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Irreducibility of a universal Prym-Brill-Noether locus

Andrei Bud

Abstract

For genus g =
r(r+1)

2
+1, we prove that via the forgetful map, the universal Prym-Brill-Noether locus

R
r

g has a unique irreducible component dominating the moduli space Rg of Prym curves.

1 Introduction

The moduli space Rg of Prym curves was brought to the attention of algebraic geometers by Mumford in his
influential paper [Mum74], as a way of understanding principally polarized Abelian varieties. For an element

[C, η] of Rg we let π : C̃ → C be the associated double cover and let Nmπ : Pic
2g−2(C̃) → Pic2g−2(C) be the

norm map of this morphism of curves. In this situation, the preimage of ωC consists of two disjoint Abelian
varieties, namely

P+ =
{
L ∈ Pic2g−2(C̃) | Nm(L) = ωC and h0(C̃, L) ≡ 0 (mod 2)

}

and
P− =

{
L ∈ Pic2g−2(C̃) | Nm(L) = ωC and h0(C̃, L) ≡ 1 (mod 2)

}
.

The intersection of W 0
2g−2(C̃) with P+ is twice a theta divisor, and this allows us to associate to [C, η] a

principally polarized Abelian variety.

Following this development, Welters pointed out in [Wel85] that Prym-Brill-Noether theory can be em-
ployed in order to understand the geometry of subvarieties of Prym varieties. More precisely, he considered
the loci

V r(C, η) :=
{
L ∈ Pic2g−2(C̃) | Nm(L) ∼= ωC , h0(C̃, L) ≥ r + 1, and h0(C̃, L) ≡ r + 1 (mod 2)

}

in order to study the singularities of the theta divisor of the associated Prym variety. The relation between
Prym-Brill-Noether theory and the study of singularities of theta divisors attracted other mathematicians

to this topic. The two papers [Wel85] and [Ber87] showed that when g ≥ r(r+1)
2 + 1, the locus V r(C, η) is

non-empty of dimension at least g − 1− r(r+1)
2 . Moreover, for a generic [C, η] ∈ Rg, the locus V r(C, η) has

exactly this dimension when g ≥ r(r+1)
2 + 1 and is empty when g <

r(r+1)
2 + 1, see [Sch17]. Subsequently

in [DCP95], De Concini and Pragacz viewed V r(C, η) as a Lagrangian degeneracy locus (cf. [Mum71]) and

computed the class of V r(C, η) in the Prym variety when it has the expected dimension g − 1− r(r+1)
2 .

In recent years, two new perspective for the study of Prym-Brill-Noether theory emerged. On one hand,
it has been studied from the point of view of tropical geometry, see [CLRW20] and [LU21], thus providing
another proof for the dimension estimate of V r(C, η) for a generic [C, η] and, on the other hand, from the
perspective of moduli theory, in order to understand the birational geometry of Rg for small values of g. It

is natural to ask when g ≥ r(r+1)
2 + 1 whether the universal Prym-Brill-Noether locus

Vr
g := {[C, η, L] | [C, η] ∈ Rg and L ∈ V r(C, η)}

has a unique irreducible component dominating the moduli space Rg. This is true for g >
r(r+1)

2 +1 because
the fibre above a general [C, η] ∈ Rg is irreducible, see [Deb00, Exemples 6.2]. However, as pointed out in

[JP21], this was not known for g = r(r+1)
2 +1. The goal of this paper is to show that when g = r(r+1)

2 +1, the
moduli space Vr

g has a unique irreducible component dominatingRg. To prove this result, we will consider the
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compactification Rg of the moduli space of Prym curves Rg, see [BCF04] and [FL10]. Finally, we degenerate
to the boundary locus of Rg and employ the theory of limit linear series, adapted to our situation.

Acknowledgements: I would like to thank my advisor Gavril Farkas for suggesting this problem and
for all his help along the way.

2 Prym linear series

Let [C, η] ∈ Rg be a generic Prym curve. Then, we know from [Wel85, Lemma 3.2] that a generic element

L ∈ V r(C, η) satisfies h0(C̃, L) = r + 1. Moreover, when g = r(r+1)
2 + 1 we know from [Sch17, Theorem 1.1]

that all L ∈ V r(C, η) satisfy h0(C̃, L) = r + 1. In particular, the line bundle L can be viewed as a gr2g−2 on

the curve C̃. Furthermore, up to restricting to an open subset, we can view all irreducible components of
Vr
g dominating Rg as contained in the moduli space Gr

2g−2(Rg) parametrizing limit gr2g−2 over double covers

[π : C̃ → C] where C̃ is of compact type. We ask what points can appear in the compactification of Vr
g inside

this space.

Let [π : C̃ → C] ∈ Rg such that C is of compact type and admits a unique irreducible component X

satisfying ηX ≇ OX . For this component X , we denote by pX1 , . . . , pXsX its nodes and by gX1 , . . . , gXsX the
genera of the connected components of C \X glued to X at these points. For an irreducible component Y of
C, different from X , we denote by qY the node glueing Y to the connected component of C \ Y containing
X , and by pY1 , . . . , p

Y
sY

the other nodes of Y . We denote by gY0 , gY1 , . . . , gYsY the genera of the connected
components of C \ Y glued to Y at these points. Using the above notations, we can define the concept of a
Prym limit gr2g−2:

Definition 2.1. A Prym limit gr2g−2, denoted L, is a crude limit gr2g−2 on C̃ satisfying the following two
conditions:

1. For the unique component X̃ of C̃ above X , the X̃-aspect L
X̃

of L satisfies

Nmπ
|X̃
L
X̃

∼= ωX(

s∑

i=1

2gXi pi)

2. For a component Y of C different from X , we denote by Y1 and Y2 the two irreducible components of
C̃ above it. We identify these two components with Y via the map π. With this identification the Y1

and Y2 aspects of L satisfy:

LY1 ⊗ LY2
∼= ωY ((2g − 2 + 2gY0 )q

Y +

s∑

i=1

gYi pYi )

Because the points in the boundary need to respect the norm condition, we immediately obtain that:

Lemma 2.2. Let [π : C̃ → C] ∈ Rg with C̃ of compact type and let V
r

g the closure of Vr
g inside Gr

2g−2(Rg).

Then the fibre of the map V
r

g → Rg over the point [π : C̃ → C] is contained in the locus of Prym limit gr2g−2

on [π : C̃ → C].

We are now ready to use a degeneration argument in order to prove our main result.

Theorem 2.3. When g = r(r+1)
2 + 1, the space Vr

g has a unique irreducible component dominating Rg.

Proof. Let [Y1 ∪x1 Ẽ ∪x2 Y2 → Y ∪x E] be the double cover associated to a generic element of ∆1. We want
to describe the locus of Prym limit gr2g−2’s on such a double cover.

Let L be a Prym limit gr2g−2 on [Y1 ∪x1 Ẽ ∪x2 Y2 → Y ∪xE]. The additivity of the Brill-Noether numbers
implies:

ρ(2g − 1, r, 2g − 2) = −r ≥ ρ(LY1 , x1) + ρ(Ẽ, x1, x2) + ρ(LY2 , x2)
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But we know from [EH87, Theorem 1.1] and [Far00, Proposition 1.4.1] that ρ(LY1 , x1) ≥ 0, ρ(LY2 , x2) ≥ 0

and ρ(Ẽ, x1, x2) ≥ −r. It is clear that these are in fact equalities and L is a refined limit gr2g−2.

We denote by 0 ≤ a0 < a1 < · · · < ar ≤ 2g − 2 and 0 ≤ b0 < b1 < · · · < br ≤ 2g − 2 the vanishing orders
for the Y1 and Y2 aspects respectively. The equality ρ(Ẽ, x1, x2) = −r implies that ai + br−i = 2g − 2 for all
0 ≤ i ≤ r.

The genericity of [Y2, x2] ∈ Mg−1,1 together with ρ(LY2 , x2) = 0 imply that h0(Y2, LY2(−bix2)) = r+1−i

for all 0 ≤ i ≤ r. Using that LY1 ⊗ LY2
∼= ωY (2g · x) and the Riemann-Roch theorem we obtain

h0(Y1, LY1(−(2 + ar−i)q)) = g + r − 1− ar−i − i

Choosing i = 0 we get ar = g + r − 1. Inverting the roles of the ai’s and bi’s we obtain that a0 = g − r − 1.
Because we have the divisorial equivalences

aix1 + br−ix2 ≡ ajx1 + br−jx2

on the elliptic curve E for every 0 ≤ i, j ≤ r, we obtain that ai − ai−1 ≥ 2 for every 1 ≤ i ≤ r. This implies
that ai = g − r + 2i− 1 for every 0 ≤ i ≤ r.

We now view the moduli space Mg−1,1 as embedded in Rg via the map π : Mg−1,1 → Rg sending a
pointed curve [Y, x] ∈ Mg−1,1 to [Y ∪xE,OY , ηE ] where [E, x] is a generic elliptic curve and ηE is a 2-torsion
line bundle on E. For the ramification sequence α = (g − r − 1, g − r, . . . , g − 1) associated to the vanishing
orders a = (a0, . . . , ar) = (g−r−1, . . . , g+r−1), we consider the locus Gr

2g−2(α) parametrizing pairs [C, p, L]
where [C, p] ∈ Mg−1,1 and L is a gr2g−2 having vanishing orders greater or equal to a at the point p. Then
the locus of Prym limit gr2g−2 over Im(π) is birationally isomorphic to Gr

2g−2(α).

We know from [EH89, Lemma 3.6] that Gr
2g−2(α) has a unique irreducible component dominating Mg−1,1.

Moreover

deg(Gr
2g−2(α) → Mg−1,1) = 2

r(r−1)
2 · (g − 1)! ·

r∏

i=1

(i− 1)!

(2i− 1)!

as stated on the second page of [FT16]. On the other hand we have from [DCP95, Theorem 9] that

deg(Vr
g → Rg) = 2

r(r−1)
2 · (g − 1)! ·

r∏

i=1

(i− 1)!

(2i− 1)!

.

We conclude that all dominant irreducible components of Vr
g contain Gr

2g−2(α) in their closure. From this

we get that each such component map to Rg with degree at least 2
r(r−1)

2 · (g − 1)! ·
∏r

i=1
(i−1)!
(2i−1)! , implying

unicity.
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