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A Hurwitz divisor on the moduli of Prym curves

Andrei Bud

Abstract

For even genus g = 2i ≥ 4 and the length g − 1 partition µ = (4, 2, . . . , 2,−2, . . . ,−2) of 0, we
compute the first coefficients of the class of D(µ) in PicQ(Rg), where D(µ) is the divisor consisting of
pairs [C, η] ∈ Rg with η ∼= OC(2x1 + x2 + · · ·+ xi−1 − xi − · · · − x2i−1) for some points x1, . . . , x2i−1 on
C. We further provide several enumerative results that will be used for this computation.

Keywords Prym curves · Hurwitz schemes · Admissible covers · Enumerative geometry

1 Introduction

The moduli spaceRg parametrizing pairs [C, η] consisting of a curve C of genus g and a 2-torsion line bundle η
on C received considerable attention following the influential papers [Bea77] and [Mum74]. The description
of Rg in [Bea77] as a coarse moduli space of a stack, together with the algebraic theory of Prym curves
developed by Mumford in [Mum74] brought this topic to the attention of algebraic geometers. To outline its
importance, we recall that Rg comes equipped with a map Pg : Rg → Ag−1 to the moduli space of principally
polarized abelian varieties of dimension g − 1. This natural application relating curves to Prym varieties
inside Ag−1 was used to provide an algebraic proof of the Schottky-Jung relations, see [Mum74], and, among
others, to understand the birational geometry of the moduli of Prym varieties, see [FL10], [Bru16], [FV16]
and the references therein.

Let Rg be the compactification of Rg as considered in [Bea77] and [BCF04]. When g = 2i + 1 is odd,

Farkas and Ludwig considered an effective divisor D2i+1:2 = {[C, η] ∈ R2i+1 | η ∈ Ci − Ci} describing the
relative position of η with respect to the divisor Ci −Ci in Pic0(C), and computed some relevant coefficients
of its class in PicQ(Rg). As a consequence of their computation, they obtained that Rg is of general type for
g = 13, 14 and g ≥ 17. A natural adaptation of their treatment to the case when g = 2i is even is to consider
the divisor in Rg parametrizing pairs [C, η] satisfying η ∼= OC(2x1+x2+ · · ·+xi−1−xi−xi+1−· · ·−xg−1) for
some points x1, . . . , xg−1 on C, and compute some of its coefficients in PicQ(Rg). In terms of the position of

η with respect to a difference divisor in Pic0(C), the divisor we study is {[C, η] ∈ R2i | η ∈ 2C + Ci−2 − Ci}.

Looking at this from another perspective, we can see the divisor D2i+1:2 as the image in R2i+1 of some
Hurwitz scheme. While for the moduli space of curves Mg several cases when a Hurwitz locus is a divisor
are studied, see [HM82], [Har84], [Dia85], [Far09] and [vdGK12], on the moduli space Rg the only studied
example is D2i+1:2. Such Hurwitz divisors are fundamental in proving that Mg is of general type for g ≥ 24,
see [HM82], [Har84] and [EH87], and that Rg is of general type for g ≥ 17, see [FL10].

Let µ = (2m1, 2m2, . . . , 2mg−1) a length g − 1 partition of 0. We can define a Hurwitz divisor, denoted
D(µ) as the locus parametrizing pairs [C, η] satisfying a line bundle isomorphism η ∼= OC(m1x1 + · · · +
mg−1xg−1) for some points x1, . . . , xg−1 of C. When g = 2i+1 and µ is (2, . . . , 2,−2, . . . ,−2) we recover the
divisor D2i+1:2. In this article we are interested in the case g = 2i with partition µ = (4, 2, . . . , 2,−2, . . . ,−2)
and we ask what is the class of the divisor D(µ) in PicQ(Rg). We consider the basis of PicQ(Rg) consisting
of the classes λ, δ′0, δ

′′
0 , δ

ram
0 together with δi, δg−i, δi:g−i for 1 ≤ i ≤ [g/2]. In this basis, we compute the first

coefficients of our divisor D(µ) and we obtain:
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Theorem 1.1. Let g = 2i ≥ 4 and µ the length g − 1 partition (4, 2, . . . , 2,−2, . . . ,−2) of 0. Then for the

class in PicQ(Rg) of the divisor

[D(µ)] ≡ aλ− b′0δ
′
0 − b′′0δ

′′
0 − bram0 δram0 − b1δ1 − bg−1δg−1 − b1:g−1δ1:g−1 − · · ·

we have the equalities:

a =
12i2 + 10i− 2

2i− 1
·

(
2i− 1

i

)

, b′0 =
2i2

2i− 1
·

(
2i− 1

i

)

b′′0 =
4i3

2i− 1
·

(
2i− 1

i

)

− (3i− 1) · 22i−2, bram0 =
2i2 + 3i− 1

2i− 1
·

(
2i− 1

i

)

b1 = 2i(4i+ 1) ·

(
2i− 1

i

)

− 6(2i− 1) · 22i−2, bg−1 = (6i− 2)

(
2i− 1

i

)

, b1:g−1 = (2i+ 2) ·

(
2i− 1

i

)

Due to results in [FP05] and [FL10], when g ≤ 23 all the other coefficients are irrelevant from the point
of view of birational geometry. As many interesting questions about the birational type appear when g ≤ 23,
no relevant information is lost in this way.

In order to prove this result, we will consider the compactification of Hurwitz schemes by means of
admissible covers, see [HM82], [Dia85] and [ACV03]. Further, we intersect our divisor with some classical test
curves and compute the number of admissible covers above this intersection, along with their multiplicities.
We get in this way a system of 8 equations with 7 unknowns which will be compatible and will conclude
Theorem 1.1.

2 Admissible covers and enumerative geometry

We begin by providing the setting, along with some important results about admissible covers. Next, we
present the enumerative results we need in order to compute the intersection of our divisor with different
test curves.

Let µ = (2m1, 2m2, . . . , 2mg−1) a length g − 1 partition of 0 and let µ− and µ+ be the vectors of
negative and positive entries of µ. We denote by d the sum of the positive elements in µ and take the
partitions of d given as b1 = µ+, b2 = −µ−, b3 = · · · = b3g−1 = (2, 1 . . . , 1). We further consider the set
B = {b1, b2, . . . b3g−1}.

Following the notation in [Dia85], we consider the moduli space Hd,B parametrizing degree d maps
[π : X → P1] together with points q1, q2, . . . , q3g−1 on P1 such that over qi the map has ramification profile bi
and is otherwise unramified. As previously mentioned, we have a compactification Hd,B of Hd,B by means
of admissible covers. We remark that the complete local rings of the Hurwitz scheme Hd,B are determined
as in [HM82].

Let S(µ) be the subgroup of Sg−1 generated by the transpositions {(i, j) | mi = mj}. This group acts on
Mg,g−1 by permuting the marked points, and we can consider the quotient Mg,g−1/S(µ) of this action. We
then have the map

aµ : Hd,B → Mg,g−1/S(µ)

sending [π : X → P1] with branch points q1, q2, . . . , q3g−1 to the stable model of the pointed curve [X, p1, . . . , pg−1]
where p1, . . . , pg−1 are the points in the preimages of q1 and q2, considered in the order given by µ

We consider the subspace of Mg,g−1 defined as

H0
g(µ) =

{

[X, p1, . . . , pg−1] ∈ Mg,g−1 | OX

(
g−1
∑

i=1

2mipi

)

∼= OX

}

and we observe that the image of the map aµ is H
0

g(µ)/S(µ).

We want to discount the components H0
g(

µ
2 ) in the space H0

g(µ) and hence, we will only consider the com-

ponents of Hd,B mapping to (H0
g(µ) \H

0
g(

µ
2 ))/S(µ). We will denote by Hd,µ the space of these components.
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This restriction enables us to consider a map

bµ :
(

H0
g(µ) \ H

0
g(
µ

2
)
)

/S(µ) → Rg

given as

bµ([X, p1, . . . , pg−1]) = [X,OX(

g−1
∑

i=1

mipi)]

Using the compactification of H0
g(µ) in terms of twists at the nodes, see [FP18], we are able to extend

the map bµ over curves of compact type: A pointed curve [X, p1, . . . , pg−1] is sent to [stab(X), η] where if C
is a component of the stabilization of X , we take ηC to be OC(

∑
niqi) where

∑
2niqi = 0 is the divisorial

equivalence determined by the unique possible twist on the component C.

Let cµ = bµ ◦ aµ and D(µ) = cµ∗(Hd,µ). This is a divisor in Rg and we want to compute the class of
its closure D(µ) in Rg. Let πµ : Hd,µ → Mg be the map sending an admissible cover [π : X → Γ] to the
curve stab(X) ∈ Mg. We consider the divisor Z(µ) = πµ∗(Hd,µ). Then it is obvious that the set-theoretical
projection of D(µ) to Mg is Z(µ). This observation implies the following:

Lemma 2.1. Let [C, η] a point in the divisor D(µ). Then there exists an admissible cover [π : X → Γ] in
the Hurwitz scheme Hd,µ such that StMd(X) = StMd(C).

Our goal is to particularize to g = 2i and µ = (4, 2, . . . , 2,−2, . . . ,−2), and prove Theorem 1.1. We make
the following immediate observation which implies that we can ignore the components of Hd,B \Hd,µ in our
computations.

Remark 2.2. Let µ = (2m1, . . . , 2mg−1) a partition of 0 with all negative entries equal to −2. If Z is a
component of Hd,B mapped to H0

g(
µ
2 )/S(µ) by aµ, then the projection of Z to Mg has at least codimension

2.

2.1 Various enumerative results

We provide here some enumerative results that will be used to compute the intersection of the divisor D(µ)
for µ = (4, 2, . . . , 2,−2, . . . ,−2) with various test curves. We start by counting the number of maps to P1

satisfying some ramification conditions on a special fibre. Subsequently, we switch our attention to elliptic
curves and compute the degrees of some particular Hurwitz schemes over M1,1.

We state and prove a classical result generalizing Theorem B in [HM82], Theorem 2.1 in [Har84] and
Lemma 6.2 in [Dia85].

Theorem 2.3. For m,n non-negative integers, let d ≤ g + 1 −m, [C, x1, . . . , xn] a generic point in Mg,n

and α1, . . . , αm, β1, . . . , βn positive integers satisfying

m∑

i=1

αi +
n∑

j=1

βj = 2d+m− 1− g.

Then the number of pairs (L, y1, . . . , ym) with L a degree d line bundle on C and y1, . . . , ym points on C
satisfying

h0(C,L) ≥ 2 and h0(C,L(−

m∑

i=1

αiyi −

n∑

j=1

βjxj)) ≥ 1

is equal to Nα,β := g!
d!(g+1−d−m)!(2d+m− g − 1−

∑m
i=1

1
αi
)
∏m

i=1 α
2
i .

Moreover, due to the genericity of [C, x1, . . . , xn], for every such pair (L, y1, . . . , ym) the line bundle L
is globally generated, h0(C,L) = 2 and h0(C,L(−

∑m
i=1 αiyi −

∑n
j=1 βjxj)) = 1. Furthermore, the points

x1, . . . , xn, y1, . . . , ym along with the points in the support of the effective divisor D equivalent to div(L) −
∑m

i=1 αiyi −
∑n

j=1 βjxj are pairwise distinct.
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Proof. First, observe that everything after ”moreover” is true by dimension considerations. Consider the
map

ϕα,β : C × · · · × C
︸ ︷︷ ︸

m times

×Cg+1−d−m → Cd

given as

(y1, . . . , ym, D) 7→ D +
m∑

i=1

αiyi +
n∑

j=1

βjxj

Let C1
d ⊆ Cd be the locus of divisors D satisfying h0(C,D) ≥ 2. It is easy to observe that the number of pairs

(L, y1, . . . , ym) satisfying the desired properties is the number of points in the intersection Im(ϕα,β) ∩ C1
d .

We will show that this intersection is transverse. Consider a point

E =

m∑

i=1

αiyi +

n∑

j=1

βjxj +

g+1−d−m
∑

k=1

zk

in the intersection Im(ϕα,β) ∩ C1
d . Because the points are all distinct and h0(C,E) = 2 it follows that both

Im(ϕα,β) and C1
d are smooth at the point E. Inside the tangent space

TE(Cd) = H0(C,OC(E)/OC) = H0(C, ωC/ωC(−E))∨

we have the following identifications

TE(Im(ϕα,β)) = Annihilator of H0(C, ωC(− E +

m∑

i=1

(αi − 1)yi +

n∑

j=1

βjxj)/ωC(−E))

TE(C
1
d) = Annihilator of Im(µ̃0)

where µ̃0 is the composition

H0(C,OC(E))⊗H0(C, ωC(−E)) → H0(C, ωC) → H0(C, ωC/ωC(−E))

It is clear that for any differential s ∈ H0(C, ωC(−E)) we have µ̃0(1⊗ s) = 0. Consider f in H0(C,OC(E))
a global section with polar divisor E. Then we have

µ̃0(f ⊗ s) ∈ H0(C, ωC(− E +

m∑

i=1

(αi − 1)yi +

n∑

j=1

βjxj)/ωC(−E))

if and only if

s ∈ H0(C, ωC(− 2E +

m∑

i=1

(αi − 1)yi +

n∑

j=1

βjxj))

Since H0(C,OC(E)) is spanned by 1 and f , it follows that our loci are transverse if and only if

h0(C, ωC(− 2E +
m∑

i=1

(αi − 1)yi +
n∑

j=1

βjxj)) = 0

From the Riemann-Roch theorem, this is equivalent to

h0(C,E +

m∑

i=1

yi +

g+1−d−m
∑

k=1

zk) = 2

This follows immediately from Corollary 5 in [Bud21]. Hence Im(ϕα,β) and C1
d are transverse and the number

of pairs (L, y1, . . . , ym) with the desired properties can be expressed as ϕ∗
α,β(c

1
d), where c1d is the class of the

cycle C1
d .
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We know from [ACGH85], Chapter VII that

c1d =
θg−d+1

(g − d+ 1)!
−

xθg−d

(g − d)!

where x is the class of the divisor Xp = {D ∈ Cd | D − p ≥ 0} and θ is the pullback from the Jacobian of
the theta divisor. Finally we use the formulas in [ACGH85], Chapter VIII to deduce

ϕ∗
α,β(c

1
d) =

g!

d!(g + 1− d−m)!
(2d+m− g − 1−

m∑

i=1

1

αi
)

m∏

i=1

α2
i

In the case m = 0 the proposition still holds, using the convention that
∏m

i=1 αi = 1 and
∑m

i=1
1
αi

= 0.

Next, we consider degree d holomorphic maps f : P1 → P1 with given ramification profiles b1, b2 and b3
over the points 0, 1,∞ and unramified elsewhere and ask what is their number up to isomorphism. We denote
this number by N and count it for different choices of b1, b2 and b3.

Proposition 2.4. We have the following table:

Ramification profiles Number N of maps

b1 = (m,n) with m 6= n and b2 = b3 = (2, . . . , 2) 0

b1 = (k, k), b2 = b3 = (2, . . . , 2) 1

b1 = (2k), b2 = (4, 2, . . . , 2), b3 = (2, . . . , 2) k − 1

b1 = (2k), b2 = (2, 2, . . . , 2), b3 = (2, . . . , 2, 1, 1) 1

b1 = (2k − 1, 1), b2 = (4, 2, . . . , 2), b3 = (2, . . . , 2, 1, 1) k − 1

b1 = (2k − 1, 1), b2 = (3, 2, 2, . . . , 2, 1), b3 = (2, . . . , 2) 1

b1 = (2k − 1, 1), b2 = (4, 2, . . . , 2, 1, 1), b3 = (2, . . . , 2) k − 2

b1 = (m,n, 1) with |m− n| 6= 1, b2 = (4, 2, 2, . . . , 2), b3 = (2, . . . , 2) 0

b1 = (k, k − 1, 1), b2 = (4, 2, 2, . . . , 2), b3 = (2, . . . , 2) 1

b1 = (2k + 1), b2 = b3 = (2, . . . , 2, 1) 1

Proof. Using Corollary 4.10 in [Mir95] this question translates into a purely combinatorial one: the number
of such maps is equal to the number of conjugacy classes of 3-tuples (σ1, σ2, σ3) of permutations in Sd having
cycle types b1, b2 and b3 respectively and satisfying σ1 ◦ σ2 = σ3. We give a proof for the third case in the
table and claim that all other cases follow similarly.

Let us assume b1 = (2k), b2 = (4, 2, . . . , 2) and b3 = (2, . . . , 2). We want to compute the number of
solutions of σ1 ◦ σ2 = σ3 up to conjugacy, where σ1, σ2 and σ3 have cycle types b1, b2 and b3. Since we are
interested in solutions up to conjugacy, we can assume σ1 = (1, 2, . . . , 2k). Moreover, we denote the 4-cycle
in σ2 by (a, a+ s, a+ t, a+ v).

The relation σ1 ◦ σ2 = σ3 implies that σ3 must contain the transposition (a, a + s + 1), which in turn
implies σ2(a+ s+ 1) = a− 1. If a− 1 is not in the 4-cycle, we further get σ3(a− 1) = a+ s+ 2 and so on,
until we ge get a condition for an element of the 4-cycle.

We split the problem into different cases depending on the order of the numbers 0 < s, t, v < 2k.

Case I: The order is v < s < t. Then we apply repeatedly the reasoning outlined previously and deduce
σ2(a+ s+ t− s) = a+ s− t. It then follows that t− s = 2k − v which implies the contradiction s < v.

Case II: The order is s < t < v. In this case, we obtain as in the first case that t− s = 2k− v. Moreover,
the same argument implies a + (a + v) = (a + s) + (a + t). As a consequence, t = k and v = k + s. By

5



reasoning repeatedly as explained, for every s we get the unique solution

σ2 = (a, a+ s, a+ k, a+ k + s)

k−s−1∏

i=1

(a− i, a+ i+ s)

k−1∏

i=k−s+1

(a− i, a+ k + s+ i)

σ3 =

k−s−1∏

i=0

(a− i, a+ i+ s+ 1)

k−1∏

i=k−s

(a− i, a+ k + s+ i+ 1)

This solution is up to conjugation the one where a = 1 and hence we get k − 1 possible solutions depending
on the value of s between 1 and k − 1.

Using the same method we conclude all other assumptions on the order yield no solution.

2.2 A Hurwitz space over the elliptic curves I

For an integer k ≥ 1, we are interested in degree 2k maps from an elliptic curve to P1, having ramification
profiles b1 = (2k), b2 = b3 = (2, 2, . . . , 2) and b4 = (2, 1, 1, . . . , 1) over four branch points q1, q2, q3 and q4. Let
B := {b1, b2, b3, b4} and consider the Hurwitz scheme H2k,B . Following the method in [FMNP20] Section 5,
we prove:

Proposition 2.5. For any k ≥ 1, the map πk : H2k,B → M1,1 remembering the point p of total ramification

over q1 and stabilizing the source curve has degree 6.

Proof. The proposition is clear for k = 1 so we can assume k ≥ 2. We consider [E∞, p] the singular curve of
M1,1 and we compute the length of the cycle π∗

k([E∞, p]) which we know is equal to the degree of the map.

Let us denote by π : X → Γ an admissible cover mapped by πk to [E∞, p]. We denote by R the rational
component of X mapping to E∞ and by R1 the component collapsing to the node of the curve E∞. Fur-
thermore, we will denote by u and v the two nodes where R and R1 are glued together. It follows from our
notation that R contains the totally ramified point p. As for the curve Γ, we denote by P1 the target of R,
by P2 the target of R1 and by q the node. Finally, we denote by f and f1 the restriction of π to R and R1

respectively.

In order to compute the length of the cycle, we distinguish three different cases for the admissible cover
π : X → Γ in π−1

k ([E∞, p]) depending on the position of the branch points on the components of Γ. For each
such admissible cover we compute its multiplicity in π∗

k([E∞, p]).

Case I: The points q1 and q4 are on P1. In this case, we apply the Riemann-Hurwitz Theorem to f and
deduce that there are exactly two points above the node q. This implies that the degree of f1 is 2k. Hence
the only two components of X are R and R1.

Let i and j be the ramification orders of f at the points u and v. The first two rows in the table of
Proposition 2.4 imply that i = j = k and there is a unique choice of the map f1 up to the action of PGL(2)
on R1 and P2. We are now ready to describe the maps f and f1 up to the PGL(2)-action.

For f we assume that u = 0, v = 1 and p = ∞. Then the map can be given as

f(t) = tk(t− 1)k

and the simple ramification point is 1
2 . The only non-trivial automorphism of f is τ(t) = 1 − t, permuting

the nodes u and v.

For f1 we first provide an implicit description of it. Consider u = 0, v = ∞ and let τ1 and τ2 be the
automorphisms τ1(t) = ξ

t and τ2(t) = ξ2t where ξ is a primitive root of order 2k. Let G be the group of
automorphisms generated by τ1 and τ2. Clearly it has order 2k and the map f1 can be taken to be the
quotient

f1 : P
1 → P1/G

The double ramification points are η, η5, . . . , η4k−3 over a branch point and η3, η7, . . . , η4k−1 over another,
where η is a primitive root of order 4k. Using this, we get an explicit description of such a map f1 to be

f1(t) =
(tk − ηk)2

tk

6



It is simply checked that the morphisms of f1 are the elements of G.

We hence found a unique point in H2k,B over [E∞, p] having an automorphism group of order 2k. We
want now to compute its multiplicity in π∗

k([E∞, p]).

For this, we look at the complete local ring of [π : X → Γ] in H2k,B . We know it is the ring of invariants
of

C[[t1, t1,1, t1,2]]/(t1=tk
1,1=tk

1,2)

with respect to the group Autπ(X) of automorphisms α of X satisfying π ◦ α = π. But this is equal to the
ring of invariants of

C[[t1, t1,1, t1,2]]/(t1=tk
1,1=tk

1,2)

with respect to the action of the subgroup AutRπ (X) ≤ Autπ(X) of automorphisms fixing the component R.
This happens because after a suitable change of coordinates, we can assume that Autπ(C) acts linearly on
the parameter space ∆.

In order to clarify this claim, let ∪k
j=1∆ = Spec(C[[t1, t1,1, t1,2]]/(t1=tk

1,1=tk
1,2)

) consisting of k disks glued

together at their respective origins and consider the universal deformation

C P

∪k
j=1∆

π

where locally near the node u, the space C is given by x1 ·y1 = t1,1 and locally near the node v, the space C is
given by x2 · y2 = t1,2. Because the action of Autπ(C) is linear on ∪k

j=1∆ and moreover extends analytically
to an action on C, we see that it is enough to understand how it acts at the level of coordinates of the central
fibre X of C. In the standard coordinates x1 = x2 = y1 = t at 0 and 1, and y2 = 1

t at ∞ we have the following
action of the automorphism group: Consider the automorphism fixing R and acting as multiplication by ξ2j

on R1. This automorphism fixes the coordinates x1 and x2 on R, multiplies y1 by ξ2j and multiplies y2 by
ξ−2j . It follows that this automorphism sends t1,1 = x1y1 to ξ2jt1,1 and t1,2 to ξ−2jt1,2. In particular, the

ring of invariants with respect to the subgroup AutRπ (X) is

C[[t1, t1,1t1,2]]/(t1=tk
1,1=tk

1,2)
∼= C[[t1, t1,1t1,2]]/(t2

1
=(t1,1t1,2)k)

We apply the same reasoning to deduce that the automorphism acting as τ(t) = 1− t on R and as τ1(t) =
ξ
t

on R1 sends t1,1 to −ξt1,2 and t1,2 to −ξ−1t1,1. It simply follows that the rings of invariants with respect to

AutRπ (X) and Autπ(X) are the same.

Hence the local picture at such a point [π : X → Γ] is the following:

∪k
j=1∆ (∪k

j=1∆)/Autπ(X) ⊆ H2k,B

M1,1

k:1

The contribution of the point [π : X → Γ] to the length of π∗
k([E∞, p]) is equal to the local degree of

πk at the point. We see from the diagram that this is equal to 1
k · deg(∪k

j=1∆ → M1,1). For each disk,
the multiplicity of the point over [π : X → Γ] can be computed using curves in the universal deformation
as exemplified in [FMNP20], [HM82] and [Dia85]. The multiplicity of each of the k points in ∐k

j=1∆ over
[E∞, p] is 2. It follows that the contribution of [π : X → Γ] to π∗

k([E∞, p]) is 2.

Case II: The points q1 and q2 are on P1. In this case, the Riemann-Hurwitz theorem applied to f
implies there are exactly k + 1 points over q. It follows that f1 is a degree 2 map and the ramified point
above q4 is on R1. Furthermore, there are k − 1 rational components R2, R3, . . . , Rk glued to R at the k− 1
points in f−1(q) \ {u, v}. For every j = 2, k the degree of the map fj = π|Rj

is equal to 2.

Observe that each fj has a unique non-trivial automorphism and moreover for f1, this automorphism
permutes u and v.

7



We turn our attention to the map f : R → P1. We know it has ramification types (2k), (2, 2, . . . , 2) and
(2, 2, . . . , 2, 1, 1) over three branch points and is otherwise unramified.

Up to conjugacy, there is a unique solution σ1 = σ2 ◦ σ3 in S2k for σ1, σ2, σ3 permutations of cycle type
(2k), (2, 2, . . . , 2), (2, 2, . . . , 2, 1, 1), hence f is unique up to the PGL(2)-action on the curves R and P1.

We will show that f has a non-trivial automorphism. Such an automorphism is unique since it fixes p
and permutes u and v. To see it exists, observe that f can be written as a composition

R
2:1
−−→ P1 k:1

−−→ P1

This can be deduced from unicity, reasoning on the parity of k. The 2 : 1 map induces an involution on R,
which is our desired automorphism.

Consider τ1 an automorphism of X that is non-trivial on the components R and R1 and permutes the
components R2, . . . , Rk accordingly. For j = 2, k consider τj the automorphism of X that is non-trivial on
Rj and trivial on all other components. Then the automorphism group Autπ(X) is the group of cardinality
2k generated by τ1, . . . , τk.

We know that the complete local ring of [π : X → Γ] in H2k,B is the ring of invariants of

C[[t1, t1,1, t1,2, t1,3 . . . , t1,k+1]]/(t1=t1,1=t1,2=t2
1,3=···=t2

1,k+1
)

with respect to Autπ(X). The same reasoning as in the first case implies the complete local ring is isomorphic
to

C[[t1]] ∼= C[[t1, t1,1 · t1,2, t
2
1,3 . . . , t

2
1,k+1]]/(t1=t1,1=t1,2=t2

1,3=···=t2
1,k+1

)

Moreover for a local disk ∆t1 around [π : X → Γ] we have a universal family

C P

∆t1

π

with central fibre π : X → Γ and with local equations xiyi = t1 at the nodes of X . We see that by collapsing
the components R1, . . . , Rk we get a family of genus 1 curves with central fiber E∞ and with local equation
at the node of the form xy = t21. Hence this point contributes with multiplicity 2 to the length of π∗

k([E∞, p]).

The third case when the points q1, q2 are in P1 is treated identically and we thus get another contribution
of 2. To conclude, the length of π∗

k([E∞, p]) = deg(πk) is 2 + 2 + 2 = 6.

2.3 A Hurwitz space over the elliptic curves II

Let again k ≥ 2 and consider the partitions of 2k: b1 = (2k − 1, 1), b2 = (4, 2, . . . , 2), b3 = (2, . . . , 2) and
b4 = (2, 1, 1, . . . , 1). We denote by B the set {b1, b2, b3, b4} and we consider H2k,B the Hurwitz scheme of
admissible covers of degree 2k having ramification profiles b1, b2, b3, b4 over four points q1, q2, q3 and q4. We
want to compute the degree of πk : H2k,B → M1,1 remembering only the point p of ramification order 2k− 1
and stabilizing the source curve.

Proposition 2.6. The degree of πk : H2k,B → M1,1 is 6k − 3.

Proof. We consider the singular point [E∞, p] of M1,1 and we compute the length of π∗
k([E∞, p]), which

we know is equal to the degree of the map. Our approach is again to consider all points in the preimage
π−1
k ([E∞, p]) and compute their multiplicity.

Let π : X → Γ an admissible cover mapped by πk to [E∞, p]. In what follows, we preserve the notations
in Proposition 2.5 for the components and nodes of the source and target.

Depending on the position of the branch points we distinguish again three different cases.
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Case I: The points q1 and q2 are on P1. In this case, applying the Riemann-Roch theorem to f : R → P1

we deduce there are k + 1 points in the fibre over q. This is possible if and only if the ramification profile
over q is (2, 2, . . . , 2, 1, 1). Hence f1 has degree 2 and the ramified point over q4 is on R1. Furthermore X has
another k− 1 rational components R2, R3, . . . , Rk that are glued to R at the k− 1 points in f−1(q) \ {u, v}.
For every j = 2, k the degree of the map fj = π|Rj

is equal to 2.

Such an admissible cover admits no non-trivial automorphism except the ones on the componentsR2, . . . , Rk.
We see from Proposition 2.4 that there are k − 1 such admissible covers. Moreover, the complete local ring
at such a point in H2k,B is the ring of invariants of

C[[t1, t1,1, t1,2, t1,3, . . . , t1,k+1]]/(t1=t1,1=t1,2=t2
1,3=···=t2

1,k+1
)

with respect to Autπ(X). Using a similar argument as the one in Proposition 2.5, we deduce that the ring
of invariants is isomorphic to

C[[t1]] ∼= C[[t1, t1,1, t1,2, t
2
1,3, . . . , t

2
1,k+1]]/(t1=t1,1=t1,2=t2

1,3=···=t2
1,k+1

)

and we also deduce that each such admissible cover is counted with multiplicity 2. Hence the admissible
covers in this case contribute with 2k − 2 to the count.

Case II: The points q1 and q3 are on P1. Applying the Riemann-Hurwitz theorem to f : R → P1 we
deduce that the number of points in the fibre over q is k. We have two possibilities: either the point of
ramification order 4 is on the rational component collapsing to the node of E∞, or the point of ramification
order 4 is on a rational component collapsing to a smooth point of E∞ when we stabilize the curve.

For the first possibility, there is a unique choice for the admissible cover, as implied by the first and sixth
rows in Proposition 2.4. The map f : R → P1 has ramification profiles (2k−1, 1), (2, . . . , 2) and (3, 2, . . . , 2, 1)
over q1, q3 and q. For the map f1 : R1 → P2 we know that the ramification profiles are (4), (2, 1, 1) and (3, 1)
over q2, q4 and q. At each of the other k − 2 points over q, the curve X contains a rational curve glued to R
that maps 2 : 1 to P2 with branch points q and q2.

The complete local ring at this point is

C[[t1,1]] ∼= C[[t1, t1,1, t1,2, t
2
1,3, . . . , t

2
1,k]]/(t1=t3

1,1=t1,2=t2
1,3=···=t2

1,k
)

Hence at this point H2k,B is smooth and, as the ramification orders at u and v are 3 and 1, the multiplicity
of the point is 1 + 3 = 4.

For the second possibility, Proposition 2.4 implies there are k − 2 choices of the map f : R → P1. The
map f1 : R1 → P2 is 2 : 1 with branch points q2 and q4. At the point of order 4 over q we have a rational
component glued to R mapping 4 : 1 to P2 with two points of total ramification over q and q2. At all the
other points in the fibre over q there is a rational component glued to R that maps 2 : 1 to P2 with branch
points q and q2.

Again, we see that these points are smooth in H2k,B and they are all counted with multiplicity 2. Hence
the contribution of Case II to the count is 4 + 2(k − 2) = 2k.

Case III: The points q1 and q4 are on P1. In this case the map f : R → P1 can have degree 2k − 1 or
2k. If we assume the degree in 2k, the Riemann-Hurwitz theorem implies there is a unique point in the fibre
over q, which is false, as both u and v are there.

It follows that the degree of f is 2k − 1 and, by the Riemann-Hurwitz theorem, that u and v are the
only points in the fibre over q. In this case, Proposition 2.4 implies that f1 : R1 → P2 is the unique map of
degree 2k and ramification profile (4, 2, . . . , 2), (2, . . . , 2), (k, k− 1, 1) over q2, q3 and q. In this case, the same
argument with the complete local ring implies this cover should be counted with multiplicity k−1+k = 2k−1.

Adding up the three cases, it follows that the degree of πk is 2k − 2 + 2k + 2k − 1 = 6k − 3.

2.4 Combinatorial identities

Another ingredient we will require is the computation of some combinatorial sums. We state without proof
the following identities
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Proposition 2.7. We consider the sums Sk =
∑i−1

s=0 s
k
(
2i
s

)
and compute the first terms to be

S0 = 2 · 22i−2 −

(
2i− 1

i

)

, S1 = 2i · 22i−2 − 2i ·

(
2i− 1

i

)

and S2 = i(2i+ 1) · 22i−2 − 3i2 ·

(
2i− 1

i

)

Similarly, let Tk =
∑i−1

s=0 s
k
(
2i−1
s

)
. We compute the first terms to be

T0 = 22i−2, T1 =
2i− 1

2
· 22i−2 −

i

2
·

(
2i− 1

i

)

, T2 =
(2i− 1)i

2
· 22i−2 −

(2i− 1)i

2
·

(
2i− 1

i

)

T3 = (i3 −
3

4
i+

1

4
) · 22i−2 − (

3

2
i3 − i2)

(
2i− 1

i

)

and T4 = (i4 + i3 −
9

4
i2 +

3

4
i) · 22i−2 − (2i4 − i3 − i2 +

1

2
i)

(
2i− 1

i

)

3 Test curves

We consider some classical examples of test curves on Mg and take their pullbacks to Rg in order to obtain
new ones. Using the projection formula and the description of Rg over Mg in [BCF04] and [FL10], we
compute their intersection numbers with all divisorial classes. All test curves on Mg we are considering can
be found in [HM98] and [Mul16], while most test curves on Rg we consider appear in more detail in [MP21].

Before providing the test curves we remark that PicQ(Rg) ∼= Q. This follows from Theorem A and
Theorem B in [Put12]. Consequently, the classes λ, δ′0, δ

′′
0 , δ

ram
0 together with δi, δg−i, δi:g−i for 1 ≤ i ≤ [g/2]

form a basis of PicQ(Rg). In particular, describing the intersection of the test curves with these classes is
sufficient to describe their intersection with any class.

3.1 Test curve A

Let A be the test curve in Mg consisting of a generic genus g − 1 curve C glued at a generic point x to a
pencil of elliptic curves along a base point. Taking the pullback of the curve A to Rg we obtain three test
curves Ag−1, A1, A1:g−1, contained in the three divisorial components ∆g−1,∆1 and ∆1:g−1 respectively. We
have the following intersection numbers, where the omitted intersections are all 0:

Ag−1 · λ = 1, Ag−1 · δ
′
0 = 12, Ag−1 · δg−1 = −1

A1 · λ = 3, A1 · δ
′′
0 = 12, A1 · δ

ram
0 = 12, A1 · δ1 = −3

A1:g−1 · λ = 3, A1:g−1 · δ
′
0 = 12, A1:g−1 · δ

ram
0 = 12, A1:g−1 · δ1:g−1 = −3

3.2 Test curve B

Consider a generic point [C, x] ∈ Mg−1,1. By glueing the point x to a point y moving on the curve, we obtain
a curve B on Mg. Proceeding as before, the pullback provides 3 test curves B′, B′′ and Bram lying in the
divisors ∆′

0, ∆
′′
0 and ∆ram

0 . We have the following intersection numbers, the ones omitted being 0:

B′ · δ′0 = (1− g)(22g − 4), B′ · δg−1 = 22g−2 − 1, B′ · δ1:g−1 = 22g−2 − 1

B′′ · δ1 = 1, B′′ · δ′′0 = 2− 2g

Bram · δram0 = 22g−2(1− g), Bram · δ1 = 1, Bram · δ1:g−1 = 22g−2 − 1
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3.3 Test curves Ci

Let i an integer satisfying 2 ≤ i ≤ g − 1 and let [C] ∈ Mi and [D, y] ∈ Mg−i,1 be two generic curves. Let
ηC ∈ Pic(C)[2] \ {0} and ηD ∈Pic(D)[2] \ {0} and consider the test curves in Rg

[C ∪x∼y D, (ηC ,OD)]x∈C

[C ∪x∼y D, (OC , ηD)]x∈C

[C ∪x∼y D, (ηC , ηD)]x∈C

by varying x along C. We denote them Ci
i , C

i
g−i and Ci

i:g−i respectively. It is clear they are contained in
the divisors ∆i,∆g−i and ∆i:g−i respectively. The intersection numbers are the following, where all omitted
intersection numbers are 0:

Ci
i · δi = 2− 2i

Ci
g−i · δg−i = 2− 2i

Ci
i:g−i · δi : g−i = 2− 2i

4 Intersection numbers

Throughout this section, the genus g = 2i is even and the partition µ of length g − 1 is taken to be
(4, 2, 2, . . . , 2,−2, . . . ,−2). Our goal is to compute the intersection of D(µ) with some of the test curves
described in Section 3 and conclude Theorem 1.1.

We consider the normalization ν : H
ν

g,µ → Hg,µ of the Hurwitz scheme Hg,µ. Our first task is to extend

the map cµ ◦ ν : H
ν

g,µ 99K Rg over points in the preimage (πµ ◦ ν)−1([C/x∼y]) where [C, x] is a generic point

of Mg−1,1. Our approach is to describe the admissible covers in Hg,µ above such [C/x∼y] in Mg and based
on the description explain how the map cµ ◦ ν is extended.

Proposition 4.1. Let [C, x] be a generic point of Mg−1,1 and y a point on the curve C. Then the rational

map cµ ◦ ν : H
ν

g,µ 99K Rg can be extended over the fibre (πµ ◦ ν)−1([C/x∼y]).

Proof. Consider an element [π : X → Γ] in Hg,µ above [C/x∼y] ∈ Mg. The genericity of [C, x] and Lemma
5.3 in [Dia85] imply that Γ has exactly two irreducible components. We denote Γ = P1 ∪q P2 where C, seen
as a component of X , is mapped to P1. We distinguish four different possibilities for the admissible cover
π : X → Γ depending on the position of the points q1 and q2 on Γ.

Case I: The points q1 and q2 are on P1. In this case, it follows that deg(π|C) = g. Otherwise, the twist
on C will correspond to a partition of length strictly smaller than g − 1, contradicting the genericity of the
curve. Moreover, as the map

H0
g−1(2, 1, 1, . . . , 1,−1, . . . ,−1) → Mg−1

corresponding to the length g − 1 partition (2, 1, 1, . . . , 1,−1, . . . ,−1) is not dominant, it follows that

OC(
π∗(q1)− π∗(q2)

2
) 6∼= OC

Taking into account the genericity of the point x, we deduce that the curve X is as in the following figure
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C

R
x

y

1:1

1:1
The other g − 2 points in the same fiber as x

2 : 1

Figure 1: A curve X corresponding to an admissible cover in Hg,µ over [C/x∼y]

Here y is one of the other g − 1 points in the same fiber of π as x and there is a rational component
mapping 1 : 1 to P2 glued at the other g − 2 points of this fibre. The points x and y are glueing C to a
rational component R mapping 2 : 1 to P2.

As there exists no non-trivial automorphism α : X → X satisfying π ◦ α = π, the complete local ring of
[π : X → Γ] in Hg,µ has the form

C[[t1,1, . . . , t1,g, t1, . . . , t3g−4]]/(t1=t1,1=···=t1,g)
∼= C[[t1, . . . , t3g−4]]

This implies that Hg,µ is smooth at [π : X → Γ]. We then consider an open (3g−4)-dimensional polydisk
∆3g−4 centered at [π : X → Γ] and assume the equation t1 = 0 parametrizes the locus of admissible covers
with singular source curve. We have the commutative diagram of maps

Rg

∆3g−4 \ {t1 = 0} Mg
πµ

cµ

Consider a small enough neighbourhood U of [C/x∼y] in Mg such that its preimage in Rg consists of
disjoint open sets, each containing a unique element in the fibre over [C/x∼y]. We further shrink ∆3g−4 so that
the image is contained in U . It follows that ∆3g−4 \ {t1 = 0} is mapped by cµ to a unique open component
of the preimage of U in Rg and the map cµ can be analytically extended due to Hartogs’ extension theorem.

We want to determine the boundary divisor of Rg to which [π : X → Γ] is mapped by this extension. For
this we consider a 1-dimensional smoothing of the admissible cover

C P

∆

π

together with the sections qi : ∆ → P defining the branch points. By eventually shrinking ∆ we can assume
that the preimages π−1(q1(∆)) and π−1(q2(∆)) are set-theoretically unions of disjoint sections of C → ∆.
We consider the divisor Z on C satisfying 2Z = π∗(q1∗(∆))− π∗(q2∗(∆)) and take the associated line bundle
OC(Z). We then have that

OC(Z)|Ct
= OCt

(Zt) ∈ Pic(Ct)[2] for all t 6= 0

As C is smooth, it follows that there exist coefficients c, c1, . . . , cg−2 such that

OC(2Z) ∼= OC(cR+

g−2
∑

j=1

cjRj)

where R,R1, . . . , Rg−2 are the rational components of the central fibre X . We know that these rational
components are disjoint with Z and the intersection numbers of the rational components are R · R = −2,
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R ·Rj = 0 ∀j = 1, g − 2 and Rj ·Rj = −1 ∀j = 1, g − 2. As a consequence, it follows that c = c1 = · · · = cg−2

= 0. Hence the central fiber of OC(Z) is a 2-torsion point of Pic(X) and this line bundle is trivial on all
the rational components. Hence, by collapsing the rational components we obtain an element of Rg over the
central fibre. Moreover, this element is in the divisor ∆′

0 of Rg because we have

OC(
π∗(q1)− π∗(q2)

2
) 6∼= OC

Case II: The points q1 and q2 are on P2. In order to treat this case, we need to introduce some notations.
Denote by x1, . . . , xs the points on C in the fibre π−1(q) that are different from x and y. For each rational
component P of X we are interested to which component of Γ it is mapped and also, to which of the points
x ∼ y, x1, . . . , xs it collapses when we stabilize X . We introduce the following notations

c0,1 =
∑

P collapses to x ∼ y
P is mapped to P1

deg(f|P : P → P1)

c0,2 =
∑

P collapses to x ∼ y
P is mapped to P2

deg(f|P : P → P2)

We similarly define cj,1 and cj,2 for the points xj for j = 1, s. By double counting the ramification orders
at the nodes we deduce the following numerical conditions for the admissible cover π:

ordx(π|C) + ordy(π|C) + c0,1 = c0,2

ordx1
(π|C) + c1,1 = c1,2

. . .

ordxs
(π|C) + cs,1 = cs,2

We claim that cj,1 ≥ 1 for all j = 1, s and moreover that cj,1 ≥ 2 if the point of ramification order 4 is on
a rational component collapsing to xj . We also have a description for when equality holds. When cj,1 = 1
the only possibility is that cj,2 = 2. Moreover if cj,1 = 2 and the point of ramification order 4 collapses to xj

it follows that cj,2 = 4.

To see this, assume that cj,1 = 0 for some j. This implies that there exists a unique rational component P
that collapses to xj . This component is furthermore mapped by π to P2 and is totally ramified at the point
of P glued to xj . But the map π|P has only even ramification orders over q1 and q2. By the Riemann-Hurwitz
theorem, this is impossible. If cj,1 = 1 it follows again that there is a unique component P collapsing to xj

and mapped to P2. This component P has ramification profiles (2k− 1, 1), (2, . . . , 2) and (2, . . . , 2) over q, q1
and q2. Reasoning as in Proposition 2.4, this is only possible if k = 1 and hence cj,2 = 2. The case when the
point of ramification order 4 is on a rational component collapsing to xj follows analogously.

We distinguish two different cases depending on whether this point of ramification order 4 is collapsing
to x ∼ y or to one of the points x1, . . . , xs.

If this point collapses to x ∼ y we get by adding the equalities that

deg(π|C) + s+ c0,1 ≤ 2i

Furthermore the genericity of [C, x] implies that

deg(π|C) + s ≥ g − 1 = 2i− 1

Because c0,1 ≤ 1 it follows that there is a unique rational component R mapping to P2 that collapses
to x ∼ y. The Riemann-Hurwitz theorem applied to π|R implies that the fibre π−1

|R (q) contains at least 3

distinct points. It follows that c0,1 = 1, deg(π|C) + s = 2i − 1 and the ramification profiles of π|R over the
branch points q, q1 and q2 are (m,n, 1), (4, 2, 2, . . . , 2) and (2, . . . , 2) where the entries add up to 2i− 2s.

Proposition 2.4 implies that m = i− s, n = i− s− 1 and in this case there is a unique choice for the map
π|R. We get two possible types of admissible covers π : X → Γ which we will now describe.

13



For the first type, π|C has degree 2i− s− 1 and the ramification orders at x and y are i− s and i− s− 1.
Furthermore π|R is the unique map with ramification profiles (i−s, i−s−1, 1), (4, 2, 2, . . . , 2) and (2, 2, . . . , 2)
over q, q1 and q2, where the points of ramification orders i− s and i− s− 1 are x and respectively y.

For the second type, π|C has degree 2i − s − 1 and the ramification orders at x and y are i − s − 1 and
i − s. Furthermore π|R is the unique map with ramification profiles (i − s, i − s − 1, 1), (4, 2, 2, . . . , 2) and
(2, 2, . . . , 2) over q, q1 and q2, where the points of ramification orders i−s−1 and i−s are x and respectively
y.

We see that for both types, there exists no non-trivial automorphism α : X → X which satisfies π ◦α = π.
As a consequence the complete local ring of Hg,µ at the point [π : X → Γ] is isomorphic to

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(ti−s
1,1 =ti−s−1

1,2 )

By considering [π : X → Γ] as a point in the normalization H
ν

g,µ of Hg,µ we see that [π : X → Γ] is a smooth

point of H
ν

g,µ. The same argument using Hartogs’ extension theorem as in Case I implies that the map cµ ◦ ν

can be extended over this point. As in Case I, we deduce that [π : X → Γ] is mapped to ∆′′
0 in Rg.

We now treat the case when the point of order 4 is on a rational component collapsing to a smooth point
of C. In this case we get by adding the equalities that

deg(π|C) + s+ 1 + c0,1 ≤ 2i

Using the inequality
deg(π|C) + s ≥ 2i− 1

implied by the genericity of [C, x] we deduce that deg(π|C) = 2i − s − 1 and c0,1 = 0. It follows that
ordx(π|C) + ordy(π|C) = 2i − 2s − 2. Proposition 2.4 implies that the ramification profiles of π|R over q, q1
and q2 are (i− s− 1, i− s− 1), (2, . . . , 2) and (2, . . . , 2).

We see that the admissible cover π : X → Γ can be described as follows. The map π|C has degree 2i−1−s
containing in its fiber over q the points x, y of ramification order i− s− 1 and another point of ramification
order 2 to which the point of ramification order 4 over q1 collapses. For the rational component R, the map
π|R has ramification profiles (i− s− 1, i− s− 1), (2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

As a consequence, the complete local ring of Hg,µ at [π : X → Γ] is the ring of invariants of

C[[t1,1, t1,2, t1,3, t2, . . . , t3g−4]]/(ti−s−1

1,1 =ti−s−1

1,2 =t2
1,3)

with respect to the group Autπ(X) of automorphisms α : X → X satisfying π ◦ α = π.

Denote by x1 the point of ramification order 2 in the same fibre as x and y and by R1 the rational
component of degree 4 over P2 collapsing to x1. Up to the PGL(2)-action on both the source and the target
we can describe π|R1

as

π|R1
(t) = t2(t− 1)2

In this description, observe that the point x1 corresponds to the point 1
2 and there is a non-trivial automor-

phism τ given as τ(t) = 1− t.

By first considering the ring of invariants with respect to the automorphism acting as τ on R1 and fixing
C and R we get that the complete local ring of Hg,µ at [π : X → Γ] is the ring of invariants of

C[[t1,1, t1,2, t
2
1,3, t2, . . . , t3g−4]]/(ti−s−1

1,1 =ti−s−1

1,2 =t2
1,3)

∼= C[[t1,1, t1,2, t2, . . . , t3g−4]]/(ti−s−1

1,1 =ti−s−1

1,2 )

with respect to the automorphism subgroup AutR1

π (X) ≤ Autπ(X) of elements restricting to the identity
on R1. But AutR1

π (X) is the group of automorphisms of R fixing the points x, y and all components of
X different from R. A description of this group appears in the proof of Proposition 2.5. We consider the
parameter space of

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(ti−s−1

1,1 =ti−s−1

1,2 )

consisting of i− s− 1 polydisks of dimension 3g − 4 glued together along t1,1 = 0. Then AutR1

π (X) acts on
this space by identifying the i − s − 1 components with one another. As a consequence, the space Hg,µ is

14



smooth at [π : X → Γ] and the method of Case I applies again. By choosing a 1-dimensional smoothing we
deduce that [π : X → Γ] is mapped by cµ to ∆′′

0 in Rg.

Case III: The point q1 is on P1 and the point q2 is on P2. The image StMd(X, π−1(q1), π
−1(q2)) by

aµ is an element of H
0

g(µ)/S(µ), hence there is a twist associated to this pointed curve. The genericity of
[C, x] implies that the partition on C determined by the twist has length g. This imply that on C we have a
divisorial equivalence of the form

4y1 + 2y2 + · · ·+ 2yi−1 − 2x1 − · · · − 2xi−1 − x− y ≡ 0

in Pic(C) where y1, . . . , yi−1, x1, . . . , xi−1 are points of C. In particular, this description implies deg(π|C) =
g, deg(π|R) = 2 and at every point xj there is a rational component Rj glued to C that maps 2 : 1 to P2 with
branch points q and q2.

From the above description it follows that the complete local ring of [π : X → Γ] in Hg,µ is the ring of
invariants of

C[[t1,1, t1,2, . . . , t1,i+1, t2, . . . , t3g−4]]/(t2
1,1=···=t2

1,i−1
=t1,i=t1,i+1)

with respect to the action of Autπ(X). But Autπ(X) is the group of cardinality 2i−1 generated by the
automorphisms τ1, . . . , τi−1 where τj for j = 1, i− 1 is the automorphism of X that restricts to the identity
on all components except Rj . In particular, the complete local ring is isomorphic to

C[[t21,1, . . . , t
2
1,i−1, t1,i, t1,i+1, t2, . . . , t3g−4]]/(t2

1,1=···=t2
1,i−1

=t1,i=t1,i+1)
∼= C[[t1,i, t2, . . . , t3g−4]]

hence the point is smooth and the map cµ can be extended to this point by Hartogs’ extension theorem.

Next, we consider a 1-dimensional smoothing of π : X → Γ

C P

∆

π

together with the sections q1, q2 : ∆ → P . We consider as in Case I the divisor Z on C satisfying 2Z =
π∗(q1∗(∆))− π∗(q2∗(∆)). We see that

deg(OC(Z)|R) = −1, deg(OC(Z)|C) = i and deg(OC(Z)|Rj
) = −1 for all j = 1, i− 1

Because we have the self-intersection numbers R ·R = −2 and Rj ·Rj = −1 we conclude that by twisting

with −R−
∑i−1

j=1 Rj and collapsing the rational components R1, . . . , Ri−1 we obtain an element of ∆ram
0 in

Rg.

Indeed, when restricting OC(Z −R−
∑i−1

j=1 Rj) to C we obtain the line bundle

L ∼= OC(2y1 + y2 + · · ·+ yi−1 − x1 − · · · − xi−1 − x− y)

and it is clear that L2 ∼= OC(−x − y). Moreover the degree of OC(Z − R −
∑i−1

j=1 Rj) restricted to R is 1,
hence we obtain an element in ∆ram

0 over the central fibre, as stated.

Case IV: The point q1 is on P2 and the point q2 is on P1. The image StMd(X, π−1(q1), π
−1(q2)) through

aµ is an element of H
0

g(µ)/S(µ). Using again the genericity of [C, x] and the existence of a twist we deduce
that on C the twist determines a linear equivalence of one of the following forms

4x1 + 2x2 + · · ·+ 2xi−2 + x+ y − 2y1 − · · · − 2yi ≡ 0

2x2 + · · ·+ 2xi−1 + (4− k)x+ ky − 2y1 − · · · − 2yi ≡ 0

where all xj and yj are points of C and k ∈ {1, 2, 3}.

We claim that the map cµ◦ν : H
ν

g,µ → Rg extends over the preimages of such admissible covers [π : X → Γ]
and the image of such a point is in ∆′

0 only if the linear equivalence determined by the twist is of the second
form and k = 2. If the linear equivalence is of any of the other three forms, cµ maps such admissible covers
to ∆ram

0 .
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The case when the divisorial equivalence is of the first form follows analogously to Case III. If the
divisorial equivalence is of the second form with k = 2, we see that the complete local ring of Hg,µ at the
point [π : X → Γ] is isomorphic to

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t2
1,1=t2

1,2)

Hence the parameter space consists of two (3g − 4)-dimensional polydisks glued together along the locus
t1,1 = 0 where the coordinates of the polydisks are considered to be t1,1, t2, . . . , t3g−4. In particular, both

preimages of [π : X → Γ] are smooth in the normalization H
ν

g,µ.

Over both polydisks we have a universal covering and hence the same approach as in Case I can be applied
to deduce that cµ ◦ ν maps the preimages of [π : X → Γ] to ∆′

0.

We are left to treat the case when the divisorial equivalence is of the second form and k = 1 or k = 3. In
both cases, the complete local ring of Hg,µ at the point [π : X → Γ] is isomorphic to

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t3
1,1=t1,2)

∼= C[[t1,1, t2, . . . , t3g−4]]

Because the point is smooth, the map cµ extends over it.

Consider now the 1-dimensional smoothing family of π : X → Γ obtained by varying the coordinate t1,1

C P

∆t1,1

π

Observe that C is smooth except for an A3-singularity at either x or y, depending on whether k = 1 or
k = 3. By blowing-up the singularity we obtain in the central fibre of the new space C̃ a chain R ∪R′ ∪ R′′

of rational components connecting the two points x and y. We denote by R2, . . . Ri−1 the rational curves of
X glued to C at the points x2, . . . , xi−1. We take the line bundle OC̃(Z +

∑i−1
j=2 Rj + R) on C̃ and see that

its restriction to C is

L := OC(x2 + · · ·+ xi−1 +
3− k

2
x+

k − 1

2
y − y1 − · · · − yi)

which satisfies L2 ∼= OC(−x− y). Moreover, this line bundle on C̃ has degree 0 when restricted to a rational
component of the central fibre except for the component R′ for which the degree is 1. In particular, by
collapsing all rational components but R′ we obtain an element in ∆ram

0 over the central fibre.

We are now ready to compute the intersection of the divisor with different test curves.

4.1 Intersection with test curves of type A

Before starting our computations we make a remark about some admissible covers with elliptic source curve.
We do this because such covers will appear naturally in our study and the next remark will be essential in
our computation.

Remark 4.2. Let f1 : E → P1 be a map of degree 2k ≥ 4 with ramification profiles (2k), (4, 2, . . . , 2) and
(2, . . . , 2) over three branch points. Then Aut(E, y) 6= Z6 and f1 ◦ j = f1 for any automorphism j : E → E
fixing the point y of ramification order 2k.

Proof. We split the problem into two cases depending on whether k is even or odd.

When k is even, we consider the unique map π : P1 → P1 with ramification profiles (k), (2, . . . , 2) and
(1, 1, 2, . . . , 2) over ∞, 1 and 0, where the point of ramification order k is denoted x1 and the two unramified
points over 0 are denoted x2 and x3. Let x4 be one of the other k − 1 points of ramification order 2. If
we take the degree 2 map g : E → P1 with branch points x1, x2, x3 and x4, the map π ◦ g has ramification
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profiles as in the hypothesis. Hence all maps f1 are obtained in this way and it is clear that f1 ◦ j = f1 for
the involution j of the source curve (E, y).

Consider the map g : E → P1 of degree 2 with branch points 0, 1,∞ and x. Then Aut(E, y) = Z4 if and
only if x = 1

2 . In particular, at most one of the k − 1 maps as in the hypothesis has source curve satisfying
Aut(E, y) = Z4. We prove that such a map exists.

We consider the map π′ : P1 → P1 branched over∞, 0 and 1, having ramification profiles (k2 ), (1, 1, 2, . . . , 2)

and (2, . . . , 2) if k
2 is even or ramification profiles (k2 ), (1, 2, . . . , 2) and (1, 2, . . . , 2) if k

2 is odd, where we take
the point of total ramification to be ∞ and the two unramified points to be 0 and 1.

Take the map g′ : E → P1 of degree 4 having ramification profiles (4), (4) and (2, 2) over the branch points
∞, 0 and 1. Then π′◦g′ : E → P1 is a map with ramification profiles as in the hypothesis and Aut(E, y) = Z4.

Let g : E → P1 a degree 2 map ramified over the points 0, 1,∞ and x. Then Aut(E, y) = Z6 if and only
if x is a primitive root of order 6.

We consider again the map π : P1 → P1. We can describe it as

π(t) = t(t− 1)Q(t)2

where Q(X) is given by the unique solution of the polynomial Pell equation

P (X)2 −X(X − 1)Q(X)2 = 1

with deg(P ) = deg(Q) + 1 = k
2 . Observe that we have the initial solution P (X) = 2X − 1, Q(X) = 2 and

hence our solution is given by

P (X)−Q(X)
√

X(X − 1) = (2X − 1− 2
√

X(X − 1))
k
2

Let ξ a primitive root of order 6. Using the identity ξ2 − ξ = −1 and the binomial expansion we deduce

P (ξ) = (2ξ − 1)
k
2

⌊ k
4 ⌋∑

s=0

4s

3s

( k
2

2s

)

In particular, it is clear that ξ(ξ − 1)Q(ξ)2 = P (ξ)2 − 1 is not 0 or 1 and hence ξ is not one of the k − 1
ramification points.

The approach when k is odd is similar. We consider the unique map π : P1 → P1 with branch points ∞, 0
and 1 having ramification profiles (k), (1, 2, . . . , 2) and (1, 2, . . . , 2) where the point of ramification order k is
∞ and the unramified points are 0 and 1 respectively. The k − 1 maps are obtained as in the previous case.
Moreover, the unicity of the map implies that if we take τ(t) = 1− t the morphism fixing ∞ and permuting
0 and 1 we have

π ◦ τ(t) = 1− π(t)

implying that none of the k − 1 other ramification points is fixed by τ . Hence Aut(E, y) 6= Z4.

To see that Aut(E, y) 6= Z6 it is enough to show that if ξ is a primitive root of order 6, then π(ξ) is not
0 or 1. The map π can be described as

π(t) = tQ(t)

where Q(X) is given by the unique solution of the generalized polynomial Pell equation

XQ(X)2 − (X − 1)P (X)2 = 1

with deg(P ) = deg(Q) = k−1
2 . We see that the solution is given by

XQ(X)− P (X)
√

X(X − 1) = (X −
√

X(X − 1))(2X − 1− 2
√

X(X − 1))
k−1

2

Hence we have

Q(X) =

⌊ k−1

4 ⌋
∑

s=0

4sXs(X − 1)s(2X − 1)
k−1

2
−2s

(k−1
2

2s

)

+ 2(X − 1)

⌊ k−3

4 ⌋
∑

s=0

4sXs(X − 1)s(2X − 1)
k−3

2
−2s

(k−1
2

2s

)
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As before, we get that ξQ(ξ) is not 0 or 1 and hence ξ is not one of the k − 1 points of ramification order 2
of π. Hence Aut(E, y) 6= Z6.

Next, we compute the intersection of the divisor D(µ) with the test curves obtained by pulling back to
Rg the test curve A.

Proposition 4.3. We have the following intersection numbers

D(µ) ·A1:g−1 = D(µ) ·Ag−1 = 0 and D(µ) ·A1 = (3g − 3)! · 6 · (22i−2 −

(
2i− 1

i

)

)

Proof. We first show that an element [C ∪x∼y E, η] ∈ Rg with [C, x] ∈ Mg−1,1 generic, E a smooth elliptic
curve and ηC 6∼= OC is not contained in D(µ).

We assume by contradiction that it is. Due to the genericity of [C, x], the existence of a twist implies
that the partition on C determined by it has length g − 1. It follows that this partition is µ. We know that
the forgetful map

H0
g−1(µ) → Mg−1

is finite. It follows that x is not a ramification point for any of the maps f : C → P1 with ramification profiles
µ+ and −µ− over 0 and ∞.

If [π : X → Γ] ∈ Hg,µ is mapped by cµ : Hg,µ → Rg to [C ∪x∼y E, η], the previous remarks imply
deg(π|C) = g and ordx(π|C) = 1. This would imply deg(π|E) = 1, which is impossible.

Next, we describe the admissible covers [π : X → Γ] that are mapped by cµ to a point of the test curve
A1. We denote by x1, . . . , xs the points of C in the same fibre of π|C as x. As in Case II of Proposition 4.1
we define

c0,1 =
∑

P collapses to x ∼ y
P is mapped to P1

deg(f|P : P → P1)

c0,2 =
∑

P collapses to x ∼ y
P is mapped to P2

deg(f|P : P → P2)

and similarly cj,1 and cj,2 corresponding to xj for j = 1, s. Using the properties of admissible covers we
deduce the relations

ordx(π|C) + c0,1 = ordy(π|E) + c0,2

ordx1
(π|C) + c1,1 = c1,2

. . .

ordxs
(π|C) + cs,1 = cs,2

Adding them up and using that cj,1 ≥ 1 for every j = 1, s we get that

deg(π|C) + s+ c0,1 ≤ 2i

Together with the inequality
deg(π|C) + s ≥ 2i

coming from the genericity of [C, x], this implies that c1,1 = · · · = cs,1 = 1, that c0,1 = 0 and deg(π|C) = 2i−s.
This implies further that c1,2 = · · · = cs,2 = 2, that deg(π|E) = 2i − 2s and π|E has ramification profiles
(2i− 2s), (4, 2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

Consequently, the map π : X → Γ is uniquely determined by the choice of a map f : C → P1 of degree
2i − s with ramification order 2i − 2s at x and the choice of a map f1 : E → P1 of degree 2i − 2s having
ramification profiles (2i − 2s), (4, 2, . . . , 2) and (2, . . . , 2) over three branch points. It follows from Theorem
2.3 and Proposition 2.4 that the number of such maps π : X → Γ is equal to

i−1∑

s=0

(2i− 2s) ·
(2i− 1)!

(2i− s)!s!
· (i− s− 1) =

1

i

i−1∑

s=0

(i− s)(i − s− 1)

(
2i

s

)
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As a consequence of Proposition 2.7, the number of maps π : X → Γ with the desired properties is
22i−2 −

(
2i−1

i

)
. We observe that each choice of order for the 3g− 3 simple branch points produces a different

admissible cover. We next show that each admissible cover should be counted with multiplicity 6.

Using the description of the complete local ring, we deduce that the admissible cover π : X → Γ admits
a universal family

C P

∆

π

where ∆ is a (3g − 4)-dimensional polydisk. This induces a map from ∆ to the universal deformation of the
curve C∪x∼yE and the same method as in the proof of Theorem 6 in [HM82] implies that the image intersect
the singular locus ∆1 transversely at the point [C ∪x∼y E]. Moreover, Autπ(X) acts on ∆ and ∆/Autπ(X)
is an open neighbourhood of [π : X → Γ] in Hg,µ.

By computing the intersection D(µ) ·A1 at the level of the universal deformation of C∪x∼yE, we get that

each admissible cover should be counted with multiplicity 1
2 · 12 ·

|Aut(C∪x∼yE)|
|Autπ(X)| . Here, the factor 1

2 appears

because δ1 = 1
2∆1 and the factor 12 appears as each elliptic curve shows up 12 times in the pencil. Using

Remark 4.2, we deduce that the multiplicity is always 6. We conclude that

D(µ) ·A1 = 6 · (3g − 3)!(22i−2 −

(
2i− 1

i

)

)

In order to conclude that the intersection is 0 with the two other test curves, we still need to show that an
element [C ∪x∼y E∞, η] ∈ Rg with [E∞, y] the singular curve in M1,1 does not appear in the intersection.
The methods we used for a smooth elliptic curve extend to this case.

4.2 Intersection with test curves of type Cg−1

We can employ a similar approach as in the case of test curves of type A for the test curves of type Cg−1.

Proposition 4.4. We have the intersection numbers

D(µ) ·Cg−1
1:g−1 = (3g− 3)! · (4i− 4) · (2i+ 2) ·

(
2i− 1

i

)

, D(µ) ·Cg−1
g−1 = (3g− 3)! · (4i− 4) · (6i− 2) ·

(
2i− 1

i

)

and D(µ) · Cg−1
1 = (3g − 3)! · (4i− 4) · (2i(4i+ 1) ·

(
2i− 1

i

)

− 6(2i− 1) · 22i−2)

Proof. We start by computing the first intersection. Let [π : X → Γ] ∈ Hg,µ be an admissible cover mapped

to a point [C ∪x∼y E, η] on Cg−1
1:g−1. Because cµ = bµ ◦ aµ and bµ was defined in terms of the unique twist, we

distinguish three different cases for the divisorial equivalences on C and E implied by the twist.

Case I: The equivalence on E is OE(2x1 − 2y) ∼= ηE and the one on C is

OC(2x+ x2 + · · ·+ xi−1 − xi − · · · − x2i−1) ∼= ηC

There are 4 choices of x1 for the first equivalence, 4 · (2i − 1)! solutions for the second equivalence and one
choice for each solution of a point x having coefficient 2. The choices of x1 are two by two identified by the
involution of E. Moreover, as the order of the points having the same coefficient is irrelevant and as each

ordering of the simple branch points produces a different admissible cover, we get (3g − 3)! · 2 · 4·(2i−1)!
(i−2)!·i! · 1

elements in Hg,µ having a corresponding twist as above. If α : X → X is the automorphism acting as the
involution on E and fixing all other components of X , we get π ◦ α 6= π.

The complete local ring of Hg,µ at such a point [π : X → Γ] is the ring of invariants of

C[[t1,1, t1,2, . . . , t1,i−1, t1, . . . , t3g−4]]/(t1=t4
1,1=t2

1,2=···=t2
1,i−1

)
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with respect to the group Autπ(X). This group has cardinality 2i−2 and consists only of automorphisms
that fix C and E and act non-trivially on the i − 2 rational components of X . Assuming the action to be
linear, we immediately get that the complete local ring is isomorphic to

C[[t1,1, t
2
1,2, . . . , t

2
1,i−1, t1, . . . , t3g−4]]/(t1=t4

1,1=t2
1,2=···=t2

1,i−1
)
∼= C[[t1,1, t2, . . . , t3g−4]]

We take ∆ to be the parameter space of this ring and see it is a base for a universal deformation of the map
π : X → Γ. Consequently we get a map from ∆ to the universal deformation of the curve C ∪x∼y E.

The automorphism α : C ∪x∼y E → C ∪x∼y E lifts to an automorphism α : X → X identifying two by
two the admissible covers. It follows that at the level of the universal deformation of the curve C ∪x∼y E, the
branch of the image of ∆ is simply tangent to the locus ∆1 parametrizing singular curves. As a consequence,
all such covers appear in the count D(µ) ·Cg−1

1:g−1 with multiplicity 2. A similar argument to this can be found
in Lemma 3.4 in [Har84].

Case II: The equivalence on E is OE(x2 − y) ∼= ηE and the one on C is

OC(2x1 + x+ x3 + · · ·+ xi−1 − xi − · · · − x2i−1) ∼= ηC

In this case, there is a unique choice of x2 for the first equivalence, 4 · (2i− 1)! solutions for the second one
and i− 2 choices for each solution of a point x having coefficient 1. The order of the points having the same
coefficient is irrelevant and each ordering of the simple branch points produces a different admissible cover,

hence we find (3g − 3)! · 4·(2i−1)!
(i−2)!·i! · (i − 2) elements in Hg,µ having a corresponding twist as above.

Case III: The equivalence on E is OE(y − x2i−1) ∼= ηE and the one on C is

OC(2x1 + x2 + · · ·+ xi−1 − xi − · · · − x2i−2 − x) ∼= ηC

Reasoning as in the previous cases we get (3g− 3)! · 4·(2i−1)!
i!(i−1)! · i admissible covers in Hg,µ with corresponding

twist as above.

Reasoning as in the proof of Theorem 6 in [HM82] we deduce that all admissible covers in the Cases II
and III appear with multiplicity 1. Hence we have

D(µ) · Cg−1
1:g−1 = (3g − 3)! ·

4 · (2i− 1)!

i! · (i− 2)!
(2 · 2 + i− 2 + i)

We proceed to compute the intersection D(µ) ·Cg−1
g−1 . In this case, there are only two possibilities for the

twist.

Case I: The equivalence on E induced by the twist is OE(2x1 − 2y) ∼= ηE and the one on C is

OC(2x+ x2 + · · ·+ xi−1 − xi − · · · − x2i−1) ∼= ηC

In this case, we have 3 choices for x1 and 4 · (2i − 1)! solutions on C. For each such solution on C there is
a unique choice of the point x with coefficient 2. As the order of the points having the same coefficient is
irrelevant and as each ordering of the branch points produces a different admissible cover, we get (3g − 3)! ·

3 · 4·(2i−1)!
i!(i−2)! elements in Hg,µ with corresponding twist as above.

Case II: The other possibility is when the equivalence on E is trivial and the one on C is

OC(2x1 + x2 + · · ·+ xi−1 − xi − · · · − x2i−1) ∼= ηC

In this situation we get deg(π|C) = 2i and hence deg(π|E) = ordx(π|C). As C is generic, it follows that
deg(π|E) = 2 and x is one of the 6i− 5 simple ramification points of π|C . The order of the points having the
same coefficient in the divisorial equivalence on C is irrelevant and each ordering of the 3g− 3 simple branch

points produces a different admissible cover. We obtain in this way (3g − 3)! · 4·(2i−1)!
i!·(i−2)! · (6i − 5) admissible

covers corresponding to this case.

The method in the proof of Theorem 6 in [HM82] implies that all the admissible covers in the two cases
appear with multiplicity 1 in the intersection D(µ) · Cg−1

g−1 . Hence we have

D(µ) · Cg−1
g−1 = (3g − 3)! ·

4 · (2i− 1)!

i! · (i− 2)!
· (3 + 6i− 5)
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Finally we compute D(µ) ·Cg−1
1 . In this case, the twist on C is trivial. Moreover, for an admissible cover

[π : X → Γ] mapped to Cg−1
1 we have that q1 and q2 are contained in the component of Γ that is the target

of the elliptic curve E. In the notations of Proposition 4.3 we have the relations

ordx(π|C) + c0,1 = ordy(π|E) + c0,2

ordx1
(π|C) + c1,1 = c1,2

. . .

ordxs
(π|C) + cs,1 = cs,2

We distinguish two different cases depending on the position of the point over q1 of ramification order 4.

If this point is on E, by adding the relations we obtain that deg(π|C) + s + c0,1 ≤ 2i. The genericity of
C implies deg(π|C) + s ≥ 2i− 1 and the genericity of E implies deg(π|C) + s+ c0,1 ≤ 2i− 1. It follows that
c0,1 = 0, deg(π|C) = 2i− 1− s and ordx(π|C) = 2i− 2s− 1.

Consequently, the map π : X → Γ is uniquely determined by a map f : C → P1 of degree 2i− s− 1 with
ramification order 2i − 2s − 1 at a point x and a map f1 : E → P1 having ramification profiles (2i − 2s −

1, 1), (4, 2, . . . , 2), (2, . . . , 2) and (2, 1, . . . , 1) over q, q1, q2 and q3, satisfying OE(
f∗

1 (q1)−f∗

1 (q2)
2 ) ∼= ηE .

Using Theorem 2.3 and Proposition 2.6, we deduce that the number of such maps π : X → Γ is equal to

1

3

i−1∑

s=0

4(i− s− 1)(2i− 2s− 1)(i− s)

(
2i− 1

s

)

· (6i− 6s− 3)

It follows from Proposition 2.7 that this is equal to 6(i−1)(2i−1) ·22i−2 and hence the number of admissible
covers π : X → Γ of this form is (3g−3)! ·6(i−1)(2i−1) ·22i−2. If we consider the automorphism α : X → X
acting as the involution on E and fixing all other components, we see that π ◦ α 6= π. Reasoning as in Case
I of the computation D(µ) · Cg−1

1:g−1, we deduce that all the admissible covers above should be counted with
multiplicity 2.

The other possible case is when the point of ramification order 4 is on a rational component collapsing to
xj when we stabilize X . In this case we have cj,1 ≥ 2. This implies the inequality deg(π|C)+s+c0,1 ≤ 2i−1.
Using this and the inequality deg(π|C) + s ≥ 2i − 1 coming from the genericity of C we get c0,1 = 0 and
deg(π|C) = 2i−1−s. In this case the ramification orders of π|C at x and xj are 2i−2s−2 and 2 respectively.

Consequently, the map π : X → P1 is uniquely determined by a degree 2i− s− 1 map f : C → P1 having
ramification orders 2i− 2s− 2 and 2 at two points x and xj in the same fibre and a map f1 : E → P1 having
ramification profiles (2i−2s−2), (2, . . . , 2), (2, . . . , 2) and (2, 1, . . . , 1) over four branch points q, q1, q2, q3 and

satisfying OE(
f∗

1 (q1)−f∗

1 (q2)
2 ) ∼= ηE .

From Theorem 2.3, the number of such maps f : C → P1 is 8s(i − s − 1)(i − s)(4i − 4s − 5) ·
(
2i−1
s

)
.

From Proposition 2.5, the number of such maps f1 : E → P1 is 2. It follows that the number of such maps
π : X → Γ is equal to

16

i−1∑

s=0

s(i− s− 1)(i− s)(4i− 4s− 5) ·

(
2i− 1

s

)

which using Proposition 2.7 we compute to be

8i(i− 1)(4i+ 1) ·

(
2i− 1

i

)

− 36(2i− 1)(i− 1) · 22i−2

Again, every ordering of the simple branch points produces a different point in Hg,µ and hence the number
of admissible covers in this case is the number we computed multiplied by (3g − 3)!. We show that all such
admissible covers should be counted with multiplicity 1.

The complete local ring of Hg,µ at the point [π : X → Γ] is the ring of invariants of

C[[t1,1, t1,2, t1, . . . , t3g−4]]/(t1=t2i−2s−2

1,1 =t2
1,2)

The method of Remark 4.2 can be employed to prove π ◦α = π where α : X → X is the automorphism acting
as the involution on E and as identity on all other components. The group Autπ(X) is generated by α and
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the automorphism τ acting non-trivially on the components collapsing to the point of order 2 and fixing the
other components.

By considering the ring of invariants with respect to τ we get that the complete local ring of Hg,µ at the
point [π : X → Γ] is the ring of invariants of

C[[t1,1, t
2
1,2, t1, . . . , t3g−4]]/(t1=t2i−2s−2

1,1 =t2
1,2)

∼= C[[t1,1, t1, . . . , t3g−4]]/(t1=t2i−2s−2

1,1 )

with respect to α. The same method of mapping the parameter space to the universal deformation of C∪x∼yE
and proceeding as in [HM82] implies that all admissible covers appear with multiplicity 1. It follows that

D(µ) · Cg−1
1 = ·(3g − 3)! · (8i(i− 1)(4i+ 1) ·

(
2i− 1

i

)

− 24(2i− 1)(i− 1) · 22i−2)

4.3 Intersection with test curves of type B

Finally we compute the intersection of our divisor with the test curves B′ and B′′. The work of understanding
which admissible covers [π : X → Γ] map to these test curves already appears implicitly in Proposition 4.1.
We are left with the task of computing their number and their multiplicities.

Proposition 4.5. We have the following intersection numbers:

D(µ) · B′ = (3g − 3)! · 8(i2 − i) · (24i−2 − 1) ·

(
2i− 1

i

)

and

D(µ) · B′′ = (3g − 3)![(8i3 − 8i2 − 2i)

(
2i− 1

i

)

− (2i− 1)(6i− 8)22i−2]

Proof. We start by computing D(µ) ·B′. The admissible covers in Hg,µ mapping to ∆′
0 are described in Case

I and Case IV of Proposition 4.1.

Let [π : X → Γ] be an admissible cover as in Proposition 4.1, Case I, mapped to B′. The number of
solutions for the divisorial equivalence

OC(2x1 + x2 + · · ·+ xi−1 − xi − · · · − x2i−1) ∼= ηC

is equal to 4 ·(2i−1)! for any of the 24i−2−1 elements ηC ∈ Pic(C)[2]\{0}. It follows there are (2i−1)!
i!(i−2)! (2

4i−4)

choices of a map π|C having degree 2i and ramification profiles (4, 2, . . . , 2) and (2, . . . , 2) over two points q1
and q2. For the generic point x on C, there are 2i− 1 choices of a point y in the same fiber of π|C . Moreover,
there is a rational component R of X passing through x and y and mapping 2 : 1 to P2.

We fix a map π|C and a point y as just discussed. Two orderings of the (3g − 3) simple branch points
produce the same admissible cover if and only if they differ by transposing the order of the two branch points
on P2. Hence we get

(3g − 3)!

2
·
(2i− 1)!

i!(i− 2)!
· (2i− 1) · (24i − 4)

distinct admissible covers. It is immediate from the description in the proof of Proposition 4.1 that all these
covers are counted with multiplicity 2.

For an admissible cover [π : X → Γ] as in case IV of Proposition 4.1, the map π|C has degree 2i and
ramification profiles (2, . . . , 2) and (2, . . . , 2) over q and q2, with the generic point x one of the ramified
points over q. Moreover, there is a rational component R mapping 4 : 1 to P2 connecting x with one of the
other i− 1 points in the same fiber over q as x. The component R contains the point of ramification order 4
over q1.

Every ordering of the (3g − 3) simple branch points produces a different admissible cover. We obtain in
this way

(3g − 3)! ·
(2i− 1)!

i!(i− 1)!
· (i− 1) · (24i−2 − 1)

22



admissible covers and we deduce from Proposition 4.1, Case IV that all should be counted with multiplicity
4.

It follows that

D(µ) · B′ = (3g − 3)! · 8(i2 − i) · (24i−2 − 1) ·

(
2i− 1

i

)

Next we compute D(µ) ·B′′. In Case II of Proposition 4.1 we outlined three possible types of admissible
covers [π : X → Γ] mapping to B′′.

The first type is when π|C has degree 2i − s − 1 and ramification order at x and y equal to i − s and
i − s− 1. In this case, for the rational component R joining x and y, the map π|R has ramification profiles
(i− s, i− s− 1), (4, 2, 2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

From Theorem 2.3, the number of choices of such a map π|C is

(i − s− 1)[(i− s− 1)(2i− 2s− 1)− 1] ·
(
2i− 1

s

)

Proposition 2.4 implies the choice of π|R is unique. Moreover, each ordering of the simple branch points
produces a different admissible cover and the discussion in Proposition 4.1 implies each of them should be
counted with multiplicity 2i− 2s− 1.

The contribution to the count coming from this case is

(3g − 3)! ·

i−1∑

s=0

(2i− 2s− 1)(i− s− 1)[(i− s− 1)(2i− 2s− 1)− 1] ·
(
2i− 1

s

)

which we deduce from Proposition 2.7 to be equal to

(3g − 3)! · [3
2
· (2i− 1)(i− 1) · 22i−2 − 2(i− 1)i ·

(
2i− 1

i

)

]

The second type is when π|C has degree 2i− s− 1 and ramification orders x and y equal to i− s− 1 and
i− s. The number of such maps is

(i − s)[(i− s)(2i− 2s− 1)− 1] ·
(
2i− 1

s

)

Other than that, everything follows identically as in the previous case and we get a contribution of

(3g − 3)! ·

i−1∑

s=0

(2i− 2s− 1)(i− s)[(i− s)(2i− 2s− 1)− 1] ·
(
2i− 1

s

)

which we deduce from Proposition 2.7 to be equal to

(3g − 3)! · [3
2
· (2i− 1)(i− 1) · 22i−2 + 2(i− 1)i ·

(
2i− 1

i

)

]

The third type is when π|C is a map of degree 2i− s− 1 having ramification orders i− s− 1, i− s− 1 and
2 at x, y and another point in the same fiber of π|C as x and y. For the rational component R joining x and
y, we have that π|R has ramification profiles (i− s− 1, i− s− 1), (2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

The number of maps π|C of this type is equal to

8s(i− s)(i− s− 1)2
(
2i− 1

s

)

− 2s(i− s− 1)(i− s+ 1)

(
2i− 1

s

)

Each ordering of the simple branch points produces a different admissible cover and each appears in
D(µ) ·B′′ with multiplicity 2. Hence the contribution in this case is

(3g − 3)!
i−1∑

s=0

16s(i− s)(i− s− 1)2
(
2i− 1

s

)

− (3g − 3)!
i−1∑

s=0

4s(i− s− 1)(i− s+ 1)

(
2i− 1

s

)
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From Proposition 2.7 we deduce the identities

i−1∑

s=0

16s(i− s)(i − s− 1)2
(
2i− 1

s

)

= 8(i− 1)i2
(
2i− 1

i

)

− 8(i− 1)(2i− 1) · 22i−2

i−1∑

s=0

4s(i− s− 1)(i− s+ 1)

(
2i− 1

s

)

= 2i ·

(
2i− 1

i

)

+ (2i− 1)(i− 3) · 22i−2

Putting everything together, we conclude that

D(µ) · B′′ = (3g − 3)![(8i3 − 8i2 − 2i)

(
2i− 1

i

)

− (2i− 1)(6i− 8)22i−2]

4.4 Conclusions (Proof of Theorem 1.1):

We denote

D(µ) = (3g − 3)! · (aλ− b′0δ
′
0 − b′′0δ

′′
0 − bram0 δram0 − b1δ1 − bg−1δg−1 − b1:g−1δ1:g−1 − · · · )

From the test curve computations we deduce we have the following system of equations

a− 4b′0 − 4bram0 + b1:g−1 = a− 12b′0 + bg−1 = 0, a− 4b′′0 − 4bram0 + b1 = 2 · 22i−2 − 2 ·

(
2i− 1

i

)

b1:g−1 = (2i+ 2) ·

(
2i− 1

i

)

, bg−1 = (6i− 2)

(
2i− 1

i

)

, b1 = 2i(4i+ 1) ·

(
2i− 1

i

)

− 6(2i− 1) · 22i−2

(8i− 4)b′0 − bg−1 − b1:g−1 = (8i2 − 8i) ·

(
2i− 1

i

)

and

(4i− 2)b′′0 − b1 = (8i3 − 8i2 − 2i)

(
2i− 1

i

)

− (2i− 1)(6i− 8) · 22i−2

This is a solvable system of 8 equations in 7 unknowns. We compute the coefficients to be

a =
12i2 + 10i− 2

2i− 1
·

(
2i− 1

i

)

, b′0 =
2i2

2i− 1
·

(
2i− 1

i

)

bram0 =
2i2 + 3i− 1

2i− 1
·

(
2i− 1

i

)

and b′′0 =
4i3

2i− 1
·

(
2i− 1

i

)

− (3i− 1) · 22i−2

We remark that in Theorem 1.1, the contribution coming from the order of the 3g − 3 simple branch
points is not taken into account. �

4.5 A divisor in R2i+1

For genus g = 2i+1 and partition µ = (2, . . . , 2,−2, . . . ,−2) of length g−1, we can apply the same procedure
to compute the divisor D(µ). This is the divisor D2i+1:2 appearing in [FL10]. By the method of test curves
we deduce this divisor has the following coefficients:

a =
1

2i− 1

(
2i

i

)

· (3i+ 1), b′0 =
1

2i− 1

(
2i

i

)

·
i

2
,

b′′0 =
1

2i− 1

(
2i

i

)

· i2, bram0 =
1

2i− 1

(
2i

i

)

·
2i+ 1

4

As a consequence, we get the intersection D(µ) · Bram
0 = (3g − 3)! ·

(
2i
i

)
· (22g−3 − 2) and by describing

explicitly the points and their multiplicity as in the proof of Proposition 4.1 we deduce
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Corollary 4.6. The degree of the map

H0
2i(2, . . . , 2
︸ ︷︷ ︸

i entries

,−2, . . . ,−2
︸ ︷︷ ︸

i−1 entries

,−1,−1) → M2i,1

forgetting all but the last marking is equal to (2i)! · (24i−2 − 1).

We observe that the coefficient b′′0 of the divisor D(µ) differs from the one computed in [FL10]. This
happens because the map

φ : ∧iH⊗A0,0 → Ai−1,1

used in [FL10] to compute this divisor degenerates above the locus ∆′′
0 . We recall that fiberwise, φ is given

over a point [X, η] as

∧iH0(X,ωX)⊗H0(X,ωX ⊗ η) → H0(X,∧i−1MX ⊗ ω2
X ⊗ η)

where MX is the Lazarsfeld vector bundle of ωX and ML denotes the Lazarsfeld vector bundle of the line
bundle L, as in [Laz89].

If [C/x∼y, η] is a generic point of ∆′′
0 it follows that

∧iH0(C, ωC(x + y))⊗H0(C, ωC(x+ y)) → H0(X,∧i−1MωC+x+y ⊗ ω2
C(2x+ 2y))

is not an isomorphism. We use the exact sequence

0 → ∧iMωC+x+y ⊗ ωC(x+ y) → ∧iH0(C, ωC(x+ y))⊗ ωC(x+ y) → ∧i−1MωC+x+y ⊗ ω2
C(2x+ 2y) → 0

to deduce that h0(C,∧iMωC+x+y ⊗ ωC(x+ y)) and h1(C,∧iMωC+x+y ⊗ ωC(x+ y)) are not 0.

Using Proposition 1.3.3 in [Laz89] regarding the Green-Lazarsfeld property (Ni−1) we deduce

Proposition 4.7. Let g = 2i and [C, x, y] a generic element in Mg,2. Then ωC(x + y) fails to satisfy the

property (Ni−1).

While deriving this result using test curves is an interesting approach of Proposition 4.7, this result is not
new. It immediately follows from [AV03] Théorème 0.3 and [Far17] Theorem 3.7.
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Normale Supérieure, 4e série, 10:309–391, 1977.
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