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Abstract. Lattice QCD and functional methods are making significant progress in constraining the QCD phase
diagram. As an important milestone, the chiral phase transition with massless u, d-quarks at zero density is now
understood to be of second order for all strange quark masses, and a smooth crossover as soon as mu,d , 0.
Together with information on fluctuations and refined reweighted simulations, this bounds a possible critical
point to be at µB/T>⇠3. On the other hand, an approximately chiral-spin symmetric temperature window has
been discovered above the chiral crossover, Tch<⇠T<⇠3Tch, with distinct correlator multiplet patterns and a pion
spectral function suggesting resonance-like degrees of freedom, which dissolve graduallly with temperature.

1 Introduction

Knowledge of the QCD phase diagram is of great im-
portance for the physics of heavy ion collisions and neu-
tron stars. Theoretical predictions from lattice QCD are
severely hampered by a fermion sign problem, which pro-
hibits straightforward Monte Carlo simulations at finite
baryon chemical potential. Nevertheless, methods work-
ing for µB<⇠3T as well as studies of the general parameter
dependence of the chiral phase transition have reached a
new level of maturity, providing phenomenologically rele-
vant constraints on the location of a possible critical point.

The expected scenario for physical QCD is intimately
connected to the situation in the chiral limit of massless
u, d-quarks [1–3], as sketched in Fig. 1. For mu,d = 0 there
is an exact chiral symmetry, whose breaking/restoration
across Tc(µB) must proceed by a non-analytic phase tran-
sition. If this transition is second-order at µB = 0 and
first-order at T = 0, as in several low-energy models, there
must be a tricritical point where the order of the transi-
tion changes. On quite general grounds, a Z(2)-critical line
emanates from a tricritical point in in the direction of the
symmetry breaking field ( i.e. mu,d), with a known tricrit-
ical exponent [4], and represents the critical endpoint at
physical mass values. However, if nothing is known about
the chiral limit, other possibilities are transition lines that
are entirely first or entirely second order for mu,d = 0, and
the situation at physical masses would be di↵erent. This
illustrates the importance of the chiral limit to both con-
strain and understand the physical phase diagram.

2 The chiral transition at µB = 0

In the chiral limit the quark determinant in the partition
function diverges, prohibiting direct simulations and mak-
ing its approach computationally expensive. For decades
expectations have thus been based on an analysis of 3d

Figure 1. Connection of the putative QCD phase diagram for
physical light quark masses to the chiral limit in the front plane.

sigma models as low energy e↵ective theories, augmented
by a ’t Hooft term for the U(1)A anomaly, whose renormal-
isation group flow based on the epsilon expansion [5] pre-
dicts the chiral phase transition to be first-order for Nf � 3.
The case of Nf = 2 was found to crucially depend on the
anomalous U(1)A symmetry: If it remains broken at Tc,
the chiral transition should be second order in the O(4)-
universality class, whereas its e↵ective restoration would
enlarge the symmetry and push the transition to first order.

Early QCD simulations on coarse lattices were con-
sistent with the scenario shown in Fig. 2 (left): A first-
order region could be seen for Nf = 3, whereas the small-
est available masses showed a continuous crossover for
Nf = 2. However, the location of the Z(2)-boundary varies
widely between di↵erent discretisations, indicating large
cuto↵ e↵ects. The general pattern is for the first-order re-
gion to shrink when the lattice is made finer, while im-
proved staggered actions see no trace of a first-order tran-
sition at all. For a more detailed discussion and list of
references see [7].
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Figure 2. The order of the QCD thermal transition as a function of the quark masses. Left: Scenario proposed in [5] and observed on
coarse lattices. Right: Emerging continuum limit [6]. The universality class in the three-flavour chiral limit is not yet known. From [6].

Recent investigations using the Highly Improved Stag-
gered Quark (HISQ) action start at the Nf = 2 + 1 phys-
ical point and then gradually reduce the light quark mass
until mPS ⇡ 55 MeV [8]. Fig. 3 (left) shows the chiral
susceptibility normalised to its peak value at the physical
pion mass. The peak location defines the pseudo-critical
temperature Tpc. However, the peak height stays finite
and no sign of a first-order transition is detectable. An-
alytic fRG calculations in infinite volume [9] are compat-
ible with this behaviour, Fig. 3 (left). Similar results are
found using twisted mass Wilson fermions at quark masses
at and above the physical point [10]. Thus either a Z(2)-
critical point bounding a very narrow first-order region is
approached, or a second-order transition in the chiral limit.

Eventually one would like to calculate the critical
exponents characterising the approach to criticality, and
thus determine the universality class from first principles.
However, this requires exponential accuracy in the numer-
ically expensive light mass regime and is not feasible. In
practice the data are fitted to scaling formulae with expo-
nents fixed to known values for the universality classes in
question, such as the approach of the crossover tempera-
ture to the critical temperature Tc in the chiral limit,

Tpc(ml) = Tc
⇣
1 + K m1/��

l

⌘
+ sub-leading . (1)

The extrapolated chiral critical temperatures are

Tc = 132+3
+6 MeV HISQ fermions [8] ,

Tc = 134+6
�4 MeV twisted mass Wilson [10] ,

Tc = 142+0.5
�0.5 MeV fRG methods [9] .

The variation between the possible sets of critical expo-
nents is covered by the errors, so that an extrapolation
makes sense even without definite knowledge of the true
universality class.

A first-order chiral transition for Nf 2 [2, 7] could re-
cently be practically ruled out by investigating the e↵ects
of the number of flavours, their masses and the lattice spac-
ing [6] on the transition. The study exploits the fact that

a change from a first-order to a second-order chiral transi-
tion necessarily passes through a tricritical point, such as
in the scenario Fig. 2 (left). This implies tricritical scaling
with known exponents for the Z(2) boundary line as it ap-
proaches the chiral limit, allowing for a controlled extrap-
olation. Rather than varying quark masses independently,
ref. [6] continuously varies the number Nf of degenerate
quarks [12]. A tricritical mtric

s as in Fig. 2 (left) then trans-
lates into a tricritical 2 < N tric

f < 3. On the lattice, such a
tricritical point additionally depends on the lattice spacing,
N tric

f (a), which can be inverted to atric(Nf ).

Fig. 3 (middle) shows the Z(2)-critical boundary line
separating the light bare quark mass region featuring first-
order transitions from the crossover region as a function
of lattice spacing for the unimproved staggered fermion
action. In agreement with previous studies, the first-order
region grows as more flavours are added, and it shrinks
as the lattice is made finer. Those Nf -theories with three
available lattice spacings show tricritical scaling and a tri-
critical point in the lattice chiral limit, which is moving to
the left as Nf is increased. Note that the continuum limit
is in the origin at (am, aT ) = (0, 0). This implies a tricrit-
ical point in the continuum limit to be beyond N tric

f > 7.
Conversely, the first-order regions observed in these simu-
lations are not connected to the continuum limit and must
be regarded as lattice artefacts. A powerful check on this
finding is provided by Nf = 3 O(a)-improved Wilson
fermions [11]. Plotting those data in terms of the appropri-
ate scaling variable, perfect tricritical scaling is observed,
Fig. 3 (right), so that the continuum transition is of sec-
ond order as in the staggered case. Two further discreti-
sations with Nf = 3, HISQ fermions [13] and domain
wall fermions [14], do not see any phase transition at the
smallest available quark masses, and thus are fully consis-
tetnt with those findings. A recent fRG study of 3d sigma
models including a �6 term [15] and numerical bootstrap
methods applied to U(m)⇥U(n) [16] models are also com-
patible with a second-order chiral transition. Thus, the
Columbia plot in the continuum looks as in Fig. 2 (right),
with a second-order chiral transition for mu,d = 0 and any
value of ms, and crossover as soon as mu,d , 0.

 
    

 
, 05002 (2023)EPJ Web of Conferences

EuNPC 2022
https://doi.org/10.1051/epjconf/202329005002290

2



From the physical point towards the chiral limit
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Figure 3. Left: Pseudo-critical temperature of the crossover defined by the chiral
susceptibility �, the inflection point of the chiral condensate � or an additively
renormalised chiral condensate �3, for Nf “ 2 ` 1 ` 1 twisted mass Wilson fermions
close to the continuum. Lines represent chiral extrapolations according to the Op4q
second-order or finite critical Zp2q-mass scenario. From [30]. Right: Columbia plot
expressed in �,�-masses in units of the Wilson flow parameter t0. Critical points
have been determined using an Opaq-improved Wilson action. The first-order region
includes the physical point on coarse lattices, but shrinks drastically as N� is increased.
From [31].

employing either Op4q exponents or Zp2q-exponents and a critical pseudo-scalar mass up
to m� „ 100 MeV. Again, it is not possible to distunghuish between these scenarios. As
in the previous case, the extrapolated value of the critical temperature in the chiral limit
is therefore robust under changes of the critical exponents and quoted as

T 0
c “ 134`6

´4 MeV, (5)

in remarkable agreement with the staggered result.129

Fig. 3 (right) shows an investigation of sections of the chiral critical line using Opaq130

clover-improved Wilson fermions [31]. Starting point are the data for Nf “ 3 to be131

discussed separately below, and on N� “ 6 further points at larger strange quark masses132

have been added. The critical line is then fitted assuming a tricritical strange quark mass133

as explained in Section 2.5 plus polynomial corrections. Note that this discretisation134

features a much wider first-order region, which even contains the physical point on the135

coarser lattices. This must be a lattice artefact, and the first-order region rapidly shrinks136

as N� is increased.137

Several conclusions can be drawn from these results. Firstly, the width of a potential138

first-order region as in Fig. 1 (left) is bounded to a small fraction of the physical light quark139

(or pion) masses. Second, the numerical proximity of the critical exponent combinations140

1{p��q for the 3D Op2q,Op4q and Zp2q universality classes appears to allow for a robust141

extrapolation of the chiral transition temperature to the massless limit with remarkably142

small uncertainties. Conversely this statement implies, however, that it is impossible143

to firmly identify the universality class in this way, which would require exponentially144

accurate data. This problem might be avoided by looking at the scaling of energy-like145

variables, which are governed by the critical exponent � that changes sign between the146

Op2q,Op4q and the Zp2q universality classes. It was shown that the Polyakov loop behaves147

as an energy-like observable, but unfortunately a firm distinction betweeen universality148

classes would require a further substantial reduction of the light quark mass [32]. Finally,149

note that the value of Tcpml “ 0q is „ 25 MeV lower than the pseudo-critical temperature150
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Figure 3. Left panel: Comparison of our fRG results for the pseudocritical temperature as a function of the pion mass to

those from the HotQCD collaboration [29]. The various dashed lines represent fits to the numerical data, see main text for

details. The estimates for the critical temperature Tc have been obtained from an extrapolation of the fits to m� � 0. The

temperatures T (l,s)
60 and T lattice

c are the extrapolated results for the chiral critical temperature obtained from a definition of

the pseudocritical temperature which does not involve the peak position of the susceptibility, see main text for details. Right

panel: Susceptibility as obtained from the reduced condensate as a function of the temperature. The normalisation �̄(l,s)
M is the

maximum of the susceptibility at the physical pion mass, see Eq. (5). The lattice QCD data has been taken from Refs. [29, 62].

pseudocritical temperature on the pion mass. For the
physical pion mass, m� = 140 MeV, this ratio in our
present first-principles fRG study is about a factor of
three smaller than typical values for D(l) found in low-
energy QCD model studies [35, 36]. For example,

DQM
(l) (m� =140 MeV) � 0.28 (9)

was reported in Ref. [36] for the quark-meson (QM)
model. In our present QCD study, we instead find

DQCD
(l) (m� =140 MeV) � 0.10 , (10)

where we have employed the value for Tc obtained from

an extrapolation of the pseudocritical temperature T (l)
pc

to the limit m� = 0.
Next, we turn to the reduced susceptibility �(l,s)

M as
defined in Eq. (4). In Fig. 2 (right panel), we show
a comparison of the light-quark susceptibility and the
reduced susceptibility for three pion masses. As ex-
pected, the qualitative behaviour of the reduced suscep-
tibility is the same as the one found for the light-quark
susceptibility. More specifically, the susceptibilities in-
crease for decreasing pion mass, indicating the approach
to a singularity in the chiral limit. Fitting the rela-

tion (7) to our numerical results for T (l,s)
pc (m�) for m� =

30, 35, 40, . . . , 140 MeV, we obtain Tc � 141.6+0.3
�0.3 MeV,

c(l,s) � 0.17+0.03
�0.03 MeV1�p, and p � 0.91+0.03

�0.03. Thus, the
critical temperature Tc is in excellent agreement with the
one extracted from our analysis of the light-quark suscep-
tibilities, as it should be. With respect to the exponent p,
we note that it also deviates clearly from the expected

O(4) value. However, we observe that it is consistent
within fit errors with the value for p which we obtained
from our analysis of the light-quark susceptibility. Over-
all, we therefore cautiously conclude that QCD is not
within the scaling regime for the range of pion masses
considered here, providing us with m� � 30 MeV as a
conservative estimate for the upper bound of this regime.
An actual determination of the size of the scaling regime
is beyond the scope of present work as it requires to study
very small pion masses.

In analogy to the definition (8), we can also define
the relative dependence D(l,s)(m�) of the pseudocritical
temperature on the pion mass in case of the reduced sus-
ceptibility. For m� = 140MeV, we then find that this
quantity is only slightly smaller than the corresponding
quantity associated with the light-quark susceptibility.

In Fig. 3 (right panel), we finally compare our fRG
results for the reduced susceptibility to very recent re-
sults from the HotQCD collaboration [29]. We observe
excellent agreement between the results from the two ap-
proaches for pion masses m� � 100 MeV. The deviations
of the results from the two approaches for smaller pion
masses may at least partially be attributed to cuto� arte-
facts in the lattice data. Note that cuto� e�ects are ex-
pected to shift the maxima to smaller temperatures. We
refer to Ref. [18] for a respective discussion.

It is also worthwhile to compare the peak positions
of the reduced susceptibilities extracted from the lattice
QCD data with those from our fRG study, see Tab. I
and Fig. 3 (left panel). As discussed above, the peak
position can be used to define a pseudocritical tem-
perature. For the presently available pion masses on
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Figure 3. Left: Chiral susceptibility at physical ms for a range of decreasing mu,d with the HISQ lattice action [8] and from fRG
calculations [9]. From [9]. The Z(2)-critical line separating first-order transitions (below) from crossover (above), for unimproved
staggered fermions [6] (middle) and O(a)-improved Wilson fermions [11] (right), with tricritical scaling fits to both. From [6].

3 The search for a critical point
Lattice searches for a critical point are based on indirect
methods to extract information about the phase structure
for small baryon density, µB/T<⇠3: (i) Reweighting [17],
(ii) Taylor expansion in µ/T [18] and (iii) analytic contin-
uation from imaginary chemical potential, for which there
is no sign problem [19, 20]. When the QCD pressure is
expressed as a series in baryon chemical potential,

p(T, µB)
T 4 =

p(T, 0)
T 4 +

1X

n=1

1
2n!

�B
2n(T )

✓µB

T

◆2n
, (2)

�B
2n(T ) =

@2n( p
T 4 )

@( µB
T )2n

����
µB=0
,

the Taylor coe�cients are the baryon number fluctuations
evaluated at zero density, which can also be computed by
fitting to untruncated results at imaginary µB. This permits
full control of the systematics between (ii) and (iii). These
coe�cients are presently known up to 2n = 8.

Quite generally power series are limited by their radius
of convergence, corresponding to the nearest singularity
of the full function (relative to the expansion point) in the
complex variable. If such a singularity is located on the
real axis, it signals a phase transition.

In [21] a cluster expansion model (CEM) was devel-
oped, with all expansion coe�cients recursively related to
the lower ones, and the first two are fixed by lattice data.
As in the virial expansion, such a recursion is possible as
long as the system is su�ciently dilute and dominated by
two-body interactions. The model is quantitatively consis-
tent with all known lattice pressure coe�cients, as e.g. in
Fig. 4 (left), and since its coe�cients are known to all or-
ders, it allows a controlled extraction of the radius of con-
vergence. The only phase transition predicted in this way
is the known Roberge-Weiss transition in the direction of
imaginary chemical potential µB = i⇡T [22], which im-
plies that any phase transition in the real direction is fur-
ther away than that. While this is just a model, it tells
us that nothing in the available lattice fluctuation data en-
forces singular behaviour.

Another option is to use the coe�cients calculated di-
rectly from the lattice. From these one can construct Padé-
approximants, which are rational functions (i.e. infinite

Table 1. Lattice bounds on the location of a critical point

Criterion (µB/T )cep>⇠ Ref.
Tcep < Tc as in Fig. 1 3.1 [7]
CEM of lattice fluctuations ⇡ [21]
Padé-appr. LY-zeroes 2.5 [23]
Reweighted simulation 2.5 [24]

order in the expansion variable) whose first coe�cients
agree with the explicitly computed ones. These approx-
imants can be further constrained by simulation results for
the full pressure at imaginary chemical potential. Their
singularities are then taken as estimates for the singulari-
ties of the full function. Locations of the Lee-Yang edge
singularities (indicating a branch point in the pressure) ex-
tracted in this way are shown in Fig. 4 (middle), based on
HISQ fermion data [23]. So far all singularities are at com-
plex values of the chemical potential, but note the closing
in toward the real axis as temprerature is decreased. This
bounds a true phase transition to lower temperatures than
those for which coe�cients are currently available.

Taylor expansions are avoided by using reweighting
techniques in Monte Carlo simulations. Recent new calcu-
lations with stout smeared staggered fermions [24], using
techniques considerably refined compared to earlier ones,
evaluate the renormalised chiral condensate,

h ̄ iR(T, µ) = �mud

f 4
⇡

h
h ̄ iT,µ � h ̄ i0,0

i
, (3)

as shown in Fig. 4 (right). The reweighted real µB simu-
lations are fully compatible with the analytic continuation
from imaginary µB simulations, but with smaller errors.
Neither method shows a sign of non-analyticity so far.

In summary, lattice information on physical QCD in
equilibrium at µB/T  3 is increasing and increasingly
controlled. Table 1 collects the current bounds on the
location of a critical endpoint resulting from these anal-
yses. These are also consistent with the critical end-
point candidates found in the most recent truncations
of Dyson-Schwinger equations [26] and their combina-
tion with functional renormalisation group methods [27],
which predict (µB/T )cep ⇡ 5.6.
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Tracking the Lee-Yang edge (LYE) singularities in the complex     -plane �B
— a new method to detect the QCD critical point ?
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Magnetic EoS

The universal scaling 
function exhibits a 
brunch cut, starting 
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multi-point Padé approximation of the net-baryon density


• Find Z(2) scaling close to the RW-transition and a candidate 
chiral LYE, preliminary results: 2101.02254


• Radius of convergence is limited by LYE

• Advantage: no regular part involved in the analysis, the 

determination of non-universal parameter thus more precise
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FIG. 6. Location of poles nearest to the origin obtained from the [4,4] Padé approximants in the complex µ̂B-plane. Only poles

with Re(µB) > 0 are shown. Shown are results the case µQ = µS = 0 (left) and the strangeness neutral, isospin symmetric

case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained

from the [2,2] (squares and circles) and [4,4] (bands) Padé

approximants for Taylor expansions at µQ = µS = 0 and for

strangeness neutral, isospin symmetric media, respectively.

�c,4 = arccos

�

� c6,2 � c8,2

2
�

(1 � c6,2)(c2
6,2 � c8,2)

�

�

= arccos

�
(c6,2 � c8,2)�̄

B,4
0

24(1 � c6,2)�̄
B,2
0

r2
c,4

�
. (29)

Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
sure, Eq. 7, we have in the region of complex poles,
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�����
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The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+
8,2,

i.e. �c,4 = 0 for c8,2 = c+
8,2. Furthermore, it is clear from

Eq. 29 that �c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N� = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di�erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>�2.5 at T � 135 MeV and rises
to values larger than |µ̂B |>�3 for T>�Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.
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The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+
8,2,

i.e. �c,4 = 0 for c8,2 = c+
8,2. Furthermore, it is clear from

Eq. 29 that �c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N� = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di�erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>�2.5 at T � 135 MeV and rises
to values larger than |µ̂B |>�3 for T>�Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

• Resummation of Taylor series using (standard) Padé-
approximants

• Poles of the [n,4]-Pade are identical to the  
corresponding Mercer-Roberts approximation of the 
radius of convergence (if poles are complex)


• Find upper bound for QCD critical point: 

                  

• Currently observed temperature scaling of the 

position of poles does not resemble universal scaling 

- Order of approximation not sufficient?

- Far away from scaling region?


Also in that paper: 

• Update on the EoS at non-zero , well controlled 

series for pressure and number density for 
 and , respectively — consistent with 

Padé result.
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q � Ttricpmu,d “ 0, µB “ 0q � Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T�„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

�B
2npTq

´ µB
T

¯2n
, �B

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on N� “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Figure 4. Left: Baryon number fluctuations from the lattice in comparison with the CEM model. From [25]. Middle: Lee-Yang zeros
indicating the radius of convergence of the pressure series in complex chemical potential. From [23]. Right: Renormalised chiral
condensate as a function of real and imaginary chemical potential. From [24].

4 Emergent chiral spin symmetry

While a critical point remains elusive on the lattice so
far, an emergent approximate chiral spin symmetry has
been discovered above the chiral crossover at µB = 0. A
S U(2)CS chiral spin transformation acts on Dirac fields as

 (x)! exp
⇣
i~⌃ · ~✏

⌘
 (x) , ~⌃ = (�k,�i�5�k, �5) . (4)

Here k = 1, . . . 4 can be any of the euclidean gamma ma-
trices. From the generators it is apparent that S U(2)CS �
U(1)A. When combined with ordinary vectorial isospin
transformations, S U(2)CS ⌦S U(2)V can be embedded into
the larger S U(4), which contains the usual chiral symme-
try of the massless QCD Lagrangian, S U(4) � S U(2)L ⇥
S U(2)R ⇥ U(1)A.

The QCD Lagrangian is not invariant under chiral spin
transformations. A thermal medium implies a preferred
Lorentz frame, and the massless quark action can be de-
composed as

 ̄�µDµ =  ̄�0D0 +  ̄�iDi . (5)

Explicit calculation shows the colour-electric part of the
quark-gluon interaction to be CS- and S U(4)-invariant,
while the colour-magnetic interaction and kinetic terms
(and thus the free Dirac action) are not. Hence, chiral spin
symmetry is never exact in physical QCD, but its approx-
imate realisation is possible if the colour-electric quark-
gluon interaction dominates the quantum e↵ective action
in some dynamical range, which would then be strongly
coupled.

On the lattice, symmetries become apparent in degen-
eracy patterns of euclidean correlation functions,

C�(⌧, x) = hO�(⌧, x) O†
�
(0, 0)i , (6)

with � some appropriate Dirac matrix. Information about
all excitations in each quantum number channel is carried
by the spectral functions ⇢�(!,p),

C�(⌧,p) =

Z 1

0

d!
2⇡

K(⌧,!)⇢�(!,p) , (7)

K(⌧,!) =
cosh(!(⌧ � 1/2T ))

sinh(!/2T )
.

For an isotropic system in equilibrium, it is su�cient to
probe the spatial and temporal correlators averaged over
the orthogonal directions,

Cs
�(z) =

X

x,y,⌧

C�(⌧, x) , C⌧
�(⌧) =

X

x,y,z

C�(⌧, x) . (8)

Numerical results for spatial J = 0, 1 meson correla-
tors from Nf = 2 JLQCD domain wall fermions with phys-
ical quark masses, good chiral symmetry and lattice spac-
ings < 0.1 fm [28] are shown in Fig. 5. Three multiplets
of spatial correlators, E1,2,3, at di↵erent temperatures are
seen. Of these, E1 is due to U(1)A restoration whereas E3
requires the full chiral symmetry. Both multiplets are ex-
pected above the chiral crossover. Not expected is the mul-
tiplet E2, which does not correspond to a representation of
chiral symmetry, but to one of the larger S U(4). For the
representations and associated meson states, see [29, 30].
Appearance of E2 demonstrates the dynamical emergence
of chiral spin symmetry in this regime. As temperature
is further increased, E2 gradually disappears as a separate
multiplet and only those belonging to the expected chi-
ral symmetry survive. Similar findings are reported from
temporal correlators at T = 220 MeV and the same lattice
spacing [31]. Recently, the same patterns were observed
with the quark content increased to Nf = 2 + 1 + 1 QCD,
including physical strange and charm quarks [32].

A related observable which is sensitive to the entry and
exit of the CS-symmetric temperature range are screen-
ing masses [33]. These correspond to the exponential
decay of the large-separation spatial correlators in (8),
Cs
�
(z) ⇠ exp(�mscrz) for z ! 1. While not directly

accessible experimentally, they can be readily evaluated
non-perturbatively and perturbatively. Around the chiral
crossover temperature, the screening masses show the ex-
pected degeneracy due to chiral symmetry. However, the
temperature dependence predicted by pertubation theory is
only attained for T>⇠500 MeV. This can be understood by
the approximate chiral spin symmetry in between, which
perturbation theory about free quarks cannot reproduce.

If there is a chiral-spin symmetric band at zero den-
sity, it must necessarily continue to finite baryon den-
sity because the µB-term respects that symmetry. From
the known behaviour of screening masses with µB one
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Figure 5. Spatial correlation functions with domain wall fermions show distinct E1, E2, E3 multiplets of the approximate S U(4)
chiral spin symmetry, at temperatures above the crossover. At large temperatures, these reduce to the multiplets of the ordinary chiral
symmetry. From [28].

infers that the chiral-spin symmetric band curves down-
wards, as in the possible phase diagram Fig. 6 (left). In
the absence of lattice data the continuation to higher den-
sities and lower temperatures is speculative, of course, but
baryon parity doublets and quarkyonic matter both are CS-
symmetric candidates to populate such a band [33].

Information about the nature of the e↵ective degrees
of freedom in di↵erent regimes is encoded in the spectral
functions, Eq. (8). Unfortunately, their extraction from
discrete sets of lattice correlator data represents an ill-
posed inversion problem. Recently, a new method was at-
tempted [34], which applies to stable scalar particles in a
heat bath, i.e. to the pion in the case of QCD, which allows
to circumvent the integral inversion.

The method exploits locality of quantum field theories
to ensure a representation of the spectral function [35, 36],

⇢PS(!,p) (9)

=

Z 1

0
ds
Z

d3u
(2⇡)2 ✏(p0) �

⇣
!2 � (p � u)2 � s

⌘
eD�(u, s) ,

with � = 1/T , the thermal spectral density eD�(u, s), and
the standard Källen-Lehmann vacuum representation aris-
ing as T ! 0. For stable massive particles the analytic
vacuum structure of the spectral density is preserved in the
absence of a true phase transition. The authors therefore
propose an ansatz with separable particle and scattering
contributions,

eD�(u, s) = eDm,�(u) �(s � m2) + eDc,�(u, s) . (10)

In an isotropic medium the spatial correlators and the spec-
tral density are then related by [34]

Cs
PS (z) =

1
2

Z 1

0
ds
Z 1

|z|
dR e�R

p
sD�(R, s). (11)

For temperatures below the threshold to the scattering
states the first term in Eq. (10) should dominate. Once
the continuum part is neglected, the calculation is straight-
forward. First, spatial pion correlators from [28] are
fitted by the sum of two exponentials representing the
⇡, ⇡⇤. This provides the Dm,�(|x|) = ↵⇡,⇡⇤ exp(��⇡,⇡⇤ |x|),

from which the spectral function can be reconstructed us-
ing Eqs. (9,10) and the known vacuum masses m⇡,m⇡⇤ .
The result is shown in Fig. 6 (middle) and, as a non-trivial
check, correctly predicts the temporal lattice correlator
[31] for ⌧ > m�1

⇡⇤ , Fig. 6 (right). The spectral function
shows resonance-like peaks for both the pion and its first
excitation. As the temperature increases, the peaks widen
and gradually disappear, consistent with sequential hadron
melting, but at temperatures significantly above the chiral
crossover. This suggests non-perturbative, hadron-like ex-
citations within the approximately chiral-spin symmetric
temperature range.

5 Conclusions

The last few years have seen remarkable progress in the
determination of the QCD phase structure. A major mile-
stone is the understanding of the chiral transition at zero
density in the massless limit, which is nearly completed.
The transition temperature is known fairly accurately and
there is strong evidence for the transition to be of second
order for all Nf 2 [2, 7]. Together with data on baryon
number fluctuations, this constrains the location of a criti-
cal point to (µB/T )cep > 3 and Tcep < 132 MeV.

A new development is the discovery of an approximate
chiral spin symmetry, which emerges dynamically in a
temperature band above the chiral crossover, Tpc<⇠T<⇠3Tpc.
It can be identified in the multiplet structure of correlation
functions and a↵ects associated observables like screening
masses and spectral functions. Together these suggest a
regime with chiral symmetry restored but hadron-like de-
grees of freedom. It would be most interesting to inves-
tigate if and how this a↵ects experimental observables in
heavy ion collisions.
Acknowledgments: The author acknowledges support by
the Deutsche Forschungsgemeinschaft (DFG) through the
grant CRC-TR 211 “Strong-interaction matter under ex-
treme conditions” and by the State of Hesse within the
Research Cluster ELEMENTS (Project ID 500/10.006).
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Figure 6. Left: a possible QCD phase diagram with a chiral-spin symmetric band. From [33]. Middle: Pion spectral function extracted
from spatial lattice correlators. Right: Temporal correlator predicted by that spectral function, compared to lattice data. From [34].
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