische Universität München, Munich, Germany
108 Politecnico di Bari and Sezione INFN, Bari, Italy
109 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für
Schwerionenforschung GmbH, Darmstadt, Germany
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