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Abstract. Lattice QCD and functional methods are making significant progress in constraining the QCD phase
diagram. As an important milestone, the chiral phase transition with massless u, d-quarks at zero density is now
understood to be of second order for all strange quark masses, and a smooth crossover as soon as m, 4 # O.
Together with information on fluctuations and refined reweighted simulations, this bounds a possible critical
point to be at ug/T>3. On the other hand, an approximately chiral-spin symmetric temperature window has
been discovered above the chiral crossover, 7., <I'<37T.,, with distinct correlator multiplet patterns and a pion
spectral function suggesting resonance-like degrees of freedom, which dissolve graduallly with temperature.

1 Introduction

Knowledge of the QCD phase diagram is of great im-
portance for the physics of heavy ion collisions and neu-
tron stars. Theoretical predictions from lattice QCD are
severely hampered by a fermion sign problem, which pro-
hibits straightforward Monte Carlo simulations at finite
baryon chemical potential. Nevertheless, methods work-
ing for up<3T as well as studies of the general parameter
dependence of the chiral phase transition have reached a
new level of maturity, providing phenomenologically rele-
vant constraints on the location of a possible critical point.

The expected scenario for physical QCD is intimately
connected to the situation in the chiral limit of massless
u, d-quarks [1-3], as sketched in Fig. 1. For m, 4 = O there
is an exact chiral symmetry, whose breaking/restoration
across T.(up) must proceed by a non-analytic phase tran-
sition. If this transition is second-order at ug = 0 and
first-order at T = 0, as in several low-energy models, there
must be a tricritical point where the order of the transi-
tion changes. On quite general grounds, a Z(2)-critical line
emanates from a tricritical point in in the direction of the
symmetry breaking field ( i.e. m,4), with a known tricrit-
ical exponent [4], and represents the critical endpoint at
physical mass values. However, if nothing is known about
the chiral limit, other possibilities are transition lines that
are entirely first or entirely second order for m, 4 = 0, and
the situation at physical masses would be different. This
illustrates the importance of the chiral limit to both con-
strain and understand the physical phase diagram.

2 The chiral transition at uz =0

In the chiral limit the quark determinant in the partition
function diverges, prohibiting direct simulations and mak-
ing its approach computationally expensive. For decades
expectations have thus been based on an analysis of 3d
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Figure 1. Connection of the putative QCD phase diagram for
physical light quark masses to the chiral limit in the front plane.

sigma models as low energy effective theories, augmented
by a 't Hooft term for the U(1),4 anomaly, whose renormal-
isation group flow based on the epsilon expansion [5] pre-
dicts the chiral phase transition to be first-order for Ny > 3.
The case of Ny = 2 was found to crucially depend on the
anomalous U(1)4 symmetry: If it remains broken at 7,
the chiral transition should be second order in the O(4)-
universality class, whereas its effective restoration would
enlarge the symmetry and push the transition to first order.

Early QCD simulations on coarse lattices were con-
sistent with the scenario shown in Fig. 2 (left): A first-
order region could be seen for Ny = 3, whereas the small-
est available masses showed a continuous crossover for
Ny = 2. However, the location of the Z(2)-boundary varies
widely between different discretisations, indicating large
cutoff effects. The general pattern is for the first-order re-
gion to shrink when the lattice is made finer, while im-
proved staggered actions see no trace of a first-order tran-
sition at all. For a more detailed discussion and list of
references see [7].

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Figure 2. The order of the QCD thermal transition as a function of the quark masses. Left: Scenario proposed in [5] and observed on
coarse lattices. Right: Emerging continuum limit [6]. The universality class in the three-flavour chiral limit is not yet known. From [6].

Recent investigations using the Highly Improved Stag-
gered Quark (HISQ) action start at the Ny = 2 + 1 phys-
ical point and then gradually reduce the light quark mass
until mpg =~ 55 MeV [8]. Fig. 3 (left) shows the chiral
susceptibility normalised to its peak value at the physical
pion mass. The peak location defines the pseudo-critical
temperature 7),.. However, the peak height stays finite
and no sign of a first-order transition is detectable. An-
alytic fRG calculations in infinite volume [9] are compat-
ible with this behaviour, Fig. 3 (left). Similar results are
found using twisted mass Wilson fermions at quark masses
at and above the physical point [10]. Thus either a Z(2)-
critical point bounding a very narrow first-order region is
approached, or a second-order transition in the chiral limit.

Eventually one would like to calculate the critical
exponents characterising the approach to criticality, and
thus determine the universality class from first principles.
However, this requires exponential accuracy in the numer-
ically expensive light mass regime and is not feasible. In
practice the data are fitted to scaling formulae with expo-
nents fixed to known values for the universality classes in
question, such as the approach of the crossover tempera-
ture to the critical temperature T, in the chiral limit,

Tpe(my) = Te(1+ K m”) + sub-leading .~ (1)

The extrapolated chiral critical temperatures are

T, 1322 MeV  HISQ fermions [8] ,
T, 134:? MeV twisted mass Wilson [10] ,
T, = 142')2 MeV fRG methods [9] .

The variation between the possible sets of critical expo-
nents is covered by the errors, so that an extrapolation
makes sense even without definite knowledge of the true
universality class.

A first-order chiral transition for Ny € [2,7] could re-
cently be practically ruled out by investigating the effects
of the number of flavours, their masses and the lattice spac-
ing [6] on the transition. The study exploits the fact that

a change from a first-order to a second-order chiral transi-
tion necessarily passes through a tricritical point, such as
in the scenario Fig. 2 (left). This implies tricritical scaling
with known exponents for the Z(2) boundary line as it ap-
proaches the chiral limit, allowing for a controlled extrap-
olation. Rather than varying quark masses independently,
ref. [6] continuously varies the number Ny of degenerate
quarks [12]. A tricritical m™ as in Fig. 2 (left) then trans-
lates into a tricritical 2 < NJ‘PC < 3. On the lattice, such a
tricritical point additionally depends on the lattice spacing,
N}ric(a), which can be inverted to a"°(N).

Fig. 3 (middle) shows the Z(2)-critical boundary line
separating the light bare quark mass region featuring first-
order transitions from the crossover region as a function
of lattice spacing for the unimproved staggered fermion
action. In agreement with previous studies, the first-order
region grows as more flavours are added, and it shrinks
as the lattice is made finer. Those Ny-theories with three
available lattice spacings show tricritical scaling and a tri-
critical point in the lattice chiral limit, which is moving to
the left as Ny is increased. Note that the continuum limit
is in the origin at (am,aT) = (0,0). This implies a tricrit-
ical point in the continuum limit to be beyond N}ric > 7.
Conversely, the first-order regions observed in these simu-
lations are not connected to the continuum limit and must
be regarded as lattice artefacts. A powerful check on this
finding is provided by Ny = 3 O(a)-improved Wilson
fermions [11]. Plotting those data in terms of the appropri-
ate scaling variable, perfect tricritical scaling is observed,
Fig. 3 (right), so that the continuum transition is of sec-
ond order as in the staggered case. Two further discreti-
sations with Ny = 3, HISQ fermions [13] and domain
wall fermions [14], do not see any phase transition at the
smallest available quark masses, and thus are fully consis-
tetnt with those findings. A recent fRG study of 3d sigma
models including a ¢° term [15] and numerical bootstrap
methods applied to U(m)x U(n) [16] models are also com-
patible with a second-order chiral transition. Thus, the
Columbia plot in the continuum looks as in Fig. 2 (right),
with a second-order chiral transition for m, 4 = 0 and any
value of my, and crossover as soon as m, 4 # 0.
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Figure 3. Left: Chiral susceptibility at physical m; for a range of decreasing m,, with the HISQ lattice action [8] and from fRG
calculations [9]. From [9]. The Z(2)-critical line separating first-order transitions (below) from crossover (above), for unimproved
staggered fermions [6] (middle) and O(a)-improved Wilson fermions [11] (right), with tricritical scaling fits to both. From [6].

3 The search for a critical point

Lattice searches for a critical point are based on indirect
methods to extract information about the phase structure
for small baryon density, ug/T<3: (i) Reweighting [17],
(i1) Taylor expansion in y/T [18] and (iii) analytic contin-
uation from imaginary chemical potential, for which there
is no sign problem [19, 20]. When the QCD pressure is
expressed as a series in baryon chemical potential,

p(T,,UB) _ p(T’ O) - 1 B /’lB n
ERE = S X apda(F) o
i)
B T — T ,
XZn( ) 8(‘%)2” 15=0

the Taylor coefficients are the baryon number fluctuations
evaluated at zero density, which can also be computed by
fitting to untruncated results at imaginary pp. This permits
full control of the systematics between (ii) and (iii). These
coefficients are presently known up to 2n = 8.

Quite generally power series are limited by their radius
of convergence, corresponding to the nearest singularity
of the full function (relative to the expansion point) in the
complex variable. If such a singularity is located on the
real axis, it signals a phase transition.

In [21] a cluster expansion model (CEM) was devel-
oped, with all expansion coefficients recursively related to
the lower ones, and the first two are fixed by lattice data.
As in the virial expansion, such a recursion is possible as
long as the system is sufficiently dilute and dominated by
two-body interactions. The model is quantitatively consis-
tent with all known lattice pressure coefficients, as e.g. in
Fig. 4 (left), and since its coefficients are known to all or-
ders, it allows a controlled extraction of the radius of con-
vergence. The only phase transition predicted in this way
is the known Roberge-Weiss transition in the direction of
imaginary chemical potential up = inT [22], which im-
plies that any phase transition in the real direction is fur-
ther away than that. While this is just a model, it tells
us that nothing in the available lattice fluctuation data en-
forces singular behaviour.

Another option is to use the coefficients calculated di-
rectly from the lattice. From these one can construct Padé-
approximants, which are rational functions (i.e. infinite

Table 1. Lattice bounds on the location of a critical point

Criterion (up/T)°P> Ref.
Teep < T asinFig. 1 3.1 [7]

CEM of lattice fluctuations [21]
Padé-appr. LY-zeroes 2.5 [23]
Reweighted simulation 2.5 [24]

order in the expansion variable) whose first coefficients
agree with the explicitly computed ones. These approx-
imants can be further constrained by simulation results for
the full pressure at imaginary chemical potential. Their
singularities are then taken as estimates for the singulari-
ties of the full function. Locations of the Lee-Yang edge
singularities (indicating a branch point in the pressure) ex-
tracted in this way are shown in Fig. 4 (middle), based on
HISQ fermion data [23]. So far all singularities are at com-
plex values of the chemical potential, but note the closing
in toward the real axis as temprerature is decreased. This
bounds a true phase transition to lower temperatures than
those for which coefficients are currently available.

Taylor expansions are avoided by using reweighting
techniques in Monte Carlo simulations. Recent new calcu-
lations with stout smeared staggered fermions [24], using
techniques considerably refined compared to earlier ones,
evaluate the renormalised chiral condensate,

GOIR(T,p) =~
Iz
as shown in Fig. 4 (right). The reweighted real up simu-
lations are fully compatible with the analytic continuation
from imaginary up simulations, but with smaller errors.
Neither method shows a sign of non-analyticity so far.

In summary, lattice information on physical QCD in
equilibrium at pp/T < 3 is increasing and increasingly
controlled. Table 1 collects the current bounds on the
location of a critical endpoint resulting from these anal-
yses. These are also consistent with the critical end-
point candidates found in the most recent truncations
of Dyson-Schwinger equations [26] and their combina-
tion with functional renormalisation group methods [27],
which predict (ug/T)P ~ 5.6.
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Figure 4. Left: Baryon number fluctuations from the lattice in comparison with the CEM model. From [25]. Middle: Lee-Yang zeros
indicating the radius of convergence of the pressure series in complex chemical potential. From [23]. Right: Renormalised chiral
condensate as a function of real and imaginary chemical potential. From [24].

4 Emergent chiral spin symmetry

While a critical point remains elusive on the lattice so
far, an emergent approximate chiral spin symmetry has
been discovered above the chiral crossover at ug = 0. A
S U(2)¢s chiral spin transformation acts on Dirac fields as

Yy > exp (- Qo). = —iysynys) . @)

Here k = 1,...4 can be any of the euclidean gamma ma-
trices. From the generators it is apparent that SU(2)¢cs D
U(1)4. When combined with ordinary vectorial isospin
transformations, S U(2)¢cs ® S U(2)y can be embedded into
the larger S U(4), which contains the usual chiral symme-
try of the massless QCD Lagrangian, SU(4) D> SU(2); X
SUR2)r x U(1)4.

The QCD Lagrangian is not invariant under chiral spin
transformations. A thermal medium implies a preferred
Lorentz frame, and the massless quark action can be de-
composed as

Yy D = YyoDoy + Yy Ditpr . (5)

Explicit calculation shows the colour-electric part of the
quark-gluon interaction to be CS- and S U(4)-invariant,
while the colour-magnetic interaction and kinetic terms
(and thus the free Dirac action) are not. Hence, chiral spin
symmetry is never exact in physical QCD, but its approx-
imate realisation is possible if the colour-electric quark-
gluon interaction dominates the quantum effective action
in some dynamical range, which would then be strongly
coupled.

On the lattice, symmetries become apparent in degen-
eracy patterns of euclidean correlation functions,

Cr(,%) = (Or(z,x) 00,0)) , Q)

with I' some appropriate Dirac matrix. Information about
all excitations in each quantum number channel is carried
by the spectral functions pr(w, p),

< d

Gep = [ S KEop@. O
0 T

Ko cosh(w(t — 1/2T))

sinh(w/2T)

For an isotropic system in equilibrium, it is sufficient to
probe the spatial and temporal correlators averaged over
the orthogonal directions,

@)=Y Cr@x), Cim =) Crmx) . ©)

XY, XY,

Numerical results for spatial / = 0, 1 meson correla-
tors from Ny = 2 JLQCD domain wall fermions with phys-
ical quark masses, good chiral symmetry and lattice spac-
ings < 0.1 fm [28] are shown in Fig. 5. Three multiplets
of spatial correlators, E 3, at different temperatures are
seen. Of these, E; is due to U(1), restoration whereas E3
requires the full chiral symmetry. Both multiplets are ex-
pected above the chiral crossover. Not expected is the mul-
tiplet E,, which does not correspond to a representation of
chiral symmetry, but to one of the larger S U(4). For the
representations and associated meson states, see [29, 30].
Appearance of E, demonstrates the dynamical emergence
of chiral spin symmetry in this regime. As temperature
is further increased, E, gradually disappears as a separate
multiplet and only those belonging to the expected chi-
ral symmetry survive. Similar findings are reported from
temporal correlators at 7 = 220 MeV and the same lattice
spacing [31]. Recently, the same patterns were observed
with the quark content increased to Ny = 2+ 1 + 1 QCD,
including physical strange and charm quarks [32].

A related observable which is sensitive to the entry and
exit of the CS-symmetric temperature range are screen-
ing masses [33]. These correspond to the exponential
decay of the large-separation spatial correlators in (8),
Cl(z) ~ exp(-my,z) for z — oco. While not directly
accessible experimentally, they can be readily evaluated
non-perturbatively and perturbatively. Around the chiral
crossover temperature, the screening masses show the ex-
pected degeneracy due to chiral symmetry. However, the
temperature dependence predicted by pertubation theory is
only attained for 7>500 MeV. This can be understood by
the approximate chiral spin symmetry in between, which
perturbation theory about free quarks cannot reproduce.

If there is a chiral-spin symmetric band at zero den-
sity, it must necessarily continue to finite baryon den-
sity because the ug-term respects that symmetry. From
the known behaviour of screening masses with up one
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Figure 5. Spatial correlation functions with domain wall fermions show distinct E, E;, E3 multiplets of the approximate S U(4)
chiral spin symmetry, at temperatures above the crossover. At large temperatures, these reduce to the multiplets of the ordinary chiral

symmetry. From [28].

infers that the chiral-spin symmetric band curves down-
wards, as in the possible phase diagram Fig. 6 (left). In
the absence of lattice data the continuation to higher den-
sities and lower temperatures is speculative, of course, but
baryon parity doublets and quarkyonic matter both are CS-
symmetric candidates to populate such a band [33].

Information about the nature of the effective degrees
of freedom in different regimes is encoded in the spectral
functions, Eq. (8). Unfortunately, their extraction from
discrete sets of lattice correlator data represents an ill-
posed inversion problem. Recently, a new method was at-
tempted [34], which applies to stable scalar particles in a
heat bath, i.e. to the pion in the case of QCD, which allows
to circumvent the integral inversion.

The method exploits locality of quantum field theories
to ensure a representation of the spectral function [35, 36],

prs(w, p) )
o0 BPu 2 » —
= fo ds f o e(po) 0(w” — (p — u)* = 5) Dy(u, s) ,

with 8 = 1/T, the thermal spectral density Bﬁ(u, s), and
the standard Kéillen-Lehmann vacuum representation aris-
ing as T — 0. For stable massive particles the analytic
vacuum structure of the spectral density is preserved in the
absence of a true phase transition. The authors therefore
propose an ansatz with separable particle and scattering
contributions,

Dg(u, 5) = D, 5(w) 6(s — m?) + D, p(u, s) . (10)

In an isotropic medium the spatial correlators and the spec-
tral density are then related by [34]

i 1 00 00 i
Cig(2) = Ef dsf dR e RS Dy(R, s). (11)
0 Izl

For temperatures below the threshold to the scattering
states the first term in Eq. (10) should dominate. Once
the continuum part is neglected, the calculation is straight-
forward. First, spatial pion correlators from [28] are
fitted by the sum of two exponentials representing the
n,n*. This provides the D, g(IX]) = @z exp(=YrxIX]),

from which the spectral function can be reconstructed us-
ing Eqgs. (9,10) and the known vacuum masses miy, m-.
The result is shown in Fig. 6 (middle) and, as a non-trivial
check, correctly predicts the temporal lattice correlator
[31] for 7 > m;), Fig. 6 (right). The spectral function
shows resonance-like peaks for both the pion and its first
excitation. As the temperature increases, the peaks widen
and gradually disappear, consistent with sequential hadron
melting, but at temperatures significantly above the chiral
crossover. This suggests non-perturbative, hadron-like ex-
citations within the approximately chiral-spin symmetric
temperature range.

5 Conclusions

The last few years have seen remarkable progress in the
determination of the QCD phase structure. A major mile-
stone is the understanding of the chiral transition at zero
density in the massless limit, which is nearly completed.
The transition temperature is known fairly accurately and
there is strong evidence for the transition to be of second
order for all Ny € [2,7]. Together with data on baryon
number fluctuations, this constrains the location of a criti-
cal point to (up/T)*? > 3 and Tep < 132 MeV.

A new development is the discovery of an approximate
chiral spin symmetry, which emerges dynamically in a
temperature band above the chiral crossover, T <T' 3T ..
It can be identified in the multiplet structure of correlation
functions and affects associated observables like screening
masses and spectral functions. Together these suggest a
regime with chiral symmetry restored but hadron-like de-
grees of freedom. It would be most interesting to inves-
tigate if and how this affects experimental observables in
heavy ion collisions.
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