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hadron decays in Pb–Pb collisions at√sNN = 2.76 TeV
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Abstract

Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE
detector in Pb–Pb collisions at a centre-of-mass of energy

√
sNN = 2.76 TeV. The transverse mo-

mentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modifi-
cation factor RAAin the interval 3 < pT < 18 GeV/c. The RAA shows a strong suppression compared
to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central
Pb–Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a
factor of 2) in semi-peripheral (50–80%) collisions is observed. The suppression of electrons in this
broad pT interval indicates that both charm and beauty quarks lose energy when they traverse the hot
medium formed in Pb–Pb collisions at LHC.

∗See Appendix A for the list of collaboration members
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1 Introduction

High-energy heavy-ion collisions provide a unique opportunity to study the properties of the hot and
dense strongly-interacting system composed of deconfined quarks and gluons – the quark-gluon plasma
(QGP). The formation of a QGP is predicted by lattice QCD calculations [1–4]. A crossover transition
from hadronic matter at zero baryochemical potential is expected to take place once the system temper-
ature reaches values above T≈ 155 MeV and/or the energy density above ε ≈ 0.5 GeV/fm3 [5, 6]. To
characterize the physical properties of this short-lived QGP (lifetime of about 10 fm/c [7]) experimental
studies use auto-generated probes, such as high-energy partons created early in the collision, thermally
emitted photons, and particle correlations sensitive to the collective expansion and the dynamics of the
system.

In particular, the interaction of high-pT partons with the QGP, leading to modifications of the internal jet
structure (jet quenching), was first proposed in [8] and is studied as a sensitive probe of the medium prop-
erties [9]. Jet quenching was first observed experimentally via the strong suppression of high transverse
momentum particle production in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC)
[10–13]. Similar observations have since been reported by the Large Hadron Collider (LHC) experi-
ments at collision energies larger by one order of magnitude with hadrons [14–16] and extended to fully
reconstructed jets [17–19].

Heavy flavours (charm and beauty) are sensitive tools for studies of the in-medium parton energy loss,
providing qualitatively different sensitivity to the medium properties as compared to gluon or light-quark
induced jets [20, 21]. The production of heavy quarks is well understood in terms of the perturbative
QCD (pQCD) formalism. Good agreement between the theoretical calculations and measurements of
various heavy-flavour particle production cross sections in hadronic collisions is established over a wide
range of centre-of-mass energies from RHIC [22–24], through the Tevatron [25–27] to the LHC [28–32].

Interactions between partons and the medium can occur via both inelastic (radiative parton energy loss)
[33–35] and elastic (collisional energy loss) [36–39] processes that depend on the parton type and the
properties of the medium. The interactions with the medium modify the radiation pattern of the shower
by inducing longitudinal drag (and associated longitudinal diffusion), transverse diffusion, and enhanced
splitting of the propagating partons. On average, for a given parton energy, gluons are expected to lose
more energy than quarks due to the difference in the Casimir colour factor [40] controlling the strength
of the coupling to the coloured medium. Moreover, the energy loss is predicted to depend on the mass of
the quark [41–45]. In particular, for quarks with energies comparable to their mass the radiative energy
loss is expected to be smaller than for more highly-energetic partons. Consequently the relative role of
elastic processes for heavy quarks is enhanced and the heavy quarks of moderate energies are expected
to be more sensitive, as compared to light quarks, to the longitudinal drag and diffusion coefficients [39]
that are proportional to the inverse of the mass of the parton. Moreover, as a result of multiple elastic
collisions and possible in-medium resonant interactions within the hot matter, low-momentum heavy
quarks could reach thermalisation in the medium [46].

The predicted hierarchy of energy loss ∆Eg >∆Elight−q >∆Echarm >∆Ebeauty [41] motivated experimental
studies of the suppression patterns of heavy-flavour hadrons and their decay products. Up to now the
in-medium energy loss of heavy flavours at the LHC has been studied via open charm measurements
of prompt D mesons [47, 48], heavy-flavour decay muon measurements at forward rapidity [31], non-
prompt J/ψ , and measurements of b-jet production [49]. At RHIC the nuclear modification of heavy-
flavour production has been studied via its semileptonic decays [50, 51] and via measurements of D
mesons [52]. The measurement that we report covers the electron (electron and positron) pT interval
3–18 GeV/c, probing at high pT the in-medium interaction of b quarks with momentum of a few tens of
GeV/c.

The modifications of particle yields are quantified using the nuclear modification factor RAA. It is con-
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structed by dividing the pT-differential yield in nucleus-nucleus (AA) collisions, dNAA/dpT, by the cross
section in pp collisions, dσpp/dpT, scaled by the average of the nuclear overlap function 〈TAA〉 for the
considered centrality class [53]

RAA =
dNAA/dpT

〈TAA〉dσpp/dpT
. (1)

By construction, RAA is unity when no nuclear effects are present. RAA values consistent with unity
have been measured for colour neutral particles (direct photons, W and Z bosons) in Pb–Pb collisions
at
√

sNN = 2.76 TeV [54–58] as well as for charged particles and heavy-flavour production in p–Pb
collisions at

√
sNN = 5.02 TeV [59–61].

This paper reports on the suppression (RAA < 1) of electrons from semi-leptonic decays of charm and
beauty hadrons measured at high-transverse momentum (pT > 3 GeV/c) at mid-rapidity (|y| < 0.6) in
Pb–Pb collisions at

√
sNN = 2.76 TeV using the ALICE detector. The suppression is measured as a

function of collision centrality and pT in the interval 3 < pT < 18 GeV/c. The next two sections of the
paper define the experimental setup and the analysis details together with the discussion of systematic
uncertainties on the measured electron spectra. The electron yields measured in bins of centrality defined
as fractions of the total hadronic cross-section of Pb–Pb collisions are then presented. Finally the pT–
differential RAA in the 0–10%, 10–20%, 20–30%, 30–40%, 40–50% and 50–80% centrality classes are
presented and compared to the measurement of muons from heavy-flavour hadron decays at forward
rapidities [31] as well as to calculations of in-medium energy loss of heavy quarks.

2 Apparatus, data sample and analysis

2.1 Detector setup

The measurements were carried out using the ALICE detector at the LHC [62] with Pb-ion beams at a
centre-of-mass energy of

√
sNN = 2.76 TeV. A complete description of the experimental setup and the

performance of detectors can be found in [63, 64]. Particle track reconstruction and particle identifica-
tion were performed based on information from the Inner Tracking System (ITS), the Time Projection
Chamber (TPC), and the Electromagnetic Calorimeter (EMCal), located inside a solenoid magnet, which
generates a 0.5 T field parallel to the beam direction. The event centrality determination was based on
the signals from the V0 detector, which is a set of scintillator arrays. Moreover, the V0 detector together
with the neutron Zero-Degree Calorimeters (ZN) was used for triggering and beam background rejection.

The ITS is composed of six cylindrical layers: two Silicon Pixel Detectors (SPD), two Silicon Drift
Detectors (SDD), and two Silicon Strip Detectors (SSD). The SPD barrel consists of staves distributed
in two layers around the beam pipe at radius of 3.9 cm and 7.6 cm, covering a length of 28.2 cm in the z
direction. The outermost layer of the ITS (SSD) is located 43 cm from the beam axis.

The TPC with a radial extent of 85–247 cm, enables charged particle tracking beyond the ITS and particle
identification via the measurement of the particle specific ionisation energy loss within the Ne-CO2 gas
mixture. The TPC provides up to 159 independent space points per particle track.

Charged particle tracks are reconstructed in the TPC from pT ≈ 0.15 GeV/c, |η |< 0.9 and full azimuth.
Using the ITS and TPC space points the particle momentum is determined from the combined track fit
with a resolution of about 1% at 1 GeV/c and about 3% at 10 GeV/c [64].

The front face of the EMCal is positioned at about 450 cm from the beam axis in the radial direction and
the detector is approximately 110 cm deep. The detector is a layered Pb-scintillator sampling calorimeter
covering 107 degrees in azimuth and a pseudorapidity region |η |< 0.7. The calorimeter design incorpo-
rates on average a moderate active volume density that results in a compact detector of about 20 radiation
lengths.
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The V0 detector consists of two arrays of 32 scintillator tiles placed at distances z = 3.4 m (V0-A) and
z = −0.9 m (V0-C) from the nominal interaction point. V0-A and V0-C cover the full azimuth, and
pseudorapidity intervals of 2.8 < η < 5.1 and−3.7 < η <−1.7, respectively. The detector was used for
triggering and event centrality determination.

The ZN are two identical sets of forward hadronic calorimeters which are located on both sides relative
to the interaction point at z≈ 114 m.

2.2 Event sample and trigger

The data sample used for this analysis was collected in 2011 and it consists of 14 · 106 most central
collisions (0–10%) and 13 ·106 semi-central collisions (10–50%) recorded with a minimum-bias trigger,
and 3.2 ·106 collisions (0–90%) triggered with the EMCal. The minimum-bias trigger was a coincidence
of signals from the V0-A and V0-C detectors. The timing resolution of the V0 system is better than 1
ns and it provides an efficient discrimination of the beam-beam collisions from the background events
produced upstream of the experiment. Additional suppression of the background was provided by timing
information from the ZDC. The minimum-bias trigger included two trigger classes for most-central and
semi-central collisions, which were selected online by applying thresholds on the V0 signal amplitudes.

The EMCal provides two hierarchically-configured trigger levels (Level-0 and Level-1). For this analysis
the data were recorded with the L1 trigger in coincidence with the V0 minimum-bias trigger. The trigger
logic of the Level-1 trigger employed a sliding window algorithm of 4×4 towers with a sliding step of
2 towers along either of the surface axes. An event was rejected unless the energy summed within at
least one set of the 16 adjacent towers was greater than a threshold. Additionally, the trigger logic was
configured to adjust the online threshold according to the event centrality estimated from the analogue
sum of the V0 detector signals. The threshold was adjusted such that the rejection rate was approximately
constant as a function of the event centrality. The thresholds varied from 7 GeV in 10% most central
events to 2 GeV in the most peripheral events.

The offline selection retained only events where the coordinate of the reconstructed vertex along the beam
direction was within ±10 cm around the nominal interaction point. The event vertex reconstruction is
fully efficient for the event centralities considered in this analysis.

Collisions were classified into different centrality classes in terms of percentiles of the hadronic Pb–Pb
cross section using the signal amplitudes in the V0 detector. The event centrality was related to the
nuclear overlap function TAA via a Glauber model [65]. Details on the centrality determination can be
found in [53].

To obtain the inclusive electron spectra utilizing minimum bias and EMCal triggers, in each centrality
class, the per-event yield of electrons from the EMCal triggered sample was scaled to the minimum-
bias yield by normalisation factors determined with a data-driven method. Figure 1 shows the ratio of
pT-differential yields of the electron candidate tracks from the EMCal triggered sample to the minimum-
bias trigger sample as a function of the track pT. The electron candidates were selected based on the
ionisation energy loss in the TPC gas and the ratio of the EMCal cluster energy and the momentum of
the particle track (details of electron identification are given in the next section). Because of the limited
electron yield in the semi-peripheral event class (50–80%) the correction for the trigger enhancement in
that interval was obtained as the ratio of the energy distributions of EMCal clusters for the two trigger
types (shown in panel (f) of Fig. 1). The inclusive pT spectrum of electrons is formed by the electron
spectrum from minimum-bias events below the trigger plateau (indicated by dashed lines in Fig. 1) and
the spectrum measured with only the EMCal trigger in the plateau region. The difference in the shape of
the curves in Fig. 1 for pT below the plateau is a consequence of the particle mixture contributing to the
EMCal clusters and response of the EMCal to charged hadrons. The scaling factors and the transition
from the minimum-bias sample to the triggered sample were determined by fits with a constant to the
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Fig. 1: Trigger turn-on curves: the ratio of inclusive electrons in EMCal triggered events to minimum-bias events
as a function of associated track pT in centrality bins between 0% and 50%. The lower right panel shows a similar
ratio obtained with EMCal clusters for centrality 50–80%. The pT from which the spectra from the minimum-
bias trigger to the EMCal trigger are used are indicated with black dashed lines. The scaling factors which were
obtained by fits (red lines) are summarized in Table 1.

Centrality Scaling factor
Plateau above
pT (GeV/c)

0–10% 38 ± 2.2 9
10–20% 32 ± 3.5 9
20–30% 35 ± 2.9 8
30–40% 34 ± 2.5 6
40–50% 41 ± 5.2 6
50–80% 89 ± 3.5 6

Table 1: Summary for centrality dependence of the EMCal trigger scaling factor. Middle column: trigger scaling
factors (together with their absolute statistical uncertainty) extracted from the ratio of electrons (or EMCal cluster)
pT spectra in EMCal triggered and minimum-bias events. Right column: particle pT at which the spectrum mea-
sured in minimum-bias events and EMCal triggered events are switched to form the inclusive electron pT spectrum.
See text for details.

high-pT plateau regions. The scaling factors for all centrality classes as well as the pT at which the
switch from the minimum-bias to the EMCal trigger spectra occurs are summarized in Table 1. The
uncertainty on the factors (also reported in Table 1) was obtained from the individual fits and therefore
it is driven by the statistical uncertainty of the measured spectra. The scaling factors within centralities
0–50% were extracted using the electron tracks, whereas for centralities larger than 50% the spectrum
of EMCal clusters is used. The relative difference in the scaling factors depending on whether electrons
or clusters were selected was studied and shown to be below 8.5%. This difference was included in the
systematic uncertainty of the measurement for all centrality classes. Table 1 corresponds to Fig. 1.
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Fig. 2: Left: The ratio of E/p as a function of nTPC
σ in 10% most central Pb–Pb events (pT > 3 GeV/c), where p is

the charged particle momentum, E is the matched EMCal cluster energy, and σTPC is the resolution on the energy
loss in the TPC gas expected for electrons. Right: E/p for electrons in two transverse momentum ranges. The
blue open symbols shows the hadron contamination – an E/p distribution for particles 3.5 σ away from the mean
of the true electron TPC-dE/dx distribution normalized to the electron E/p at small values of the ratio (away from
the electron signal).

2.3 Electron reconstruction

For the reconstruction of electrons in this analysis tracks with a minimum of 100 out of 159 possible
TPC space points were retained. In addition, tracks were selected using their distance of closest ap-
proach (DCA) to the primary vertex. Accepted tracks were within |DCAxy| < 2.4 cm in the transverse
plane and |DCAz|< 3.2 cm along the beam axis. Furthermore, the tracks were selected within a fiducial
pseudorapidity acceptance of |η | < 0.6. Each track was required to contain at least one point measured
in the SPD and at least three hits out of the maximum of six in the ITS. Moreover, the electron candi-
dates were selected by applying a cut on the specific ionisation energy loss (dE/dx) within the TPC. The
measured dE/dx was required to be between −1 to 3σ , where σ is dE/dx resolution, from the expected
mean of dE/dx for electrons. This selection is hereafter indicated as −1 < nTPC

σ < 3. The tracks ex-
trapolated to the sensitive volume of the EMCal were matched with a cluster if the cluster-track residual
in azimuth and pseudorapidity was within a window of |∆ϕ| < 0.05 and |∆η | < 0.05. Such matching
criteria corresponds to an effective radius of about 6 times larger than the effective Moliere radius for
EMCal, thus it is fully efficient for electron tracks with pT > 2 GeV/c.

Additional hadron rejection used the combination of the energy deposited within EMCal and a cut on the
electromagnetic shower shape [64, 66]. Since the shower from an electron is fully contained and accu-
rately measured by the EMCal, the ratio of the energy (E) measured by the EMCal and the momentum
(p) for electron tracks is approximately unity (E/p ≈ 1). The E/p distribution is qualitatively different
in the case of hadrons. The E/p as a function of the nTPC

σ for charged particles matched with an EMCal
cluster in 10% most central events is shown in Fig. 2. From the primary tracks matched to an EMCal
cluster the electron candidates were selected using a momentum independent cut of 0.9 < E/p < 1.3.
Furthermore, the shapes of the measured showers in the calorimeter can be characterized by the two
eigenvalues (λ0 and λ1) of the covariance matrix built from the tower coordinates weighted by the log-
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Fig. 3: Left: Product of detector acceptance and reconstruction efficiency for inclusive electrons as a function
of the electron pT. The statistical uncertainty is smaller than the size of the points. Right: Photonic electron
reconstruction efficiency via invariant mass (εeγ ) as a function of pT of the electron.

arithms of the tower energies. These eigenvalues may be used to differentiate between incident particle
species [64]. A selection of λ 2

1 < 0.3, corresponding to the shorter-axis of the shower shape projected
onto the EMCal surface, was applied, because the characteristic electromagnetic shower of an electron
is peaked at λ 2

1 of about 0.25 independent of the cluster energy.

The remaining hadron background in the electron sample was estimated with a data-driven approach
and statistically subtracted from the sample. The shape of the residual hadron background in E/p at
the position of the electron peak was reconstructed using the E/p distribution for hadron-dominated
tracks selected with nTPC

σ < −3.5. The E/p distribution of the hadrons was then normalized to match
the distribution of the electron candidate in 0.4 < E/p < 0.7 (away from the true electron peak). An
example of the E/p distributions together with the estimated hadron contamination for two transverse
momentum intervals is shown in the right panel of Fig. 2. The hadron contamination is less than 5% at
pT < 10 GeV/c in all centrality classes. At high pT , it is larger than 10% with a maximum of about 15%
at pT = 18 GeV/c.

The efficiencies related to the cuts on the ionisation energy loss in the TPC were estimated with data-
driven techniques [64]. The EMCal efficiencies were calculated using Monte Carlo simulations of
proton-proton (PYTHIA [67]) and heavy-ion collisions (HIJING [68]) with complete detector response
modeled by GEANT [69]. The product of detector acceptance and reconstruction efficiencies for inclu-
sive electrons for the 10% most central collisions is shown in the left panel of Fig. 3. The efficiencies
were estimated for each centrality class separately. A variation of about 2.5-3% was found between the
most central (0-10%) and peripheral (50-80%) events.

2.4 Background electron subtraction

The main sources of electrons contributing to the inclusive electron sample in this analysis are: a) heavy-
flavour hadron decay electrons; b) electrons from leptonic decays of quarkonia (J/ψ and ϒ mesons); c)
electrons from W and Z/γ∗ decays; d) the so-called photonic electrons, originating from photon con-
versions and Dalitz decays of neutral mesons (mainly π0 and η); and e) neutral kaon decays; however,
the contribution from the non-photonic electrons created in vector meson and Ke3 decays is negligible
(< 0.1%) [30] in the momentum range considered in this analysis.
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The contribution of the photonic electrons to the inclusive electron sample was measured by the invariant
mass method. The invariant mass distribution was determined by pairing every electron track from the
inclusive sample with an oppositely-charged track selected with −3 < nTPC

σ < 3 to increase the chance
for finding the pairs. Pairs satisfying electron identification selections and pairs satisfying a cut on the
invariant mass of minv < 0.1 GeV/c2 were selected for further analysis. These selected unlike-sign
pairs, however, contain not only true photonic electrons but also a contribution from random pairs. This
combinatorial background to photonic electrons was estimated using the invariant mass distribution of
the like-sign electrons (NeLS), and it was subtracted from that of unlike-sign pairs (NeULS) to obtain the
number of raw photonic electrons: Nraw

eγ = NeULS −NeLS .

The efficiency for the identification of the photonic electrons by the invariant mass method (εeγ ) was
estimated from Monte Carlo simulations with full detector response and was found to be centrality inde-
pendent. The efficiency, shown in the right panel of Fig. 3, is about 30% at pe

T = 4 GeV/c and rising to
55% at 18 GeV/c.

The number of photonic electrons present within the inclusive electron sample was calculated as the
raw photonic electron yield corrected for the reconstruction efficiency such that: Neγ = Nraw

eγ /εeγ . The
fraction of photonic electrons within the inclusive electron sample in the 10% most central collisions is
about 30% at pT = 3 GeV/c, drops to 25% at 12 GeV/c and remains approximately constant at higher
pT considered in this analysis.

The contribution to the inclusive electrons from J/ψ decays was estimated using a phenomenological
interpolation at

√
s = 2.76 TeV of the pT-differential cross sections measured in pp collisions at various

centre-of-mass energies [70] and scaling with the nuclear modification factor RJ/ψ

AA (pT) measured at the
LHC [71, 72]. In 3 < pT < 4 GeV/c, the contribution is 5.5% in the most central collisions and decreases
at high-pT. The contribution from ϒ states estimated from the cross section measured in pp collisions
[73] was found to be negligible.

The contribution of electrons from W-boson and Z/γ∗ decays was estimated using the cross section
obtained from the POWHEG event generator [74] for pp collisions and scaled with 〈TAA〉 assuming RAA
= 1. The contribution is pT dependent and for W-bosons it increases from 1% at 10 GeV/c to about 6%
at 17 GeV/c whereas the contribution from Z/γ∗ is below 1% for pT < 10 GeV/c and increases to 2.4%
at 17 GeV/c.

The heavy-flavour decay electron yield was reconstructed from the inclusive electron yield by first sub-
tracting the photonic electron yield, then correcting the result of the subtraction for the efficiency, and
finally, by subtracting the feed-down electrons from J/ψ and W, Z/γ∗ decays.

3 Systematic uncertainties

The sources of systematic uncertainty on the reconstructed heavy-flavour decay electron pT spectrum
can be grouped into three categories:

– event selection (the event normalisation, including the scaling of the EMCal trigger events and the
event centrality selection);

– electron signal extraction (uncertainties originating from corrections related to tracking and parti-
cle identification);

– non-heavy-flavour background determination.

An overview of the systematic uncertainties is presented in Table 2. For sources that depend on centrality
(all but “tracking/material” from Table 2) the uncertainties were evaluated separately in each event class.
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Source pT dependence (GeV/c) Uncertainty (%)

EMCal trigger correction only high-pT 8.5
Centrality estimation n/a <0.1 - 3
Tracking / material weak within 3-14 5
E/p 3 (10) 3 (3)
nTPC

σ 3 (10) 3 (7)
Photonic background 3 (10) 5 (5)
J/ψ electron background 3 (10) 1 (<1)
W electron background 3 (10) 0 (<1)
Z/γ∗ electron backgrounds 3 (10) <1 (<2)

Table 2: Summary of systematic uncertainties on the heavy-flavour electron yields grouped according to their
sources. Where applicable the uncertainty was estimated for two pT values, 3 and 10 GeV/c (for the latter numbers
are shown in parentheses) . For details on the extraction of the uncertainties see text.

In every case a weak centrality dependence was found (deviations of less than 3%). In the figures of
Section 4 the systematic uncertainties are represented as shaded boxes around the data points.

Event normalisation. A comparison of the event normalisation obtained with the EMCal clusters and
the normalisation obtained from the inclusive electrons showed a maximum deviation of 8.5%. This
deviation, independent of centrality and pT, is included as the uncertainty on the yield obtained with the
triggered data. The contribution to the systematic uncertainty due to the 1.1% relative uncertainty on the
fraction of hadronic cross section used in the Glauber fit to determine the centrality is less than 0.1% in
the central event class (0–10%) and 3% in the semi-peripheral centrality class (50–80%) [47, 75].

Electron identification. The systematic uncertainties on the corrections for track reconstruction, track
selection and electron identification were assessed via multiple variations of the analysis selections. For
each set of cuts the analysis was repeated and compared to the results obtained with the default set of
cuts. These variations included changes in track quality cuts, such as the minimum number of the space
points in the TPC and associated hits in the ITS. The uncertainties were estimated as a function of track
pT and for each centrality class separately. In addition, the electron identification cuts in the TPC (nTPC

σ )
and EMCal (E/p range) were varied around their nominal values. The uncertainty originating from the
knowledge of the material budget was estimated via complete detector simulations with the radiation
length varied by ±7% [76].

Subtraction of photonic background. The uncertainty on the subtracted background electrons from
photon conversions and Dalitz decays was obtained by varying the invariant mass cut on the electron
pairs within 0.07<minv < 0.15 GeV/c2 and the minimum pT of the tracks paired with electron candidates
between 0.3 and 0.6 GeV/c.

Subtraction of electrons from J/ψ . The uncertainty on the subtracted background electrons from J/ψ

decays was estimated from the experimental uncertainties on measured production yields in heavy-ion
collisions [71, 77].

Electrons from W and Z/γ∗. The yield of electrons from W decays was varied by ± 15% on the basis
of the comparison of the W production cross section as given by the POWHEG event generator and
the existing measurements in pp collisions at the LHC [78]. The contribution from Z/γ∗ di-electron
decays and its uncertainty was estimated using the POWHEG event generator and considered together
with the uncertainties on the process production cross section measured in pp collisions [79]. Given the
small contribution of the electrons from Z/γ∗ decays to the electron spectrum of this analysis the derived
uncertainty was found below 1% at the highest momentum considered.
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Fig. 4: Differential yields of electrons from semi-leptonic decays of heavy-flavour hadrons in classes of centrality
of Pb–Pb collisions at

√
sNN = 2.76 TeV.

4 Results

The pT-differential invariant yields of heavy-flavour decay electrons corrected for acceptance and ef-
ficiency in the 0–10%, 10–20%, 30–40%, 40–50% and 50–80% centrality classes in Pb–Pb collisions
at
√

sNN = 2.76 TeV are shown in Fig. 4. Only the EMCal triggered data are shown for the 50-80%
centrality class due to a lack of statistics in the minimum bias data sample.

The production cross section of heavy-flavour decay electrons in pp collisions at
√

s = 2.76 TeV, needed
to compute the nuclear modification factor RAA (Eq. 1), was obtained from measurements and FONLL
pQCD calculations [80, 81]. For pT < 12 GeV/c the measurement at

√
s = 2.76 TeV was used [30].

For pT > 12 GeV/c there is no measurement at this energy. Thus, an extrapolated cross section was
constructed from the measurement at

√
s = 7 TeV by the ATLAS Collaboration [82, 83] and the ratio

of cross sections at the two collision energies obtained from FONLL [84]. The uncertainties of the pp
references are about 20% for pT < 12 GeV/c and about 15% for pT > 12 GeV/c, including the uncer-
tainty from the scaling with

√
s, which was estimated by consistently varying the FONLL calculation

parameters at the two energies [84].

Figure 5 shows the resulting RAA of heavy-flavour decay electrons for all centrality classes. The uncer-
tainty on the average nuclear overlap function 〈TAA〉 for each centrality selection was taken as determined
in [53]. It varies from 4% in the 10% most central events to 7% in the 50–80% centrality class, and it
is shown as a box at RAA = 1 in the figure. In all cases, taking into acount the pT trend of the RAA
and the statistical uncertainties of the measurement at high-pT, the electron production yields are sup-
pressed relative to an incoherent superposition of pp collisions. In the 10% most central events the RAA
reaches values below 0.4, while for the more peripheral events the suppression is weaker. This centrality
dependence of the suppression pattern is qualitatively consistent with in-medium energy loss of heavy
quarks due to a decrease of medium’s initial energy density and the system size from central to peripheral
collisions.
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Fig. 5: RPbPb of electrons from heavy-flavour hadron decays in centrality bins of Pb–Pb collisions at
√

sNN =

2.76 TeV. The solid band at RPbPb = 1 brackets the uncertainty on the average nuclear overlap function (〈TAA〉).

In proton-lead collisions, where formation of a hot, dense and long lived QGP is not expected, the sup-
pression is not observed. The nuclear modification factor RpPb measured for electrons from heavy-flavour
hadron decays is consistent with unity [61]. This control measurement in p–Pb collisions confirms that
the strong suppression in Pb–Pb collisions is a result of final state effects. The left panel of Fig. 6 shows
the comparison between RpPb for minimum-bias p–Pb collisions at

√
sNN = 5.02 TeV and RAA for the

10% most central Pb–Pb collisions. The result reported here for electrons at mid-rapidity is consistent
with the measurement of the suppression pattern for muons from the semi-leptonic decays of heavy-
flavour hadrons at forward rapidity [31], in both, most central and semi-peripheral collisions (see Fig.
6). The lepton measurements show remarkable similarity in the suppression pattern that, within the
uncertainties, does not exhibit a rapidity dependence.

The pT spectrum of electrons is sensitive to both charm and beauty quark energy loss. From the decay
kinematics and the pT-differential cross sections of parent hadrons with charm and beauty, it follows
that electrons of pT below 5 GeV/c are mostly sensitive to charm energy loss. On the other hand, in
pp collisions a large fraction (more than 60%) of the electrons with pT > 10 GeV/c originate from b-
quarks [30, 66, 81, 82, 85]. The electron yield at high-pT is therefore expected to contain a significant
contribution from B mesons with pT up to 30 GeV/c. Consequently, the strong suppression of electrons
for pT > 10 GeV/c is consistent with in-medium energy loss of b-quarks.

5 Comparison with models

The RAA of electrons from heavy-flavour hadron decays in the most central Pb–Pb collisions is compared
to theoretical models that include heavy quark interactions with the medium in Fig. 7. Most of these
models were previously compared to the RAA of D mesons in most central Pb–Pb collisions [48, 75] as
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[61]. Right: RPbPb of electrons in semi-peripheral Pb–Pb collisions (50–80% selection for electrons and 40–80%
for muons.
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well as the positive elliptic flow of the D mesons and electrons from heavy-flavour hadron decays in semi-
central Pb–Pb collisions [99, 100]. We note that these models differ in the theoretical realisation of the
medium properties, and of its dynamics, and also in implementations of the hadronisation and of hadron-
hadron interactions in the late stages of the heavy-ion collision. Also the heavy-quark cross-section used
as input to the calculation may differ between the models (PYTHIA, FONLL and POWHEG).

Djordjevic. The calculation by Djordjevic et al. [86] at pT > 5 GeV/c is consistent with the mea-
surement within the uncertainties including the slow increase of the RAA as a function of electron pT.
The model takes into account both radiative and collisional contributions to parton energy loss. Specif-
ically, the radiative energy loss calculations are an extension of the DGLV [101] model towards a finite
size dynamical medium, finite magnetic mass, and running coupling. The model does equally well in
reproducing the magnitude and pT dependence of the D mesons RAA[48].

Vitev. The calculations by Vitev et al. [90] also capture the magnitude of the suppression and reproduce
the pT dependence of the electrons seen in the data. The in-medium modification of the heavy quark
distribution and decay probabilities are evaluated in a co-moving plasma. The predictions for heavy-
flavour decay electron suppression are obtained with an improved perturbative QCD description of heavy
flavour dynamics in a thermal medium where the formation and dissociation of heavy-flavour mesons
are combined with parton-level charm and beauty quark radiative energy loss. The model including the
dissociation of heavy-flavour hadrons captures also the suppression of D mesons.

WHDG. The band corresponding to the WHDG model calculations [87–89] is consistent with the mea-
surement within the uncertainties; however, it systematically underpredicts the suppression below 12
GeV/c. Interestingly, the same calculation compared to the D mesons RAA reproduced the data very
well. The model includes elastic as well as inelastic energy loss of heavy-quarks, and the path length
(geometric) fluctuations within a static thermal colored medium with its density as the only free parame-
ter determined via a statistical comparison of the model with the charged particle production in heavy-ion
collisions.

TAMU. The RAA obtained within the TAMU model of heavy quark transport within a strongly coupled
thermal medium including the elastic scatterings with the medium (resonance scattering and coalescence
processes) [91] underpredicts the suppression at low-pT while it captures the magnitude of the data
for pT > 12 GeV/c. We note that TAMU also underpredicts the D mesons RAA and its success for
the electrons at high-pT may be related to the b-quark energy loss for which the fraction from elastic
processes is increased as compared to charm quarks. On the other hand, TAMU reproduces the measured
v2 of D mesons and electrons from heavy-flavour hadron decays accurately [99, 100].

BAMPS. The BAMPS [96–98] calculation, which is a partonic transport model using the Boltzmann
equation, is shown for two scenarios. The BAMPS coll. calculation considering only the collisional
energy loss in an expanding quark-gluon plasma overestimates the magnitude of the suppression within
the region covered by the measurement. The calculation obtained within the same framework where
both the elastic and radiative processes were considered (BAMPS coll.+rad.) describes the data rather
well. A similar conclusion can be drawn from the comparison to the D-meson RAA. On the other hand,
the BAMPS coll. reproduces qualitatively the v2 of D mesons and electrons from heavy-flavour hadron
decays, but the BAMPS coll.+rad. underestimates the D meson v2 [99, 100].

MC@sHQ+EPOS2. The results of the Monte Carlo model including a hydrodynamic calculation of the
medium coupled with collisional and radiative parton energy loss MC@sHQ+EPOS2 [93] are consistent
with the measurement within the uncertainties. The model best describes the data at pT > 12 GeV/c.
This model also works better for the D mesons RAA at pT > 10 GeV/c as compared to lower momentum
(meson pT below 10 GeV/c). The authors of the model emphasize that the scattering in the hadronic
phase is not present in their calculation and can have substantial effect on the low-pT suppression and
elliptic flow calculations that underpredicts the measurement [99, 100].
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Cao, Qin, Bass. The calculation by Cao, Qin, and Bass [92] reproduces the measured RAA at high-pT
(above 12 GeV/c) while it underpredicts the suppression for low-pT. The model evaluates the dynamics
of energy loss and flow of heavy quarks within the framework of a Langevin equation coupled to a (2+1)-
dimensional viscous hydrodynamic model that simulates the space-time evolution of the produced hot
and dense QCD matter. This calculation reproduced the suppression of D mesons very accurately, both
in strength and the pT-dependence.

POWLANG. The result of the heavy-quark transport calculation using the relativistic Langevin equation
with collisional energy loss, POWLANG [94, 95], is shown for two choices of heavy-flavour transport
coefficients within the quark-gluon plasma. In the POWLANG HTL [94] the coefficients are evaluated
by matching the weak-coupling calculations with hard-thermal-loop (HTL) result for soft collisions with
a perturbative QCD calculation for hard scatterings. This HTL variant predicts a falling trend with pT
of the electrons that is incompatible with the data and overpredicts the suppression at high momentum.
Conversely, the calculation that includes the transport coefficients obtained from the Lattice QCD sim-
ulations [95] predicts the rising RAA. However, it reports larger values than the measured ones and it is
incompatible with the measured magnitude of the suppression. The width of the theory curves envelopes
the spread in the results of the calculation that is obtained when considering two different decoupling
temperatures Tdec (155 MeV and 170 MeV) from the hydrodynamic evolution of the fireball. The rela-
tively small width of the bands suggests a weak sensitivity of the suppression to the Tdec. Similar to the
electron case, POWLANG HTL captures the suppression for D mesons below 5 GeV/c predicting much
lower RAA at high-pT than observed in the data. Interestingly, as in the case of the TAMU model, the
POWLANG HTL calculations provide a fair description of the D mesons v2 measured at the LHC.

Given the level of agreement of the theoretical models with the data on v2 and RAA of prompt D mesons
[48, 75, 99] and electrons from heavy-flavour decays, the following general conclusions arise:

– models incorporating the complete dynamical and thermal evolution of the medium are favoured
by the data;

– the measurement indicates the need for both, collisional and radiative, energy loss of heavy quarks
to be considered to explain the magnitude and the pT dependence of the suppression.

6 Summary

The pT–differential yields of electrons from semi-leptonic decays of charm and beauty hadrons were
measured at 3< pT <18 GeV/c in several centrality classes of Pb–Pb collisions at

√
sNN = 2.76 TeV at

mid-rapidity. The nuclear modification factor RAA for the 10% most central events shows a strong sup-
pression of electrons from heavy-flavour hadron decays. Consistent with the expectation of a decrease
of the mediums initial energy density and a decreasing system size from central to peripheral collisions,
the suppression is significantly weaker in more peripheral events. No significant suppression is observed
in p–Pb collisions, indicating a strong in-medium energy loss of both charm and beauty quarks in Pb–Pb
collisions. In particular, the strong suppression at high-momentum indicates that b-quarks lose a substan-
tial fraction of their energy. The suppression of electrons is quantitatively consistent with measurements
of RAA of muons from semi-leptonic heavy-flavour decays in 2.5 < y < 4, disfavouring a strong depen-
dence of energy loss on rapidity in the range |y|< 4. Theoretical calculations that include collisional and
radiative in-medium energy loss for both charm and beauty quarks reproduce the experimental findings.
In particular, models incorporating the dynamical evolution of the medium are preferred by the data.
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L. Cunqueiro35,62, T. Dahms36,97, A. Dainese110, M.C. Danisch96, A. Danu59, D. Das103, I. Das103, S. Das4,
A. Dash81, S. Dash48, S. De49,123, A. De Caro30, G. de Cataldo106, C. de Conti123, J. de Cuveland42, A. De
Falco24, D. De Gruttola30,12, N. De Marco113, S. De Pasquale30, R.D. De Souza124, A. Deisting100,96,
A. Deloff79, C. Deplano84, P. Dhankher48, D. Di Bari33, A. Di Mauro35, P. Di Nezza74, B. Di Ruzza110,
M.A. Diaz Corchero10, T. Dietel92, P. Dillenseger61, R. Divià35, Ø. Djuvsland22, A. Dobrin84,35, D. Domenicis
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A. Morsch35, V. Muccifora74, E. Mudnic119, D. Mühlheim62, S. Muhuri137, M. Mukherjee137, J.D. Mulligan141,
M.G. Munhoz123, K. Münning45, R.H. Munzer97,61,36, H. Murakami131, S. Murray67, L. Musa35, J. Musinsky56,
C.J. Myers126, B. Naik48, R. Nair79, B.K. Nandi48, R. Nania107, E. Nappi106, M.U. Naru16, H. Natal da Luz123,
C. Nattrass129, S.R. Navarro2, K. Nayak81, R. Nayak48, T.K. Nayak137, S. Nazarenko102, A. Nedosekin55,
R.A. Negrao De Oliveira35, L. Nellen63, F. Ng126, M. Nicassio100, M. Niculescu59, J. Niedziela35,
B.S. Nielsen83, S. Nikolaev82, S. Nikulin82, V. Nikulin88, F. Noferini12,107, P. Nomokonov68, G. Nooren54,
J.C.C. Noris2, J. Norman128, A. Nyanin82, J. Nystrand22, H. Oeschler96, S. Oh141, A. Ohlson35, T. Okubo47,
L. Olah140, J. Oleniacz138, A.C. Oliveira Da Silva123, M.H. Oliver141, J. Onderwaater100, C. Oppedisano113,
R. Orava46, M. Oravec118, A. Ortiz Velasquez63, A. Oskarsson34, J. Otwinowski120, K. Oyama78, M. Ozdemir61,
Y. Pachmayer96, V. Pacik83, D. Pagano135,26, P. Pagano30, G. Paić63, S.K. Pal137, P. Palni7, J. Pan139,
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di Torino, Alessandria, Italy
33Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
35European Organization for Nuclear Research (CERN), Geneva, Switzerland
36Excellence Cluster Universe, Technische Universität München, Munich, Germany
37Faculty of Engineering, Bergen University College, Bergen, Norway
38Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
39Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech
Republic
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64Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
65Instituto de Fı́sica, Universidad Nacional Autónoma de México, Mexico City, Mexico
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128University of Liverpool, Liverpool, United Kingdom
129University of Tennessee, Knoxville, Tennessee, United States
130University of the Witwatersrand, Johannesburg, South Africa
131University of Tokyo, Tokyo, Japan
132University of Tsukuba, Tsukuba, Japan
133University of Zagreb, Zagreb, Croatia
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